Datasets:
Tasks:
Visual Question Answering
Formats:
parquet
Languages:
Japanese
Size:
1K - 10K
ArXiv:
License:
metadata
language:
- ja
license: cc-by-4.0
size_categories:
- 1K<n<10K
task_categories:
- visual-question-answering
dataset_info:
features:
- name: image_id
dtype: int64
- name: url
dtype: string
- name: width
dtype: int64
- name: height
dtype: int64
- name: coco_id
dtype: float64
- name: flickr_id
dtype: float64
- name: qas
list:
- name: a_objects
sequence: 'null'
- name: answer
dtype: string
- name: q_objects
sequence: 'null'
- name: qa_id
dtype: int64
- name: question
dtype: string
- name: image
dtype: image
splits:
- name: test
num_bytes: 73348776
num_examples: 500
download_size: 355977607
dataset_size: 357916367
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
JA-VG-VQA-500
Dataset Description
JA-VG-VQA-500 is a 500-sample subset of Japanese Visual Genome VQA dataset. This dataset was used in the evaluation of EvoVLM-JP-v1-7B. Please refer to our report and blog for more details. We are grateful to the developers for making the dataset available under Creative Commons Attribution 4.0 License.
Usage
Use the code below to get started with the dataset.
from datasets import load_dataset
dataset = load_dataset("SakanaAI/JA-VG-VQA-500", split="test")
See our GitHub repository to evaluate Japanese VLMs.
Acknowledgement
We would like to thank the developers of the source datasets for their contributions and for making their work available.
Citation
@article{Krishna2016VisualGC,
title = {Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations},
author. = {Ranjay Krishna and Yuke Zhu and Oliver Groth and Justin Johnson and Kenji Hata and Joshua Kravitz and Stephanie Chen and Yannis Kalantidis and Li-Jia Li and David A. Shamma and Michael S. Bernstein and Li Fei-Fei},
journal = {International Journal of Computer Vision},
year. = {2017},
volume. = {123},
pages. = {32-73},
URL = {https://doi.org/10.1007/s11263-016-0981-7},
doi = {10.1007/s11263-016-0981-7}
}
@InProceedings{C18-1163,
author = "Shimizu, Nobuyuki and Rong, Na and Miyazaki, Takashi",
title = "Visual Question Answering Dataset for Bilingual Image Understanding: A Study of Cross-Lingual Transfer Using Attention Maps",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
year = "2018",
publisher = "Association for Computational Linguistics",
pages = "1918--1928",
location = "Santa Fe, New Mexico, USA",
url = "http://aclweb.org/anthology/C18-1163"
}