Datasets:
Tasks:
Visual Question Answering
Formats:
parquet
Languages:
Japanese
Size:
1K - 10K
ArXiv:
License:
File size: 3,170 Bytes
8e8d061 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
language:
- ja
license: cc-by-4.0
size_categories:
- 1K<n<10K
task_categories:
- visual-question-answering
dataset_info:
features:
- name: image_id
dtype: int64
- name: url
dtype: string
- name: width
dtype: int64
- name: height
dtype: int64
- name: coco_id
dtype: float64
- name: flickr_id
dtype: float64
- name: qas
list:
- name: a_objects
sequence: 'null'
- name: answer
dtype: string
- name: q_objects
sequence: 'null'
- name: qa_id
dtype: int64
- name: question
dtype: string
- name: image
dtype: image
splits:
- name: test
num_bytes: 73348776.0
num_examples: 500
download_size: 355977607
dataset_size: 357916367.0
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
---
# JA-VG-VQA-500
## Dataset Description
**JA-VG-VQA-500** is a 500-sample subset of [Japanese Visual Genome VQA dataset](https://github.com/yahoojapan/ja-vg-vqa).
This dataset was used in the evaluation of [EvoVLM-JP-v1-7B](https://huggingface.co/SakanaAI/EvoVLM-JP-v1-7B).
Please refer to our [report](https://arxiv.org/abs/2403.13187) and [blog](https://sakana.ai/evolutionary-model-merge/) for more details.
We are grateful to the developers for making the dataset available under [Creative Commons Attribution 4.0 License](https://creativecommons.org/licenses/by/4.0/legalcode).
- [Visual Genome](https://homes.cs.washington.edu/~ranjay/visualgenome/index.html)
- [Japanese Visual Genome VQA dataset](https://github.com/yahoojapan/ja-vg-vqa)
## Usage
Use the code below to get started with the dataset.
```python
from datasets import load_dataset
dataset = load_dataset("SakanaAI/JA-VG-VQA-500", split="test")
```
See [our GitHub repository](https://github.com/SakanaAI/evolutionary-model-merge) to evaluate Japanese VLMs.
## Acknowledgement
We would like to thank the developers of the source datasets for their contributions and for making their work available.
## Citation
```bibtex
@article{Krishna2016VisualGC,
title = {Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations},
author. = {Ranjay Krishna and Yuke Zhu and Oliver Groth and Justin Johnson and Kenji Hata and Joshua Kravitz and Stephanie Chen and Yannis Kalantidis and Li-Jia Li and David A. Shamma and Michael S. Bernstein and Li Fei-Fei},
journal = {International Journal of Computer Vision},
year. = {2017},
volume. = {123},
pages. = {32-73},
URL = {https://doi.org/10.1007/s11263-016-0981-7},
doi = {10.1007/s11263-016-0981-7}
}
```
```bibtex
@InProceedings{C18-1163,
author = "Shimizu, Nobuyuki and Rong, Na and Miyazaki, Takashi",
title = "Visual Question Answering Dataset for Bilingual Image Understanding: A Study of Cross-Lingual Transfer Using Attention Maps",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
year = "2018",
publisher = "Association for Computational Linguistics",
pages = "1918--1928",
location = "Santa Fe, New Mexico, USA",
url = "http://aclweb.org/anthology/C18-1163"
}
```
|