Datasets:

Modalities:
Text
Formats:
csv
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 1,112 Bytes
2ff5e0d
 
 
5352b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
---

license: mit
---

# Description
Metal Ion Binding prediction is a binary classification task where each input protein *x* is mapped to a label *y* ∈ {0, 1}, corresponding to whether there are metal ion–binding sites in the protein.

The digital label means:

0: No 

1: Yes

# Splits

**Structure type:** PDB

The dataset is from [**Exploring evolution-aware & -free protein language models as protein function predictors**](https://arxiv.org/abs/2206.06583). We employ all proteins from the original dataset, and split them based on 70% structure similarity (see [ProteinShake](https://github.com/BorgwardtLab/proteinshake/tree/main)), with the number of training, validation and test set shown below:

- Train: 5797
- Valid: 719
- Test:  719

# Data format

We organize all data in LMDB format. The architecture of the databse is like:

**length:** The number of samples

**0:** 

- **name:** The PDB ID of the protein
- **chain:** The chain ID of the protein
- **seq:** The structure-aware sequence
- **label:** Digital label of the sequence

**1:**

**···**