File size: 4,457 Bytes
9f0e4d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bfe224
 
 
 
747d7e3
 
 
9f0e4d5
50d9a4d
747d7e3
f4b1146
 
 
 
 
 
 
 
 
 
 
 
747d7e3
9f0e4d5
 
 
c64c15d
 
9f0e4d5
 
 
 
747d7e3
9f0e4d5
747d7e3
 
 
 
 
 
 
9f0e4d5
 
 
 
747d7e3
 
9f0e4d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
747d7e3
9f0e4d5
747d7e3
 
9f0e4d5
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---
license: apache-2.0
language:
- zh
size_categories:
- 1K<n<10K
---

# CDLA: A Chinese document layout analysis (CDLA) dataset

### 介绍

CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label:

|正文|标题|图片|图片标题|表格|表格标题|页眉|页脚|注释|公式|
|---|---|---|---|---|---|---|---|---|---|
|Text|Title|Figure|Figure caption|Table|Table caption|Header|Footer|Reference|Equation|

共包含5000张训练集和1000张验证集,分别在train和val目录下。

整理自:[CDLA](https://github.com/buptlihang/CDLA)

标注可视化:
![](./assets/demo.png)


### 使用方式
```python
from datasets import load_dataset

dataset = load_dataset("SWHL/CDLA")

train_data = dataset["train"]
print(train_data[0])

val_data = dataset["validation"]
print(val_data[0])

# {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1240x1754 at 0x12FEE3DF0>,
# 'version': '4.5.6', 'flags': {},
# 'shapes': [
#     {'label': 'Header', 'points': [[118.0, 135.66666666666669]], 'group_id': None, 'shape_type': 'polygon', 'flags': {}}
# ],
# 'imagePath': 'train_0001.jpg', 'imageData': None, 'imageHeight': 1754, 'imageWidth': 1240}
```

### 下载链接

- 百度云下载:[link](https://pan.baidu.com/s/1449mhds2ze5JLk-88yKVAA), 提取码: tp0d
- Google Drive Download:[link](https://drive.google.com/file/d/14SUsp_TG8OPdK0VthRXBcAbYzIBjSNLm/view?usp=sharing)


### 标注格式

我们的标注工具是labelme,所以标注格式和labelme格式一致。这里说明一下比较重要的字段:

- `shapes`: shapes字段是一个list,里面有多个dict,每个dict代表一个标注实例。
- `labels`: 类别。
- `points`: 实例标注。因为我们的标注是Polygon形式,所以points里的坐标数量可能大于4。
- `shape_type`: "polygon"
- `imagePath`: 图片路径/名
- `imageHeight`: 高
- `imageWidth`: 宽


展示一个完整的标注样例:

<details>
  
```json
{
  "version":"4.5.6",
  "flags":{},
  "shapes":[
    {
      "label":"Title",
      "points":[
        [
          553.1111111111111,
          166.59259259259258
        ],
        [
          553.1111111111111,
          198.59259259259258
        ],
        [
          686.1111111111111,
          198.59259259259258
        ],
        [
          686.1111111111111,
          166.59259259259258
        ]
      ],
      "group_id":null,
      "shape_type":"polygon",
      "flags":{}
    },
    {
      "label":"Text",
      "points":[
        [
          250.5925925925925,
          298.0740740740741
        ],
        [
          250.5925925925925,
          345.0740740740741
        ],
        [
          188.5925925925925,
          345.0740740740741
        ],
        [
          188.5925925925925,
          410.0740740740741
        ],
        [
          188.5925925925925,
          456.0740740740741
        ],
        [
          324.5925925925925,
          456.0740740740741
        ],
        [
          324.5925925925925,
          410.0740740740741
        ],
        [
          1051.5925925925926,
          410.0740740740741
        ],
        [
          1051.5925925925926,
          345.0740740740741
        ],
        [
          1052.5925925925926,
          345.0740740740741
        ],
        [
          1052.5925925925926,
          298.0740740740741
        ]
      ],
      "group_id":null,
      "shape_type":"polygon",
      "flags":{}
    },
    {
      "label":"Footer",
      "points":[
        [
          1033.7407407407406,
          1634.5185185185185
        ],
        [
          1033.7407407407406,
          1646.5185185185185
        ],
        [
          1052.7407407407406,
          1646.5185185185185
        ],
        [
          1052.7407407407406,
          1634.5185185185185
        ]
      ],
      "group_id":null,
      "shape_type":"polygon",
      "flags":{}
    }
  ],
  "imagePath":"val_0031.jpg",
  "imageData":null,
  "imageHeight":1754,
  "imageWidth":1240
}
```
</details>

### 转COCO格式
```bash
# train
python3 labelme2coco.py CDLA_dir/train train_save_path  --labels labels.txt

# val
python3 labelme2coco.py CDLA_dir/val val_save_path  --labels labels.txt
```

转换结果保存在train_save_path/val_save_path目录下。

labelme2coco.py取自labelme,更多信息请参考[labelme官方项目](https://github.com/wkentaro/labelme/tree/master/examples/instance_segmentation)