|
import os |
|
from pathlib import Path |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """ |
|
@article{cruz2019evaluating, |
|
title={Evaluating Language Model Finetuning Techniques for Low-resource Languages}, |
|
author={Cruz, Jan Christian Blaise and Cheng, Charibeth}, |
|
journal={arXiv preprint arXiv:1907.00409}, |
|
year={2019} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "wikitext_tl_39" |
|
|
|
_DESCRIPTION = """A benchmark Language Modeling dataset for Tagalog. The dataset construction was done similar to that of the WikiText |
|
Long Term Dependency Language Modeling Dataset, with a some differences, such as in how Wikipedia was scraped and how the vocabulary was |
|
created. The dataset contains 39 Million tokens in the training set. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/wikitext_tl39" |
|
|
|
_LANGUAGES = ["fil"] |
|
|
|
_LICENSE = Licenses.GPL_3_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://s3.us-east-2.amazonaws.com/blaisecruz.com/datasets/wikitext-tl-39/wikitext-tl-39.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class WikiTextTL39Dataset(datasets.GeneratorBasedBuilder): |
|
"""Large scale, unlabeled text dataset with 39 Million tokens in the training set in Tagalog.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_ssp", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_ssp", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
features = schemas.ssp_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> list[datasets.SplitGenerator]: |
|
data_dir = dl_manager.download_and_extract(_URLS[_DATASETNAME]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": os.path.join(data_dir, "wikitext-tl-39", "train.txt"), "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": os.path.join(data_dir, "wikitext-tl-39", "test.txt"), "split": "test"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": os.path.join(data_dir, "wikitext-tl-39", "valid.txt"), "split": "valid"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> tuple[int, dict]: |
|
with open(filepath, encoding="utf-8") as f: |
|
for i, row in enumerate(f): |
|
if row.strip(): |
|
yield i, { |
|
"id": str(i), |
|
"text": row, |
|
} |
|
else: |
|
yield i, { |
|
"id": str(i), |
|
"text": "", |
|
} |
|
|