import os from pathlib import Path import datasets from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """ @article{cruz2019evaluating, title={Evaluating Language Model Finetuning Techniques for Low-resource Languages}, author={Cruz, Jan Christian Blaise and Cheng, Charibeth}, journal={arXiv preprint arXiv:1907.00409}, year={2019} } """ _DATASETNAME = "wikitext_tl_39" _DESCRIPTION = """A benchmark Language Modeling dataset for Tagalog. The dataset construction was done similar to that of the WikiText Long Term Dependency Language Modeling Dataset, with a some differences, such as in how Wikipedia was scraped and how the vocabulary was created. The dataset contains 39 Million tokens in the training set. """ _HOMEPAGE = "https://huggingface.co/datasets/wikitext_tl39" _LANGUAGES = ["fil"] _LICENSE = Licenses.GPL_3_0.value _LOCAL = False _URLS = { _DATASETNAME: "https://s3.us-east-2.amazonaws.com/blaisecruz.com/datasets/wikitext-tl-39/wikitext-tl-39.zip", } _SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class WikiTextTL39Dataset(datasets.GeneratorBasedBuilder): """Large scale, unlabeled text dataset with 39 Million tokens in the training set in Tagalog.""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=_DATASETNAME, ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_ssp", version=SEACROWD_VERSION, description=f"{_DATASETNAME} SEACrowd schema", schema="seacrowd_ssp", subset_id=_DATASETNAME, ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self) -> datasets.DatasetInfo: features = schemas.ssp_features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> list[datasets.SplitGenerator]: data_dir = dl_manager.download_and_extract(_URLS[_DATASETNAME]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "wikitext-tl-39", "train.txt"), "split": "train"}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "wikitext-tl-39", "test.txt"), "split": "test"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, "wikitext-tl-39", "valid.txt"), "split": "valid"}, ), ] def _generate_examples(self, filepath: Path, split: str) -> tuple[int, dict]: with open(filepath, encoding="utf-8") as f: for i, row in enumerate(f): if row.strip(): yield i, { "id": str(i), "text": row, } else: yield i, { "id": str(i), "text": "", }