File size: 5,666 Bytes
8911bdc 2f301f4 8911bdc 2f301f4 8911bdc 2f301f4 9c0bca2 2f301f4 8911bdc 2f301f4 8911bdc 9c0bca2 2f301f4 8911bdc 9c0bca2 8911bdc 9c0bca2 8911bdc 9c0bca2 8911bdc 9c0bca2 8911bdc 9c0bca2 8911bdc 2f301f4 8911bdc 2f301f4 8911bdc 2f301f4 8911bdc 2f301f4 8911bdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
---
license: apache-2.0
language:
- ind
- jav
- min
- sun
- ace
- zlm
- mya
- tgl
- tha
- vie
- khm
pretty_name: Wikiann
task_categories:
- named-entity-recognition
tags:
- named-entity-recognition
---
The wikiann dataset contains NER tags with labels from O (0), B-PER (1), I-PER (2), B-ORG (3), I-ORG (4), B-LOC (5), I-LOC (6). The Indonesian subset is used.
WikiANN (sometimes called PAN-X) is a multilingual named entity recognition dataset consisting of Wikipedia articles
annotated with LOC (location), PER (person), and ORG (organisation)
tags in the IOB2 format. This version corresponds to the balanced train, dev, and test splits of
Rahimi et al. (2019), and uses the following subsets from the original WikiANN corpus
Language WikiAnn ISO 639-3
Indonesian id ind
Javanese jv jav
Minangkabau min min
Sundanese su sun
Acehnese ace ace
Malay ms zlm
Banyumasan map-bms map-bms
Myanmar my mya
Tagalog tl tgl
Thailand th tha
Vietnam vi vie
Khmer km khm
## Languages
ind, jav, min, sun, ace, zlm, map-bms, mya, tgl, tha, vie, khm
## Supported Tasks
Named Entity Recognition
## Dataset Usage
### Using `datasets` library
```
from datasets import load_dataset
dset = datasets.load_dataset("SEACrowd/wikiann", trust_remote_code=True)
```
### Using `seacrowd` library
```import seacrowd as sc
# Load the dataset using the default config
dset = sc.load_dataset("wikiann", schema="seacrowd")
# Check all available subsets (config names) of the dataset
print(sc.available_config_names("wikiann"))
# Load the dataset using a specific config
dset = sc.load_dataset_by_config_name(config_name="<config_name>")
```
More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).
## Dataset Homepage
[https://github.com/afshinrahimi/mmner](https://github.com/afshinrahimi/mmner)
## Dataset Version
Source: 1.1.0. SEACrowd: 2024.06.20.
## Dataset License
Apache license 2.0 (apache-2.0)
## Citation
If you are using the **Wikiann** dataloader in your work, please cite the following:
```
@inproceedings{pan-etal-2017-cross,
title = "Cross-lingual Name Tagging and Linking for 282 Languages",
author = "Pan, Xiaoman and
Zhang, Boliang and
May, Jonathan and
Nothman, Joel and
Knight, Kevin and
Ji, Heng",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P17-1178",
doi = "10.18653/v1/P17-1178",
pages = "1946--1958",
abstract = "The ambitious goal of this work is to develop a cross-lingual name tagging and linking framework
for 282 languages that exist in Wikipedia. Given a document in any of these languages, our framework is able
to identify name mentions, assign a coarse-grained or fine-grained type to each mention, and link it to
an English Knowledge Base (KB) if it is linkable. We achieve this goal by performing a series of
new KB mining methods: generating {``}silver-standard{''} annotations by
transferring annotations from English to other languages through cross-lingual links and KB properties,
refining annotations through self-training and topic selection,
deriving language-specific morphology features from anchor links, and mining word translation pairs from
cross-lingual links. Both name tagging and linking results for 282 languages are promising
on Wikipedia data and on-Wikipedia data.",
}
@inproceedings{rahimi-etal-2019-massively,
title = "Massively Multilingual Transfer for {NER}",
author = "Rahimi, Afshin and
Li, Yuan and
Cohn, Trevor",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P19-1015",
pages = "151--164",
}
@article{lovenia2024seacrowd,
title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages},
author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya},
year={2024},
eprint={2406.10118},
journal={arXiv preprint arXiv: 2406.10118}
}
``` |