File size: 7,857 Bytes
1ff780a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Dict, List, Tuple
import conllu
import datasets
from seacrowd.sea_datasets.vndt.utils import parse_token_and_impute_metadata
from seacrowd.utils import schemas
from seacrowd.utils.common_parser import (load_ud_data,
load_ud_data_as_seacrowd_kb)
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@InProceedings{Nguyen2014NLDB,
author = {Nguyen, Dat Quoc and Nguyen, Dai Quoc and Pham, Son Bao and Nguyen, Phuong-Thai and Nguyen, Minh Le},
title = {{From Treebank Conversion to Automatic Dependency Parsing for Vietnamese}},
booktitle = {{Proceedings of 19th International Conference on Application of Natural Language to Information Systems}},
year = {2014},
pages = {196-207},
url = {https://github.com/datquocnguyen/VnDT},
}
"""
_DATASETNAME = "vndt"
_DESCRIPTION = """\
VnDT is a Vietnamese dependency treebank, consisting of 10K+ sentences (219k words). The VnDT Treebank is automatically
converted from the input Vietnamese Treebank.
"""
_HOMEPAGE = "https://github.com/datquocnguyen/VnDT"
_LANGUAGES = {"vie": "vi"}
_LICENSE = Licenses.UNKNOWN.value
_LOCAL = False
_URLS = {
"gold-dev": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-gold-POS-tags-dev.conll",
"gold-test": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-gold-POS-tags-test.conll",
"gold-train": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-gold-POS-tags-train.conll",
"predicted-dev": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-predicted-POS-tags-dev.conll",
"predicted-test": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-predicted-POS-tags-test.conll",
"predicted-train": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-predicted-POS-tags-train.conll",
}
_SUPPORTED_TASKS = [Tasks.DEPENDENCY_PARSING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class VnDTDataset(datasets.GeneratorBasedBuilder):
"""
VnDT is a Vietnamese dependency treebank from https://github.com/datquocnguyen/VnDT.
"""
# Override conllu.parse_token_and_metadata via monkey patching
conllu.parse_token_and_metadata = parse_token_and_impute_metadata
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_gold_source",
version=datasets.Version(_SOURCE_VERSION),
description=f"{_DATASETNAME} gold standard source schema",
schema="source",
subset_id="gold",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_gold_seacrowd_kb",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME} gold standard SEACrowd schema",
schema="seacrowd_kb",
subset_id="gold",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_predicted_source",
version=datasets.Version(_SOURCE_VERSION),
description=f"{_DATASETNAME} predicted source schema",
schema="source",
subset_id="predicted",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_predicted_seacrowd_kb",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME} predicted SEACrowd schema",
schema="seacrowd_kb",
subset_id="predicted",
),
]
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Sequence(datasets.Value("int8")),
"form": datasets.Sequence(datasets.Value("string")),
"lemma": datasets.Sequence(datasets.Value("string")),
"upos": datasets.Sequence(datasets.Value("string")),
"xpos": datasets.Sequence(datasets.Value("string")),
"feats": datasets.Sequence(datasets.Value("string")),
"head": datasets.Sequence(datasets.Value("int8")),
"deprel": datasets.Sequence(datasets.Value("string")),
"deps": datasets.Sequence(datasets.Value("string")),
"misc": datasets.Sequence(datasets.Value("string")),
}
)
elif self.config.schema == "seacrowd_kb":
features = schemas.kb_features
else:
raise ValueError(f"Invalid schema: '{self.config.schema}'")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""
Returns SplitGenerators.
"""
paths = {key: dl_manager.download_and_extract(value) for key, value in _URLS.items()}
if self.config.subset_id == "gold":
filtered_paths = {key: value for key, value in paths.items() if "gold" in key}
elif self.config.subset_id == "predicted":
filtered_paths = {key: value for key, value in paths.items() if "predicted" in key}
else:
raise NotImplementedError(f"Invalid subset: '{self.config.subset_id}'.")
return [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepaths": [value for key, value in filtered_paths.items() if "dev" in key],
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepaths": [value for key, value in filtered_paths.items() if "test" in key],
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepaths": [value for key, value in filtered_paths.items() if "train" in key],
"split": "train",
},
),
]
def _generate_examples(self, filepaths: Path, split: str) -> Tuple[int, Dict]:
"""
Yields examples as (key, example) tuples.
"""
dataset = None
for file in filepaths:
if self.config.schema == "source":
dataset = list(load_ud_data(file))
elif self.config.schema == "seacrowd_kb":
dataset = list(load_ud_data_as_seacrowd_kb(file, dataset))
else:
raise ValueError(f"Invalid config: '{self.config.name}'")
for idx, example in enumerate(dataset):
if self.config.schema == "source":
example.pop('sent_id', None)
example.pop('text', None)
yield idx, example |