Datasets:

Languages:
Vietnamese
ArXiv:
License:
File size: 7,537 Bytes
a5b8b50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (SCHEMA_TO_FEATURES, TASK_TO_SCHEMA,
                                      Licenses, Tasks)

_CITATION = """
@ARTICLE{vimmrc,
    author={Nguyen, Kiet Van and Tran, Khiem Vinh and Luu, Son T. and Nguyen, Anh Gia-Tuan and Nguyen, Ngan Luu-Thuy},
    journal={IEEE Access},
    title={Enhancing Lexical-Based Approach With External Knowledge for Vietnamese Multiple-Choice Machine Reading Comprehension},
    year={2020},
    volume={8},
    pages={201404-201417},
    doi={10.1109/ACCESS.2020.3035701}}
"""

_DATASETNAME = "vimmrc"

_DESCRIPTION = """
ViMMRC, a challenging machine comprehension corpus with multiple-choice questions,
intended for research on the machine comprehension of Vietnamese text. This corpus
includes 2,783 multiple-choice questions and answers based on a set of 417 Vietnamese
texts used for teaching reading comprehension for 1st to 5th graders.
"""

_HOMEPAGE = "https://sites.google.com/uit.edu.vn/kietnv/datasets#h.1qeaynfs79d1"

_LANGUAGES = ["vie"]

_LICENSE = f"{Licenses.UNKNOWN.value} | The corpus is freely available at our website for research purposes."

_LOCAL = False

_URL = "https://drive.google.com/file/d/14Rq-YANUv8qyi4Ze8ReEAEu_uxgcV_Yk/view"  # ~2mb

_SUPPORTED_TASKS = [Tasks.COMMONSENSE_REASONING]
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}"  # qa

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"


class ViMMRCDataset(datasets.GeneratorBasedBuilder):
    """A Vietnamese machine comprehension corpus with multiple-choice questions"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_source",
            version=SOURCE_VERSION,
            description=f"{_DATASETNAME} source schema",
            schema="source",
            subset_id=_DATASETNAME,
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_{_SEACROWD_SCHEMA}",
            version=SEACROWD_VERSION,
            description=f"{_DATASETNAME} SEACrowd schema",
            schema=_SEACROWD_SCHEMA,
            subset_id=_DATASETNAME,
        ),
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "file_path": datasets.Value("string"),
                    "article": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "choices": datasets.Sequence(datasets.Value("string")),
                    "answer": datasets.Value("string"),
                }
            )
        elif self.config.schema == _SEACROWD_SCHEMA:
            features = SCHEMA_TO_FEATURES[TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]]]  # qa_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        # check if gdown is installed
        try:
            import gdown
        except ImportError as err:
            raise ImportError("Please install `gdown` to enable reliable data download from google drive.") from err

        # download data from gdrive
        output_dir = Path.cwd() / "data" / "vimmrc"
        output_dir.mkdir(parents=True, exist_ok=True)
        output_file = output_dir / "vimmrc.zip"
        if not output_file.exists():
            gdown.download(_URL, str(output_file), fuzzy=True)
        else:
            print(f"File already downloaded: {str(output_file)}")

        # extract data
        data_dir = Path(dl_manager.extract(output_file)) / "ViMMRC"

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_dir": data_dir / "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "data_dir": data_dir / "dev",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "data_dir": data_dir / "test",
                },
            ),
        ]

    def _generate_examples(self, data_dir: Path) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""
        # a data_dir consists of several json files
        json_files = sorted(list(data_dir.glob("*.json")))

        key = 0
        for json_file in json_files:
            with open(json_file, "r", encoding="utf-8") as file:
                # load per json file
                data = json.load(file)
                assert len(data["questions"]) == len(data["options"]) == len(data["answers"]), f"Mismatched data length on {str(json_file)}"

                for idx, question in enumerate(data["questions"]):

                    # get answer based on the answer key
                    if data["answers"][idx] == "A":
                        answer = data["options"][idx][0]
                    elif data["answers"][idx] == "B":
                        answer = data["options"][idx][1]
                    elif data["answers"][idx] == "C":
                        answer = data["options"][idx][2]
                    elif data["answers"][idx] == "D":
                        answer = data["options"][idx][3]

                    if self.config.schema == "source":
                        yield key, {
                            "file_path": str(json_file),
                            "article": data["article"],
                            "question": question,
                            "choices": data["options"][idx],
                            "answer": answer,
                        }
                        key += 1

                    elif self.config.schema == _SEACROWD_SCHEMA:
                        yield key, {
                            "id": key,
                            "question_id": None,
                            "document_id": str(json_file),
                            "question": question,
                            "type": "multiple_choice",
                            "choices": data["options"][idx],
                            "context": data["article"],
                            "answer": [answer],
                            "meta": None,
                        }
                        key += 1