File size: 7,537 Bytes
a5b8b50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (SCHEMA_TO_FEATURES, TASK_TO_SCHEMA,
Licenses, Tasks)
_CITATION = """
@ARTICLE{vimmrc,
author={Nguyen, Kiet Van and Tran, Khiem Vinh and Luu, Son T. and Nguyen, Anh Gia-Tuan and Nguyen, Ngan Luu-Thuy},
journal={IEEE Access},
title={Enhancing Lexical-Based Approach With External Knowledge for Vietnamese Multiple-Choice Machine Reading Comprehension},
year={2020},
volume={8},
pages={201404-201417},
doi={10.1109/ACCESS.2020.3035701}}
"""
_DATASETNAME = "vimmrc"
_DESCRIPTION = """
ViMMRC, a challenging machine comprehension corpus with multiple-choice questions,
intended for research on the machine comprehension of Vietnamese text. This corpus
includes 2,783 multiple-choice questions and answers based on a set of 417 Vietnamese
texts used for teaching reading comprehension for 1st to 5th graders.
"""
_HOMEPAGE = "https://sites.google.com/uit.edu.vn/kietnv/datasets#h.1qeaynfs79d1"
_LANGUAGES = ["vie"]
_LICENSE = f"{Licenses.UNKNOWN.value} | The corpus is freely available at our website for research purposes."
_LOCAL = False
_URL = "https://drive.google.com/file/d/14Rq-YANUv8qyi4Ze8ReEAEu_uxgcV_Yk/view" # ~2mb
_SUPPORTED_TASKS = [Tasks.COMMONSENSE_REASONING]
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" # qa
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class ViMMRCDataset(datasets.GeneratorBasedBuilder):
"""A Vietnamese machine comprehension corpus with multiple-choice questions"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=_DATASETNAME,
),
SEACrowdConfig(
name=f"{_DATASETNAME}_{_SEACROWD_SCHEMA}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=_SEACROWD_SCHEMA,
subset_id=_DATASETNAME,
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"file_path": datasets.Value("string"),
"article": datasets.Value("string"),
"question": datasets.Value("string"),
"choices": datasets.Sequence(datasets.Value("string")),
"answer": datasets.Value("string"),
}
)
elif self.config.schema == _SEACROWD_SCHEMA:
features = SCHEMA_TO_FEATURES[TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]]] # qa_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
# check if gdown is installed
try:
import gdown
except ImportError as err:
raise ImportError("Please install `gdown` to enable reliable data download from google drive.") from err
# download data from gdrive
output_dir = Path.cwd() / "data" / "vimmrc"
output_dir.mkdir(parents=True, exist_ok=True)
output_file = output_dir / "vimmrc.zip"
if not output_file.exists():
gdown.download(_URL, str(output_file), fuzzy=True)
else:
print(f"File already downloaded: {str(output_file)}")
# extract data
data_dir = Path(dl_manager.extract(output_file)) / "ViMMRC"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_dir": data_dir / "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_dir": data_dir / "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_dir": data_dir / "test",
},
),
]
def _generate_examples(self, data_dir: Path) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
# a data_dir consists of several json files
json_files = sorted(list(data_dir.glob("*.json")))
key = 0
for json_file in json_files:
with open(json_file, "r", encoding="utf-8") as file:
# load per json file
data = json.load(file)
assert len(data["questions"]) == len(data["options"]) == len(data["answers"]), f"Mismatched data length on {str(json_file)}"
for idx, question in enumerate(data["questions"]):
# get answer based on the answer key
if data["answers"][idx] == "A":
answer = data["options"][idx][0]
elif data["answers"][idx] == "B":
answer = data["options"][idx][1]
elif data["answers"][idx] == "C":
answer = data["options"][idx][2]
elif data["answers"][idx] == "D":
answer = data["options"][idx][3]
if self.config.schema == "source":
yield key, {
"file_path": str(json_file),
"article": data["article"],
"question": question,
"choices": data["options"][idx],
"answer": answer,
}
key += 1
elif self.config.schema == _SEACROWD_SCHEMA:
yield key, {
"id": key,
"question_id": None,
"document_id": str(json_file),
"question": question,
"type": "multiple_choice",
"choices": data["options"][idx],
"context": data["article"],
"answer": [answer],
"meta": None,
}
key += 1
|