Upload tha_lotus.py with huggingface_hub
Browse files- tha_lotus.py +272 -0
tha_lotus.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
SEA Crowd Data Loader for Thai LOTUS.
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
from typing import Dict, List, Tuple
|
6 |
+
|
7 |
+
import datasets
|
8 |
+
from datasets.download.download_manager import DownloadManager
|
9 |
+
|
10 |
+
from seacrowd.utils import schemas
|
11 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
12 |
+
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks
|
13 |
+
|
14 |
+
import pandas as pd
|
15 |
+
from collections import Counter
|
16 |
+
from collections.abc import KeysView, Iterable
|
17 |
+
|
18 |
+
_CITATION = r"""
|
19 |
+
@INPROCEEDINGS{thaiLOTUSBN,
|
20 |
+
author={Chotimongkol, Ananlada and Saykhum, Kwanchiva and Chootrakool, Patcharika and Thatphithakkul, Nattanun and Wutiwiwatchai, Chai},
|
21 |
+
booktitle={2009 Oriental COCOSDA International Conference on Speech Database and Assessments},
|
22 |
+
title={LOTUS-BN: A Thai broadcast news corpus and its research applications},
|
23 |
+
year={2009},
|
24 |
+
volume={},
|
25 |
+
number={},
|
26 |
+
pages={44-50},
|
27 |
+
doi={10.1109/ICSDA.2009.5278377}}
|
28 |
+
"""
|
29 |
+
|
30 |
+
logger = datasets.logging.get_logger(__name__)
|
31 |
+
|
32 |
+
_LOCAL = False
|
33 |
+
_LANGUAGES = ["tha"]
|
34 |
+
|
35 |
+
|
36 |
+
_DATASETNAME = "tha_lotus"
|
37 |
+
_DESCRIPTION = r"""
|
38 |
+
The Large vOcabualry Thai continUous Speech recognition (LOTUS) corpus was designed for developing large vocabulary
|
39 |
+
continuous speech recognition (LVCSR), spoken dialogue system, speech dictation, broadcast news transcriber.
|
40 |
+
It contains two datasets, one for training acoustic model, another for training a language model.
|
41 |
+
"""
|
42 |
+
|
43 |
+
_HOMEPAGE = "https://github.com/korakot/corpus/tree/main/LOTUS"
|
44 |
+
_LICENSE = Licenses.CC_BY_NC_SA_3_0.value
|
45 |
+
|
46 |
+
_URL = "https://github.com/korakot/corpus/releases/download/v1.0/AIFORTHAI-LotusCorpus.zip"
|
47 |
+
|
48 |
+
|
49 |
+
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]
|
50 |
+
_SOURCE_VERSION = "1.0.0"
|
51 |
+
_SEACROWD_VERSION = "2024.06.20"
|
52 |
+
|
53 |
+
CONFIG_SUFFIXES_FOR_TASK = [TASK_TO_SCHEMA.get(task).lower() for task in _SUPPORTED_TASKS]
|
54 |
+
assert len(CONFIG_SUFFIXES_FOR_TASK) == 1
|
55 |
+
|
56 |
+
config_choices_folder_structure = {
|
57 |
+
"unidrection_clean": ("PD", "U", "Clean"),
|
58 |
+
"unidrection_office": ("PD", "U", "Office"),
|
59 |
+
"closetalk_clean": ("PD", "C", "Clean"),
|
60 |
+
"closetalk_office": ("PD", "C", "Office")}
|
61 |
+
|
62 |
+
|
63 |
+
class ThaiLOTUS(datasets.GeneratorBasedBuilder):
|
64 |
+
"""Thai Lotus free-version dataset, re-implemented for SEACrowd from https://github.com/korakot/corpus/blob/main/LOTUS"""
|
65 |
+
|
66 |
+
BUILDER_CONFIGS = [
|
67 |
+
SEACrowdConfig(
|
68 |
+
name=f"{_DATASETNAME}_{config_name}_source",
|
69 |
+
version=datasets.Version(_SOURCE_VERSION),
|
70 |
+
description=f"{_DATASETNAME} source schema for config {config_name}",
|
71 |
+
schema=f"source",
|
72 |
+
subset_id=config_name
|
73 |
+
) for config_name in config_choices_folder_structure.keys()
|
74 |
+
] + [
|
75 |
+
SEACrowdConfig(
|
76 |
+
name=f"{_DATASETNAME}_{config_name}_seacrowd_{CONFIG_SUFFIXES_FOR_TASK[0]}",
|
77 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
78 |
+
description=f"{_DATASETNAME} seacrowd schema for {_SUPPORTED_TASKS[0].name} and config {config_name}",
|
79 |
+
schema=f"seacrowd_{CONFIG_SUFFIXES_FOR_TASK[0]}",
|
80 |
+
subset_id=config_name
|
81 |
+
) for config_name in config_choices_folder_structure.keys()
|
82 |
+
]
|
83 |
+
|
84 |
+
def _info(self) -> datasets.DatasetInfo:
|
85 |
+
_config_schema_name = self.config.schema
|
86 |
+
logger.info(f"Received schema name: {self.config.schema}")
|
87 |
+
# source schema
|
88 |
+
if _config_schema_name == "source":
|
89 |
+
features = datasets.Features(
|
90 |
+
{
|
91 |
+
"id": datasets.Value("string"),
|
92 |
+
"audio_id": datasets.Value("string"),
|
93 |
+
"file": datasets.Value("string"),
|
94 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
95 |
+
"thai_text": datasets.Value("string"),
|
96 |
+
"audio_arr_pos_start": datasets.Sequence(datasets.Value("float")),
|
97 |
+
"audio_arr_pos_end": datasets.Sequence(datasets.Value("float")),
|
98 |
+
"phonemes": datasets.Sequence(datasets.Value("string"))
|
99 |
+
}
|
100 |
+
)
|
101 |
+
|
102 |
+
# speech-text schema
|
103 |
+
elif _config_schema_name == f"seacrowd_{CONFIG_SUFFIXES_FOR_TASK[0]}":
|
104 |
+
features = schemas.speech_text_features
|
105 |
+
|
106 |
+
else:
|
107 |
+
raise ValueError(f"Received unexpected config schema of {_config_schema_name}!")
|
108 |
+
|
109 |
+
return datasets.DatasetInfo(
|
110 |
+
description=_DESCRIPTION,
|
111 |
+
features=features,
|
112 |
+
homepage=_HOMEPAGE,
|
113 |
+
license=_LICENSE,
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
@staticmethod
|
118 |
+
def __strip_text_iterables(input: Iterable):
|
119 |
+
if not isinstance(input, str):
|
120 |
+
return list(map(str.strip, input))
|
121 |
+
else:
|
122 |
+
return input.strip()
|
123 |
+
|
124 |
+
@classmethod
|
125 |
+
def __read_text_files(cls, path: str, init_lines_to_skip:int=0, remove_empty_line: bool=True, strip_trailing_whitespace: bool=True):
|
126 |
+
with open(path, "r") as f:
|
127 |
+
data = cls.__strip_text_iterables(f.readlines())
|
128 |
+
|
129 |
+
# pre-processing steps based on args
|
130 |
+
if init_lines_to_skip>0:
|
131 |
+
data = data[init_lines_to_skip:]
|
132 |
+
if remove_empty_line:
|
133 |
+
data = [_data for _data in data if len(_data.strip()) != 0]
|
134 |
+
if strip_trailing_whitespace:
|
135 |
+
data = [_data.strip() for _data in data]
|
136 |
+
|
137 |
+
return data
|
138 |
+
|
139 |
+
@classmethod
|
140 |
+
def __preprocess_cc_lab_file(cls, cc_lab_file: str):
|
141 |
+
if not cc_lab_file.endswith(".lab"):
|
142 |
+
raise ValueError("The file isn't a .lab!")
|
143 |
+
|
144 |
+
meta = ["audio_arr_pos_start", "audio_arr_pos_end", "phonemes"]
|
145 |
+
raw_data = cls.__read_text_files(cc_lab_file)
|
146 |
+
|
147 |
+
data = pd.DataFrame([dict(zip(meta, cls.__strip_text_iterables(_data.split(" ")))) for _data in raw_data])
|
148 |
+
|
149 |
+
# since the ratio of end time and audio array length around (624.5, 625.5) is 97.50074382624219%
|
150 |
+
# we can divide the array ratio by 625
|
151 |
+
len_ratio = 625
|
152 |
+
data["audio_arr_pos_start"] = data["audio_arr_pos_start"].astype("int")/len_ratio
|
153 |
+
data["audio_arr_pos_end"] = data["audio_arr_pos_end"].astype("int")/len_ratio
|
154 |
+
|
155 |
+
return data.to_dict(orient="list")
|
156 |
+
|
157 |
+
@classmethod
|
158 |
+
def __folder_walk_file_grabber(cls, folder_dir: str, ext: str=""):
|
159 |
+
all_files = []
|
160 |
+
for child_dir in os.listdir(folder_dir):
|
161 |
+
_full_path = os.path.join(folder_dir, child_dir)
|
162 |
+
if os.path.isdir(_full_path):
|
163 |
+
all_files.extend(cls.__folder_walk_file_grabber(_full_path, ext))
|
164 |
+
elif _full_path.endswith(ext):
|
165 |
+
all_files.append(_full_path)
|
166 |
+
|
167 |
+
return all_files
|
168 |
+
|
169 |
+
@classmethod
|
170 |
+
def __lotus_index_generator(cls, root_folder: str):
|
171 |
+
index_raw_data = cls.__read_text_files(f"{root_folder}/index.txt", init_lines_to_skip=5)
|
172 |
+
|
173 |
+
# since in the index file we have many-to-one audio recording to the same identifier of sentence values in PDsen.txt
|
174 |
+
# except for PD data (phonetically distributed -- one sentence, multiple audios) we will filter such occurrences (for now)
|
175 |
+
_index_candidates = [data.split("\t")[2] for data in index_raw_data]
|
176 |
+
valid_idx = [idx for idx, val in Counter(_index_candidates).items() if val == 1 or "pd" in idx]
|
177 |
+
|
178 |
+
# contains triplets of ("dataset number", "sequence number", "text identifier")
|
179 |
+
metadata = ("dataset_number", "sequence_number")
|
180 |
+
text_index_data = {
|
181 |
+
data.split("\t")[2].strip():
|
182 |
+
dict(zip(metadata, cls.__strip_text_iterables(data.split("\t")[:2])))
|
183 |
+
for data in index_raw_data if data.split("\t")[2] in valid_idx}
|
184 |
+
|
185 |
+
audio_index_data = {
|
186 |
+
"_".join(values.values()): key for key, values in text_index_data.items()
|
187 |
+
}
|
188 |
+
|
189 |
+
return text_index_data, audio_index_data
|
190 |
+
|
191 |
+
@classmethod
|
192 |
+
def __lotus_pd_sen_generator(cls, root_folder: str, valid_idx_key: KeysView):
|
193 |
+
text_data = [text for text in cls.__read_text_files(f"{root_folder}/PDsen.txt")]
|
194 |
+
|
195 |
+
metadata = ("thai_text", "phonemes")
|
196 |
+
captioned_text_data = {
|
197 |
+
text.split("\t")[0].strip():
|
198 |
+
dict(zip(metadata, cls.__strip_text_iterables(text.split("\t")[1:])))
|
199 |
+
for text in text_data if text.split("\t")[0].strip() in valid_idx_key}
|
200 |
+
|
201 |
+
return captioned_text_data
|
202 |
+
|
203 |
+
|
204 |
+
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
|
205 |
+
# since the folder are zipped, the zipped URL containing whole resource of this dataset must be downloaded
|
206 |
+
_all_folder_local = os.path.join(dl_manager.download_and_extract(_URL), "LOTUS")
|
207 |
+
|
208 |
+
# Process all suplement files
|
209 |
+
# supplement files is used regardless of the config
|
210 |
+
# it contains the index mapper of text & audio, word list and its Phonemes
|
211 |
+
supplement_folder = os.path.join(_all_folder_local, "Supplement")
|
212 |
+
|
213 |
+
text_index_data, audio_index_data = self.__lotus_index_generator(supplement_folder)
|
214 |
+
audio_level_text_data = self.__lotus_pd_sen_generator(supplement_folder, text_index_data.keys())
|
215 |
+
|
216 |
+
_folder_structure = config_choices_folder_structure[self.config.subset_id]
|
217 |
+
# for lab folder, it could be UC, UO, CC, or CO, depending on the folder_structure choice based on dataset config name
|
218 |
+
_lab_foldername = _folder_structure[1][0].upper() + _folder_structure[2][0].upper() + "lab"
|
219 |
+
|
220 |
+
wav_folder = os.path.join(_all_folder_local, os.path.join(*_folder_structure), "Wav")
|
221 |
+
cc_lab_folder = os.path.join(_all_folder_local, os.path.join(*_folder_structure), _lab_foldername)
|
222 |
+
|
223 |
+
return [
|
224 |
+
datasets.SplitGenerator(
|
225 |
+
name=datasets.Split.TRAIN,
|
226 |
+
gen_kwargs={
|
227 |
+
"wav_folder": wav_folder,
|
228 |
+
"cc_lab_folder": cc_lab_folder,
|
229 |
+
"captioned_data": audio_level_text_data,
|
230 |
+
"audio_index_data": audio_index_data}
|
231 |
+
)]
|
232 |
+
|
233 |
+
def _generate_examples(self, wav_folder, cc_lab_folder, captioned_data, audio_index_data) -> Tuple[int, Dict]:
|
234 |
+
"""
|
235 |
+
This dataset contains 2 version of texts:
|
236 |
+
1. Transcriptions per syllables and its timestamp
|
237 |
+
2. A Text DB (in PDsen.txt) containing the whole text in Thai Script and its Romanized Morphemes
|
238 |
+
"""
|
239 |
+
_config_schema_name = self.config.schema
|
240 |
+
# this record list will contain short .wav files contain of Thai short audio
|
241 |
+
wav_record_list = self.__folder_walk_file_grabber(wav_folder, ".wav")
|
242 |
+
|
243 |
+
idx = 1
|
244 |
+
for audio_path in wav_record_list:
|
245 |
+
audio_id = audio_path.split("/")[-1][:-4]
|
246 |
+
example_data = {"id": idx, "audio_id": audio_id, "file": audio_path, "audio": audio_path}
|
247 |
+
|
248 |
+
# for obtaining pd_text_supplement_data, we get the audio_index from the filename
|
249 |
+
# then chaining it to the captioned data which uses the value from audio_index_data
|
250 |
+
default_pd_text_data = {"thai_text": "", "romanized_phonemes":""}
|
251 |
+
|
252 |
+
_pd_text_key = audio_index_data.get("_".join(audio_id.split("_")[1:]))
|
253 |
+
pd_text_supplement_data = captioned_data.get(_pd_text_key, default_pd_text_data)
|
254 |
+
|
255 |
+
example_data.update(pd_text_supplement_data)
|
256 |
+
|
257 |
+
if _config_schema_name == "source":
|
258 |
+
# add sequential data from cc_lab_data
|
259 |
+
cc_lab_data = self.__preprocess_cc_lab_file(os.path.join(cc_lab_folder, audio_id + ".lab"))
|
260 |
+
example_data.update(cc_lab_data)
|
261 |
+
|
262 |
+
yield idx, {colname: example_data[colname] for colname in self.info.features}
|
263 |
+
|
264 |
+
elif _config_schema_name == "seacrowd_sptext":
|
265 |
+
# skip if the text data not found
|
266 |
+
if pd_text_supplement_data != default_pd_text_data:
|
267 |
+
yield idx, {"id": idx, "path": example_data["file"], "audio": example_data["audio"], "text": example_data["thai_text"], "speaker_id": None, "metadata": {"speaker_age": None, "speaker_gender": None}}
|
268 |
+
|
269 |
+
else:
|
270 |
+
raise ValueError(f"Received unexpected config schema of {_config_schema_name}!")
|
271 |
+
|
272 |
+
idx += 1
|