su_emot / README.md
holylovenia's picture
Upload README.md with huggingface_hub
d2267fa verified
|
raw
history blame
3.71 kB
metadata
language:
  - sun
pretty_name: Su Emot
task_categories:
  - emotion-classification
tags:
  - emotion-classification

This is a dataset for emotion classification of Sundanese text. The dataset is gathered from Twitter API between January and March 2019 with 2518 tweets in total. The tweets filtered by using some hashtags which are represented Sundanese emotion, for instance,#persib,#corona,#saredih,#nyakakak,#garoblog,#sangsara,#gumujeng,#bungah,#sararieun,#ceurik, and#hariwang. This dataset contains four distinctive emotions: anger, joy, fear, and sadness. Each tweet is annotated using related emotion. For data validation, the authors consulted a Sundanese language teacher for expert validation.

Languages

sun

Supported Tasks

Emotion Classification

Dataset Usage

Using datasets library

from datasets import load_dataset
dset = datasets.load_dataset("SEACrowd/su_emot", trust_remote_code=True)

Using seacrowd library

# Load the dataset using the default config
dset = sc.load_dataset("su_emot", schema="seacrowd")
# Check all available subsets (config names) of the dataset
print(sc.available_config_names("su_emot"))
# Load the dataset using a specific config
dset = sc.load_dataset_by_config_name(config_name="<config_name>")

More details on how to load the seacrowd library can be found here.

Dataset Homepage

https://github.com/virgantara/sundanese-twitter-dataset

Dataset Version

Source: 1.0.0. SEACrowd: 2024.06.20.

Dataset License

UNKNOWN

Citation

If you are using the Su Emot dataloader in your work, please cite the following:

@INPROCEEDINGS{
9297929,  
author={Putra, Oddy Virgantara and Wasmanson, Fathin Muhammad and Harmini, Triana and Utama, Shoffin Nahwa},  
booktitle={2020 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)},   
title={Sundanese Twitter Dataset for Emotion Classification},   
year={2020},  
volume={},  
number={},  
pages={391--395},  
doi={10.1109/CENIM51130.2020.9297929}
}


@article{lovenia2024seacrowd,
    title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages}, 
    author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya},
    year={2024},
    eprint={2406.10118},
    journal={arXiv preprint arXiv: 2406.10118}
}