Datasets:

Languages:
English
ArXiv:
License:
File size: 9,278 Bytes
c13b50a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import io

import conllu
import datasets

from seacrowd.utils.common_parser import load_ud_data_as_seacrowd_kb
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils import schemas
from seacrowd.utils.constants import DEFAULT_SEACROWD_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Licenses, Tasks

_DATASETNAME = "stb_ext"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME

_LANGUAGES = ["eng"]
_LOCAL = False
_CITATION = """\
@article{wang2019genesis,
title={From genesis to creole language: Transfer learning for singlish universal dependencies parsing and POS tagging},
author={Wang, Hongmin and Yang, Jie and Zhang, Yue},
journal={ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP)},
volume={19},
number={1},
pages={1--29},
year={2019},
publisher={ACM New York, NY, USA}
}
"""

_DESCRIPTION = """\
We adopt the Universal Dependencies protocol for constructing the Singlish dependency treebank, both as a new resource
for the low-resource languages and to facilitate knowledge transfer from English. Briefly, the STB-EXT dataset offers
a 3-times larger training set, while keeping the same dev and test sets from STB-ACL. We provide treebanks with both
gold-standard as well as automatically generated POS tags.
"""

_HOMEPAGE = "https://github.com/wanghm92/Sing_Par/tree/master/TALLIP19_dataset/treebank"

_LICENSE = Licenses.MIT.value

_PREFIX = "https://raw.githubusercontent.com/wanghm92/Sing_Par/master/TALLIP19_dataset/treebank/"
_URLS = {
    "gold_pos": {
        "train": _PREFIX + "gold_pos/train.ext.conll",
    },
    "en_ud_autopos": {"train": _PREFIX + "en-ud-autopos/en-ud-train.conllu.autoupos", "validation": _PREFIX + "en-ud-autopos/en-ud-dev.conllu.ann.auto.epoch24.upos", "test": _PREFIX + "en-ud-autopos/en-ud-test.conllu.ann.auto.epoch24.upos"},
    "auto_pos_multiview": {
        "train": _PREFIX + "auto_pos/multiview/train.autopos.multiview.conll",
        "validation": _PREFIX + "auto_pos/multiview/dev.autopos.multiview.conll",
        "test": _PREFIX + "auto_pos/multiview/test.autopos.multiview.conll",
    },
    "auto_pos_stack": {
        "train": _PREFIX + "auto_pos/stack/train.autopos.stack.conll",
        "validation": _PREFIX + "auto_pos/stack/dev.autopos.stack.conll",
        "test": _PREFIX + "auto_pos/stack/test.autopos.stack.conll",
    },
}
_POSTAGS = ["ADJ", "ADP", "ADV", "AUX", "CONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", "root"]
_SUPPORTED_TASKS = [Tasks.POS_TAGGING, Tasks.DEPENDENCY_PARSING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


def config_constructor(subset_id, schema, version):
    return SEACrowdConfig(name=f"{_DATASETNAME}_{subset_id}_{schema}",
                          version=datasets.Version(version), description=_DESCRIPTION,
                          schema=schema, subset_id=subset_id)


class StbExtDataset(datasets.GeneratorBasedBuilder):
    """This is a seacrowd dataloader for the STB-EXT dataset, which offers a 3-times larger training set, while keeping
    the same dev and test sets from STB-ACL. It provides treebanks with both gold-standard and automatically generated POS tags."""

    BUILDER_CONFIGS = [
        # source
        config_constructor(subset_id="auto_pos_stack", schema="source", version=_SOURCE_VERSION),
        config_constructor(subset_id="auto_pos_multiview", schema="source", version=_SOURCE_VERSION),
        config_constructor(subset_id="en_ud_autopos", schema="source", version=_SOURCE_VERSION),
        config_constructor(subset_id="gold_pos", schema="source", version=_SOURCE_VERSION),
        # seq_label
        config_constructor(subset_id="auto_pos_stack", schema="seacrowd_seq_label", version=_SEACROWD_VERSION),
        config_constructor(subset_id="auto_pos_multiview", schema="seacrowd_seq_label", version=_SEACROWD_VERSION),
        config_constructor(subset_id="en_ud_autopos", schema="seacrowd_seq_label", version=_SEACROWD_VERSION),
        config_constructor(subset_id="gold_pos", schema="seacrowd_seq_label", version=_SEACROWD_VERSION),
        # dependency parsing
        config_constructor(subset_id="auto_pos_stack", schema="seacrowd_kb", version=_SEACROWD_VERSION),
        config_constructor(subset_id="auto_pos_multiview", schema="seacrowd_kb", version=_SEACROWD_VERSION),
        config_constructor(subset_id="en_ud_autopos", schema="seacrowd_kb", version=_SEACROWD_VERSION),
        config_constructor(subset_id="gold_pos", schema="seacrowd_kb", version=_SEACROWD_VERSION),
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_gold_pos_source"

    def _info(self):
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    # metadata
                    "sent_id": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "text_en": datasets.Value("string"),
                    # tokens
                    "id": [datasets.Value("string")],
                    "form": [datasets.Value("string")],
                    "lemma": [datasets.Value("string")],
                    "upos": [datasets.Value("string")],
                    "xpos": [datasets.Value("string")],
                    "feats": [datasets.Value("string")],
                    "head": [datasets.Value("string")],
                    "deprel": [datasets.Value("string")],
                    "deps": [datasets.Value("string")],
                    "misc": [datasets.Value("string")],
                }
            )
        elif self.config.schema == "seacrowd_seq_label":
            features = schemas.seq_label_features(label_names=_POSTAGS)
        elif self.config.schema == "seacrowd_kb":
            features = schemas.kb_features
        else:
            raise ValueError(f"Invalid config: {self.config.schema}")

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """ "return splitGenerators"""
        urls = _URLS[self.config.subset_id]
        downloaded_files = dl_manager.download_and_extract(urls)
        splits = []
        if "train" in downloaded_files:
            splits.append(datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}))
        if "validation" in downloaded_files:
            splits.append(datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["validation"]}))
        if "test" in downloaded_files:
            splits.append(datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}))
        return splits

    def _generate_examples(self, filepath):
        def process_buffer(TextIO):
            BOM = "\ufeff"
            buffer = io.StringIO()
            for line in TextIO:
                line = line.replace(BOM, "") if BOM in line else line
                buffer.write(line)
            buffer.seek(0)
            return buffer

        with open(filepath, "r", encoding="utf-8") as data_file:
            tokenlist = list(conllu.parse_incr(process_buffer(data_file)))
            data_instances = []
            for idx, sent in enumerate(tokenlist):
                idx = sent.metadata["sent_id"] if "sent_id" in sent.metadata else idx
                tokens = [token["form"] for token in sent]
                txt = sent.metadata["text"] if "text" in sent.metadata else " ".join(tokens)
                example = {
                    # meta
                    "sent_id": str(idx),
                    "text": txt,
                    "text_en": txt,
                    # tokens
                    "id": [token["id"] for token in sent],
                    "form": [token["form"] for token in sent],
                    "lemma": [token["lemma"] for token in sent],
                    "upos": [token["upos"] for token in sent],
                    "xpos": [token["xpos"] for token in sent],
                    "feats": [str(token["feats"]) for token in sent],
                    "head": [str(token["head"]) for token in sent],
                    "deprel": [str(token["deprel"]) for token in sent],
                    "deps": [str(token["deps"]) for token in sent],
                    "misc": [str(token["misc"]) for token in sent]
                }
                data_instances.append(example)

            if self.config.schema == "source":
                pass
            if self.config.schema == "seacrowd_seq_label":
                data_instances = list(
                    map(
                        lambda d: {
                            "id": d["sent_id"],
                            "tokens": d["form"],
                            "labels": d["upos"],
                        },
                        data_instances,
                    )
                )
            if self.config.schema == "seacrowd_kb":
                data_instances = load_ud_data_as_seacrowd_kb(filepath, data_instances)
            for key, exam in enumerate(data_instances):
                yield key, exam