File size: 12,791 Bytes
9f37da5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
QED - The QCRI Educational Domain Corpus (formerly QCRI AMARA Corpus) is an open multilingual collection of subtitles for educational videos and lectures collaboratively transcribed and translated over the AMARA web-based platform.
It's developed by Qatar Computing Research Institute, Arabic Language Technologies Group. Along with English, it covers multiple SEA languages, such as vie (Vietnamese), mya (Burnmese), jav (Javanese), id (Indonesia), tha (Thai),
tl (Tagalog),ms (Malaysia).
"""
import os
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks

_CITATION = """\
@inproceedings{abdelali-etal-2014-amara,
    title = "The {AMARA} Corpus: Building Parallel Language Resources for the Educational Domain",
    author = "Abdelali, Ahmed  and
      Guzman, Francisco  and
      Sajjad, Hassan  and
      Vogel, Stephan",
    editor = "Calzolari, Nicoletta  and
      Choukri, Khalid  and
      Declerck, Thierry  and
      Loftsson, Hrafn  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Moreno, Asuncion  and
      Odijk, Jan  and
      Piperidis, Stelios",
    booktitle = "Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}'14)",
    month = may,
    year = "2014",
    address = "Reykjavik, Iceland",
    publisher = "European Language Resources Association (ELRA)",
    url = "http://www.lrec-conf.org/proceedings/lrec2014/pdf/877_Paper.pdf",
    pages = "1856--1862",
    abstract = "This paper presents the AMARA corpus of on-line educational content: a new parallel corpus of educational video subtitles, multilingually aligned for 20 languages, i.e. 20 monolingual corpora and 190 parallel corpora.
    This corpus includes both resource-rich languages such as English and Arabic, and resource-poor languages such as Hindi and Thai. In this paper, we describe the gathering, validation, and preprocessing of a large collection of parallel,
    community-generated subtitles. Furthermore, we describe the methodology used to prepare the data for Machine Translation tasks. Additionally, we provide a document-level, jointly aligned development and test sets for 14 language pairs,
    designed for tuning and testing Machine Translation systems. We provide baseline results for these tasks, and highlight some of the challenges we face when building machine translation systems for educational content.",
}
"""

_DATASETNAME = "qed"

_DESCRIPTION = """\
QED - The QCRI Educational Domain Corpus (formerly QCRI AMARA Corpus) is an open multilingual collection of subtitles for educational videos and lectures collaboratively transcribed and translated over the AMARA web-based platform.
It's developed by Qatar Computing Research Institute, Arabic Language Technologies Group. Along with English, it covers multiple SEA languages, such as vie (Vietnamese), mya (Burnmese), jav (Javanese), id (Indonesia), tha (Thai), tl (Tagalog),
ms (Malaysia).
"""

_HOMEPAGE = "https://opus.nlpl.eu/QED/corpus/version/QED"

_LANGUAGES = ["eng", "vie", "tha", "mya", "jav", "ind", "tgl", "zlm", "ceb", "fil", "khm", "lao", "mad", "pam"]

_LICENSE = Licenses.OTHERS.value

_LOCAL = False

_FILE = "QED.{}.{}"  # E.g. QED.en-id.id

_PAIR_URL = "https://object.pouta.csc.fi/OPUS-QED/v2.0a/moses/{}.txt.zip"
_MONO_URL = "https://object.pouta.csc.fi/OPUS-QED/v2.0a/mono/{}.txt.gz"

_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION, Tasks.SELF_SUPERVISED_PRETRAINING]

_SOURCE_VERSION = "2.0.0"

_SEACROWD_VERSION = "2024.06.20"

_LANG_MAPPER = {
    "eng": "en",
    "vie": "vi",
    "tha": "th",
    "mya": "my",
    "jav": "jv",
    "ind": "id",
    "tgl": "tl",
    "zlm": "ms",
    "ceb": "ceb",
    "fil": "fil",
    "khm": "km",
    "lao": "lo",
    "mad": "mad",
    "pam": "pam",
}


class QEDDataset(datasets.GeneratorBasedBuilder):
    """QED - The QCRI Educational Domain Corpus (formerly QCRI AMARA Corpus) is an open multilingual collection of subtitles for educational videos and lectures collaboratively transcribed and translated over the AMARA web-based platform.
    It's developed by Qatar Computing Research Institute, Arabic Language Technologies Group. Along with English, it covers multiple SEA languages, such as vie (Vietnamese), mya (Burnmese), jav (Javanese), id (Indonesia), tha (Thai), tl (Tagalog),
    ms (Malaysia)."""

    SEACROWD_SCHEMA = TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()

    LANG_PAIRS = [
        ("eng", "vie"),
        ("eng", "tha"),
        ("eng", "mya"),
        ("eng", "jav"),
        ("eng", "ind"),
        ("eng", "tgl"),
        ("eng", "zlm"),
        ("eng", "fil"),
        ("eng", "khm"),
        ("eng", "lao"),
        ("eng", "mad"),
        ("eng", "pam"),
        ("fil", "vie"),
        ("khm", "vie"),
        ("lao", "vie"),
        ("pam", "vie"),
        ("fil", "tha"),
        ("khm", "tha"),
        ("lao", "tha"),
        ("pam", "tha"),
        ("fil", "mya"),
        ("khm", "mya"),
        ("lao", "mya"),
        ("fil", "jav"),
        ("jav", "lao"),
        ("fil", "ind"),
        ("ind", "khm"),
        ("ind", "lao"),
        ("fil", "tgl"),
        ("khm", "tgl"),
        ("lao", "tgl"),
        ("fil", "zlm"),
        ("khm", "zlm"),
        ("lao", "zlm"),
        ("tha", "vie"),
        ("tha", "mya"),
        ("tha", "jav"),
        ("tha", "tgl"),
        ("mya", "tgl"),
        ("mya", "vie"),
        ("jav", "vie"),
        ("jav", "mya"),
        ("jav", "tgl"),
        ("jav", "zlm"),
        ("ind", "jav"),
        ("ind", "tha"),
        ("ind", "vie"),
        ("ind", "mya"),
        ("ind", "tgl"),
        ("ind", "zlm"),
        ("tgl", "vie"),
        ("zlm", "tgl"),
        ("zlm", "tha"),
        ("zlm", "vie"),
        ("zlm", "mya"),
        ("ceb", "eng"),
        ("ceb", "vie"),
        ("ceb", "tha"),
        ("ceb", "mya"),
        ("ceb", "jav"),
        ("ceb", "ind"),
        ("ceb", "tgl"),
        ("ceb", "zlm"),
        ("ceb", "fil"),
        ("ceb", "khm"),
        ("ceb", "lao"),
        ("ceb", "pam"),
        ("fil", "khm"),
        ("fil", "lao"),
        ("khm", "lao"),
    ]

    MONO_LANGS = ["eng", "vie", "tha", "mya", "jav", "ind", "tgl", "zlm", "ceb", "fil", "khm", "lao", "mad", "pam"]

    BUILDER_CONFIGS = (
        [
            SEACrowdConfig(
                name=f"{_DATASETNAME}_{lang1}-{lang2}_source",
                version=datasets.Version(_SOURCE_VERSION),
                description=f"{_DATASETNAME} source schema for translation from {lang1} to {lang2}",
                schema="source",
                subset_id=f"{_DATASETNAME}_{lang1}-{lang2}",
            )
            for lang1, lang2 in LANG_PAIRS
        ]
        + [
            SEACrowdConfig(
                name=f"{_DATASETNAME}_{lang}_source",
                version=datasets.Version(_SEACROWD_VERSION),
                description=f"{_DATASETNAME} source {lang} schema for Self-supervised Pretraining task",
                schema="source",
                subset_id=f"{_DATASETNAME}_{lang}",
            )
            for lang in MONO_LANGS
        ]
        + [
            SEACrowdConfig(
                name=f"{_DATASETNAME}_{lang1}-{lang2}_seacrowd_t2t",
                version=datasets.Version(_SEACROWD_VERSION),
                description=f"{_DATASETNAME} SEACrowd schema for translation from {lang1} to {lang2} for Machine Translation task",
                schema="seacrowd_t2t",
                subset_id=f"{_DATASETNAME}_{lang1}-{lang2}",
            )
            for lang1, lang2 in LANG_PAIRS
        ]
        + [
            SEACrowdConfig(
                name=f"{_DATASETNAME}_{lang}_seacrowd_ssp",
                version=datasets.Version(_SEACROWD_VERSION),
                description=f"{_DATASETNAME} SEACrowd {lang} schema for Self-supervised Pretraining task",
                schema="seacrowd_ssp",
                subset_id=f"{_DATASETNAME}_{lang}",
            )
            for lang in MONO_LANGS
        ]
    )

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_eng-ind_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            if len(self.config.subset_id.split("_")[-1].split("-")) == 2:  # MT TASK
                lang1, lang2 = self.config.subset_id.split("_")[-1].split("-")
                features = datasets.Features(
                    {
                        "id": datasets.Value("int32"),
                        "translation": datasets.Translation(languages=(lang1, lang2)),
                    }
                )
            elif len(self.config.subset_id.split("_")[-1].split("-")) == 1:  # ssp task
                features = datasets.Features(
                    {
                        "id": datasets.Value("int32"),
                        "text": datasets.Value("string"),
                    }
                )

        elif self.config.schema == "seacrowd_t2t":
            features = schemas.text2text_features

        elif self.config.schema == "seacrowd_ssp":
            features = schemas.ssp_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        lang_pair = self.config.subset_id.split("_")[-1]
        lang_info = "-".join([_LANG_MAPPER[lang] for lang in lang_pair.split("-")])

        if len(self.config.subset_id.split("_")[-1].split("-")) == 1:  # SSP Task
            url = _MONO_URL.format(lang_info)
        elif len(self.config.subset_id.split("_")[-1].split("-")) == 2:  # MT Task
            url = _PAIR_URL.format(lang_info)

        data_dir = dl_manager.download_and_extract(url)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir,
                },
            )
        ]

    def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        if len(self.config.subset_id.split("_")[-1].split("-")) == 2:  # MT Task
            lang_pair = self.config.subset_id.split("_")[-1]
            lang1, lang2 = lang_pair.split("-")

            l1_path = os.path.join(filepath, _FILE.format("-".join([_LANG_MAPPER[lang1], _LANG_MAPPER[lang2]]), _LANG_MAPPER[lang1]))
            l2_path = os.path.join(filepath, _FILE.format("-".join([_LANG_MAPPER[lang1], _LANG_MAPPER[lang2]]), _LANG_MAPPER[lang2]))

            if self.config.schema == "source":
                with open(l1_path, encoding="utf-8") as f1, open(l2_path, encoding="utf-8") as f2:
                    for i, (x, y) in enumerate(zip(f1, f2)):
                        yield i, {
                            "id": i,
                            "translation": {
                                lang1: x.strip(),
                                lang2: y.strip(),
                            },
                        }

            elif self.config.schema == "seacrowd_t2t":
                with open(l1_path, encoding="utf-8") as f1, open(l2_path, encoding="utf-8") as f2:
                    for i, (x, y) in enumerate(zip(f1, f2)):
                        yield i, {
                            "id": str(i),
                            "text_1": x.strip(),
                            "text_2": y.strip(),
                            "text_1_name": lang1,
                            "text_2_name": lang2,
                        },

        elif len(self.config.subset_id.split("_")[-1].split("-")) == 1:  # SSP Task
            with open(filepath, "r", encoding="utf-8") as f:
                for i, x in enumerate(f.readlines()):
                    yield i, {
                        "id": str(i),
                        "text": x.strip(),
                    }