File size: 5,995 Bytes
7185aa6 4f3f0bb 7185aa6 4f3f0bb 7185aa6 4f3f0bb 7185aa6 4f3f0bb 7185aa6 4f3f0bb 7185aa6 4f3f0bb 7185aa6 4f3f0bb 7185aa6 4f3f0bb 7185aa6 4f3f0bb 7185aa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.common_parser import load_conll_data
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
_CITATION = """\
@inproceedings{hoesen2018investigating,
title={Investigating Bi-LSTM and CRF with POS Tag Embedding for Indonesian Named Entity Tagger},
author={Devin Hoesen and Ayu Purwarianti},
booktitle={Proceedings of the 2018 International Conference on Asian Language Processing (IALP)},
pages={35--38},
year={2018},
organization={IEEE}
}
@inproceedings{wilie2020indonlu,
title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding},
author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti},
booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing},
year={2020}
}
"""
_LOCAL = False
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_DATASETNAME = "posp"
_DESCRIPTION = """\
POSP is a POS Tagging dataset containing 8400 sentences, collected from Indonesian news website with 26 POS tag classes.
The POS tag labels follow the Indonesian Association of Computational Linguistics (INACL) POS Tagging Convention.
POSP dataset is splitted into 3 sets with 6720 train, 840 validation, and 840 test data.
"""
_HOMEPAGE = "https://github.com/IndoNLP/indonlu"
_LICENSE = "Creative Common Attribution Share-Alike 4.0 International"
_URLS = {
_DATASETNAME: {
"train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/posp_pos-prosa/train_preprocess.txt",
"validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/posp_pos-prosa/valid_preprocess.txt",
"test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/posp_pos-prosa/test_preprocess.txt",
}
}
_SUPPORTED_TASKS = [Tasks.POS_TAGGING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class POSPDataset(datasets.GeneratorBasedBuilder):
"""POSP is a POS Tagging dataset containing 8400 sentences, collected from Indonesian news website with 26 POS tag classes."""
label_classes = [
"B-PPO",
"B-KUA",
"B-ADV",
"B-PRN",
"B-VBI",
"B-PAR",
"B-VBP",
"B-NNP",
"B-UNS",
"B-VBT",
"B-VBL",
"B-NNO",
"B-ADJ",
"B-PRR",
"B-PRK",
"B-CCN",
"B-$$$",
"B-ADK",
"B-ART",
"B-CSN",
"B-NUM",
"B-SYM",
"B-INT",
"B-NEG",
"B-PRI",
"B-VBE",
]
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name="posp_source",
version=SOURCE_VERSION,
description="POSP source schema",
schema="source",
subset_id="posp",
),
SEACrowdConfig(
name="posp_seacrowd_seq_label",
version=SEACROWD_VERSION,
description="POSP Nusantara schema",
schema="seacrowd_seq_label",
subset_id="posp",
),
]
DEFAULT_CONFIG_NAME = "posp_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"index": datasets.Value("string"),
"tokens": [datasets.Value("string")],
"pos_tags": [datasets.Value("string")],
}
)
elif self.config.schema == "seacrowd_seq_label":
features = schemas.seq_label_features(self.label_classes)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir["test"],
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_dir["validation"],
"split": "dev",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
conll_dataset = load_conll_data(filepath)
if self.config.schema == "source":
for i, row in enumerate(conll_dataset):
ex = {
"index": str(i),
"tokens": row["sentence"],
"pos_tags": row["label"],
}
yield i, ex
elif self.config.schema == "seacrowd_seq_label":
for i, row in enumerate(conll_dataset):
ex = {
"id": str(i),
"tokens": row["sentence"],
"labels": row["label"],
}
yield i, ex
|