Datasets:

Languages:
Indonesian
ArXiv:
File size: 5,995 Bytes
7185aa6
 
 
 
4f3f0bb
 
7185aa6
4f3f0bb
 
7185aa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f3f0bb
7185aa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f3f0bb
7185aa6
 
4f3f0bb
7185aa6
 
 
 
 
 
4f3f0bb
 
 
7185aa6
4f3f0bb
7185aa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f3f0bb
7185aa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f3f0bb
7185aa6
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
from seacrowd.utils import schemas
from seacrowd.utils.common_parser import load_conll_data

from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks

_CITATION = """\
@inproceedings{hoesen2018investigating,
  title={Investigating Bi-LSTM and CRF with POS Tag Embedding for Indonesian Named Entity Tagger},
  author={Devin Hoesen and Ayu Purwarianti},
  booktitle={Proceedings of the 2018 International Conference on Asian Language Processing (IALP)},
  pages={35--38},
  year={2018},
  organization={IEEE}
}

@inproceedings{wilie2020indonlu,
  title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding},
  author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti},
  booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing},
  year={2020}
}
"""

_LOCAL = False
_LANGUAGES = ["ind"]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_DATASETNAME = "posp"

_DESCRIPTION = """\
POSP is a POS Tagging dataset containing 8400 sentences, collected from Indonesian news website with 26 POS tag classes.
The POS tag labels follow the Indonesian Association of Computational Linguistics (INACL) POS Tagging Convention.
POSP dataset is splitted into 3 sets with 6720 train, 840 validation, and 840 test data.
"""

_HOMEPAGE = "https://github.com/IndoNLP/indonlu"

_LICENSE = "Creative Common Attribution Share-Alike 4.0 International"

_URLS = {
    _DATASETNAME: {
        "train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/posp_pos-prosa/train_preprocess.txt",
        "validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/posp_pos-prosa/valid_preprocess.txt",
        "test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/posp_pos-prosa/test_preprocess.txt",
    }
}

_SUPPORTED_TASKS = [Tasks.POS_TAGGING]

_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class POSPDataset(datasets.GeneratorBasedBuilder):
    """POSP is a POS Tagging dataset containing 8400 sentences, collected from Indonesian news website with 26 POS tag classes."""

    label_classes = [
        "B-PPO",
        "B-KUA",
        "B-ADV",
        "B-PRN",
        "B-VBI",
        "B-PAR",
        "B-VBP",
        "B-NNP",
        "B-UNS",
        "B-VBT",
        "B-VBL",
        "B-NNO",
        "B-ADJ",
        "B-PRR",
        "B-PRK",
        "B-CCN",
        "B-$$$",
        "B-ADK",
        "B-ART",
        "B-CSN",
        "B-NUM",
        "B-SYM",
        "B-INT",
        "B-NEG",
        "B-PRI",
        "B-VBE",
    ]

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name="posp_source",
            version=SOURCE_VERSION,
            description="POSP source schema",
            schema="source",
            subset_id="posp",
        ),
        SEACrowdConfig(
            name="posp_seacrowd_seq_label",
            version=SEACROWD_VERSION,
            description="POSP Nusantara schema",
            schema="seacrowd_seq_label",
            subset_id="posp",
        ),
    ]

    DEFAULT_CONFIG_NAME = "posp_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "index": datasets.Value("string"),
                    "tokens": [datasets.Value("string")],
                    "pos_tags": [datasets.Value("string")],
                }
            )
        elif self.config.schema == "seacrowd_seq_label":
            features = schemas.seq_label_features(self.label_classes)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        urls = _URLS[_DATASETNAME]
        data_dir = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir["train"],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": data_dir["test"],
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": data_dir["validation"],
                    "split": "dev",
                },
            ),
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""
        conll_dataset = load_conll_data(filepath)

        if self.config.schema == "source":
            for i, row in enumerate(conll_dataset):
                ex = {
                    "index": str(i),
                    "tokens": row["sentence"],
                    "pos_tags": row["label"],
                }
                yield i, ex

        elif self.config.schema == "seacrowd_seq_label":
            for i, row in enumerate(conll_dataset):
                ex = {
                    "id": str(i),
                    "tokens": row["sentence"],
                    "labels": row["label"],
                }
                yield i, ex