Datasets:

Languages:
Thai
ArXiv:
License:
File size: 9,630 Bytes
47d3c79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@article{sornlertlamvanich1999building,
  title={Building a Thai part-of-speech tagged corpus (ORCHID)},
  author={Sornlertlamvanich, Virach and Takahashi, Naoto and Isahara, Hitoshi},
  journal={Journal of the Acoustical Society of Japan (E)},
  volume={20},
  number={3},
  pages={189--198},
  year={1999},
  publisher={Acoustical Society of Japan}
}
"""

_DATASETNAME = "orchid_pos"

_DESCRIPTION = """\
The ORCHID corpus is a Thai part-of-speech (POS) tagged dataset, resulting from a collaboration between\
Japan's Communications Research Laboratory (CRL) and Thailand's National Electronics and Computer Technology\
Center (NECTEC). It is structured at three levels: paragraph, sentence, and word. The dataset incorporates a\
unique tagset designed for use in multi-lingual machine translation projects, and is tailored to address the\
challenges of Thai text, which lacks explicit word and sentence boundaries, punctuation, and inflection.\
This dataset includes text information along with numbering for retrieval, and employs a probabilistic trigram\
model for word segmentation and POS tagging. The ORCHID corpus is specifically structured to reduce ambiguity in\
POS assignments, making it a valuable resource for Thai language processing and computational linguistics research.
"""

_HOMEPAGE = "https://github.com/wannaphong/corpus_mirror/releases/tag/orchid-v1.0"

_LANGUAGES = ["tha"]

_LICENSE = Licenses.CC_BY_NC_SA_3_0.value

_LOCAL = False

_URLS = {
    _DATASETNAME: "https://github.com/wannaphong/corpus_mirror/releases/download/orchid-v1.0/orchid97.crp.utf",
}

_SUPPORTED_TASKS = [Tasks.POS_TAGGING]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"


class OrchidPOSDataset(datasets.GeneratorBasedBuilder):

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_source",
            version=SOURCE_VERSION,
            description=f"{_DATASETNAME} source schema",
            schema="source",
            subset_id=f"{_DATASETNAME}",
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_seacrowd_seq_label",
            version=SEACROWD_VERSION,
            description=f"{_DATASETNAME} SEACrowd schema",
            schema="seacrowd_seq_label",
            subset_id=f"{_DATASETNAME}",
        ),
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

    def _info(self) -> datasets.DatasetInfo:
        label_names = [
            "NPRP",
            "NCNM",
            "NONM",
            "NLBL",
            "NCMN",
            "NTTL",
            "PPRS",
            "PDMN",
            "PNTR",
            "PREL",
            "VACT",
            "VSTA",
            "VATT",
            "XVBM",
            "XVAM",
            "XVMM",
            "XVBB",
            "XVAE",
            "DDAN",
            "DDAC",
            "DDBQ",
            "DDAQ",
            "DIAC",
            "DIBQ",
            "DIAQ",
            "DCNM",
            "DONM",
            "ADVN",
            "ADVI",
            "ADVP",
            "ADVS",
            "CNIT",
            "CLTV",
            "CMTR",
            "CFQC",
            "CVBL",
            "JCRG",
            "JCMP",
            "JSBR",
            "RPRE",
            "INT",
            "FIXN",
            "FIXV",
            "EAFF",
            "EITT",
            "NEG",
            "PUNC",
            "CMTR@PUNC",
        ]
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "ttitle": datasets.Value("string"),
                    "etitle": datasets.Value("string"),
                    "tauthor": datasets.Value("string"),
                    "eauthor": datasets.Value("string"),
                    "tinbook": datasets.Value("string"),
                    "einbook": datasets.Value("string"),
                    "tpublisher": datasets.Value("string"),
                    "epublisher": datasets.Value("string"),
                    "year": datasets.Value("string"),
                    "file": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "labels": datasets.Sequence(datasets.ClassLabel(names=label_names)),
                }
            )

        elif self.config.schema == "seacrowd_seq_label":
            features = schemas.seq_label_features(label_names)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        urls = _URLS[_DATASETNAME]
        data_dir = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, ""),
                    "split": "train",
                },
            )
        ]

    def _get_tokens_labels(self, paragraphs):
        tokens = []
        labels = []
        token_mapping = {
            "<space>": " ",
            "<exclamation>": "!",
            "<quotation>": '"',
            "<number>": "#",
            "<dollar>": "$",
            "<percent>": "%",
            "<ampersand>": "&",
            "<apostrophe>": "'",
            "<slash>": "/",
            "<colon>": ":",
            "<semi_colon>": ";",
            "<less_than>": "<",
            "<equal>": "=",
            "<greater than>": ">",
            "<question_mark>": "?",
            "<at_mark>": "@",
            "<left_parenthesis>": "(",
            "<left_square_bracket>": "[",
            "<right_parenthesis>": ")",
            "<right_square_bracket>": "]",
            "<asterisk>": "*",
            "<circumflex_accent>": "^",
            "<plus>": "+",
            "<low_line>": "_",
            "<comma>": ",",
            "left_curly_bracket": "{",
            "<minus>": "-",
            "<right_curly_bracket>": "}",
            "<full_stop>": ".",
            "<tilde>": "~",
        }
        for paragraph in paragraphs:
            sentences = re.split(r"#\d+\n", paragraph)
            for sentence in sentences[1:]:
                token_pos_pairs = sentence.split("//")[1]
                for token_pos_pair in token_pos_pairs.split("\n")[1:-1]:
                    if "/" in token_pos_pair:
                        token = token_pos_pair.split("/")[0]
                        tokens.append(token_mapping[token] if token in token_mapping.keys() else token)
                        labels.append(token_pos_pair.split("/")[1])
                    else:
                        token = token_pos_pair.split("@")[0]
                        tokens.append(token_mapping[token] if token in token_mapping.keys() else token)
                        labels.append(token_pos_pair.split("@")[1])
        return tokens, labels

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""
        file_content = open(filepath, "r").read()
        texts = file_content.split("%TTitle:")

        idx = 0
        for text in texts[1:]:
            file_part = text.split("%File")[-1]
            tokens, labels = self._get_tokens_labels(re.split(r"#P\d+\n", file_part)[1:])
            if self.config.schema == "source":
                parts = text.split("%")
                example = {
                    "ttitle": parts[0],
                    "etitle": ":".join(parts[1].split(":")[1:]).strip(),
                    "tauthor": ":".join(parts[2].split(":")[1:]).strip(),
                    "eauthor": ":".join(parts[3].split(":")[1:]).strip(),
                    "tinbook": ":".join(parts[4].split(":")[1:]).strip(),
                    "einbook": ":".join(parts[5].split(":")[1:]).strip(),
                    "tpublisher": ":".join(parts[6].split(":")[1:]).strip(),
                    "epublisher": ":".join(parts[7].split(":")[1:]).strip(),
                    "year": ":".join(parts[9].split(":")[1:]).strip(),
                    "file": file_part.strip(),
                    "tokens": tokens,
                    "labels": labels,
                }
            elif self.config.schema == "seacrowd_seq_label":
                example = {
                    "id": idx,
                    "tokens": tokens,
                    "labels": labels,
                }
            yield idx, example
            idx += 1