File size: 9,630 Bytes
47d3c79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@article{sornlertlamvanich1999building,
title={Building a Thai part-of-speech tagged corpus (ORCHID)},
author={Sornlertlamvanich, Virach and Takahashi, Naoto and Isahara, Hitoshi},
journal={Journal of the Acoustical Society of Japan (E)},
volume={20},
number={3},
pages={189--198},
year={1999},
publisher={Acoustical Society of Japan}
}
"""
_DATASETNAME = "orchid_pos"
_DESCRIPTION = """\
The ORCHID corpus is a Thai part-of-speech (POS) tagged dataset, resulting from a collaboration between\
Japan's Communications Research Laboratory (CRL) and Thailand's National Electronics and Computer Technology\
Center (NECTEC). It is structured at three levels: paragraph, sentence, and word. The dataset incorporates a\
unique tagset designed for use in multi-lingual machine translation projects, and is tailored to address the\
challenges of Thai text, which lacks explicit word and sentence boundaries, punctuation, and inflection.\
This dataset includes text information along with numbering for retrieval, and employs a probabilistic trigram\
model for word segmentation and POS tagging. The ORCHID corpus is specifically structured to reduce ambiguity in\
POS assignments, making it a valuable resource for Thai language processing and computational linguistics research.
"""
_HOMEPAGE = "https://github.com/wannaphong/corpus_mirror/releases/tag/orchid-v1.0"
_LANGUAGES = ["tha"]
_LICENSE = Licenses.CC_BY_NC_SA_3_0.value
_LOCAL = False
_URLS = {
_DATASETNAME: "https://github.com/wannaphong/corpus_mirror/releases/download/orchid-v1.0/orchid97.crp.utf",
}
_SUPPORTED_TASKS = [Tasks.POS_TAGGING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class OrchidPOSDataset(datasets.GeneratorBasedBuilder):
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_seq_label",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema="seacrowd_seq_label",
subset_id=f"{_DATASETNAME}",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
label_names = [
"NPRP",
"NCNM",
"NONM",
"NLBL",
"NCMN",
"NTTL",
"PPRS",
"PDMN",
"PNTR",
"PREL",
"VACT",
"VSTA",
"VATT",
"XVBM",
"XVAM",
"XVMM",
"XVBB",
"XVAE",
"DDAN",
"DDAC",
"DDBQ",
"DDAQ",
"DIAC",
"DIBQ",
"DIAQ",
"DCNM",
"DONM",
"ADVN",
"ADVI",
"ADVP",
"ADVS",
"CNIT",
"CLTV",
"CMTR",
"CFQC",
"CVBL",
"JCRG",
"JCMP",
"JSBR",
"RPRE",
"INT",
"FIXN",
"FIXV",
"EAFF",
"EITT",
"NEG",
"PUNC",
"CMTR@PUNC",
]
if self.config.schema == "source":
features = datasets.Features(
{
"ttitle": datasets.Value("string"),
"etitle": datasets.Value("string"),
"tauthor": datasets.Value("string"),
"eauthor": datasets.Value("string"),
"tinbook": datasets.Value("string"),
"einbook": datasets.Value("string"),
"tpublisher": datasets.Value("string"),
"epublisher": datasets.Value("string"),
"year": datasets.Value("string"),
"file": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"labels": datasets.Sequence(datasets.ClassLabel(names=label_names)),
}
)
elif self.config.schema == "seacrowd_seq_label":
features = schemas.seq_label_features(label_names)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, ""),
"split": "train",
},
)
]
def _get_tokens_labels(self, paragraphs):
tokens = []
labels = []
token_mapping = {
"<space>": " ",
"<exclamation>": "!",
"<quotation>": '"',
"<number>": "#",
"<dollar>": "$",
"<percent>": "%",
"<ampersand>": "&",
"<apostrophe>": "'",
"<slash>": "/",
"<colon>": ":",
"<semi_colon>": ";",
"<less_than>": "<",
"<equal>": "=",
"<greater than>": ">",
"<question_mark>": "?",
"<at_mark>": "@",
"<left_parenthesis>": "(",
"<left_square_bracket>": "[",
"<right_parenthesis>": ")",
"<right_square_bracket>": "]",
"<asterisk>": "*",
"<circumflex_accent>": "^",
"<plus>": "+",
"<low_line>": "_",
"<comma>": ",",
"left_curly_bracket": "{",
"<minus>": "-",
"<right_curly_bracket>": "}",
"<full_stop>": ".",
"<tilde>": "~",
}
for paragraph in paragraphs:
sentences = re.split(r"#\d+\n", paragraph)
for sentence in sentences[1:]:
token_pos_pairs = sentence.split("//")[1]
for token_pos_pair in token_pos_pairs.split("\n")[1:-1]:
if "/" in token_pos_pair:
token = token_pos_pair.split("/")[0]
tokens.append(token_mapping[token] if token in token_mapping.keys() else token)
labels.append(token_pos_pair.split("/")[1])
else:
token = token_pos_pair.split("@")[0]
tokens.append(token_mapping[token] if token in token_mapping.keys() else token)
labels.append(token_pos_pair.split("@")[1])
return tokens, labels
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
file_content = open(filepath, "r").read()
texts = file_content.split("%TTitle:")
idx = 0
for text in texts[1:]:
file_part = text.split("%File")[-1]
tokens, labels = self._get_tokens_labels(re.split(r"#P\d+\n", file_part)[1:])
if self.config.schema == "source":
parts = text.split("%")
example = {
"ttitle": parts[0],
"etitle": ":".join(parts[1].split(":")[1:]).strip(),
"tauthor": ":".join(parts[2].split(":")[1:]).strip(),
"eauthor": ":".join(parts[3].split(":")[1:]).strip(),
"tinbook": ":".join(parts[4].split(":")[1:]).strip(),
"einbook": ":".join(parts[5].split(":")[1:]).strip(),
"tpublisher": ":".join(parts[6].split(":")[1:]).strip(),
"epublisher": ":".join(parts[7].split(":")[1:]).strip(),
"year": ":".join(parts[9].split(":")[1:]).strip(),
"file": file_part.strip(),
"tokens": tokens,
"labels": labels,
}
elif self.config.schema == "seacrowd_seq_label":
example = {
"id": idx,
"tokens": tokens,
"labels": labels,
}
yield idx, example
idx += 1
|