File size: 4,843 Bytes
b539158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
import pandas as pd

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks

_CITATION = """\
"""

_LANGUAGES = ["ind"]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False

_DATASETNAME = "netifier"

_DESCRIPTION = """\
Netifier dataset is a collection of scraped posts on famous social media sites in Indonesia,
such as Instagram, Twitter, and Kaskus aimed to do multi-label toxicity classification.
The dataset consists of 7,773 texts. The author manually labelled ~7k samples into 4 categories:
pornography, hate speech, racism, and radicalism.
"""

_HOMEPAGE = "https://github.com/ahmadizzan/netifier"
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"
_URLS = {_DATASETNAME: {"train": "https://raw.githubusercontent.com/ahmadizzan/netifier/master/data/processed/train.csv", "test": "https://raw.githubusercontent.com/ahmadizzan/netifier/master/data/processed/test.csv"}}
_SUPPORTED_TASKS = [Tasks.ASPECT_BASED_SENTIMENT_ANALYSIS]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class Netifier(datasets.GeneratorBasedBuilder):
    """Netifier dataset is a collection of scraped posts on famous social media sites in Indonesia,
    such as Instagram, Twitter, and Kaskus aimed to do multi-label toxicity classification."""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name="netifier_source",
            version=SOURCE_VERSION,
            description="Netifier source schema",
            schema="source",
            subset_id="netifier",
        ),
        SEACrowdConfig(
            name="netifier_seacrowd_text_multi",
            version=SEACROWD_VERSION,
            description="Netifier Nusantara schema",
            schema="seacrowd_text_multi",
            subset_id="netifier",
        ),
    ]

    DEFAULT_CONFIG_NAME = "netifier_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "pornography": datasets.Value("bool"),
                    "blasphemy_racism_discrimination": datasets.Value("bool"),
                    "radicalism": datasets.Value("bool"),
                    "defamation": datasets.Value("bool"),
                }
            )
        elif self.config.schema == "seacrowd_text_multi":
            features = schemas.text_multi_features([0, 1])

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        urls = _URLS[_DATASETNAME]
        train_data = Path(dl_manager.download(urls["train"]))
        test_data = Path(dl_manager.download(urls["test"]))

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": train_data,
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": test_data,
                    "split": "test",
                },
            ),
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""
        # Dataset does not have id, using row index as id
        label_cols = ["pornography", "blasphemy_racism_discrimination", "radicalism", "defamation"]
        df = pd.read_csv(filepath, encoding="ISO-8859-1").reset_index()
        df.columns = ["id", "original_text", "text"] + label_cols

        if self.config.schema == "source":
            for row in df.itertuples():
                ex = {
                    "text": row.text,
                }
                for label in label_cols:
                    ex[label] = getattr(row, label)
                yield row.id, ex

        elif self.config.schema == "seacrowd_text_multi":
            for row in df.itertuples():
                ex = {
                    "id": str(row.id),
                    "text": row.text,
                    "labels": [label for label in row[4:]],
                }
                yield row.id, ex
        else:
            raise ValueError(f"Invalid config: {self.config.name}")