File size: 4,867 Bytes
1558eb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from pathlib import Path
from typing import List

import datasets

from nusacrowd.utils import schemas
from nusacrowd.utils.common_parser import load_conll_data
from nusacrowd.utils.configs import NusantaraConfig
from nusacrowd.utils.constants import (DEFAULT_NUSANTARA_VIEW_NAME,
                                       DEFAULT_SOURCE_VIEW_NAME, Tasks)

_DATASETNAME = "nerp"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_NUSANTARA_VIEW_NAME

_LANGUAGES = ["ind"]
_LOCAL = False
_CITATION = """\
@inproceedings{hoesen2018investigating,
  title={Investigating bi-lstm and crf with pos tag embedding for indonesian named entity tagger},
  author={Hoesen, Devin and Purwarianti, Ayu},
  booktitle={2018 International Conference on Asian Language Processing (IALP)},
  pages={35--38},
  year={2018},
  organization={IEEE}
}
"""

_DESCRIPTION = """\
The NERP dataset (Hoesen and Purwarianti, 2018) contains texts collected from several Indonesian news websites with five labels
- PER (name of person)
- LOC (name of location)
- IND (name of product or brand)
- EVT (name of the event)
- FNB (name of food and beverage).
NERP makes use of the IOB chunking format, just like the TermA dataset.
"""

_HOMEPAGE = "https://github.com/IndoNLP/indonlu"

_LICENSE = "Creative Common Attribution Share-Alike 4.0 International"

_URLs = {
    "train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/nerp_ner-prosa/train_preprocess.txt",
    "validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/nerp_ner-prosa/valid_preprocess.txt",
    "test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/nerp_ner-prosa/test_preprocess_masked_label.txt",
}

_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]

_SOURCE_VERSION = "1.0.0"
_NUSANTARA_VERSION = "1.0.0"


class NerpDataset(datasets.GeneratorBasedBuilder):
    """NERP is an NER tagging dataset contains about (train=6720,valid=840,test=840) sentences, with 11 classes."""

    label_classes = ["B-PPL", "B-PLC", "B-EVT", "B-IND", "B-FNB", "I-PPL", "I-PLC", "I-EVT", "I-IND", "I-FNB", "O"]

    BUILDER_CONFIGS = [
        NusantaraConfig(
            name="nerp_source",
            version=datasets.Version(_SOURCE_VERSION),
            description="NERP source schema",
            schema="source",
            subset_id="nerp",
        ),
        NusantaraConfig(
            name="nerp_nusantara_seq_label",
            version=datasets.Version(_NUSANTARA_VERSION),
            description="NERP Nusantara schema",
            schema="nusantara_seq_label",
            subset_id="nerp",
        ),
    ]

    DEFAULT_CONFIG_NAME = "nerp_source"

    def _info(self):
        if self.config.schema == "source":
            features = datasets.Features({"index": datasets.Value("string"), "tokens": [datasets.Value("string")], "ner_tag": [datasets.Value("string")]})
        elif self.config.schema == "nusantara_seq_label":
            features = schemas.seq_label_features(self.label_classes)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        train_tsv_path = Path(dl_manager.download_and_extract(_URLs["train"]))
        validation_tsv_path = Path(dl_manager.download_and_extract(_URLs["validation"]))
        test_tsv_path = Path(dl_manager.download_and_extract(_URLs["test"]))
        data_files = {
            "train": train_tsv_path,
            "validation": validation_tsv_path,
            "test": test_tsv_path,
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": data_files["train"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": data_files["validation"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": data_files["test"]},
            ),
        ]

    def _generate_examples(self, filepath: Path):
        conll_dataset = load_conll_data(filepath)

        if self.config.schema == "source":
            for i, row in enumerate(conll_dataset):
                ex = {"index": str(i), "tokens": row["sentence"], "ner_tag": row["label"]}
                yield i, ex
        elif self.config.schema == "nusantara_seq_label":
            for i, row in enumerate(conll_dataset):
                ex = {"id": str(i), "tokens": row["sentence"], "labels": row["label"]}
                yield i, ex
        else:
            raise ValueError(f"Invalid config: {self.config.name}")