|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@article{JOHARI2023109338, |
|
title = {MyWSL: Malaysian words sign language dataset}, |
|
journal = {Data in Brief}, |
|
volume = {49}, |
|
pages = {109338}, |
|
year = {2023}, |
|
issn = {2352-3409}, |
|
doi = {https://doi.org/10.1016/j.dib.2023.109338}, |
|
url = {https://www.sciencedirect.com/science/article/pii/S2352340923004560}, |
|
author = {Rina Tasia Johari and Rizauddin Ramli and Zuliani Zulkoffli and Nizaroyani Saibani}, |
|
keywords = {Dataset, Hand gestures, Sign language, Image data}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "mywsl2023" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset contains pictures of hand gestures corresponding to ten commonly-used Malaysian Sign Language (XML) words. |
|
Gestures are performed by five university students who belong to different ethnic groups and are proficient in XML. |
|
Each gesture class contains 350 instances. |
|
""" |
|
|
|
_HOMEPAGE = "https://data.mendeley.com/datasets/zvk55p7ktd/1" |
|
|
|
_LANGUAGES = ["xml"] |
|
|
|
_LICENSE = Licenses.CC_BY_4_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = {_DATASETNAME: "https://data.mendeley.com/public-files/datasets/zvk55p7ktd/files/7f11b8a0-24e4-45df-af3d-e861f41435ea/file_downloaded"} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SIGN_LANGUAGE_RECOGNITION] |
|
_SUPPORTED_SCHEMA_STRINGS = [f"seacrowd_{str(TASK_TO_SCHEMA[task]).lower()}" for task in _SUPPORTED_TASKS] |
|
|
|
_SPLITS = [datasets.Split.TRAIN, datasets.Split.TEST] |
|
|
|
_LABELS = ["air", "demam", "dengar", "makan", "minum", "salah", "saya", "senyap", "tidur", "waktu"] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class MyWsl2023(datasets.GeneratorBasedBuilder): |
|
"""This dataset contains pictures of hand gestures corresponding to ten commonly-used Malaysian Sign Language (XML) words.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
subset_id = _DATASETNAME |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{subset_id}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=subset_id, |
|
) |
|
] |
|
|
|
seacrowd_schema_config: list[SEACrowdConfig] = [] |
|
|
|
for seacrowd_schema in _SUPPORTED_SCHEMA_STRINGS: |
|
|
|
seacrowd_schema_config.append( |
|
SEACrowdConfig( |
|
name=f"{subset_id}_{seacrowd_schema}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} {seacrowd_schema} schema", |
|
schema=f"{seacrowd_schema}", |
|
subset_id=subset_id, |
|
) |
|
) |
|
|
|
BUILDER_CONFIGS.extend(seacrowd_schema_config) |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"image_paths": datasets.Sequence(datasets.Value("string")), |
|
"texts": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == f"seacrowd_{str(TASK_TO_SCHEMA[Tasks.SIGN_LANGUAGE_RECOGNITION]).lower()}": |
|
features = schemas.image_text_features(label_names=_LABELS) |
|
|
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
split_generators = [] |
|
|
|
path = dl_manager.download_and_extract(_URLS[_DATASETNAME]) |
|
|
|
for split in _SPLITS: |
|
split_generators.append( |
|
datasets.SplitGenerator( |
|
name=split, |
|
gen_kwargs={ |
|
"path": os.path.join(path, "MyWSL2023 RAW DATA", split._name), |
|
}, |
|
) |
|
) |
|
|
|
return split_generators |
|
|
|
def _generate_examples(self, path: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
image_folder_paths = [os.path.join(path, folder) for folder in os.listdir(path)] |
|
|
|
for idx, image_folder_path in enumerate(image_folder_paths): |
|
image_paths = os.listdir(image_folder_path) |
|
|
|
if self.config.schema == "source": |
|
yield idx, { |
|
"image_paths": [os.path.join(image_folder_path, image_path) for image_path in image_paths], |
|
"texts": os.path.basename(image_folder_path), |
|
} |
|
|
|
elif self.config.schema == f"seacrowd_{str(TASK_TO_SCHEMA[Tasks.SIGN_LANGUAGE_RECOGNITION]).lower()}": |
|
yield idx, { |
|
"id": os.path.basename(image_folder_path), |
|
"image_paths": [os.path.join(image_folder_path, image_path) for image_path in image_paths], |
|
"texts": os.path.basename(image_folder_path), |
|
"metadata": { |
|
"context": "Malaysian Sign Language (XML)", |
|
"labels": [os.path.basename(image_folder_path)], |
|
}, |
|
} |
|
|
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|