File size: 6,276 Bytes
c10335a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks
_CITATION = """\
@article{JOHARI2023109338,
title = {MyWSL: Malaysian words sign language dataset},
journal = {Data in Brief},
volume = {49},
pages = {109338},
year = {2023},
issn = {2352-3409},
doi = {https://doi.org/10.1016/j.dib.2023.109338},
url = {https://www.sciencedirect.com/science/article/pii/S2352340923004560},
author = {Rina Tasia Johari and Rizauddin Ramli and Zuliani Zulkoffli and Nizaroyani Saibani},
keywords = {Dataset, Hand gestures, Sign language, Image data},
}
"""
_DATASETNAME = "mywsl2023"
_DESCRIPTION = """\
This dataset contains pictures of hand gestures corresponding to ten commonly-used Malaysian Sign Language (XML) words.
Gestures are performed by five university students who belong to different ethnic groups and are proficient in XML.
Each gesture class contains 350 instances.
"""
_HOMEPAGE = "https://data.mendeley.com/datasets/zvk55p7ktd/1"
_LANGUAGES = ["xml"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LICENSE = Licenses.CC_BY_4_0.value
_LOCAL = False
_URLS = {_DATASETNAME: "https://data.mendeley.com/public-files/datasets/zvk55p7ktd/files/7f11b8a0-24e4-45df-af3d-e861f41435ea/file_downloaded"}
_SUPPORTED_TASKS = [Tasks.SIGN_LANGUAGE_RECOGNITION]
_SUPPORTED_SCHEMA_STRINGS = [f"seacrowd_{str(TASK_TO_SCHEMA[task]).lower()}" for task in _SUPPORTED_TASKS]
_SPLITS = [datasets.Split.TRAIN, datasets.Split.TEST]
_LABELS = ["air", "demam", "dengar", "makan", "minum", "salah", "saya", "senyap", "tidur", "waktu"]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class MyWsl2023(datasets.GeneratorBasedBuilder):
"""This dataset contains pictures of hand gestures corresponding to ten commonly-used Malaysian Sign Language (XML) words."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
subset_id = _DATASETNAME
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{subset_id}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=subset_id,
)
]
seacrowd_schema_config: list[SEACrowdConfig] = []
for seacrowd_schema in _SUPPORTED_SCHEMA_STRINGS:
seacrowd_schema_config.append(
SEACrowdConfig(
name=f"{subset_id}_{seacrowd_schema}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} {seacrowd_schema} schema",
schema=f"{seacrowd_schema}",
subset_id=subset_id,
)
)
BUILDER_CONFIGS.extend(seacrowd_schema_config)
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"image_paths": datasets.Sequence(datasets.Value("string")),
"texts": datasets.Value("string"),
}
)
elif self.config.schema == f"seacrowd_{str(TASK_TO_SCHEMA[Tasks.SIGN_LANGUAGE_RECOGNITION]).lower()}":
features = schemas.image_text_features(label_names=_LABELS)
else:
raise ValueError(f"Invalid config: {self.config.name}")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
split_generators = []
path = dl_manager.download_and_extract(_URLS[_DATASETNAME])
for split in _SPLITS:
split_generators.append(
datasets.SplitGenerator(
name=split,
gen_kwargs={
"path": os.path.join(path, "MyWSL2023 RAW DATA", split._name),
},
)
)
return split_generators
def _generate_examples(self, path: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
image_folder_paths = [os.path.join(path, folder) for folder in os.listdir(path)]
for idx, image_folder_path in enumerate(image_folder_paths):
image_paths = os.listdir(image_folder_path)
if self.config.schema == "source":
yield idx, {
"image_paths": [os.path.join(image_folder_path, image_path) for image_path in image_paths],
"texts": os.path.basename(image_folder_path),
}
elif self.config.schema == f"seacrowd_{str(TASK_TO_SCHEMA[Tasks.SIGN_LANGUAGE_RECOGNITION]).lower()}":
yield idx, {
"id": os.path.basename(image_folder_path),
"image_paths": [os.path.join(image_folder_path, image_path) for image_path in image_paths],
"texts": os.path.basename(image_folder_path),
"metadata": {
"context": "Malaysian Sign Language (XML)",
"labels": [os.path.basename(image_folder_path)],
},
}
else:
raise ValueError(f"Invalid config: {self.config.name}")
|