melayu_standard_lisan / melayu_standard_lisan.py
holylovenia's picture
Upload melayu_standard_lisan.py with huggingface_hub
32b1b0a verified
raw
history blame
7.6 kB
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks
_CITATION = """\
@misc{nomoto2018melayustandardlisan,
author = {Hiroki Nomoto},
title = {Korpus Variasi Bahasa Melayu: Standard Lisan},
year = {2018},
url = {https://github.com/matbahasa/Melayu_Standard_Lisan}
}
"""
_DATASETNAME = "melayu_standard_lisan"
_DESCRIPTION = """\
Korpus Variasi Bahasa Melayu: Standard Lisan is a language corpus sourced from monologues of various melayu folklores.
"""
_HOMEPAGE = "https://github.com/matbahasa/Melayu_Standard_Lisan"
_LANGUAGES = ["zlm"]
_LICENSE = Licenses.CC_BY_4_0.value
_LOCAL = False
_URLS = {
"kl201701": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201701.txt",
"kl201702": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201702.txt",
"kl201703": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201703.txt",
"kl201704": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201704.txt",
"kl201705": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201705.txt",
"kl201706": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201706.txt",
"kl201707": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201707.txt",
"kl201708": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201708.txt",
"kl201709": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201709.txt",
"kl201710": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201710.txt",
"kl201711": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201711.txt",
"kl201712": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201712.txt",
"kl201713": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201713.txt",
"kl201714": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201714.txt",
"kl201715": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201715.txt",
"kl201716": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201716.txt",
"kl201717": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201717.txt",
"kl201718": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201718.txt",
"kl201719": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201719.txt",
"kl201720": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201720.txt",
"kl201721": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201721.txt",
"kl201722": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201722.txt",
"kl201723": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201723.txt",
"kl201724": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201724.txt",
"kl201725": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201725.txt",
"kl201726": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201726.txt",
"kl201727": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201727.txt",
"kl201728": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201728.txt",
"kl201729": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201729.txt",
"kl201730": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201730.txt",
"kl201731": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201731.txt",
"kl201732": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201732.txt",
"kl201733": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201733.txt",
}
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class MelayuStandardLisan(datasets.GeneratorBasedBuilder):
"""Korpus Variasi Bahasa Melayu:
Standard Lisan is a language corpus sourced from monologues of various melayu folklores."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
SEACROWD_SCHEMA_NAME = TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=f"{_DATASETNAME}",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"text": datasets.Value("string"),
}
)
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
features = schemas.self_supervised_pretraining.features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = [_URLS[key] for key in _URLS.keys()]
data_path = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": data_path[0], "split": "train", "other_path": data_path[1:]},
)
]
def _generate_examples(self, filepath: Path, split: str, other_path: List) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
filepaths = [filepath] + other_path
data = []
for filepath in filepaths:
with open(filepath, "r") as f:
data.append(" ".join([line.rstrip() for line in f.readlines()]))
for id, text in enumerate(data):
yield id, {"id": id, "text": text}