File size: 7,599 Bytes
32b1b0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks
_CITATION = """\
@misc{nomoto2018melayustandardlisan,
author = {Hiroki Nomoto},
title = {Korpus Variasi Bahasa Melayu: Standard Lisan},
year = {2018},
url = {https://github.com/matbahasa/Melayu_Standard_Lisan}
}
"""
_DATASETNAME = "melayu_standard_lisan"
_DESCRIPTION = """\
Korpus Variasi Bahasa Melayu: Standard Lisan is a language corpus sourced from monologues of various melayu folklores.
"""
_HOMEPAGE = "https://github.com/matbahasa/Melayu_Standard_Lisan"
_LANGUAGES = ["zlm"]
_LICENSE = Licenses.CC_BY_4_0.value
_LOCAL = False
_URLS = {
"kl201701": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201701.txt",
"kl201702": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201702.txt",
"kl201703": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201703.txt",
"kl201704": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201704.txt",
"kl201705": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201705.txt",
"kl201706": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201706.txt",
"kl201707": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201707.txt",
"kl201708": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201708.txt",
"kl201709": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201709.txt",
"kl201710": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201710.txt",
"kl201711": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201711.txt",
"kl201712": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201712.txt",
"kl201713": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201713.txt",
"kl201714": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201714.txt",
"kl201715": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201715.txt",
"kl201716": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201716.txt",
"kl201717": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201717.txt",
"kl201718": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201718.txt",
"kl201719": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201719.txt",
"kl201720": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201720.txt",
"kl201721": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201721.txt",
"kl201722": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201722.txt",
"kl201723": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201723.txt",
"kl201724": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201724.txt",
"kl201725": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201725.txt",
"kl201726": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201726.txt",
"kl201727": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201727.txt",
"kl201728": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201728.txt",
"kl201729": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201729.txt",
"kl201730": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201730.txt",
"kl201731": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201731.txt",
"kl201732": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201732.txt",
"kl201733": "https://raw.githubusercontent.com/matbahasa/Melayu_Standard_Lisan/master/KL201733.txt",
}
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class MelayuStandardLisan(datasets.GeneratorBasedBuilder):
"""Korpus Variasi Bahasa Melayu:
Standard Lisan is a language corpus sourced from monologues of various melayu folklores."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
SEACROWD_SCHEMA_NAME = TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=f"{_DATASETNAME}",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"text": datasets.Value("string"),
}
)
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
features = schemas.self_supervised_pretraining.features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = [_URLS[key] for key in _URLS.keys()]
data_path = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": data_path[0], "split": "train", "other_path": data_path[1:]},
)
]
def _generate_examples(self, filepath: Path, split: str, other_path: List) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
filepaths = [filepath] + other_path
data = []
for filepath in filepaths:
with open(filepath, "r") as f:
data.append(" ".join([line.rstrip() for line in f.readlines()]))
for id, text in enumerate(data):
yield id, {"id": id, "text": text}
|