holylovenia
commited on
Commit
•
754238a
1
Parent(s):
d49f723
Upload medisco.py with huggingface_hub
Browse files- medisco.py +136 -0
medisco.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Dict, List, Tuple
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
from seacrowd.utils import schemas
|
8 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
9 |
+
from seacrowd.utils.constants import Tasks
|
10 |
+
|
11 |
+
_DATASETNAME = "medisco"
|
12 |
+
|
13 |
+
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
14 |
+
_LOCAL = False
|
15 |
+
_CITATION = """\
|
16 |
+
@INPROCEEDINGS{8629259,
|
17 |
+
author={Qorib, Muhammad Reza and Adriani, Mirna},
|
18 |
+
booktitle={2018 International Conference on Asian Language Processing (IALP)},
|
19 |
+
title={Building MEDISCO: Indonesian Speech Corpus for Medical Domain},
|
20 |
+
year={2018},
|
21 |
+
volume={},
|
22 |
+
number={},
|
23 |
+
pages={133-138},
|
24 |
+
keywords={Training;Automatic speech recognition;Medical services;Writing;Buildings;Computer science;Indonesian Automatic Speech Recognition;Medical Speech Corpus;Text Corpus},
|
25 |
+
doi={10.1109/IALP.2018.8629259}
|
26 |
+
}
|
27 |
+
"""
|
28 |
+
|
29 |
+
_DESCRIPTION = "MEDISCO is a medical Indonesian speech corpus that contains 731 medical terms and consists of 4,680 utterances with total duration 10 hours"
|
30 |
+
|
31 |
+
_HOMEPAGE = "https://mrqorib.github.io/2018/02/01/building-medisco.html"
|
32 |
+
|
33 |
+
_LICENSE = "GNU General Public License v3.0 (gpl-3.0)"
|
34 |
+
|
35 |
+
_URLs = {
|
36 |
+
"medisco": {
|
37 |
+
"train": {
|
38 |
+
"audio": "https://huggingface.co/datasets/mrqorib/MEDISCO/resolve/main/MEDISCO/train/audio.tar.gz",
|
39 |
+
"text": "https://huggingface.co/datasets/mrqorib/MEDISCO/resolve/main/MEDISCO/train/annotation/sentences.txt",
|
40 |
+
},
|
41 |
+
"test": {"audio": "https://huggingface.co/datasets/mrqorib/MEDISCO/resolve/main/MEDISCO/test/audio.tar.gz", "text": "https://huggingface.co/datasets/mrqorib/MEDISCO/resolve/main/MEDISCO/test/annotation/sentences.txt"},
|
42 |
+
}
|
43 |
+
}
|
44 |
+
|
45 |
+
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]
|
46 |
+
|
47 |
+
_SOURCE_VERSION = "1.0.0"
|
48 |
+
_SEACROWD_VERSION = "2024.06.20"
|
49 |
+
|
50 |
+
|
51 |
+
class Medisco(datasets.GeneratorBasedBuilder):
|
52 |
+
"MEDISCO is a medical Indonesian speech corpus that contains 731 medical terms and consists of 4,680 utterances with total duration 10 hours"
|
53 |
+
|
54 |
+
BUILDER_CONFIGS = [
|
55 |
+
SEACrowdConfig(
|
56 |
+
name="medisco_source",
|
57 |
+
version=datasets.Version(_SOURCE_VERSION),
|
58 |
+
description="MEDISCO source schema",
|
59 |
+
schema="source",
|
60 |
+
subset_id="medisco",
|
61 |
+
),
|
62 |
+
SEACrowdConfig(
|
63 |
+
name="medisco_seacrowd_sptext",
|
64 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
65 |
+
description="MEDISCO seacrowd schema",
|
66 |
+
schema="seacrowd_sptext",
|
67 |
+
subset_id="medisco",
|
68 |
+
),
|
69 |
+
]
|
70 |
+
|
71 |
+
DEFAULT_CONFIG_NAME = "medisco_source"
|
72 |
+
|
73 |
+
def _info(self):
|
74 |
+
if self.config.schema == "source":
|
75 |
+
features = datasets.Features(
|
76 |
+
{
|
77 |
+
"id": datasets.Value("string"),
|
78 |
+
"speaker_id": datasets.Value("string"),
|
79 |
+
"path": datasets.Value("string"),
|
80 |
+
"audio": datasets.Audio(sampling_rate=44_100),
|
81 |
+
"text": datasets.Value("string"),
|
82 |
+
}
|
83 |
+
)
|
84 |
+
elif self.config.schema == "seacrowd_sptext":
|
85 |
+
features = schemas.speech_text_features
|
86 |
+
|
87 |
+
return datasets.DatasetInfo(
|
88 |
+
description=_DESCRIPTION,
|
89 |
+
features=features,
|
90 |
+
homepage=_HOMEPAGE,
|
91 |
+
license=_LICENSE,
|
92 |
+
citation=_CITATION,
|
93 |
+
task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
|
94 |
+
)
|
95 |
+
|
96 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
97 |
+
base_path = _URLs["medisco"]
|
98 |
+
|
99 |
+
return [
|
100 |
+
datasets.SplitGenerator(
|
101 |
+
name=datasets.Split.TRAIN,
|
102 |
+
gen_kwargs={"filepath": dl_manager.download_and_extract(base_path["train"]["audio"]), "text_path": dl_manager.download_and_extract(base_path["train"]["text"]), "split": "train"},
|
103 |
+
),
|
104 |
+
datasets.SplitGenerator(
|
105 |
+
name=datasets.Split.TEST,
|
106 |
+
gen_kwargs={"filepath": dl_manager.download_and_extract(base_path["test"]["audio"]), "text_path": dl_manager.download_and_extract(base_path["test"]["text"]), "split": "test"},
|
107 |
+
),
|
108 |
+
]
|
109 |
+
|
110 |
+
def _generate_examples(self, filepath: Path, text_path: Path, split: str) -> Tuple[int, Dict]:
|
111 |
+
|
112 |
+
with open(text_path, encoding="utf-8") as f:
|
113 |
+
texts = f.readlines() # contains trailing \n
|
114 |
+
|
115 |
+
for speaker_id in os.listdir(filepath):
|
116 |
+
speaker_path = os.path.join(filepath, speaker_id)
|
117 |
+
if not os.path.isdir(speaker_path):
|
118 |
+
continue
|
119 |
+
for audio_id in os.listdir(speaker_path):
|
120 |
+
audio_idx = int(audio_id.split(".", 1)[0]) - 1 # get 0-based index
|
121 |
+
audio_path = os.path.join(speaker_path, audio_id)
|
122 |
+
key = "{}_{}_{}".format(split, speaker_id, audio_idx)
|
123 |
+
example = {
|
124 |
+
"id": key,
|
125 |
+
"speaker_id": speaker_id,
|
126 |
+
"path": audio_path,
|
127 |
+
"audio": audio_path,
|
128 |
+
"text": texts[audio_idx].strip(),
|
129 |
+
}
|
130 |
+
if self.config.schema == "seacrowd_sptext":
|
131 |
+
gender = speaker_id.split("-", 1)[0]
|
132 |
+
example["metadata"] = {
|
133 |
+
"speaker_gender": gender,
|
134 |
+
"speaker_age": None,
|
135 |
+
}
|
136 |
+
yield key, example
|