Datasets:
ArXiv:
License:
File size: 15,425 Bytes
c2027a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import re
import zipfile
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@article{zhang2023m3exam,
title={M3Exam: A Multilingual, Multimodal, Multilevel Benchmark for Examining Large Language Models},
author={Wenxuan Zhang and Sharifah Mahani Aljunied and Chang Gao and Yew Ken Chia and Lidong Bing},
year={2023},
eprint={2306.05179},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DATASETNAME = "m3exam"
_DESCRIPTION = """\
M3Exam is a novel benchmark sourced from real and official human exam questions for evaluating LLMs\
in a multilingual, multimodal, and multilevel context. In total, M3Exam contains 12,317 questions in 9\
diverse languages with three educational levels, where about 23% of the questions require processing images\
for successful solving. M3Exam dataset covers 3 languages spoken in Southeast Asia.
"""
_HOMEPAGE = "https://github.com/DAMO-NLP-SG/M3Exam"
_LANGUAGES = ["jav", "tha", "vie"]
_LANG_MAPPER = {"jav": "javanese", "tha": "thai", "vie": "vietnamese"}
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value
_LOCAL = False
_PASSWORD = "12317".encode("utf-8") # password to unzip dataset after downloading
_URLS = {
_DATASETNAME: "https://drive.usercontent.google.com/download?id=1eREETRklmXJLXrNPTyHxQ3RFdPhq_Nes&authuser=0&confirm=t",
}
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING, Tasks.VISUAL_QUESTION_ANSWERING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class M3ExamDataset(datasets.GeneratorBasedBuilder):
"""
M3Exam is a novel benchmark sourced from real and official human exam questions for evaluating LLMs
in a multilingual, multimodal, and multilevel context. In total, M3Exam contains 12,317 questions in 9
diverse languages with three educational levels, where about 23% of the questions require processing images
for successful solving. M3Exam dataset covers 3 languages spoken in Southeast Asia.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = (
[SEACrowdConfig(name=f"{_DATASETNAME}_{lang}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}") for lang in _LANGUAGES]
+ [
SEACrowdConfig(
name=f"{_DATASETNAME}_{lang}_seacrowd_qa",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME} SEACrowd schema",
schema="seacrowd_qa",
subset_id=f"{_DATASETNAME}",
)
for lang in _LANGUAGES
]
+ [
SEACrowdConfig(
name=f"{_DATASETNAME}_{lang}_seacrowd_imqa",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME} SEACrowd schema",
schema="seacrowd_imqa",
subset_id=f"{_DATASETNAME}",
)
for lang in _LANGUAGES
]
)
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_jav_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"question_text": datasets.Value("string"),
"background_description": datasets.Sequence(datasets.Value("string")),
"answer_text": datasets.Value("string"),
"options": datasets.Sequence(datasets.Value("string")),
"language": datasets.Value("string"),
"level": datasets.Value("string"),
"subject": datasets.Value("string"),
"subject_category": datasets.Value("string"),
"year": datasets.Value("string"),
"need_image": datasets.Value("string"),
"image_paths": datasets.Sequence(datasets.Value("string")),
}
)
elif self.config.schema == "seacrowd_qa":
features = schemas.qa_features
features["meta"] = {
"background_description": datasets.Sequence(datasets.Value("string")),
"level": datasets.Value("string"),
"subject": datasets.Value("string"),
"subject_category": datasets.Value("string"),
"year": datasets.Value("string"),
}
elif self.config.schema == "seacrowd_imqa":
features = schemas.imqa_features
features["meta"] = {
"background_description": datasets.Sequence(datasets.Value("string")),
"level": datasets.Value("string"),
"subject": datasets.Value("string"),
"subject_category": datasets.Value("string"),
"year": datasets.Value("string"),
}
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
lang = self.config.name.split("_")[1]
data_dir = dl_manager.download(urls)
if not os.path.exists(data_dir + "_extracted"):
if not os.path.exists(data_dir + ".zip"):
os.rename(data_dir, data_dir + ".zip")
with zipfile.ZipFile(data_dir + ".zip", "r") as zip_ref:
zip_ref.extractall(data_dir + "_extracted", pwd=_PASSWORD) # unzipping with password
if not os.path.exists(data_dir):
os.rename(data_dir + ".zip", data_dir)
image_generator = [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir + "_extracted", "data/multimodal-question"),
"split": "train",
},
),
]
text_generator = [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir + "_extracted", f"data/text-question/{_LANG_MAPPER[lang]}-questions-test.json"),
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir + "_extracted", f"data/text-question/{_LANG_MAPPER[lang]}-questions-dev.json"),
"split": "dev",
},
),
]
if "imqa" in self.config.name:
return image_generator
else:
if "source" in self.config.name:
image_generator.extend(text_generator)
return image_generator
else:
return text_generator
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
lang = self.config.name.split("_")[1]
thai_answer_mapper = {"1": "1", "2": "2", "3": "3", "4": "4", "5": "5", "๑": "1", "๒": "2", "๓": "3", "๔": "4", "๕": "5"}
if self.config.schema == "source":
if split == "train":
filepath_json = os.path.join(filepath, f"{_LANG_MAPPER[lang]}-questions-image.json")
with open(filepath_json, "r") as file:
data = json.load(file)
idx = 0
for json_obj in data:
image_paths = []
for text in [json_obj["question_text"]] + json_obj["options"] + json_obj["background_description"]:
matches = re.findall(r"\[image-(\d+)\.(jpg|png)\]", text)
if matches:
image_path = [os.path.join(filepath, f"images-{_LANG_MAPPER[lang]}/image-{image_number[0]}.{image_number[1]}") for image_number in matches]
image_paths.extend(image_path)
example = {
"question_text": json_obj["question_text"],
"background_description": json_obj["background_description"] if "background_description" in json_obj.keys() else None,
"answer_text": json_obj["answer_text"],
"options": json_obj["options"],
"language": json_obj["language"] if "language" in json_obj.keys() else None,
"level": json_obj["level"] if "level" in json_obj.keys() else None,
"subject": json_obj["subject"] if "subject" in json_obj.keys() else None,
"subject_category": json_obj["subject_category"] if "subject_category" in json_obj.keys() else None,
"year": json_obj["year"] if "year" in json_obj.keys() else None,
"need_image": "yes",
"image_paths": image_paths,
}
yield idx, example
idx += 1
else:
with open(filepath, "r") as file:
data = json.load(file)
idx = 0
for json_obj in data:
example = {
"question_text": json_obj["question_text"],
"background_description": json_obj["background_description"] if "background_description" in json_obj.keys() else None,
"answer_text": json_obj["answer_text"],
"options": json_obj["options"],
"language": json_obj["language"] if "language" in json_obj.keys() else None,
"level": json_obj["level"] if "level" in json_obj.keys() else None,
"subject": json_obj["subject"] if "subject" in json_obj.keys() else None,
"subject_category": json_obj["subject_category"] if "subject_category" in json_obj.keys() else None,
"year": json_obj["year"] if "year" in json_obj.keys() else None,
"need_image": "no",
"image_paths": None,
}
yield idx, example
idx += 1
elif self.config.schema == "seacrowd_qa":
with open(filepath, "r") as file:
data = json.load(file)
idx = 0
for json_obj in data:
answer = [".".join(answer.split(".")[1:]).strip() for answer in json_obj["options"] if json_obj["answer_text"] == answer.split(".")[0]]
if "_tha_" in self.config.name and len(answer) == 0:
answer = [".".join(answer.split(".")[1:]).strip() for answer in json_obj["options"] if thai_answer_mapper[json_obj["answer_text"]] == thai_answer_mapper[answer.split(".")[0]]]
example = {
"id": idx,
"question_id": idx,
"document_id": idx,
"question": json_obj["question_text"],
"type": "multiple_choice",
"choices": [".".join(answer.split(".")[1:]).strip() for answer in json_obj["options"]],
"context": "",
"answer": answer,
"meta": {
"background_description": json_obj["background_description"] if "background_description" in json_obj.keys() else None,
"level": json_obj["level"] if "level" in json_obj.keys() else None,
"subject": json_obj["subject"] if "subject" in json_obj.keys() else None,
"subject_category": json_obj["subject_category"] if "subject_category" in json_obj.keys() else None,
"year": json_obj["year"] if "year" in json_obj.keys() else None,
},
}
yield idx, example
idx += 1
elif self.config.schema == "seacrowd_imqa":
filepath_json = os.path.join(filepath, f"{_LANG_MAPPER[lang]}-questions-image.json")
with open(filepath_json, "r") as file:
data = json.load(file)
idx = 0
for json_obj in data:
answer = [".".join(answer.split(".")[1:]).strip() for answer in json_obj["options"] if json_obj["answer_text"] == answer.split(".")[0]]
if "_tha_" in self.config.name and len(answer) == 0:
answer = [".".join(answer.split(".")[1:]).strip() for answer in json_obj["options"] if thai_answer_mapper[json_obj["answer_text"]] == thai_answer_mapper[answer.split(".")[0]]]
image_paths = []
for text in [json_obj["question_text"]] + json_obj["options"] + json_obj["background_description"]:
matches = re.findall(r"\[image-(\d+)\.(jpg|png)\]", text)
if matches:
image_path = [os.path.join(filepath, f"images-{_LANG_MAPPER[lang]}/image-{image_number[0]}.{image_number[1]}") for image_number in matches]
image_paths.extend(image_path)
example = {
"id": idx,
"question_id": idx,
"document_id": idx,
"questions": [json_obj["question_text"]],
"type": "multiple_choice",
"choices": [".".join(answer.split(".")[1:]).strip() for answer in json_obj["options"]],
"context": "",
"answer": answer,
"image_paths": image_paths,
"meta": {
"background_description": json_obj["background_description"] if "background_description" in json_obj.keys() else None,
"level": json_obj["level"] if "level" in json_obj.keys() else None,
"subject": json_obj["subject"] if "subject" in json_obj.keys() else None,
"subject_category": json_obj["subject_category"] if "subject_category" in json_obj.keys() else None,
"year": json_obj["year"] if "year" in json_obj.keys() else None,
},
}
yield idx, example
idx += 1
|