|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@INPROCEEDINGS{8584876, |
|
author={Joseph, Ferdin Joe John and Anantaprayoon, Panatchakorn}, |
|
booktitle={2018 International Conference on Information Technology (InCIT)}, |
|
title={Offline Handwritten Thai Character Recognition Using Single Tier Classifier and Local Features}, |
|
year={2018}, |
|
volume={}, |
|
number={}, |
|
pages={1-4}, |
|
abstract={Handwritten character recognition is a conversion process of handwriting into machine-encoded text. Currently, |
|
several techniques and methods are proposed to enhance accuracy of handwritten character recognition for many languages |
|
spoken across the globe. In this project, a local feature-based approach is proposed to enhance the accuracy of handwritten |
|
offline character recognition for Thai alphabets. In the experiment, through MATLAB, 100 images for each class of Thai |
|
alphabets are collected and k-fold cross validation is applied to manage datasets to train and test. A gradient invariant |
|
feature set consisting of LBP and shape features is extracted. The classification is operated by using query matching based |
|
on Euclidean distance. The accuracy would be the percentage of correct classification for each class. For the result, the |
|
highest accuracy is 68.96% which has 144-bit shape features and uniform pattern LBP for the features.}, |
|
keywords={Character recognition;Feature extraction;Shape;Genetic algorithms;Matlab;Gray-scale;Optical character recognition |
|
software;Offline Character Recognition;Local Binary Pattern;Thai Handwriting}, |
|
doi={10.23919/INCIT.2018.8584876}, |
|
ISSN={}, |
|
month={Oct}, |
|
url={https://ieeexplore.ieee.org/document/8584876}} |
|
|
|
""" |
|
|
|
_DATASETNAME = "kvis_th_ocr" |
|
|
|
_DESCRIPTION = """\ |
|
The KVIS Thai OCR Dataset contains scanned handwritten version of all 44 Thai characters obtained from 27 individuals. It |
|
consisted of 1079 images from 44 classes (letters). This dataset consists of all Thai consonants with different writing |
|
styles of various people from ages between 16 and 75. Vowels and intonation are not taken into consideration for the dataset |
|
collected. |
|
""" |
|
|
|
_HOMEPAGE = "https://data.mendeley.com/datasets/8nr3pbdk5c/1" |
|
|
|
_LANGUAGES = ["tha"] |
|
|
|
_LICENSE = Licenses.CC_BY_4_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = "https://prod-dcd-datasets-cache-zipfiles.s3.eu-west-1.amazonaws.com/8nr3pbdk5c-1.zip" |
|
|
|
_SUPPORTED_TASKS = [Tasks.OPTICAL_CHARACTER_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class KVISThaiOCRDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
KVIS Thai OCR is a dataset for optical character recognition for Thai characters from https://data.mendeley.com/datasets/8nr3pbdk5c/1. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
labels = ["ก", "ข", "ฃ", "ค", "ฅ", "ฆ", "ง", "จ", "ฉ", "ช", "ซ", "ฌ", "ญ", "ฎ", "ฏ", "ฐ", "ฑ", "ฒ", "ณ", "ด", "ต", "ถ", "ท", "ธ", "น", "บ", "ป", "ผ", "ฝ", "พ", "ฟ", "ภ", "ม", "ย", "ร", "ล", "ว", "ศ", "ษ", "ส", "ห", "ฬ", "อ", "ฮ"] |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_imtext", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_imtext", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"file_path": datasets.Value("string"), |
|
"character": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_imtext": |
|
features = schemas.image_text_features(label_names=self.labels) |
|
else: |
|
raise ValueError(f"Invalid schema: {self.config.schema}") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
""" |
|
Returns SplitGenerators. |
|
""" |
|
|
|
dir = dl_manager.download_and_extract(_URLS) |
|
path = dl_manager.extract(os.path.join(dir, "KVIS TOCR Dataset.zip")) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"path": path, |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, path: Path, split: str) -> Tuple[int, Dict]: |
|
""" |
|
Yields examples as (key, example) tuples. |
|
""" |
|
|
|
idx = 0 |
|
path = list(os.walk(path)) |
|
for directory in path[1:]: |
|
label = directory[0][-3:-2] |
|
for file in directory[2]: |
|
file_extension = str(file[-3:]) |
|
if file_extension == "jpg": |
|
file_id = str(file[:-4]) |
|
file_path = os.path.join(directory[0], file) |
|
if self.config.schema == "source": |
|
data = { |
|
"id": file_id, |
|
"file_path": file_path, |
|
"character": label, |
|
} |
|
yield idx, data |
|
idx += 1 |
|
elif self.config.schema == "seacrowd_imtext": |
|
data = { |
|
"id": file_id, |
|
"image_paths": [file_path], |
|
"texts": "", |
|
"metadata": { |
|
"context": "", |
|
"labels": [label], |
|
}, |
|
} |
|
yield idx, data |
|
idx += 1 |
|
else: |
|
raise ValueError(f"Invalid schema: {self.config.schema}") |
|
|