Datasets:

Languages:
Thai
ArXiv:
License:
holylovenia commited on
Commit
e10b914
1 Parent(s): 23be9ae

Upload kvis_th_ocr.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. kvis_th_ocr.py +179 -0
kvis_th_ocr.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import os
17
+ from pathlib import Path
18
+ from typing import Dict, List, Tuple
19
+
20
+ import datasets
21
+
22
+ from seacrowd.utils import schemas
23
+ from seacrowd.utils.configs import SEACrowdConfig
24
+ from seacrowd.utils.constants import Licenses, Tasks
25
+
26
+ _CITATION = """\
27
+ @INPROCEEDINGS{8584876,
28
+ author={Joseph, Ferdin Joe John and Anantaprayoon, Panatchakorn},
29
+ booktitle={2018 International Conference on Information Technology (InCIT)},
30
+ title={Offline Handwritten Thai Character Recognition Using Single Tier Classifier and Local Features},
31
+ year={2018},
32
+ volume={},
33
+ number={},
34
+ pages={1-4},
35
+ abstract={Handwritten character recognition is a conversion process of handwriting into machine-encoded text. Currently,
36
+ several techniques and methods are proposed to enhance accuracy of handwritten character recognition for many languages
37
+ spoken across the globe. In this project, a local feature-based approach is proposed to enhance the accuracy of handwritten
38
+ offline character recognition for Thai alphabets. In the experiment, through MATLAB, 100 images for each class of Thai
39
+ alphabets are collected and k-fold cross validation is applied to manage datasets to train and test. A gradient invariant
40
+ feature set consisting of LBP and shape features is extracted. The classification is operated by using query matching based
41
+ on Euclidean distance. The accuracy would be the percentage of correct classification for each class. For the result, the
42
+ highest accuracy is 68.96% which has 144-bit shape features and uniform pattern LBP for the features.},
43
+ keywords={Character recognition;Feature extraction;Shape;Genetic algorithms;Matlab;Gray-scale;Optical character recognition
44
+ software;Offline Character Recognition;Local Binary Pattern;Thai Handwriting},
45
+ doi={10.23919/INCIT.2018.8584876},
46
+ ISSN={},
47
+ month={Oct},
48
+ url={https://ieeexplore.ieee.org/document/8584876}}
49
+
50
+ """
51
+
52
+ _DATASETNAME = "kvis_th_ocr"
53
+
54
+ _DESCRIPTION = """\
55
+ The KVIS Thai OCR Dataset contains scanned handwritten version of all 44 Thai characters obtained from 27 individuals. It
56
+ consisted of 1079 images from 44 classes (letters). This dataset consists of all Thai consonants with different writing
57
+ styles of various people from ages between 16 and 75. Vowels and intonation are not taken into consideration for the dataset
58
+ collected.
59
+ """
60
+
61
+ _HOMEPAGE = "https://data.mendeley.com/datasets/8nr3pbdk5c/1"
62
+
63
+ _LANGUAGES = ["tha"]
64
+
65
+ _LICENSE = Licenses.CC_BY_4_0.value
66
+
67
+ _LOCAL = False
68
+
69
+ _URLS = "https://prod-dcd-datasets-cache-zipfiles.s3.eu-west-1.amazonaws.com/8nr3pbdk5c-1.zip"
70
+
71
+ _SUPPORTED_TASKS = [Tasks.OPTICAL_CHARACTER_RECOGNITION]
72
+
73
+ _SOURCE_VERSION = "1.0.0"
74
+
75
+ _SEACROWD_VERSION = "2024.06.20"
76
+
77
+
78
+ class KVISThaiOCRDataset(datasets.GeneratorBasedBuilder):
79
+ """
80
+ KVIS Thai OCR is a dataset for optical character recognition for Thai characters from https://data.mendeley.com/datasets/8nr3pbdk5c/1.
81
+ """
82
+
83
+ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
84
+ SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
85
+ labels = ["ก", "ข", "ฃ", "ค", "ฅ", "ฆ", "ง", "จ", "ฉ", "ช", "ซ", "ฌ", "ญ", "ฎ", "ฏ", "ฐ", "ฑ", "ฒ", "ณ", "ด", "ต", "ถ", "ท", "ธ", "น", "บ", "ป", "ผ", "ฝ", "พ", "ฟ", "ภ", "ม", "ย", "ร", "ล", "ว", "ศ", "ษ", "ส", "ห", "ฬ", "อ", "ฮ"]
86
+
87
+ BUILDER_CONFIGS = [
88
+ SEACrowdConfig(
89
+ name=f"{_DATASETNAME}_source",
90
+ version=datasets.Version(_SOURCE_VERSION),
91
+ description=f"{_DATASETNAME} source schema",
92
+ schema="source",
93
+ subset_id=f"{_DATASETNAME}",
94
+ ),
95
+ SEACrowdConfig(
96
+ name=f"{_DATASETNAME}_seacrowd_imtext",
97
+ version=datasets.Version(_SOURCE_VERSION),
98
+ description=f"{_DATASETNAME} SEACrowd schema",
99
+ schema="seacrowd_imtext",
100
+ subset_id=f"{_DATASETNAME}",
101
+ ),
102
+ ]
103
+
104
+ def _info(self) -> datasets.DatasetInfo:
105
+ if self.config.schema == "source":
106
+ features = datasets.Features(
107
+ {
108
+ "id": datasets.Value("string"),
109
+ "file_path": datasets.Value("string"),
110
+ "character": datasets.Value("string"),
111
+ }
112
+ )
113
+ elif self.config.schema == "seacrowd_imtext":
114
+ features = schemas.image_text_features(label_names=self.labels)
115
+ else:
116
+ raise ValueError(f"Invalid schema: {self.config.schema}")
117
+
118
+ return datasets.DatasetInfo(
119
+ description=_DESCRIPTION,
120
+ features=features,
121
+ homepage=_HOMEPAGE,
122
+ license=_LICENSE,
123
+ citation=_CITATION,
124
+ )
125
+
126
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
127
+ """
128
+ Returns SplitGenerators.
129
+ """
130
+
131
+ dir = dl_manager.download_and_extract(_URLS)
132
+ path = dl_manager.extract(os.path.join(dir, "KVIS TOCR Dataset.zip"))
133
+
134
+ return [
135
+ datasets.SplitGenerator(
136
+ name=datasets.Split.TRAIN,
137
+ gen_kwargs={
138
+ "path": path,
139
+ "split": "train",
140
+ },
141
+ ),
142
+ ]
143
+
144
+ def _generate_examples(self, path: Path, split: str) -> Tuple[int, Dict]:
145
+ """
146
+ Yields examples as (key, example) tuples.
147
+ """
148
+
149
+ idx = 0
150
+ path = list(os.walk(path))
151
+ for directory in path[1:]:
152
+ label = directory[0][-3:-2]
153
+ for file in directory[2]:
154
+ file_extension = str(file[-3:])
155
+ if file_extension == "jpg":
156
+ file_id = str(file[:-4])
157
+ file_path = os.path.join(directory[0], file)
158
+ if self.config.schema == "source":
159
+ data = {
160
+ "id": file_id,
161
+ "file_path": file_path,
162
+ "character": label,
163
+ }
164
+ yield idx, data
165
+ idx += 1
166
+ elif self.config.schema == "seacrowd_imtext":
167
+ data = {
168
+ "id": file_id,
169
+ "image_paths": [file_path],
170
+ "texts": "",
171
+ "metadata": {
172
+ "context": "",
173
+ "labels": [label],
174
+ },
175
+ }
176
+ yield idx, data
177
+ idx += 1
178
+ else:
179
+ raise ValueError(f"Invalid schema: {self.config.schema}")