|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import json |
|
import os |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
from zipfile import ZipFile |
|
|
|
_CITATION = """\ |
|
@inproceedings{sakti-tcast-2008, |
|
title = "Development of {I}ndonesian Large Vocabulary Continuous Speech Recognition System within {A-STAR} Project", |
|
author = "Sakti, Sakriani and Kelana, Eka and Riza, Hammam and Sakai, Shinsuke and Markov, Konstantin and Nakamura, Satoshi", |
|
booktitle = "Proc. IJCNLP Workshop on Technologies and Corpora for Asia-Pacific Speech Translation (TCAST)", |
|
year = "2008", |
|
pages = "19--24" |
|
address = "Hyderabad, India" |
|
} |
|
|
|
|
|
@inproceedings{sakti-icslp-2004, |
|
title = "Indonesian Speech Recognition for Hearing and Speaking Impaired People", |
|
author = "Sakti, Sakriani and Hutagaol, Paulus and Arman, Arry Akhmad and Nakamura, Satoshi", |
|
booktitle = "Proc. International Conference on Spoken Language Processing (INTERSPEECH - ICSLP)", |
|
year = "2004", |
|
pages = "1037--1040" |
|
address = "Jeju Island, Korea" |
|
} |
|
|
|
@article{sakti-s2st-csl-2013, |
|
title = "{A-STAR}: Toward Tranlating Asian Spoken Languages", |
|
author = "Sakti, Sakriani and Paul, Michael and Finch, Andrew and Sakai, Shinsuke and Thang, Tat Vu, and Kimura, Noriyuki |
|
and Hori, Chiori and Sumita, Eiichiro and Nakamura, Satoshi and Park, Jun and Wutiwiwatchai, Chai and Xu, Bo and Riza, Hammam |
|
and Arora, Karunesh and Luong, Chi Mai and Li, Haizhou", |
|
journal = "Special issue on Speech-to-Speech Translation, Computer Speech and Language Journal", |
|
volume = "27", |
|
number ="2", |
|
pages = "509--527", |
|
year = "2013", |
|
publisher = "Elsevier" |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind"] |
|
_DATASETNAME = "indspeech_teldialog_lvcsr" |
|
|
|
_DESCRIPTION = """ |
|
INDspeech_TELDIALOG_LVCSR is one of the first Indonesian speech datasets for large vocabulary continuous speech recognition (LVCSR) based on telephon application. R&D Division of PT Telekomunikasi Indonesia developed the data in 2005-2006, in collaboration with Advanced Telecommunication Research Institute International (ATR) Japan, as the continuation of the Asia-Pacific Telecommunity (APT) project [Sakti et al., 2004]. It has also been successfully used for developing Indonesian LVCSR in the Asian speech translation advanced research (A-STAR) project [Sakti et al., 2013]. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/s-sakti/data_indsp_teldialog_lvcsr" |
|
|
|
_LICENSE = "CC-BY-NC-SA 4.0" |
|
|
|
|
|
URL_TEMPLATE = { |
|
"lst": "https://raw.githubusercontent.com/s-sakti/data_indsp_teldialog_lvcsr/main/lst/", |
|
"speech": "https://github.com/s-sakti/data_indsp_teldialog_lvcsr/raw/main/speech/", |
|
"text": "https://github.com/s-sakti/data_indsp_teldialog_lvcsr/raw/main/text/", |
|
} |
|
|
|
_URLS = { |
|
"lst_spk_Ind": [URL_TEMPLATE["lst"] + "spk_Ind" + str(n) + ".lst" for n in range(0, 4)], |
|
"lst_spk_all": URL_TEMPLATE["lst"] + "spk_all.lst", |
|
"lst_spk_test": URL_TEMPLATE["lst"] + "spk_test.lst", |
|
"lst_spk_train": URL_TEMPLATE["lst"] + "spk_train.lst", |
|
"lst_transcript": URL_TEMPLATE["lst"] + "transcript.lst", |
|
"speech_Ind": [URL_TEMPLATE["speech"] + "Ind" + str(n) + "/Ind" + str(p).zfill(3) + ".zip" for n in range(0, 4) for p in range(n * 100 + 1, n * 100 + 101)], |
|
"transcript_all": URL_TEMPLATE["text"] + "all_transcript.zip", |
|
"transcript_spk": URL_TEMPLATE["text"] + "spk_transcript.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IndSpeechTelDialLVCSR(datasets.GeneratorBasedBuilder): |
|
"""INDspeech_TELDIALOG_LVCSR is one of the first Indonesian speech datasets for large vocabulary continuous speech recognition (LVCSR) based on telephon application. R&D Division of PT Telekomunikasi Indonesia developed the data in 2005-2006, in collaboration with Advanced Telecommunication Research Institute International (ATR) Japan, as the continuation of the Asia-Pacific Telecommunity (APT) project [Sakti et al., 2004]. It has also been successfully used for developing Indonesian LVCSR in the Asian speech translation advanced research (A-STAR) project [Sakti et al., 2013].""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"indspeech_teldialog_lvcsr_source", |
|
version=_SOURCE_VERSION, |
|
description="indspeech_teldialog_lvcsr source schema", |
|
schema="source", |
|
subset_id=f"indspeech_teldialog_lvcsr" |
|
), |
|
SEACrowdConfig( |
|
name=f"indspeech_teldialog_lvcsr_seacrowd_sptext", |
|
version=_SOURCE_VERSION, |
|
description="indspeech_teldialog_lvcsr Nusantara schema", |
|
schema="seacrowd_sptext", |
|
subset_id=f"indspeech_teldialog_lvcsr" |
|
),] |
|
|
|
DEFAULT_CONFIG_NAME = "indspeech_teldialog_lvcsr_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
|
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"text": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_sptext": |
|
features = schemas.speech_text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")], |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
|
|
audio_files_dir = [] |
|
for aud_url in _URLS["speech_Ind"]: |
|
onespeaker_folder = dl_manager.download_and_extract(aud_url) |
|
audio_files_dir.append(Path(os.path.join(onespeaker_folder, aud_url.split("/")[-1][:-4]))) |
|
|
|
text_path = Path(dl_manager.download_and_extract(_URLS["lst_transcript"])) |
|
speak_list = Path(dl_manager.download_and_extract(_URLS["lst_spk_all"])) |
|
train_list = Path(dl_manager.download_and_extract(_URLS["lst_spk_train"])) |
|
test_list = Path(dl_manager.download_and_extract(_URLS["lst_spk_test"])) |
|
|
|
|
|
|
|
speaker_num2id = {} |
|
with open(speak_list) as f: |
|
for l in f.readlines(): |
|
l = l.strip() |
|
speaker_num2id.update({l.split("_")[0]: l}) |
|
|
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"audio_files_dir": audio_files_dir, |
|
"text_path": text_path, |
|
"split": "train", |
|
"file_list": train_list, |
|
"speaker_num2id": speaker_num2id |
|
}, |
|
), |
|
|
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"audio_files_dir": audio_files_dir, |
|
"text_path": text_path, |
|
"split": "test", |
|
"file_list": test_list, |
|
"speaker_num2id": speaker_num2id |
|
}, |
|
) |
|
] |
|
|
|
|
|
def _generate_examples(self, audio_files_dir: List, text_path: Path, split: str, file_list: Path, speaker_num2id: Dict) -> Tuple[int, Dict]: |
|
speaker_nums = [] |
|
with open(file_list) as f: |
|
for l in f.readlines(): |
|
speaker_nums.append(l.strip()) |
|
|
|
|
|
sentid = {} |
|
with open(text_path) as f: |
|
for i, l in enumerate(f.readlines()): |
|
sentid.update({"appl_"+"%04d" % i: l.strip()}) |
|
|
|
|
|
for wav_one_speaker_folder in audio_files_dir: |
|
if wav_one_speaker_folder.name in speaker_nums: |
|
speaker_num = wav_one_speaker_folder.name |
|
speaker_id = speaker_num2id[speaker_num] |
|
|
|
for wave_file in os.listdir(wav_one_speaker_folder): |
|
audio_id = wave_file[:-4] |
|
sentence_id = "appl_"+wave_file[:-4].split('_')[-1] |
|
text = sentid[sentence_id] |
|
wav_path = os.path.join(wav_one_speaker_folder, wave_file) |
|
|
|
if self.config.schema == "source": |
|
ex = { |
|
"id": audio_id, |
|
"speaker_id": speaker_id, |
|
"path": wav_path, |
|
"audio": wav_path, |
|
"text": text, |
|
} |
|
yield audio_id, ex |
|
|
|
elif self.config.schema == "seacrowd_sptext": |
|
ex = { |
|
"id": audio_id, |
|
"speaker_id": speaker_id, |
|
"path": wav_path, |
|
"audio": wav_path, |
|
"text": text, |
|
"metadata": { |
|
"speaker_age": None, |
|
"speaker_gender": speaker_id.split("_")[1], |
|
} |
|
} |
|
yield audio_id, ex |
|
|