|
from pathlib import Path |
|
from typing import List |
|
|
|
import datasets |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
from seacrowd.utils import schemas |
|
|
|
import pandas as pd |
|
|
|
_CITATION = """\ |
|
@misc{wibisono2022indotacos, |
|
title = {IndoTacos}, |
|
howpublished = {\\url{https://www.kaggle.com/datasets/christianwbsn/indonesia-tax-court-verdict}}, |
|
note = {Accessed: 2022-09-22} |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind"] |
|
_DATASETNAME = "indotacos" |
|
|
|
_DESCRIPTION = """\ |
|
Predicting the outcome or the probability of winning a legal case has always been highly attractive in legal sciences and practice. |
|
Hardly any dataset has been developed to analyze and accelerate the research of court verdict analysis. |
|
Find out what factor affects the outcome of tax court verdict using Natural Language Processing. |
|
""" |
|
|
|
_HOMEPAGE = "https://www.kaggle.com/datasets/christianwbsn/indonesia-tax-court-verdict" |
|
|
|
_LICENSE = "Creative Common Attribution Share-Alike 4.0 International" |
|
|
|
|
|
|
|
|
|
|
|
_URLS = {_DATASETNAME: {"indotacos": "https://huggingface.co/datasets/christianwbsn/indotacos/resolve/main/indonesia_tax_court_verdict.csv"}} |
|
|
|
_SUPPORTED_TASKS = [Tasks.TAX_COURT_VERDICT] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IndoTacos(datasets.GeneratorBasedBuilder): |
|
"""IndoTacos, an Indonesian Tax Court verdict summary containing 12283 tax court cases provided by perpajakan.ddtc.co.id.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="indotacos_source", |
|
version=SOURCE_VERSION, |
|
description="indotacos source schema", |
|
schema="source", |
|
subset_id="indotacos", |
|
), |
|
SEACrowdConfig( |
|
name="indotacos_seacrowd_text", |
|
version=SEACROWD_VERSION, |
|
description="IndoTacos Nusantara schema", |
|
schema="seacrowd_text", |
|
subset_id="indotacos", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "indotacos_source" |
|
labels = ["mengabulkan sebagian", "mengabulkan seluruhnya", "menolak", "lain-lain", "menambah pajak", "mengabulkan", "membetulkan"] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"text": datasets.Value("string"), |
|
"nomor_putusan": datasets.Value("string"), |
|
"tahun_pajak": datasets.Value("int32"), |
|
"jenis_pajak": datasets.Value("string"), |
|
"tahun_putusan": datasets.Value("int32"), |
|
"pokok_sengketa": datasets.Value("string"), |
|
"jenis_putusan": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_text": |
|
features = schemas.text_features(self.labels) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
url = _URLS["indotacos"] |
|
path = dl_manager.download(url)["indotacos"] |
|
data_files = {"train": path} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_files["train"], |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: Path): |
|
df = pd.read_csv(filepath) |
|
if self.config.schema == "source": |
|
row_id = 1 |
|
for row in df.itertuples(): |
|
ex = { |
|
"id": str(row_id), |
|
"text": row.text, |
|
"nomor_putusan": row.nomor_putusan, |
|
"tahun_pajak": row.tahun_pajak, |
|
"jenis_pajak": row.jenis_pajak, |
|
"tahun_putusan": row.tahun_putusan, |
|
"pokok_sengketa": row.pokok_sengketa, |
|
"jenis_putusan": row.jenis_putusan, |
|
} |
|
yield row_id, ex |
|
row_id += 1 |
|
elif self.config.schema == "seacrowd_text": |
|
row_id = 1 |
|
for row in df.itertuples(): |
|
ex = { |
|
"id": str(row_id), |
|
"text": {"text": row.text, "nomor_putusan": row.nomor_putusan, "tahun_pajak": row.tahun_pajak, "jenis_pajak": row.jenis_pajak, "tahun_putusan": row.tahun_putusan, "pokok_sengketa": row.pokok_sengketa}, |
|
"label": row.jenis_putusan, |
|
} |
|
yield row_id, ex |
|
row_id += 1 |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|