holylovenia
commited on
Upload indotacos.py with huggingface_hub
Browse files- indotacos.py +13 -13
indotacos.py
CHANGED
@@ -3,9 +3,9 @@ from typing import List
|
|
3 |
|
4 |
import datasets
|
5 |
|
6 |
-
from
|
7 |
-
from
|
8 |
-
from
|
9 |
|
10 |
import pandas as pd
|
11 |
|
@@ -32,7 +32,7 @@ _HOMEPAGE = "https://www.kaggle.com/datasets/christianwbsn/indonesia-tax-court-v
|
|
32 |
_LICENSE = "Creative Common Attribution Share-Alike 4.0 International"
|
33 |
|
34 |
# For publicly available datasets you will most likely end up passing these URLs to dl_manager in _split_generators.
|
35 |
-
# In most cases the URLs will be the same for the source and
|
36 |
# However, if you need to access different files for each config you can have multiple entries in this dict.
|
37 |
# This can be an arbitrarily nested dict/list of URLs (see below in `_split_generators` method)
|
38 |
_URLS = {_DATASETNAME: {"indotacos": "https://huggingface.co/datasets/christianwbsn/indotacos/resolve/main/indonesia_tax_court_verdict.csv"}}
|
@@ -41,28 +41,28 @@ _SUPPORTED_TASKS = [Tasks.TAX_COURT_VERDICT]
|
|
41 |
|
42 |
_SOURCE_VERSION = "1.0.0"
|
43 |
|
44 |
-
|
45 |
|
46 |
|
47 |
class IndoTacos(datasets.GeneratorBasedBuilder):
|
48 |
"""IndoTacos, an Indonesian Tax Court verdict summary containing 12283 tax court cases provided by perpajakan.ddtc.co.id."""
|
49 |
|
50 |
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
51 |
-
|
52 |
|
53 |
BUILDER_CONFIGS = [
|
54 |
-
|
55 |
name="indotacos_source",
|
56 |
version=SOURCE_VERSION,
|
57 |
description="indotacos source schema",
|
58 |
schema="source",
|
59 |
subset_id="indotacos",
|
60 |
),
|
61 |
-
|
62 |
-
name="
|
63 |
-
version=
|
64 |
description="IndoTacos Nusantara schema",
|
65 |
-
schema="
|
66 |
subset_id="indotacos",
|
67 |
),
|
68 |
]
|
@@ -85,7 +85,7 @@ class IndoTacos(datasets.GeneratorBasedBuilder):
|
|
85 |
"jenis_putusan": datasets.Value("string"),
|
86 |
}
|
87 |
)
|
88 |
-
elif self.config.schema == "
|
89 |
features = schemas.text_features(self.labels)
|
90 |
|
91 |
return datasets.DatasetInfo(
|
@@ -127,7 +127,7 @@ class IndoTacos(datasets.GeneratorBasedBuilder):
|
|
127 |
}
|
128 |
yield row_id, ex
|
129 |
row_id += 1
|
130 |
-
elif self.config.schema == "
|
131 |
row_id = 1
|
132 |
for row in df.itertuples():
|
133 |
ex = {
|
|
|
3 |
|
4 |
import datasets
|
5 |
|
6 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
7 |
+
from seacrowd.utils.constants import Tasks
|
8 |
+
from seacrowd.utils import schemas
|
9 |
|
10 |
import pandas as pd
|
11 |
|
|
|
32 |
_LICENSE = "Creative Common Attribution Share-Alike 4.0 International"
|
33 |
|
34 |
# For publicly available datasets you will most likely end up passing these URLs to dl_manager in _split_generators.
|
35 |
+
# In most cases the URLs will be the same for the source and seacrowd config.
|
36 |
# However, if you need to access different files for each config you can have multiple entries in this dict.
|
37 |
# This can be an arbitrarily nested dict/list of URLs (see below in `_split_generators` method)
|
38 |
_URLS = {_DATASETNAME: {"indotacos": "https://huggingface.co/datasets/christianwbsn/indotacos/resolve/main/indonesia_tax_court_verdict.csv"}}
|
|
|
41 |
|
42 |
_SOURCE_VERSION = "1.0.0"
|
43 |
|
44 |
+
_SEACROWD_VERSION = "2024.06.20"
|
45 |
|
46 |
|
47 |
class IndoTacos(datasets.GeneratorBasedBuilder):
|
48 |
"""IndoTacos, an Indonesian Tax Court verdict summary containing 12283 tax court cases provided by perpajakan.ddtc.co.id."""
|
49 |
|
50 |
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
51 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
52 |
|
53 |
BUILDER_CONFIGS = [
|
54 |
+
SEACrowdConfig(
|
55 |
name="indotacos_source",
|
56 |
version=SOURCE_VERSION,
|
57 |
description="indotacos source schema",
|
58 |
schema="source",
|
59 |
subset_id="indotacos",
|
60 |
),
|
61 |
+
SEACrowdConfig(
|
62 |
+
name="indotacos_seacrowd_text",
|
63 |
+
version=SEACROWD_VERSION,
|
64 |
description="IndoTacos Nusantara schema",
|
65 |
+
schema="seacrowd_text",
|
66 |
subset_id="indotacos",
|
67 |
),
|
68 |
]
|
|
|
85 |
"jenis_putusan": datasets.Value("string"),
|
86 |
}
|
87 |
)
|
88 |
+
elif self.config.schema == "seacrowd_text":
|
89 |
features = schemas.text_features(self.labels)
|
90 |
|
91 |
return datasets.DatasetInfo(
|
|
|
127 |
}
|
128 |
yield row_id, ex
|
129 |
row_id += 1
|
130 |
+
elif self.config.schema == "seacrowd_text":
|
131 |
row_id = 1
|
132 |
for row in df.itertuples():
|
133 |
ex = {
|