File size: 5,621 Bytes
bbece5f 10ed30c bbece5f 10ed30c bbece5f 10ed30c bbece5f 10ed30c bbece5f 10ed30c bbece5f 10ed30c bbece5f 10ed30c bbece5f 10ed30c bbece5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import os
from typing import Dict, List, Tuple
try:
from typing import Literal, TypedDict
except ImportError:
from typing_extensions import Literal, TypedDict
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
_CITATION = """\
@inproceedings{id_panl_bppt,
author = {PAN Localization - BPPT},
title = {Parallel Text Corpora, English Indonesian},
year = {2009},
url = {http://digilib.bppt.go.id/sampul/p92-budiono.pdf},
}
"""
_LOCAL = False
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_DATASETNAME = "id_panl_bppt"
_DESCRIPTION = """\
Parallel Text Corpora for Multi-Domain Translation System created by BPPT (Indonesian Agency for the Assessment and
Application of Technology) for PAN Localization Project (A Regional Initiative to Develop Local Language Computing
Capacity in Asia). The dataset contains about 24K sentences in English and Bahasa Indonesia from 4 different topics
(Economy, International Affairs, Science & Technology, and Sports).
"""
_HOMEPAGE = "http://digilib.bppt.go.id/sampul/p92-budiono.pdf"
_LICENSE = ""
_URLS = {
_DATASETNAME: "https://github.com/cahya-wirawan/indonesian-language-models/raw/master/data/BPPTIndToEngCorpusHalfM.zip",
}
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
# Source has no versioning
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class IdPanlBppt(datasets.GeneratorBasedBuilder):
"""\
Dataset contains about ~24K sentences in English and Bahasa Indonesia from 4 different topics (Economy,
International Affairs, Science & Technology, and Sports)
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
class Topic(TypedDict):
name: Literal["Economy", "International", "Science", "Sport"]
# seems to be the number of words in the file
words: Literal["150K", "100K"]
TOPICS: List[Topic] = [{"name": "Economy", "words": "150K"}, {"name": "International", "words": "150K"}, {"name": "Science", "words": "100K"}, {"name": "Sport", "words": "100K"}]
SOURCE_LANGUAGE = "en"
TARGET_LANGUAGE = "id"
BUILDER_CONFIGS = [
SEACrowdConfig(
name="id_panl_bppt_source",
version=SOURCE_VERSION,
description="PANL BPPT source schema",
schema="source",
subset_id="id_panl_bppt",
),
SEACrowdConfig(
name="id_panl_bppt_seacrowd_t2t",
version=SEACROWD_VERSION,
description="PANL BPPT Nusantara schema",
schema="seacrowd_t2t",
subset_id="id_panl_bppt",
),
]
DEFAULT_CONFIG_NAME = "id_panl_bppt_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"translation": datasets.features.Translation(languages=[self.SOURCE_LANGUAGE, self.TARGET_LANGUAGE]),
"topic": datasets.features.ClassLabel(names=list(map(lambda topic: topic["name"], self.TOPICS))),
}
)
elif self.config.schema == "seacrowd_t2t":
features = schemas.text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"dir": os.path.join(data_dir, "plain"),
"split": "train",
},
),
]
def _generate_examples(self, dir: str, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
id = 0
for topic in self.TOPICS:
src_path = f"PANL-BPPT-{topic['name'][:3].upper()}-{self.SOURCE_LANGUAGE.upper()}-{topic['words']}w.txt"
tgt_path = f"PANL-BPPT-{topic['name'][:3].upper()}-{self.TARGET_LANGUAGE.upper()}-{topic['words']}w.txt"
with open(os.path.join(dir, src_path), encoding="utf-8") as f1, open(os.path.join(dir, tgt_path), encoding="utf-8") as f2:
src = f1.read().split("\n")[:-1]
tgt = f2.read().split("\n")[:-1]
for s, t in zip(src, tgt):
if self.config.schema == "source":
yield id, {
"id": str(id),
"translation": {self.SOURCE_LANGUAGE: s, self.TARGET_LANGUAGE: t},
"topic": topic["name"],
}
elif self.config.schema == "seacrowd_t2t":
# Schema does not have topics or any other fields to have the topics
yield id, {
"id": str(id),
"text_1": s,
"text_2": t,
"text_1_name": self.SOURCE_LANGUAGE,
"text_2_name": self.TARGET_LANGUAGE,
}
id += 1
|