|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import (SCHEMA_TO_FEATURES, TASK_TO_SCHEMA, |
|
Licenses, Tasks) |
|
|
|
_CITATION = """\ |
|
@article{hendria2023msvd, |
|
author = {Willy Fitra Hendria}, |
|
title = {MSVD-Indonesian: A Benchmark for Multimodal Video-Text Tasks in Indonesian}, |
|
journal = {arXiv preprint arXiv:2306.11341}, |
|
year = {2023}, |
|
url = {https://arxiv.org/abs/2306.11341}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "id_msvd" |
|
_DESCRIPTION = """\ |
|
MSVD-Indonesian is derived from the MSVD (Microsoft Video Description) dataset, which is |
|
obtained with the help of a machine translation service (Google Translate API). This |
|
dataset can be used for multimodal video-text tasks, including text-to-video retrieval, |
|
video-to-text retrieval, and video captioning. Same as the original English dataset, the |
|
MSVD-Indonesian dataset contains about 80k video-text pairs. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/willyfh/msvd-indonesian" |
|
_LANGUAGES = ["ind"] |
|
_LICENSE = Licenses.MIT.value |
|
_URLS = {"text": "https://raw.githubusercontent.com/willyfh/msvd-indonesian/main/data/MSVD-indonesian.txt", "video": "https://www.cs.utexas.edu/users/ml/clamp/videoDescription/YouTubeClips.tar"} |
|
|
|
_SUPPORTED_TASKS = [Tasks.VIDEO_TO_TEXT_RETRIEVAL] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
_LOCAL = False |
|
|
|
|
|
class IdMsvdDataset(datasets.GeneratorBasedBuilder): |
|
"""MSVD dataset with Indonesian translation.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
SEACROWD_SCHEMA_NAME = TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower() |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"video_path": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = SCHEMA_TO_FEATURES[self.SEACROWD_SCHEMA_NAME.upper()] |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
|
|
data_path = dl_manager.download_and_extract(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"text_path": Path(data_path["text"]), |
|
"video_path": Path(data_path["video"]) / "YouTubeClips", |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, text_path: Path, video_path: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
text_data = [] |
|
with open(text_path, "r", encoding="utf-8") as f: |
|
for line in f: |
|
id = line.find(" ") |
|
video = line[:id] |
|
text = line[id + 1 :].strip() |
|
text_data.append([video, text]) |
|
|
|
df = pd.DataFrame(text_data, columns=["video_path", "text"]) |
|
df["video_path"] = df["video_path"].apply(lambda x: video_path / f"{x}.avi") |
|
|
|
if self.config.schema == "source": |
|
for i, row in df.iterrows(): |
|
yield i, { |
|
"video_path": str(row["video_path"]), |
|
"text": row["text"], |
|
} |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
for i, row in df.iterrows(): |
|
yield i, { |
|
"id": str(i), |
|
"video_path": str(row["video_path"]), |
|
"text": row["text"], |
|
"metadata": { |
|
"resolution": { |
|
"width": None, |
|
"height": None, |
|
}, |
|
"duration": None, |
|
"fps": None, |
|
}, |
|
} |
|
|