Datasets:

Languages:
Indonesian
ArXiv:
License:
id_msvd / id_msvd.py
holylovenia's picture
Upload id_msvd.py with huggingface_hub
d658879 verified
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (SCHEMA_TO_FEATURES, TASK_TO_SCHEMA,
Licenses, Tasks)
_CITATION = """\
@article{hendria2023msvd,
author = {Willy Fitra Hendria},
title = {MSVD-Indonesian: A Benchmark for Multimodal Video-Text Tasks in Indonesian},
journal = {arXiv preprint arXiv:2306.11341},
year = {2023},
url = {https://arxiv.org/abs/2306.11341},
}
"""
_DATASETNAME = "id_msvd"
_DESCRIPTION = """\
MSVD-Indonesian is derived from the MSVD (Microsoft Video Description) dataset, which is
obtained with the help of a machine translation service (Google Translate API). This
dataset can be used for multimodal video-text tasks, including text-to-video retrieval,
video-to-text retrieval, and video captioning. Same as the original English dataset, the
MSVD-Indonesian dataset contains about 80k video-text pairs.
"""
_HOMEPAGE = "https://github.com/willyfh/msvd-indonesian"
_LANGUAGES = ["ind"]
_LICENSE = Licenses.MIT.value
_URLS = {"text": "https://raw.githubusercontent.com/willyfh/msvd-indonesian/main/data/MSVD-indonesian.txt", "video": "https://www.cs.utexas.edu/users/ml/clamp/videoDescription/YouTubeClips.tar"}
_SUPPORTED_TASKS = [Tasks.VIDEO_TO_TEXT_RETRIEVAL]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
_LOCAL = False
class IdMsvdDataset(datasets.GeneratorBasedBuilder):
"""MSVD dataset with Indonesian translation."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
SEACROWD_SCHEMA_NAME = TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower() # "vidtext"
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=f"{_DATASETNAME}",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"video_path": datasets.Value("string"),
"text": datasets.Value("string"),
}
)
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
features = SCHEMA_TO_FEATURES[self.SEACROWD_SCHEMA_NAME.upper()] # video_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
# expect several minutes to download video data ~1.7GB
data_path = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"text_path": Path(data_path["text"]),
"video_path": Path(data_path["video"]) / "YouTubeClips",
"split": "train",
},
),
]
def _generate_examples(self, text_path: Path, video_path: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
text_data = []
with open(text_path, "r", encoding="utf-8") as f:
for line in f:
id = line.find(" ")
video = line[:id]
text = line[id + 1 :].strip()
text_data.append([video, text])
df = pd.DataFrame(text_data, columns=["video_path", "text"])
df["video_path"] = df["video_path"].apply(lambda x: video_path / f"{x}.avi")
if self.config.schema == "source":
for i, row in df.iterrows():
yield i, {
"video_path": str(row["video_path"]),
"text": row["text"],
}
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
for i, row in df.iterrows():
yield i, {
"id": str(i),
"video_path": str(row["video_path"]),
"text": row["text"],
"metadata": {
"resolution": {
"width": None,
"height": None,
},
"duration": None,
"fps": None,
},
}