Datasets:

Languages:
Indonesian
ArXiv:
License:
holylovenia commited on
Commit
d658879
1 Parent(s): ebba23f

Upload id_msvd.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. id_msvd.py +136 -0
id_msvd.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ from typing import Dict, List, Tuple
3
+
4
+ import datasets
5
+ import pandas as pd
6
+
7
+ from seacrowd.utils.configs import SEACrowdConfig
8
+ from seacrowd.utils.constants import (SCHEMA_TO_FEATURES, TASK_TO_SCHEMA,
9
+ Licenses, Tasks)
10
+
11
+ _CITATION = """\
12
+ @article{hendria2023msvd,
13
+ author = {Willy Fitra Hendria},
14
+ title = {MSVD-Indonesian: A Benchmark for Multimodal Video-Text Tasks in Indonesian},
15
+ journal = {arXiv preprint arXiv:2306.11341},
16
+ year = {2023},
17
+ url = {https://arxiv.org/abs/2306.11341},
18
+ }
19
+ """
20
+
21
+ _DATASETNAME = "id_msvd"
22
+ _DESCRIPTION = """\
23
+ MSVD-Indonesian is derived from the MSVD (Microsoft Video Description) dataset, which is
24
+ obtained with the help of a machine translation service (Google Translate API). This
25
+ dataset can be used for multimodal video-text tasks, including text-to-video retrieval,
26
+ video-to-text retrieval, and video captioning. Same as the original English dataset, the
27
+ MSVD-Indonesian dataset contains about 80k video-text pairs.
28
+ """
29
+
30
+ _HOMEPAGE = "https://github.com/willyfh/msvd-indonesian"
31
+ _LANGUAGES = ["ind"]
32
+ _LICENSE = Licenses.MIT.value
33
+ _URLS = {"text": "https://raw.githubusercontent.com/willyfh/msvd-indonesian/main/data/MSVD-indonesian.txt", "video": "https://www.cs.utexas.edu/users/ml/clamp/videoDescription/YouTubeClips.tar"}
34
+
35
+ _SUPPORTED_TASKS = [Tasks.VIDEO_TO_TEXT_RETRIEVAL]
36
+ _SOURCE_VERSION = "1.0.0"
37
+ _SEACROWD_VERSION = "2024.06.20"
38
+
39
+ _LOCAL = False
40
+
41
+
42
+ class IdMsvdDataset(datasets.GeneratorBasedBuilder):
43
+ """MSVD dataset with Indonesian translation."""
44
+
45
+ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
46
+ SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
47
+
48
+ SEACROWD_SCHEMA_NAME = TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower() # "vidtext"
49
+
50
+ BUILDER_CONFIGS = [
51
+ SEACrowdConfig(
52
+ name=f"{_DATASETNAME}_source",
53
+ version=SOURCE_VERSION,
54
+ description=f"{_DATASETNAME} source schema",
55
+ schema="source",
56
+ subset_id=f"{_DATASETNAME}",
57
+ ),
58
+ SEACrowdConfig(
59
+ name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
60
+ version=SEACROWD_VERSION,
61
+ description=f"{_DATASETNAME} SEACrowd schema",
62
+ schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
63
+ subset_id=f"{_DATASETNAME}",
64
+ ),
65
+ ]
66
+
67
+ DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
68
+
69
+ def _info(self) -> datasets.DatasetInfo:
70
+ if self.config.schema == "source":
71
+ features = datasets.Features(
72
+ {
73
+ "video_path": datasets.Value("string"),
74
+ "text": datasets.Value("string"),
75
+ }
76
+ )
77
+ elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
78
+ features = SCHEMA_TO_FEATURES[self.SEACROWD_SCHEMA_NAME.upper()] # video_features
79
+
80
+ return datasets.DatasetInfo(
81
+ description=_DESCRIPTION,
82
+ features=features,
83
+ homepage=_HOMEPAGE,
84
+ license=_LICENSE,
85
+ citation=_CITATION,
86
+ )
87
+
88
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
89
+ # expect several minutes to download video data ~1.7GB
90
+ data_path = dl_manager.download_and_extract(_URLS)
91
+
92
+ return [
93
+ datasets.SplitGenerator(
94
+ name=datasets.Split.TRAIN,
95
+ gen_kwargs={
96
+ "text_path": Path(data_path["text"]),
97
+ "video_path": Path(data_path["video"]) / "YouTubeClips",
98
+ "split": "train",
99
+ },
100
+ ),
101
+ ]
102
+
103
+ def _generate_examples(self, text_path: Path, video_path: Path, split: str) -> Tuple[int, Dict]:
104
+ """Yields examples as (key, example) tuples."""
105
+ text_data = []
106
+ with open(text_path, "r", encoding="utf-8") as f:
107
+ for line in f:
108
+ id = line.find(" ")
109
+ video = line[:id]
110
+ text = line[id + 1 :].strip()
111
+ text_data.append([video, text])
112
+
113
+ df = pd.DataFrame(text_data, columns=["video_path", "text"])
114
+ df["video_path"] = df["video_path"].apply(lambda x: video_path / f"{x}.avi")
115
+
116
+ if self.config.schema == "source":
117
+ for i, row in df.iterrows():
118
+ yield i, {
119
+ "video_path": str(row["video_path"]),
120
+ "text": row["text"],
121
+ }
122
+ elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
123
+ for i, row in df.iterrows():
124
+ yield i, {
125
+ "id": str(i),
126
+ "video_path": str(row["video_path"]),
127
+ "text": row["text"],
128
+ "metadata": {
129
+ "resolution": {
130
+ "width": None,
131
+ "height": None,
132
+ },
133
+ "duration": None,
134
+ "fps": None,
135
+ },
136
+ }