Datasets:

Languages:
Indonesian
ArXiv:
License:
File size: 7,046 Bytes
d700fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from pathlib import Path
from typing import Dict, List, Tuple

import conllu
import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@INPROCEEDINGS{10053062,
  author={Samsuri, Mukhlizar Nirwan and Yuliawati, Arlisa and Alfina, Ika},
  booktitle={2022 5th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)},
  title={A Comparison of Distributed, PAM, and Trie Data Structure Dictionaries in Automatic Spelling Correction for Indonesian Formal Text},
  year={2022},
  pages={525-530},
  keywords={Seminars;Dictionaries;Data structures;Intelligent systems;Information technology;automatic spelling correction;distributed dictionary;non-word error;trie data structure;Partition Around Medoids},
  doi={10.1109/ISRITI56927.2022.10053062},
  url = {https://ieeexplore.ieee.org/document/10053062},
}
"""

_DATASETNAME = "etos"

_DESCRIPTION = """\
ETOS (Ejaan oTOmatiS) is a dataset for parts-of-speech (POS) tagging for formal Indonesian
text. It consists of 200 sentences, with 4,323 tokens in total, annotated following the
CoNLL format.
"""

_HOMEPAGE = "https://github.com/ir-nlp-csui/etos"

_LANGUAGES = ["ind"]

_LICENSE = Licenses.AGPL_3_0.value

_LOCAL = False

_URLS = "https://raw.githubusercontent.com/ir-nlp-csui/etos/main/gold_standard.conllu"

_SUPPORTED_TASKS = [Tasks.POS_TAGGING]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"


class ETOSDataset(datasets.GeneratorBasedBuilder):
    """
    ETOS is an Indonesian parts-of-speech (POS) tagging dataset from https://github.com/ir-nlp-csui/etos.
    """

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    UPOS_TAGS = [
        "NOUN",
        "PUNCT",
        "ADP",
        "NUM",
        "SYM",
        "SCONJ",
        "ADJ",
        "PART",
        "DET",
        "CCONJ",
        "PROPN",
        "PRON",
        "X",
        "_",
        "ADV",
        "INTJ",
        "VERB",
        "AUX",
    ]

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_source",
            version=datasets.Version(_SOURCE_VERSION),
            description=f"{_DATASETNAME} source schema",
            schema="source",
            subset_id=f"{_DATASETNAME}",
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_seacrowd_seq_label",
            version=datasets.Version(_SOURCE_VERSION),
            description=f"{_DATASETNAME} sequence labeling schema",
            schema="seacrowd_seq_label",
            subset_id=f"{_DATASETNAME}",
        ),
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "sent_id": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "lemmas": datasets.Sequence(datasets.Value("string")),
                    "upos": datasets.Sequence(datasets.features.ClassLabel(names=self.UPOS_TAGS)),
                    "xpos": datasets.Sequence(datasets.Value("string")),
                    "feats": datasets.Sequence(datasets.Value("string")),
                    "head": datasets.Sequence(datasets.Value("string")),
                    "deprel": datasets.Sequence(datasets.Value("string")),
                    "deps": datasets.Sequence(datasets.Value("string")),
                    "misc": datasets.Sequence(datasets.Value("string")),
                }
            )

        elif self.config.schema == "seacrowd_seq_label":
            features = schemas.seq_label_features(self.UPOS_TAGS)

        else:
            raise ValueError(f"Invalid schema: '{self.config.schema}'")

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """
        Returns SplitGenerators.
        """

        train_path = dl_manager.download_and_extract(_URLS)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": train_path,
                    "split": "train",
                },
            )
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        """
        Yields examples as (key, example) tuples.
        """

        with open(filepath, "r", encoding="utf-8") as data_file:
            tokenlist = list(conllu.parse_incr(data_file))

        for idx, sent in enumerate(tokenlist):
            if "sent_id" in sent.metadata:
                sent_id = sent.metadata["sent_id"]
            else:
                sent_id = idx

            tokens = [token["form"] for token in sent]

            if "text" in sent.metadata:
                txt = sent.metadata["text"]
            else:
                txt = " ".join(tokens)

            if self.config.schema == "source":
                yield idx, {
                    "sent_id": str(sent_id),
                    "text": txt,
                    "tokens": tokens,
                    "lemmas": [token["lemma"] for token in sent],
                    "upos": [token["upos"] for token in sent],
                    "xpos": [token["xpos"] for token in sent],
                    "feats": [str(token["feats"]) for token in sent],
                    "head": [str(token["head"]) for token in sent],
                    "deprel": [str(token["deprel"]) for token in sent],
                    "deps": [str(token["deps"]) for token in sent],
                    "misc": [str(token["misc"]) for token in sent],
                }

            elif self.config.schema == "seacrowd_seq_label":
                yield idx, {
                    "id": str(sent_id),
                    "tokens": tokens,
                    "labels": [token["upos"] for token in sent],
                }

            else:
                raise ValueError(f"Invalid schema: '{self.config.schema}'")