File size: 7,046 Bytes
d700fb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Dict, List, Tuple
import conllu
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@INPROCEEDINGS{10053062,
author={Samsuri, Mukhlizar Nirwan and Yuliawati, Arlisa and Alfina, Ika},
booktitle={2022 5th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)},
title={A Comparison of Distributed, PAM, and Trie Data Structure Dictionaries in Automatic Spelling Correction for Indonesian Formal Text},
year={2022},
pages={525-530},
keywords={Seminars;Dictionaries;Data structures;Intelligent systems;Information technology;automatic spelling correction;distributed dictionary;non-word error;trie data structure;Partition Around Medoids},
doi={10.1109/ISRITI56927.2022.10053062},
url = {https://ieeexplore.ieee.org/document/10053062},
}
"""
_DATASETNAME = "etos"
_DESCRIPTION = """\
ETOS (Ejaan oTOmatiS) is a dataset for parts-of-speech (POS) tagging for formal Indonesian
text. It consists of 200 sentences, with 4,323 tokens in total, annotated following the
CoNLL format.
"""
_HOMEPAGE = "https://github.com/ir-nlp-csui/etos"
_LANGUAGES = ["ind"]
_LICENSE = Licenses.AGPL_3_0.value
_LOCAL = False
_URLS = "https://raw.githubusercontent.com/ir-nlp-csui/etos/main/gold_standard.conllu"
_SUPPORTED_TASKS = [Tasks.POS_TAGGING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class ETOSDataset(datasets.GeneratorBasedBuilder):
"""
ETOS is an Indonesian parts-of-speech (POS) tagging dataset from https://github.com/ir-nlp-csui/etos.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
UPOS_TAGS = [
"NOUN",
"PUNCT",
"ADP",
"NUM",
"SYM",
"SCONJ",
"ADJ",
"PART",
"DET",
"CCONJ",
"PROPN",
"PRON",
"X",
"_",
"ADV",
"INTJ",
"VERB",
"AUX",
]
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=datasets.Version(_SOURCE_VERSION),
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_seq_label",
version=datasets.Version(_SOURCE_VERSION),
description=f"{_DATASETNAME} sequence labeling schema",
schema="seacrowd_seq_label",
subset_id=f"{_DATASETNAME}",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"sent_id": datasets.Value("string"),
"text": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"lemmas": datasets.Sequence(datasets.Value("string")),
"upos": datasets.Sequence(datasets.features.ClassLabel(names=self.UPOS_TAGS)),
"xpos": datasets.Sequence(datasets.Value("string")),
"feats": datasets.Sequence(datasets.Value("string")),
"head": datasets.Sequence(datasets.Value("string")),
"deprel": datasets.Sequence(datasets.Value("string")),
"deps": datasets.Sequence(datasets.Value("string")),
"misc": datasets.Sequence(datasets.Value("string")),
}
)
elif self.config.schema == "seacrowd_seq_label":
features = schemas.seq_label_features(self.UPOS_TAGS)
else:
raise ValueError(f"Invalid schema: '{self.config.schema}'")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""
Returns SplitGenerators.
"""
train_path = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": train_path,
"split": "train",
},
)
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""
Yields examples as (key, example) tuples.
"""
with open(filepath, "r", encoding="utf-8") as data_file:
tokenlist = list(conllu.parse_incr(data_file))
for idx, sent in enumerate(tokenlist):
if "sent_id" in sent.metadata:
sent_id = sent.metadata["sent_id"]
else:
sent_id = idx
tokens = [token["form"] for token in sent]
if "text" in sent.metadata:
txt = sent.metadata["text"]
else:
txt = " ".join(tokens)
if self.config.schema == "source":
yield idx, {
"sent_id": str(sent_id),
"text": txt,
"tokens": tokens,
"lemmas": [token["lemma"] for token in sent],
"upos": [token["upos"] for token in sent],
"xpos": [token["xpos"] for token in sent],
"feats": [str(token["feats"]) for token in sent],
"head": [str(token["head"]) for token in sent],
"deprel": [str(token["deprel"]) for token in sent],
"deps": [str(token["deps"]) for token in sent],
"misc": [str(token["misc"]) for token in sent],
}
elif self.config.schema == "seacrowd_seq_label":
yield idx, {
"id": str(sent_id),
"tokens": tokens,
"labels": [token["upos"] for token in sent],
}
else:
raise ValueError(f"Invalid schema: '{self.config.schema}'")
|