File size: 5,640 Bytes
5b42e20
 
 
 
 
 
48bf006
 
 
5b42e20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48bf006
5b42e20
 
 
 
 
 
48bf006
5b42e20
 
48bf006
5b42e20
 
 
 
 
 
48bf006
 
 
5b42e20
48bf006
5b42e20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48bf006
5b42e20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48bf006
5b42e20
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
import pandas as pd

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks

_CITATION = """
@INPROCEEDINGS{8629181,
    author={Ilmania, Arfinda and Abdurrahman and Cahyawijaya, Samuel and Purwarianti, Ayu},
    booktitle={2018 International Conference on Asian Language Processing (IALP)},
    title={Aspect Detection and Sentiment Classification Using Deep Neural Network for Indonesian Aspect-Based Sentiment Analysis},
    year={2018},
    volume={},
    number={},
    pages={62-67},
    doi={10.1109/IALP.2018.8629181
}
"""

_LANGUAGES = ["ind"]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False

_DATASETNAME = "casa"

_DESCRIPTION = """
CASA: An aspect-based sentiment analysis dataset consisting of around a thousand car reviews collected from multiple Indonesian online automobile platforms (Ilmania et al., 2018).
The dataset covers six aspects of car quality.
We define the task to be a multi-label classification task,
where each label represents a sentiment for a single aspect with three possible values: positive, negative, and neutral.
"""

_HOMEPAGE = "https://github.com/IndoNLP/indonlu"

_LICENSE = "CC-BY-SA 4.0"

_URLS = {
    "train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/casa_absa-prosa/train_preprocess.csv",
    "validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/casa_absa-prosa/valid_preprocess.csv",
    "test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/casa_absa-prosa/test_preprocess.csv",
}

_SUPPORTED_TASKS = [Tasks.ASPECT_BASED_SENTIMENT_ANALYSIS]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"


class CASA(datasets.GeneratorBasedBuilder):
    """CASA is an aspect based sentiment analysis dataset"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name="casa_source",
            version=SOURCE_VERSION,
            description="CASA source schema",
            schema="source",
            subset_id="casa",
        ),
        SEACrowdConfig(
            name="casa_seacrowd_text_multi",
            version=SEACROWD_VERSION,
            description="CASA Nusantara schema",
            schema="seacrowd_text_multi",
            subset_id="casa",
        ),
    ]

    DEFAULT_CONFIG_NAME = "casa_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "index": datasets.Value("int64"),
                    "sentence": datasets.Value("string"),
                    "fuel": datasets.Value("string"),
                    "machine": datasets.Value("string"),
                    "others": datasets.Value("string"),
                    "part": datasets.Value("string"),
                    "price": datasets.Value("string"),
                    "service": datasets.Value("string"),
                }
            )

        elif self.config.schema == "seacrowd_text_multi":
            features = schemas.text_multi_features(["positive", "neutral", "negative"])

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        train_csv_path = Path(dl_manager.download_and_extract(_URLS["train"]))
        validation_csv_path = Path(dl_manager.download_and_extract(_URLS["validation"]))
        test_csv_path = Path(dl_manager.download_and_extract(_URLS["test"]))

        data_dir = {
            "train": train_csv_path,
            "validation": validation_csv_path,
            "test": test_csv_path,
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir["train"],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": data_dir["test"],
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": data_dir["validation"],
                    "split": "dev",
                },
            ),
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""
        df = pd.read_csv(filepath, sep=",", header="infer").reset_index()
        if self.config.schema == "source":
            for row in df.itertuples():
                entry = {"index": row.index, "sentence": row.sentence, "fuel": row.fuel, "machine": row.machine, "others": row.others, "part": row.part, "price": row.price, "service": row.service}
                yield row.index, entry

        elif self.config.schema == "seacrowd_text_multi":
            for row in df.itertuples():
                entry = {
                    "id": str(row.index),
                    "text": row.sentence,
                    "labels": [label for label in row[3:]],
                }
                yield row.index, entry