holylovenia
commited on
Commit
•
f5bf8b6
1
Parent(s):
12e58e2
Upload bud500.py with huggingface_hub
Browse files
bud500.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from pathlib import Path
|
17 |
+
from typing import Dict, List, Tuple
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
from huggingface_hub import HfFileSystem
|
21 |
+
from pyarrow import parquet as pq
|
22 |
+
|
23 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
24 |
+
from seacrowd.utils.constants import SCHEMA_TO_FEATURES, TASK_TO_SCHEMA, Licenses, Tasks
|
25 |
+
|
26 |
+
_CITATION = """\
|
27 |
+
@misc{Bud500,
|
28 |
+
author = {Anh Pham, Khanh Linh Tran, Linh Nguyen, Thanh Duy Cao, Phuc Phan, Duong A. Nguyen},
|
29 |
+
title = {Bud500: A Comprehensive Vietnamese ASR Dataset},
|
30 |
+
url = {https://github.com/quocanh34/Bud500},
|
31 |
+
year = {2024}
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
_DATASETNAME = "bud500"
|
36 |
+
|
37 |
+
_DESCRIPTION = """\
|
38 |
+
Bud500 is a diverse Vietnamese speech corpus designed to support ASR research
|
39 |
+
community. With aprroximately 500 hours of audio, it covers a broad spectrum of
|
40 |
+
topics including podcast, travel, book, food, and so on, while spanning accents
|
41 |
+
from Vietnam's North, South, and Central regions. Derived from free public audio
|
42 |
+
resources, this publicly accessible dataset is designed to significantly enhance
|
43 |
+
the work of developers and researchers in the field of speech recognition.
|
44 |
+
Before using this dataloader, please accept the acknowledgement at
|
45 |
+
https://huggingface.co/datasets/linhtran92/viet_bud500 and use huggingface-cli
|
46 |
+
login for authentication.
|
47 |
+
"""
|
48 |
+
|
49 |
+
_HOMEPAGE = "https://huggingface.co/datasets/linhtran92/viet_bud500"
|
50 |
+
|
51 |
+
_LANGUAGES = ["vie"]
|
52 |
+
|
53 |
+
_LICENSE = Licenses.APACHE_2_0.value
|
54 |
+
|
55 |
+
_LOCAL = False
|
56 |
+
|
57 |
+
_BASE_URL = "https://huggingface.co/datasets/linhtran92/viet_bud500/resolve/main/data/{filename}"
|
58 |
+
|
59 |
+
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]
|
60 |
+
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" # sptext
|
61 |
+
|
62 |
+
_SOURCE_VERSION = "1.0.0"
|
63 |
+
|
64 |
+
_SEACROWD_VERSION = "2024.06.20"
|
65 |
+
|
66 |
+
|
67 |
+
class Bud500Dataset(datasets.GeneratorBasedBuilder):
|
68 |
+
"""A diverse Vietnamese speech corpus with aprroximately 500 hours of audio."""
|
69 |
+
|
70 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
71 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
72 |
+
|
73 |
+
BUILDER_CONFIGS = [
|
74 |
+
SEACrowdConfig(
|
75 |
+
name=f"{_DATASETNAME}_source",
|
76 |
+
version=SOURCE_VERSION,
|
77 |
+
description=f"{_DATASETNAME} source schema",
|
78 |
+
schema="source",
|
79 |
+
subset_id=_DATASETNAME,
|
80 |
+
),
|
81 |
+
SEACrowdConfig(
|
82 |
+
name=f"{_DATASETNAME}_{_SEACROWD_SCHEMA}",
|
83 |
+
version=SEACROWD_VERSION,
|
84 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
85 |
+
schema=_SEACROWD_SCHEMA,
|
86 |
+
subset_id=_DATASETNAME,
|
87 |
+
),
|
88 |
+
]
|
89 |
+
|
90 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
91 |
+
|
92 |
+
def _info(self) -> datasets.DatasetInfo:
|
93 |
+
if self.config.schema == "source":
|
94 |
+
features = datasets.Features(
|
95 |
+
{
|
96 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
97 |
+
"transcription": datasets.Value("string"),
|
98 |
+
}
|
99 |
+
)
|
100 |
+
elif self.config.schema == _SEACROWD_SCHEMA:
|
101 |
+
features = SCHEMA_TO_FEATURES[
|
102 |
+
TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]]
|
103 |
+
] # speech_text_features
|
104 |
+
|
105 |
+
return datasets.DatasetInfo(
|
106 |
+
description=_DESCRIPTION,
|
107 |
+
features=features,
|
108 |
+
homepage=_HOMEPAGE,
|
109 |
+
license=_LICENSE,
|
110 |
+
citation=_CITATION,
|
111 |
+
)
|
112 |
+
|
113 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
114 |
+
"""Returns SplitGenerators."""
|
115 |
+
file_list = HfFileSystem().ls("datasets/linhtran92/viet_bud500/data", detail=False)
|
116 |
+
train_urls, test_urls, val_urls = [], [], []
|
117 |
+
|
118 |
+
for filename in file_list:
|
119 |
+
if filename.endswith(".parquet"):
|
120 |
+
filename = filename.split("/")[-1]
|
121 |
+
split = filename.split("-")[0]
|
122 |
+
url = _BASE_URL.format(filename=filename)
|
123 |
+
|
124 |
+
if split == "train":
|
125 |
+
train_urls.append(url)
|
126 |
+
elif split == "test":
|
127 |
+
test_urls.append(url)
|
128 |
+
elif split == "validation":
|
129 |
+
val_urls.append(url)
|
130 |
+
|
131 |
+
train_paths = list(map(Path, dl_manager.download(sorted(train_urls))))
|
132 |
+
test_paths = list(map(Path, dl_manager.download(sorted(test_urls))))
|
133 |
+
val_paths = list(map(Path, dl_manager.download(sorted(val_urls))))
|
134 |
+
return [
|
135 |
+
datasets.SplitGenerator(
|
136 |
+
name=datasets.Split.TRAIN,
|
137 |
+
gen_kwargs={"data_paths": train_paths},
|
138 |
+
),
|
139 |
+
datasets.SplitGenerator(
|
140 |
+
name=datasets.Split.TEST,
|
141 |
+
gen_kwargs={"data_paths": test_paths},
|
142 |
+
),
|
143 |
+
datasets.SplitGenerator(
|
144 |
+
name=datasets.Split.VALIDATION,
|
145 |
+
gen_kwargs={"data_paths": val_paths},
|
146 |
+
),
|
147 |
+
]
|
148 |
+
|
149 |
+
def _generate_examples(self, data_paths: Path) -> Tuple[int, Dict]:
|
150 |
+
"""Yields examples as (key, example) tuples."""
|
151 |
+
key = 0
|
152 |
+
for data_path in data_paths:
|
153 |
+
with open(data_path, "rb") as f:
|
154 |
+
pf = pq.ParquetFile(f)
|
155 |
+
|
156 |
+
for row_group in range(pf.num_row_groups):
|
157 |
+
df = pf.read_row_group(row_group).to_pandas()
|
158 |
+
|
159 |
+
for row in df.itertuples():
|
160 |
+
if self.config.schema == "source":
|
161 |
+
yield key, {
|
162 |
+
"audio": row.audio,
|
163 |
+
"transcription": row.transcription,
|
164 |
+
}
|
165 |
+
elif self.config.schema == _SEACROWD_SCHEMA:
|
166 |
+
yield key, {
|
167 |
+
"id": str(key),
|
168 |
+
"path": None,
|
169 |
+
"audio": row.audio,
|
170 |
+
"text": row.transcription,
|
171 |
+
"speaker_id": None,
|
172 |
+
"metadata": None,
|
173 |
+
}
|
174 |
+
key += 1
|