Datasets:

ArXiv:
License:
aya_collection_templated / aya_collection_templated.py
holylovenia's picture
Upload aya_collection_templated.py with huggingface_hub
195f1e9 verified
raw
history blame
6.99 kB
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """
@misc{singh2024aya,
title={Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning},
author={Shivalika Singh and Freddie Vargus and Daniel Dsouza and Börje F. Karlsson and
Abinaya Mahendiran and Wei-Yin Ko and Herumb Shandilya and Jay Patel and Deividas
Mataciunas and Laura OMahony and Mike Zhang and Ramith Hettiarachchi and Joseph
Wilson and Marina Machado and Luisa Souza Moura and Dominik Krzemiński and Hakimeh
Fadaei and Irem Ergün and Ifeoma Okoh and Aisha Alaagib and Oshan Mudannayake and
Zaid Alyafeai and Vu Minh Chien and Sebastian Ruder and Surya Guthikonda and Emad A.
Alghamdi and Sebastian Gehrmann and Niklas Muennighoff and Max Bartolo and Julia Kreutzer
and Ahmet Üstün and Marzieh Fadaee and Sara Hooker},
year={2024},
eprint={2402.06619},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DATASETNAME = "aya_collection_templated"
_DESCRIPTION = """
The Aya Collection is a massive multilingual collection consisting of 513 million instances of prompts and
completions covering a wide range of tasks. This dataset covers the templated prompts of the Aya Collection.
"""
_HOMEPAGE = "https://huggingface.co/datasets/CohereForAI/aya_collection"
_LANGUAGES = ["ind", "jav", "sun", "ace", "ban", "bbc", "bjn", "min", "nij", "tha", "vie"]
_LICENSE = Licenses.APACHE_2_0.value
_LOCAL = False
_URLS = {
"ind": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_indo_stories/train-00000-of-00001.parquet",
"jav": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_indo_stories/train-00000-of-00001.parquet",
"sun": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_indo_stories/train-00000-of-00001.parquet",
"ace": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_nusax_senti/train-00000-of-00001.parquet",
"ban": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_nusax_senti/train-00000-of-00001.parquet",
"bbc": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_nusax_senti/train-00000-of-00001.parquet",
"bjn": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_nusax_senti/train-00000-of-00001.parquet",
"min": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_nusax_senti/train-00000-of-00001.parquet",
"nij": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_nusax_senti/train-00000-of-00001.parquet",
"tha": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_thai_wikitionary/train-00000-of-00001.parquet",
"vie": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_xcsqa/validation-00000-of-00001.parquet",
}
_SUPPORTED_TASKS = [Tasks.INSTRUCTION_TUNING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class AyaCollectionTemplatedDataset(datasets.GeneratorBasedBuilder):
"""
The Aya Collection is a massive multilingual collection consisting of 513 million instances of prompts and
completions covering a wide range of tasks. This dataset covers the templated prompts of the Aya Collection.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_{LANG}_source",
version=datasets.Version(_SOURCE_VERSION),
description=f"{_DATASETNAME} {LANG} source schema",
schema="source",
subset_id=f"{_DATASETNAME}_{LANG}",
)
for LANG in _LANGUAGES
] + [
SEACrowdConfig(
name=f"{_DATASETNAME}_{LANG}_seacrowd_t2t",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME} {LANG} SEACrowd schema",
schema="seacrowd_t2t",
subset_id=f"{_DATASETNAME}_{LANG}",
)
for LANG in _LANGUAGES
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_ind_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("int64"),
"inputs": datasets.Value("string"),
"targets": datasets.Value("string"),
"dataset_name": datasets.Value("string"),
"sub_dataset_name": datasets.Value("string"),
"task_type": datasets.Value("string"),
"template_id": datasets.Value("int64"),
"language": datasets.Value("string"),
"split": datasets.Value("string"),
"script": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_t2t":
features = schemas.text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
language = self.config.name.split("_")[3]
if language in _LANGUAGES:
data_path = Path(dl_manager.download_and_extract(_URLS[language]))
else:
data_path = [Path(dl_manager.download_and_extract(_URLS[language])) for language in _LANGUAGES]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_path,
"split": "train",
},
)
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
language = self.config.name.split("_")[3]
df = pd.read_parquet(filepath)
df = df[df["language"] == language]
for index, row in df.iterrows():
if self.config.schema == "source":
example = row.to_dict()
elif self.config.schema == "seacrowd_t2t":
example = {
"id": str(index),
"text_1": row["inputs"],
"text_2": row["targets"],
"text_1_name": "inputs",
"text_2_name": "targets",
}
yield index, example