File size: 5,260 Bytes
e45820c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: cc-by-4.0
language:
- bcl
- ceb
pretty_name: Ara Close
task_categories:
- readability-assessment
tags:
- readability-assessment
---
The dataset contribution of this study is a compilation of short fictional stories written in Bikol for readability assessment. The data was combined other collected Philippine language corpora, such as Tagalog and Cebuano. The data from these languages are all distributed across the Philippine elementary system's first three grade levels (L1, L2, L3). We sourced this dataset from Let's Read Asia (LRA), Bloom Library, Department of Education, and Adarna House.
## Languages
bcl, ceb
## Supported Tasks
Readability Assessment
## Dataset Usage
### Using `datasets` library
```
from datasets import load_dataset
dset = datasets.load_dataset("SEACrowd/ara_close", trust_remote_code=True)
```
### Using `seacrowd` library
```import seacrowd as sc
# Load the dataset using the default config
dset = sc.load_dataset("ara_close", schema="seacrowd")
# Check all available subsets (config names) of the dataset
print(sc.available_config_names("ara_close"))
# Load the dataset using a specific config
dset = sc.load_dataset_by_config_name(config_name="<config_name>")
```
More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).
## Dataset Homepage
[https://github.com/imperialite/ara-close-lang](https://github.com/imperialite/ara-close-lang)
## Dataset Version
Source: 1.0.0. SEACrowd: 2024.06.20.
## Dataset License
Creative Commons Attribution 4.0 (cc-by-4.0)
## Citation
If you are using the **Ara Close** dataloader in your work, please cite the following:
```
@inproceedings{imperial-kochmar-2023-automatic,
title = "Automatic Readability Assessment for Closely Related Languages",
author = "Imperial, Joseph Marvin and
Kochmar, Ekaterina",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-acl.331",
doi = "10.18653/v1/2023.findings-acl.331",
pages = "5371--5386",
abstract = "In recent years, the main focus of research on automatic readability assessment (ARA) has shifted towards using expensive deep learning-based methods with the primary goal of increasing models{'} accuracy. This, however, is rarely applicable for low-resource languages where traditional handcrafted features are still widely used due to the lack of existing NLP tools to extract deeper linguistic representations. In this work, we take a step back from the technical component and focus on how linguistic aspects such as mutual intelligibility or degree of language relatedness can improve ARA in a low-resource setting. We collect short stories written in three languages in the Philippines{---}Tagalog, Bikol, and Cebuano{---}to train readability assessment models and explore the interaction of data and features in various cross-lingual setups. Our results show that the inclusion of CrossNGO, a novel specialized feature exploiting n-gram overlap applied to languages with high mutual intelligibility, significantly improves the performance of ARA models compared to the use of off-the-shelf large multilingual language models alone. Consequently, when both linguistic representations are combined, we achieve state-of-the-art results for Tagalog and Cebuano, and baseline scores for ARA in Bikol.",
}
@article{lovenia2024seacrowd,
title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages},
author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya},
year={2024},
eprint={2406.10118},
journal={arXiv preprint arXiv: 2406.10118}
}
``` |