File size: 9,037 Bytes
3fd25e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This is an automatically-produced question answering dataset \
generated from Indonesian Wikipedia articles. Each entry \
in the dataset consists of a context paragraph, the \
question and answer, and the question's equivalent SPARQL \
query. Questions are separated into two subsets: simple \
(question consists of a single SPARQL triple pattern) and \
complex (question consists of two triples plus an optional \
typing triple).
"""
import json
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@article{afa5bf8149d6406786539c1ea827087d,
title = "AC-IQuAD: Automatically Constructed Indonesian Question Answering Dataset by Leveraging Wikidata",
abstract = "Constructing a question-answering dataset can be prohibitively expensive, making it difficult for researchers
to make one for an under-resourced language, such as Indonesian. We create a novel Indonesian Question Answering dataset
that is produced automatically end-to-end. The process uses Context Free Grammar, the Wikipedia Indonesian Corpus, and
the concept of the proxy model. The dataset consists of 134 thousand simple questions and 60 thousand complex questions.
It achieved competitive grammatical and model accuracy compared to the translated dataset but suffers from some issues
due to resource constraints.",
keywords = "Automatic dataset construction, Question answering dataset, Under-resourced Language",
author = "Kerenza Doxolodeo and Krisnadhi, {Adila Alfa}",
note = "Publisher Copyright: {\textcopyright} 2024, The Author(s).",
year = "2024",
doi = "10.1007/s10579-023-09702-y",
language = "English",
journal = "Language Resources and Evaluation",
issn = "1574-020X",
publisher = "Springer Netherlands",
}
"""
_DATASETNAME = "ac_iquad"
_DESCRIPTION = """
This is an automatically-produced question answering dataset \
generated from Indonesian Wikipedia articles. Each entry \
in the dataset consists of a context paragraph, the \
question and answer, and the question's equivalent SPARQL \
query. Questions are separated into two subsets: simple \
(question consists of a single SPARQL triple pattern) and \
complex (question consists of two triples plus an optional \
typing triple).
"""
_HOMEPAGE = "https://www.kaggle.com/datasets/realdeo/indonesian-qa-generated-by-kg"
_LANGUAGES = ["ind"]
_LICENSE = Licenses.CC_BY_4_0.value
_LOCAL = False
_URLS = {
_DATASETNAME: "https://github.com/muhammadravi251001/ac-iquad/raw/main/data/ac_iquad.zip",
}
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class ACIQuADDataset(datasets.GeneratorBasedBuilder):
"""
This is an automatically-produced question answering dataset \
generated from Indonesian Wikipedia articles. Each entry \
in the dataset consists of a context paragraph, the \
question and answer, and the question's equivalent SPARQL \
query. Questions are separated into two subsets: simple \
(question consists of a single SPARQL triple pattern) and \
complex (question consists of two triples plus an optional \
typing triple).
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
SEACROWD_SCHEMA_NAME = "qa"
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_simple_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}_simple",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_simple_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=f"{_DATASETNAME}_simple",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_complex_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}_complex",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_complex_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=f"{_DATASETNAME}_complex",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_simple_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features_dict = {
"question": datasets.Value("string"),
"sparql": datasets.Value("string"),
"answer": datasets.Value("string"),
"context": datasets.Value("string"),
"answerline": datasets.Value("string"),
}
if self.config.subset_id.split("_")[2] == "complex":
features_dict["type"] = datasets.Value("string")
features = datasets.Features(features_dict)
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
features = schemas.qa_features
if self.config.subset_id.split("_")[2] == "complex":
features["meta"] = {"sparql": datasets.Value("string"), "answer_meta": datasets.Value("string"), "type": datasets.Value("string")}
else:
features["meta"] = {"sparql": datasets.Value("string"), "answer_meta": datasets.Value("string")}
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
subset = self.config.name.split("_")[2]
data_dir = dl_manager.download_and_extract(_URLS[_DATASETNAME])
if subset == "simple":
subset = "single"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, f"{subset}_train.json"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, f"{subset}_test.json"),
"split": "test",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
with open(filepath, "r", encoding="utf-8") as file:
data_json = json.load(file)
df = pd.json_normalize(data_json)
for index, row in df.iterrows():
if self.config.schema == "source":
example = row.to_dict()
if self.config.subset_id.split("_")[2] == "complex":
example["type"] = example.pop("tipe", None)
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
subset = self.config.name.split("_")[2]
if subset == "simple":
row["answerline"] = f"[{row['answerline']}]"
example = {
"id": str(index),
"question_id": "question_id",
"document_id": "document_id",
"question": row["question"],
"type": "extractive",
"choices": [],
"context": row["context"],
"answer": eval(row["answerline"]),
"meta": {"sparql": row["sparql"], "answer_meta": row["answer"]},
}
if self.config.subset_id.split("_")[2] == "complex":
example["meta"]["type"] = row["tipe"]
yield index, example
|