File size: 11,786 Bytes
e118f26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
from glob import glob
from os.path import join as pjoin
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import torch
import umap.umap_ as umap
from PIL import Image
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.spatial.distance import squareform
from sklearn.preprocessing import normalize
from tqdm import tqdm
###
# Get text embeddings from sentence-transformers model
###
def sentence_mean_pooling(model_output, attention_mask):
token_embeddings = model_output[
0
] # First element of model_output contains all token embeddings
input_mask_expanded = (
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
)
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
input_mask_expanded.sum(1), min=1e-9
)
def compute_text_embeddings(sentences, text_tokenizer, text_model):
batch = text_tokenizer(
sentences, padding=True, truncation=True, return_tensors="pt"
)
with torch.no_grad():
model_output = text_model(**batch)
sentence_embeds = sentence_mean_pooling(model_output, batch["attention_mask"])
sentence_embeds /= sentence_embeds.norm(dim=-1, keepdim=True)
return sentence_embeds
###
# Get image embeddings from BLIP VQA models
###
# returns the average pixel embedding from the last layer of the image encoder
def get_compute_image_embedding_blip_vqa_pixels(
img, blip_processor, blip_model, device="cpu"
):
pixel_values = blip_processor(img, "", return_tensors="pt")["pixel_values"].to(
device
)
with torch.no_grad():
vision_outputs = blip_model.vision_model(
pixel_values=pixel_values,
output_hidden_states=True,
)
image_embeds = vision_outputs[0].sum(dim=1).squeeze()
image_embeds /= image_embeds.norm()
return image_embeds.detach().cpu().numpy()
# returns the average token embedding from the question encoder (conditioned on the image) along with the generated answer
# adapted from:
# https://github.com/huggingface/transformers/blob/2411f0e465e761790879e605a4256f3d4afb7f82/src/transformers/models/blip/modeling_blip.py#L1225
def get_compute_image_embedding_blip_vqa_question(
img, blip_processor, blip_model, question=None, device="cpu"
):
question = "what word best describes this person?" if question is None else question
inputs = blip_processor(img, question, return_tensors="pt")
with torch.no_grad():
# make question embeddings
vision_outputs = blip_model.vision_model(
pixel_values=inputs["pixel_values"].to(device),
output_hidden_states=True,
)
image_embeds = vision_outputs[0]
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long)
question_embeds = blip_model.text_encoder(
input_ids=inputs["input_ids"].to(device),
attention_mask=inputs["attention_mask"].to(device),
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_attention_mask,
return_dict=False,
)
question_embeds = question_embeds[0]
# generate outputs
question_attention_mask = torch.ones(
question_embeds.size()[:-1], dtype=torch.long
).to(question_embeds.device)
bos_ids = torch.full(
(question_embeds.size(0), 1),
fill_value=blip_model.decoder_bos_token_id,
device=question_embeds.device,
)
outputs = blip_model.text_decoder.generate(
input_ids=bos_ids,
eos_token_id=blip_model.config.text_config.sep_token_id,
pad_token_id=blip_model.config.text_config.pad_token_id,
encoder_hidden_states=question_embeds,
encoder_attention_mask=question_attention_mask,
# **generate_kwargs,
)
answer = blip_processor.decode(outputs[0], skip_special_tokens=True)
# average and normalize question embeddings
res_question_embeds = question_embeds.sum(dim=1).squeeze()
res_question_embeds /= res_question_embeds.norm()
res_question_embeds = res_question_embeds.detach().cpu().numpy()
return (res_question_embeds, answer)
###
# Plotting utilities: 2D and 3D projection + scatter plots
###
def make_2d_plot(embeds, text_list, color_list=None, shape_list=None, umap_spread=10):
# default color and shape
color_list = [0 for _ in text_list] if color_list is None else color_list
shape_list = ["circle" for _ in text_list] if shape_list is None else shape_list
# project to 2D
fit = umap.UMAP(
metric="cosine",
n_neighbors=len(embeds) - 1,
min_dist=1,
n_components=2,
spread=umap_spread,
)
u = fit.fit_transform(embeds)
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=u[:, 0].tolist(),
y=u[:, 1].tolist(),
mode="markers",
name="nodes",
marker=dict(
symbol=shape_list,
color=color_list,
),
text=text_list,
hoverinfo="text",
marker_line_color="midnightblue",
marker_line_width=2,
marker_size=10,
opacity=0.8,
)
)
fig.update_yaxes(
scaleanchor="x",
scaleratio=1,
)
fig.update_layout(
autosize=False,
width=800,
height=800,
)
fig.layout.showlegend = False
return fig
def make_3d_plot(embeds, text_list, color_list=None, shape_list=None, umap_spread=10):
# default color and shape
color_list = [0 for _ in text_list] if color_list is None else color_list
shape_list = ["circle" for _ in text_list] if shape_list is None else shape_list
# project to 3D
fit = umap.UMAP(
metric="cosine",
n_neighbors=len(embeds) - 1,
min_dist=1,
n_components=3,
spread=umap_spread,
)
u = fit.fit_transform(embeds)
# make nodes
df = pd.DataFrame(
{
"x": u[:, 0].tolist(),
"y": u[:, 1].tolist(),
"z": u[:, 2].tolist(),
"color": color_list,
"hover": text_list,
"symbol": shape_list,
"size": [5 for _ in text_list],
}
)
fig = px.scatter_3d(
df,
x="x",
y="y",
z="z",
color="color",
symbol="symbol",
size="size",
hover_data={
"hover": True,
"x": False,
"y": False,
"z": False,
"color": False,
"symbol": False,
"size": False,
},
)
fig.layout.showlegend = False
return fig
###
# Plotting utilities: cluster re-ordering and heatmaps
###
### Some utility functions to get the similarities between two lists of arrays
# average pairwise similarity
def sim_pairwise_avg(vecs_1, vecs_2):
res = np.matmul(np.array(vecs_1), np.array(vecs_2).transpose()).mean()
return res
# distance between (normalized) centroids
def sim_centroids(vecs_1, vecs_2):
res = np.dot(
normalize(np.array(vecs_1).mean(axis=0, keepdims=True), norm="l2")[0],
normalize(np.array(vecs_2).mean(axis=0, keepdims=True), norm="l2")[0],
)
return res
# distance to nearest neighbot/examplar
def sim_pairwise_examplar(vecs_1, vecs_2):
res = np.matmul(np.array(vecs_1), np.array(vecs_2).transpose()).max()
return res
# To make pretty heatmaps, similar rows need to be close to each other
# we achieve that by computing a hierarchical clustering of the points
# then ordering the items as the leaves of a dendrogram
def get_cluster_order(similarity_matrix, label_names=None):
label_names = (
["" for _ in range(similarity_matrix.shape[0])]
if label_names is None
else label_names
)
dissimilarity = 1 - similarity_matrix
np.fill_diagonal(dissimilarity, 0.0)
# checks = False because similarity checks can fail for torch to numpy conversion
Z = linkage(squareform(dissimilarity, checks=False), "average")
# no_plot when inside a function call required because of jupyter/matplotlib issue
ddgr = dendrogram(
Z, labels=label_names, orientation="top", leaf_rotation=90, no_plot=True
)
cluster_order = ddgr["leaves"]
return cluster_order
# then make heat map from similarity matrix
def make_heat_map(sim_matrix, labels_x, labels_y, scale=25):
fig = go.Figure(
data=go.Heatmap(z=sim_matrix, x=labels_x, y=labels_y, hoverongaps=False)
)
fig.update_yaxes(
scaleanchor="x",
scaleratio=1,
)
fig.update_layout(
autosize=False,
width=scale * len(labels_x),
height=scale * len(labels_y),
)
fig.layout.showlegend = False
return fig
# bring things together for a square heatmap
def build_heat_map_square(
img_list, embed_field, sim_fun, label_list, row_order=None, hm_scale=20
):
sim_mat = np.zeros((len(img_list), len(img_list)))
for i, dct_i in enumerate(img_list):
for j, dct_j in enumerate(img_list):
sim_mat[i, j] = sim_fun(dct_i[embed_field], dct_j[embed_field])
# optionally reorder labels and similarity matrix to be prettier
if row_order is None:
row_order = get_cluster_order(sim_mat)
labels_sorted = [label_list[i] for i in row_order]
sim_mat_sorted = sim_mat[np.ix_(row_order, row_order)]
# make heatmap from similarity matrix
heatmap_fig = make_heat_map(
sim_mat_sorted, labels_sorted, labels_sorted, scale=hm_scale
)
return heatmap_fig
# bring things together for a rectangle heatmap: across lists
def build_heat_map_rect(
img_list_rows,
img_list_cols,
label_list_rows,
label_list_cols,
embed_field,
sim_fun,
center=False,
temperature=5,
hm_scale=20,
):
sim_mat = np.zeros((len(img_list_rows), len(img_list_cols)))
for i, dct_i in enumerate(img_list_rows):
for j, dct_j in enumerate(img_list_cols):
sim_mat[i, j] = sim_fun(dct_i[embed_field], dct_j[embed_field])
# normalize and substract mean
sim_mat_exp = np.exp(temperature * sim_mat)
sim_mat_exp /= sim_mat_exp.sum(axis=1, keepdims=1)
if center:
sim_mat_exp_avg = sim_mat_exp.mean(axis=0, keepdims=1)
sim_mat_exp -= sim_mat_exp_avg
sim_mat_exp_avg = sim_mat_exp_avg * sim_mat_exp.max() / sim_mat_exp_avg.max()
# rows are reordered by decreasing norm,
sim_mat_norm = np.sum(sim_mat_exp * sim_mat_exp, axis=1)
row_order = np.argsort(sim_mat_norm, axis=-1)
row_labels_sorted = [label_list_rows[i] for i in row_order]
if center:
# columns are ordered by bias
col_order = np.argsort(sim_mat_exp_avg.sum(axis=0), axis=-1)
else:
# columns sre reordered by similarity
sim_mat_exp_norm = normalize(sim_mat_exp, axis=0, norm="l2")
cluster_cols_sim_mat = np.matmul(sim_mat_exp_norm.transpose(), sim_mat_exp_norm)
col_order = get_cluster_order(cluster_cols_sim_mat)
col_labels_sorted = [label_list_cols[i] for i in col_order]
# make heatmap from similarity matrix
if center:
row_order = list(row_order) + [len(row_order), len(row_order) + 1]
row_labels_sorted = row_labels_sorted + ["_", "AVERAGE"]
sim_mat_exp = np.concatenate(
[sim_mat_exp, np.zeros_like(sim_mat_exp_avg), sim_mat_exp_avg], axis=0
)
sim_mat_exp_sorted = sim_mat_exp[np.ix_(row_order, col_order)]
heatmap_fig = make_heat_map(
sim_mat_exp_sorted, col_labels_sorted, row_labels_sorted, scale=hm_scale
)
return heatmap_fig
|