File size: 6,871 Bytes
e170f77
 
 
 
 
b1794e0
e170f77
b1794e0
292e32c
e170f77
 
 
75884ea
e170f77
 
 
 
 
 
 
28ace3a
df37003
51923ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e170f77
 
 
 
 
 
 
28ace3a
e170f77
 
 
28ace3a
 
e170f77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51923ce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-nc-sa-3.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- extended|image-flickr-8k
- extended|semeval2012-sts-msr-video
task_categories:
- text-classification
task_ids:
- natural-language-inference
paperswithcode_id: sick
pretty_name: Sentences Involving Compositional Knowledge
dataset_info:
  features:
  - name: id
    dtype: string
  - name: sentence_A
    dtype: string
  - name: sentence_B
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          0: entailment
          1: neutral
          2: contradiction
  - name: relatedness_score
    dtype: float32
  - name: entailment_AB
    dtype: string
  - name: entailment_BA
    dtype: string
  - name: sentence_A_original
    dtype: string
  - name: sentence_B_original
    dtype: string
  - name: sentence_A_dataset
    dtype: string
  - name: sentence_B_dataset
    dtype: string
  splits:
  - name: test
    num_bytes: 1305846
    num_examples: 4906
  - name: train
    num_bytes: 1180530
    num_examples: 4439
  - name: validation
    num_bytes: 132913
    num_examples: 495
  download_size: 217584
  dataset_size: 2619289
---

# Dataset Card for sick

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** http://marcobaroni.org/composes/sick.html
- **Repository:** [Needs More Information]
- **Paper:** https://www.aclweb.org/anthology/L14-1314/
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]

### Dataset Summary

Shared and internationally recognized benchmarks are fundamental for the development of any computational system. We aim to help the research community working on compositional distributional semantic models (CDSMs) by providing SICK (Sentences Involving Compositional Knowldedge), a large size English benchmark tailored for them. SICK consists of about 10,000 English sentence pairs that include many examples of the lexical, syntactic and semantic phenomena that CDSMs are expected to account for, but do not require dealing with other aspects of existing sentential data sets (idiomatic multiword expressions, named entities, telegraphic language) that are not within the scope of CDSMs. By means of crowdsourcing techniques, each pair was annotated for two crucial semantic tasks: relatedness in meaning (with a 5-point rating scale as gold score) and entailment relation between the two elements (with three possible gold labels: entailment, contradiction, and neutral). The SICK data set was used in SemEval-2014 Task 1, and it freely available for research purposes.


### Supported Tasks and Leaderboards

[Needs More Information]

### Languages

The dataset is in English.

## Dataset Structure

### Data Instances

Example instance:
```
{
    "entailment_AB": "A_neutral_B",
    "entailment_BA": "B_neutral_A",
    "label": 1,
    "id": "1",
    "relatedness_score": 4.5,
    "sentence_A": "A group of kids is playing in a yard and an old man is standing in the background",
    "sentence_A_dataset": "FLICKR",
    "sentence_A_original": "A group of children playing in a yard, a man in the background.",
    "sentence_B": "A group of boys in a yard is playing and a man is standing in the background",
    "sentence_B_dataset": "FLICKR",
    "sentence_B_original": "A group of children playing in a yard, a man in the background."
}
```

### Data Fields

- pair_ID: sentence pair ID
- sentence_A: sentence A
- sentence_B: sentence B
- label: textual entailment gold label: entailment (0), neutral (1) or contradiction (2)
- relatedness_score: semantic relatedness gold score (on a 1-5 continuous scale)
- entailment_AB: entailment for the A-B order (A_neutral_B, A_entails_B, or A_contradicts_B)
- entailment_BA: entailment for the B-A order (B_neutral_A, B_entails_A, or B_contradicts_A)
- sentence_A_original: original sentence from which sentence A is derived
- sentence_B_original: original sentence from which sentence B is derived
- sentence_A_dataset: dataset from which the original sentence A was extracted (FLICKR vs. SEMEVAL)
- sentence_B_dataset: dataset from which the original sentence B was extracted (FLICKR vs. SEMEVAL)

### Data Splits

Train Trial Test
4439 495 4906

## Dataset Creation

### Curation Rationale

[Needs More Information]

### Source Data

#### Initial Data Collection and Normalization

[Needs More Information]

#### Who are the source language producers?

[Needs More Information]

### Annotations

#### Annotation process

[Needs More Information]

#### Who are the annotators?

[Needs More Information]

### Personal and Sensitive Information

[Needs More Information]

## Considerations for Using the Data

### Social Impact of Dataset

[Needs More Information]

### Discussion of Biases

[Needs More Information]

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators

[Needs More Information]

### Licensing Information

[Needs More Information]

### Citation Information

```
@inproceedings{marelli-etal-2014-sick,
    title = "A {SICK} cure for the evaluation of compositional distributional semantic models",
    author = "Marelli, Marco  and
      Menini, Stefano  and
      Baroni, Marco  and
      Bentivogli, Luisa  and
      Bernardi, Raffaella  and
      Zamparelli, Roberto",
    booktitle = "Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}'14)",
    month = may,
    year = "2014",
    address = "Reykjavik, Iceland",
    publisher = "European Language Resources Association (ELRA)",
    url = "http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf",
    pages = "216--223",
}
```

### Contributions

Thanks to [@calpt](https://github.com/calpt) for adding this dataset.