File size: 3,582 Bytes
44ddffd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
import copy
from config4LXMT5_DDP import args
import collections
from transformers import LxmertConfig, LxmertTokenizer, LxmertModel,BertTokenizer
from transformers import T5Tokenizer, T5Model, T5Config, T5ForConditionalGeneration
from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions
T5tokenizer = T5Tokenizer.from_pretrained("../model/t5-large")#"t5-large")
LXMtokenizer = BertTokenizer.from_pretrained('../model/bert-base-uncased/vocab.txt')
T5config = T5Config.from_pretrained('../model/t5-large')
from transformers import VisualBertConfig, VisualBertModel
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
class ViBT52T5(nn.Module):
def __init__(self):
super(ViBT52T5, self).__init__()
self.T5model = T5ForConditionalGeneration.from_pretrained("../model/t5-large").to(device)
self.ViBmodel = VisualBertModel.from_pretrained('../model/visualBERT').to(device)
self.mapping = torch.nn.Sequential(
torch.nn.Linear(768, 1024),
torch.nn.ReLU(inplace=True),
torch.nn.Linear(1024, 1024)
)
def LXMT5end2T5dec(self, train=None, LXM_source_ids=None, LXM_source_masks=None,T5_source_ids=None, T5_source_masks=None,token_type_ids=None, visual_features=None, spatial_features=None,T5_target_ids=None,T5_target_masks=None):
if 1:
ViB_encoder_output_seq = self.ViBmodel(input_ids=LXM_source_ids, attention_mask=LXM_source_masks,token_type_ids=token_type_ids, visual_embeds=visual_features)
ViB_VL_encoder_output_seq = ViB_encoder_output_seq[0]
final_ViB_encoder_output_seq = self.mapping(ViB_VL_encoder_output_seq)
# w/o wiki passages
#T5_encoder_output_seq = self.T5model.encoder(input_ids=T5_source_ids, attention_mask=T5_source_masks)
#final_encoder_output_seq = torch.cat((final_ViB_encoder_output_seq, T5_encoder_output_seq["last_hidden_state"]),1)
# w/ wiki passages
if 1:
final_encoder_output_seq_list = []
for ind in range(args.num_wiki):
T5_encoder_output_seq = self.T5model.encoder(input_ids=T5_source_ids[:,ind,:], attention_mask=T5_source_masks[:,ind,:])
tmp_encoder_output_seq = torch.cat((final_ViB_encoder_output_seq, T5_encoder_output_seq["last_hidden_state"]),1)
final_encoder_output_seq_list.append(tmp_encoder_output_seq)
final_encoder_output_seq = torch.cat(final_encoder_output_seq_list,1)
my_order_dict=T5_encoder_output_seq
my_order_dict.last_hidden_state=final_encoder_output_seq
if train:
outputs = self.T5model(encoder_outputs=my_order_dict, labels=T5_target_ids, decoder_attention_mask=T5_target_masks)
return outputs
else:
if torch.cuda.device_count() > 1:
pred = self.T5model.generate(encoder_outputs=my_order_dict)
else:
pred = self.T5model.generate(encoder_outputs=my_order_dict)
return pred
def forward(self, train=None, LXM_source_ids=None, LXM_source_masks=None,T5_source_ids=None, T5_source_masks=None,token_type_ids=None, visual_features=None, spatial_features=None,T5_target_ids=None,T5_target_masks=None):
return self.LXMT5end2T5dec(train, LXM_source_ids, LXM_source_masks, T5_source_ids, T5_source_masks, token_type_ids, visual_features, spatial_features, T5_target_ids, T5_target_masks)
|