Datasets:
QCRI
/

Modalities:
Text
Formats:
json
Languages:
Hindi
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 7,785 Bytes
f9af6f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
---
license: cc-by-nc-sa-4.0
task_categories:
  - text-classification
language:
  - hi
tags:
  - Social Media
  - News Media
  - Sentiment
  - Stance
  - Emotion
pretty_name: "LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content -- Hindi"
size_categories:
  - 10K<n<100K
dataset_info:
  - config_name: Sentiment Analysis
    splits:
      - name: train
        num_examples: 10039
      - name: dev
        num_examples: 1258
      - name: test
        num_examples: 1259
  - config_name: MC_Hinglish1
    splits:
      - name: train
        num_examples: 5177
      - name: dev
        num_examples: 2219
      - name: test
        num_examples: 1000
  - config_name: Offensive Speech Detection
    splits:
      - name: train
        num_examples: 2172
      - name: dev
        num_examples: 318
      - name: test
        num_examples: 636
  - config_name: xlsum
    splits:
      - name: train
        num_examples: 70754
      - name: dev
        num_examples: 8847
      - name: test
        num_examples: 8847
  - config_name: Hindi-Hostility-Detection-CONSTRAINT-2021
    splits:
      - name: train
        num_examples: 5718
      - name: dev
        num_examples: 811
      - name: test
        num_examples: 1651
  - config_name: hate-speech-detection
    splits:
      - name: train
        num_examples: 3327
      - name: dev
        num_examples: 476
      - name: test
        num_examples: 951
  - config_name: fake-news
    splits:
      - name: train
        num_examples: 8393
      - name: dev
        num_examples: 1417
      - name: test
        num_examples: 2743
  - config_name: Natural Language Inference
    splits:
      - name: train
        num_examples: 1251
      - name: dev
        num_examples: 537
      - name: test
        num_examples: 447
configs:
  - config_name: Sentiment Analysis
    data_files:
      - split: test
        path: Sentiment Analysis/test.json
      - split: dev
        path: Sentiment Analysis/dev.json
      - split: train
        path: Sentiment Analysis/train.json
  - config_name: MC_Hinglish1
    data_files:
      - split: test
        path: MC_Hinglish1/test.json
      - split: dev
        path: MC_Hinglish1/dev.json
      - split: train
        path: MC_Hinglish1/train.json
  - config_name: Offensive Speech Detection
    data_files:
      - split: test
        path: Offensive Speech Detection/test.json
      - split: dev
        path: Offensive Speech Detection/dev.json
      - split: train
        path: Offensive Speech Detection/train.json
  - config_name: xlsum
    data_files:
      - split: test
        path: xlsum/test.json
      - split: dev
        path: xlsum/dev.json
      - split: train
        path: xlsum/train.json
  - config_name: Hindi-Hostility-Detection-CONSTRAINT-2021
    data_files:
      - split: test
        path: Hindi-Hostility-Detection-CONSTRAINT-2021/test.json
      - split: dev
        path: Hindi-Hostility-Detection-CONSTRAINT-2021/dev.json
      - split: train
        path: Hindi-Hostility-Detection-CONSTRAINT-2021/train.json
  - config_name: hate-speech-detection
    data_files:
      - split: test
        path: hate-speech-detection/test.json
      - split: dev
        path: hate-speech-detection/dev.json
      - split: train
        path: hate-speech-detection/train.json
  - config_name: fake-news
    data_files:
      - split: test
        path: fake-news/test.json
      - split: dev
        path: fake-news/dev.json
      - split: train
        path: fake-news/train.json
  - config_name: Natural Language Inference
    data_files:
      - split: test
        path: Natural Language Inference/test.json
      - split: dev
        path: Natural Language Inference/dev.json
      - split: train
        path: Natural Language Inference/train.json
---

# LlamaLens: Specialized Multilingual LLM Dataset

## Overview

LlamaLens is a specialized multilingual LLM designed for analyzing news and social media content. It focuses on 19 NLP tasks, leveraging 52 datasets across Arabic, English, and Hindi.

<p align="center"> <img src="https://huggingface.co/datasets/QCRI/LlamaLens-Arabic/resolve/main/capablities_tasks_datasets.png" style="width: 40%;" id="title-icon"> </p>

## LlamaLens

This repo includes scripts needed to run our full pipeline, including data preprocessing and sampling, instruction dataset creation, model fine-tuning, inference and evaluation.

### Features

- Multilingual support (Arabic, English, Hindi)
- 19 NLP tasks with 52 datasets
- Optimized for news and social media content analysis

## 📂 Dataset Overview

### Hindi Datasets

| **Task**                   | **Dataset**                               | **# Labels** | **# Train** | **# Test** | **# Dev** |
| -------------------------- | ----------------------------------------- | ------------ | ----------- | ---------- | --------- |
| Cyberbullying              | MC-Hinglish1.0                            | 7            | 7,400       | 1,000      | 2,119     |
| Factuality                 | fake-news                                 | 2            | 8,393       | 2,743      | 1,417     |
| Hate Speech                | hate-speech-detection                     | 2            | 3,327       | 951        | 476       |
| Hate Speech                | Hindi-Hostility-Detection-CONSTRAINT-2021 | 15           | 5,718       | 1,651      | 811       |
| Natural Language Inference | Natural Language Inference                | 2            | 1,251       | 447        | 537       |
| Summarization              | xlsum                                     | --           | 70,754      | 8,847      | 8,847     |
| Offensive Speech           | Offensive Speech Detection                | 3            | 2,172       | 636        | 318       |
| Sentiment                  | Sentiment Analysis                        | 3            | 10,039      | 1,259      | 1,258     |

---

## File Format

Each JSONL file in the dataset follows a structured format with the following fields:

- `id`: Unique identifier for each data entry.
- `original_id`: Identifier from the original dataset, if available.
- `input`: The original text that needs to be analyzed.
- `output`: The label assigned to the text after analysis.
- `dataset`: Name of the dataset the entry belongs.
- `task`: The specific task type.
- `lang`: The language of the input text.
- `instructions`: A brief set of instructions describing how the text should be labeled.
- `text`: A formatted structure including instructions and response for the task in a conversation format between the system, user, and assistant, showing the decision process.

**Example entry in JSONL file:**

```
{
        "id": "2b1878df-5a4f-4f74-bcd8-e38e1c3c7cf6",
        "original_id": null,
        "input": "sub गंदा है पर धंधा है ये . .",
        "output": "neutral",
        "dataset": "Sentiment Analysis",
        "task": "Sentiment",
        "lang": "hi",
        "instruction": "Identify the sentiment in the text and label it as positive, negative, or neutral. Return only the label without any explanation, justification or additional text."
    }
```

## 📢 Citation

If you use this dataset, please cite our [paper](https://arxiv.org/pdf/2410.15308):

```
@article{kmainasi2024llamalensspecializedmultilingualllm,
  title={LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content},
  author={Mohamed Bayan Kmainasi and Ali Ezzat Shahroor and Maram Hasanain and Sahinur Rahman Laskar and Naeemul Hassan and Firoj Alam},
  year={2024},
  journal={arXiv preprint arXiv:2410.15308},
  volume={},
  number={},
  pages={},
  url={https://arxiv.org/abs/2410.15308},
  eprint={2410.15308},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
```