File size: 20,796 Bytes
4273a7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaee4ae
4273a7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaee4ae
4273a7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
import ast
import json
import os
import random
import re
import time
from collections import defaultdict
from pathlib import Path
import copy
import math

from PIL import Image

import numpy as np
import requests
import yaml
from loguru import logger as eval_logger
from openai import AzureOpenAI, OpenAI

from rouge_score import rouge_scorer
from bert_score import score
import pymeteor.pymeteor as pymeteor

from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
from nltk.translate.meteor_score import meteor_score

from lmms_eval.tasks._task_utils.file_utils import generate_submission_file

import torch

NUM_SECONDS_TO_SLEEP = 5
API_TYPE = os.getenv("API_TYPE", "openai")
MODEL_VERSION = os.getenv("MODEL_VERSION", "gpt-4o-2024-08-06")
FILE_NAME = os.getenv("FILE_NAME", "sfe_test.json")

JUDGE_RULES = """You are a strict evaluator assessing answer correctness. You must score the model's prediction on a scale from 0 to 10, where 0 represents an entirely incorrect answer and 10 indicates a highly correct answer.
# Input
Question:
```
{question}
```
Ground Truth Answer:
```
{answer}
```
Model Prediction:
```
{pred}
```


# Evaluation Rules
- The model prediction may contain the reasoning process, you should spot the final answer from it.
- For multiple-choice questions: Assign a higher score if the predicted answer matches the ground truth, either by option letters or content. Include partial credit for answers that are close in content.
- For exact match and open-ended questions:
  * Assign a high score if the prediction matches the answer semantically, considering variations in format.
  * Deduct points for partially correct answers or those with incorrect additional information.
- Ignore minor differences in formatting, capitalization, or spacing since the model may explain in a different way.
- Treat numerical answers as correct if they match within reasonable precision
- For questions requiring units, both value and unit must be correct

# Scoring Guide
Provide a single integer from 0 to 10 to reflect your judgment of the answer's correctness.

# Strict Output format example
4"""


if API_TYPE == "openai":
    API_URL = os.getenv("OPENAI_API_BASE", "https://api.openai.com/v1")
    API_KEY = os.getenv("OPENAI_API_KEY", "YOUR_API_KEY")
    client = OpenAI(base_url=API_URL, api_key=API_KEY)
elif API_TYPE == "azure":
    API_URL = os.getenv("AZURE_ENDPOINT", "https://api.cognitive.microsoft.com/sts/v1.0/issueToken")
    API_KEY = os.getenv("AZURE_API_KEY", "YOUR_API_KEY")
    client = AzureOpenAI(azure_endpoint=API_URL, api_version="2023-07-01-preview", api_key=API_KEY)


scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)


def get_chat_response(content: str, max_tokens: int, retries: int = 5):
    global MODEL_VERSION
    global client

    messages = [
        {
            "role": "system",
            "content": "You are a helpful and precise assistant for checking the correctness of the answer.",
        },
        {"role": "user", "content": content},
    ]

    payload = {
        "model": MODEL_VERSION,
        "messages": messages,
        "temperature": 0.0,
        "max_tokens": max_tokens,
    }

    for attempt in range(retries):
        try:
            response = client.chat.completions.create(**payload)
            content = response.choices[0].message.content.strip()
            return content
        except requests.exceptions.RequestException as e:
            eval_logger.warning(f"Request failed on attempt {attempt+1}: {e}")
            time.sleep(NUM_SECONDS_TO_SLEEP)
            if attempt == retries - 1:
                eval_logger.error(f"Failed to get response after {retries} attempts")
                return ""
        except Exception as e:
            eval_logger.error(f"Error on attempt {attempt+1}: {e}")
            return ""


def parse_float_sequence_within(input_str):
    pattern_in_bracket = r"\[(.*)\]"
    match = re.search(pattern_in_bracket, input_str)

    if not match:
        return None

    inside_str = match.group(1)
    groups = inside_str.split(";")

    bboxs = []
    for group in groups:
        floats = group.split(",")
        if len(floats) != 4:
            continue
        try:
            bboxs.append([float(f) for f in floats])
        except Exception as e:
            continue

    if len(bboxs) == 0:
        return None

    return bboxs


def compute_iou(box1, box2):
    """
    Compute the Intersection over Union (IoU) of two bounding boxes.

    Parameters:
    - box1 (list of float): Bounding box [x_min, y_min, x_max, y_max].
    - box2 (list of float): Bounding box [x_min, y_min, x_max, y_max].

    Returns:
    - float: IoU of box1 and box2.
    """
    # Determine the coordinates of the intersection rectangle
    x_left = max(box1[0], box2[0])
    y_top = max(box1[1], box2[1])
    x_right = min(box1[2], box2[2])
    y_bottom = min(box1[3], box2[3])

    # Compute the area of intersection
    intersection_area = max(0, x_right - x_left) * max(0, y_bottom - y_top)

    # Compute the area of both bounding boxes
    box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
    box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])

    # Compute the area of the union
    union_area = box1_area + box2_area - intersection_area

    # Compute the Intersection over Union
    iou = intersection_area / union_area

    return iou


def greedy_iou(answers, preds):
    score = 0.0
    n_answer, n_pred = len(answers), len(preds)
    selected = []
    for pred in preds:
        if len(selected) == n_answer:
            break
        _scores = [compute_iou(answer, pred) if i not in selected else -1 for i, answer in enumerate(answers)]
        max_index = _scores.index(max(_scores))
        score += max(_scores)
        selected.append(max_index)

    return score / n_answer



def construct_prompt(doc):
    description = f"You are an expert in {doc['field']} and need to solve the following question."
    if doc["question_type"] == "mcq":
        description += "\nThe question is a multiple-choice question. Answer with the option letter from the given choices."
    elif doc["question_type"] == "exact_match":
        description += "\nThe question is an exact match question. Answer the question using a single word or phrase."
    elif doc["question_type"] == "open_ended":
        description += "\nThe question is an open-ended question. Answer the question using a phrase."
    else:
        raise ValueError(f"Unknown question type: {doc['question_type']}")

    question = doc["question"]
    question = f"{description}\n\n{question}"
    if doc["question_type"] == "mcq":
        parsed_options = "\n".join(doc["options"])
        question = f"{question}\n{parsed_options}"
    elif doc["question_type"] == "exact_match":
        question = f"{question}"
    elif doc["question_type"] == "open_ended":
        question = f"{question}"
    else:
        raise ValueError(f"Unknown question type: {doc['question_type']}")

    return question


def sfe_doc_to_text(doc, lmms_eval_specific_kwargs=None):
    if lmms_eval_specific_kwargs is None:
        question = construct_prompt(doc)
    else:
        question = construct_prompt(doc, lmms_eval_specific_kwargs["multiple_choice_prompt"], lmms_eval_specific_kwargs["open_ended_prompt"], lmms_eval_specific_kwargs["prompt_type"])
    return question


def sfe_doc_to_visual(doc):
    question = construct_prompt(doc)
    images = doc["images"]
    visual = [Image.open(image).convert("RGB") for image in images]
    return visual

def sfe_doc_to_visual_claude(doc):
    images = doc["images"]
    visual = []
    for image in images:
        img = Image.open(image).convert("RGB")
        if max(img.size) > 8000:
            scale = 8000 / max(img.size)
            img = img.resize((min(int(img.size[0] * scale), 8000), min(int(img.size[1] * scale), 8000)), Image.LANCZOS)
        visual.append(img)
    return visual


def sfe_doc_to_visual_doubao(doc):
    images = doc["images"]
    visual = []
    for image in images:
        img = Image.open(image).convert("RGB")
        if img.size[0] * img.size[1] > 36000000:
            scale = 36000000 / (img.size[0] * img.size[1])
            img = img.resize((math.floor(img.size[0] * scale), math.floor(img.size[1] * scale)), Image.LANCZOS)
        visual.append(img)
    return visual


def sfe_process_results(doc, results):
    question_type = doc["question_type"]

    parsed_preds = []

    rough_scores = []
    bertscore_scores = []
    bleu_scores = []
    meteor_scores = []
    llm_scores = []

    execute_success_rate = []
    iou_scores = []

    assert len(results) == 1, f"Expected one result, got {len(results)}"
    for pred in results:
        formatted_question = construct_prompt(doc)
        answer = doc["answer"]

        if doc["id"].split("/")[0].lower() in ["e011", "e012"]:
            answer_bboxs = parse_float_sequence_within(answer)
            pred_bboxs = parse_float_sequence_within(pred)

            if pred_bboxs is not None:
                execute_success_rate.append(1)
                iou_score = greedy_iou(answer_bboxs, pred_bboxs)
                iou_scores.append(iou_score)
            else:
                execute_success_rate.append(0)
                iou_scores.append(-1)
            
            rough_scores.append(-1)
            bertscore_scores.append(-1)
            bleu_scores.append(-1)
            meteor_scores.append(-1)
            llm_scores.append(-1)
        else:
            if question_type == "open_ended":
                try:
                    rouge_score = scorer.score(answer, pred)
                    rough_scores.append(rouge_score["rougeL"].fmeasure)
                except:
                    rough_scores.append(0.)

                try:
                    bertscore = score([answer], [pred], lang="multi", device="cuda" if torch.cuda.is_available() else "cpu")[2].item()
                    bertscore_scores.append(bertscore)
                except:
                    bertscore_scores.append(0.)
                
                try:
                    chencherry = SmoothingFunction()
                    bleu_score = sentence_bleu([answer.strip().split()], pred.strip().split(), smoothing_function=chencherry.method1)
                    bleu_scores.append(bleu_score)
                except:
                    bleu_scores.append(0.)
                
                try:
                    meteor_score = meteor_score([answer.strip().split()], pred.strip().split())
                    meteor_scores.append(meteor_score)
                except:
                    meteor_scores.append(0.)
            else:
                rough_scores.append(-1)
                bertscore_scores.append(-1)
                bleu_scores.append(-1)
                meteor_scores.append(-1)

            # llm_as_a_judge
            llm_judge_prompt = JUDGE_RULES.format(question=formatted_question, answer=answer, pred=pred)
            llm_judge_score = get_chat_response(llm_judge_prompt, max_tokens=20, retries=3)
            llm_scores.append(llm_judge_score)

            execute_success_rate.append(-1)
            iou_scores.append(-1)

        parsed_preds.append(pred)

    all_info = {
        "id": doc["id"], 
        "field": doc["field"], 
        "question_type": doc["question_type"], 
        "answer": doc["answer"], 
        "parsed_pred": parsed_preds, 
        "rouge_score": rough_scores,
        "bertscore": bertscore_scores,
        "bleu_score": bleu_scores,
        "meteor_score": meteor_scores,
        "llm_score": llm_scores,
        "execute_success_rate": execute_success_rate,
        "iou_score": iou_scores,
    }

    rouge_score_info = {
        "id": doc["id"], 
        "field": doc["field"], 
        "question_type": doc["question_type"], 
        "answer": doc["answer"], 
        "parsed_pred": parsed_preds, 
        "rouge_score": rough_scores,
    }

    bert_score_info = {
        "id": doc["id"], 
        "field": doc["field"], 
        "question_type": doc["question_type"], 
        "answer": doc["answer"], 
        "parsed_pred": parsed_preds, 
        "bertscore": bertscore_scores,
    }

    bleu_score_info = {
        "id": doc["id"], 
        "field": doc["field"], 
        "question_type": doc["question_type"], 
        "answer": doc["answer"], 
        "parsed_pred": parsed_preds, 
        "bleu_score": bleu_scores,
    }

    meteor_score_info = {
        "id": doc["id"], 
        "field": doc["field"], 
        "question_type": doc["question_type"], 
        "answer": doc["answer"], 
        "parsed_pred": parsed_preds, 
        "meteor_score": meteor_scores,
    }

    llm_score_info = {
        "id": doc["id"], 
        "field": doc["field"], 
        "question_type": doc["question_type"], 
        "answer": doc["answer"], 
        "parsed_pred": parsed_preds, 
        "llm_score": llm_scores
    }

    execute_succ_rate_info = {
        "id": doc["id"], 
        "field": doc["field"], 
        "question_type": doc["question_type"], 
        "answer": doc["answer"], 
        "parsed_pred": parsed_preds, 
        "execute_success_rate": execute_success_rate,
    }

    iou_score_info = {
        "id": doc["id"], 
        "field": doc["field"], 
        "question_type": doc["question_type"], 
        "answer": doc["answer"], 
        "parsed_pred": parsed_preds, 
        "iou_score": iou_scores,
    }

    return {
        "all_info": all_info, 
        "rouge_score": rouge_score_info, 
        "bert_score": bert_score_info, 
        "bleu_score": bleu_score_info, 
        "meteor_score": meteor_score_info, 
        "llm_score": llm_score_info,
        "execute_succ_rate": execute_succ_rate_info,
        "iou_score": iou_score_info,
        "acc@0.1": iou_score_info,
        "acc@0.3": iou_score_info,
        "acc@0.5": iou_score_info,
        "acc@0.7": iou_score_info,
        "acc@0.9": iou_score_info,
        }


def sfe_save_results(results, args):
    path = os.path.join("/fs-computility/ai4sData/earth-shared/SFE/lmms-eval/examples/sfe/results", FILE_NAME)
    with open(path, "w") as f:
        json.dump(results, f)
    eval_logger.info(f"Results saved to {path}.")

    return 0.0


def sfe_aggregate_rouge_results(results, args):
    total_score = 0
    total_cnt = 0
    for result in results:
        try:
            score = float(result["rouge_score"][0])
            if score < 0:
                continue
            total_score += score
            total_cnt += 1
        except:
            eval_logger.warning(f"Failed to convert rouge score to float for {result['id']}: {result['rouge_score'][0]}")
            total_score += 0
    return total_score / total_cnt if total_cnt > 0 else -1


def sfe_aggregate_bertscore_results(results, args):
    total_score = 0
    total_cnt = 0
    for result in results:
        try:
            score = float(result["bertscore"][0])
            if score < 0:
                continue
            total_score += score
            total_cnt += 1
        except:
            eval_logger.warning(f"Failed to convert bert score to float for {result['id']}: {result['bertscore'][0]}")
            total_score += 0
    return total_score / total_cnt if total_cnt > 0 else -1


def sfe_aggregate_bleuscore_results(results, args):
    total_score = 0
    total_cnt = 0
    for result in results:
        try:
            score = float(result["bleu_score"][0])
            if score < 0:
                continue
            total_score += score
            total_cnt += 1
        except:
            eval_logger.warning(f"Failed to convert bleu score to float for {result['id']}: {result['bleu_score'][0]}")
            total_score += 0
    return total_score / total_cnt if total_cnt > 0 else -1


def sfe_aggregate_meteor_score_results(results, args):
    total_score = 0
    total_cnt = 0
    for result in results:
        try:
            score = float(result["meteor_score"][0])
            if score < 0:
                continue
            total_score += score
            total_cnt += 1
        except:
            eval_logger.warning(f"Failed to convert meteor score to float for {result['id']}: {result['meteor_score'][0]}")
            total_score += 0
    return total_score / total_cnt if total_cnt > 0 else -1
    

def sfe_aggregate_judge_results(results, args):
    total_score = 0
    total_cnt = 0
    for result in results:
        try:
            item_score = result["llm_score"][0]
            pattern = r"(\d+)"
            match = re.search(pattern, item_score)

            if match:
                item_score = float(match.group(1))
            else:
                item_score = 0

            total_score += item_score
            total_cnt += 1
        except:
            eval_logger.warning(f"Failed to convert llm score to int for {result['id']}: {result['llm_score']}")
            total_score += 0
    return total_score / total_cnt if total_cnt > 0 else -1


def sfe_aggregate_execute_succ_rate_results(results, args):
    total_score = 0
    total_cnt = 0
    for result in results:
        try:
            score = float(result["execute_success_rate"][0])
            if score < 0:
                continue
            total_score += score
            total_cnt += 1
        except:
            eval_logger.warning(f"Failed to convert execute success score to float for {result['id']}: {result['execute_success_rate'][0]}")
            total_score += 0
    return total_score / total_cnt if total_cnt > 0 else -1


def sfe_aggregate_iou_score_results(results, args):
    total_score = 0
    total_cnt = 0
    for result in results:
        try:
            score = float(result["iou_score"][0])
            if score < 0:
                continue
            total_score += score
            total_cnt += 1
        except:
            eval_logger.warning(f"Failed to convert execute iou score to float for {result['id']}: {result['iou_score'][0]}")
            total_score += 0
    return total_score / total_cnt if total_cnt > 0 else -1


def sfe_aggregate_acc01_results(results, args):
    total_score = 0
    total_cnt = 0
    for result in results:
        try:
            score = 1.0 if float(result["iou_score"][0]) > 0.1 else 0.0
            if score < 0:
                continue
            total_score += score
            total_cnt += 1
        except:
            eval_logger.warning(f"Failed to convert execute iou score to float for {result['id']}: {result['iou_score'][0]}")
            total_score += 0
    return total_score / total_cnt if total_cnt > 0 else -1


def sfe_aggregate_acc03_results(results, args):
    total_score = 0
    total_cnt = 0
    for result in results:
        try:
            score = 1.0 if float(result["iou_score"][0]) > 0.3 else 0.0
            if score < 0:
                continue
            total_score += score
            total_cnt += 1
        except:
            eval_logger.warning(f"Failed to convert execute iou score to float for {result['id']}: {result['iou_score'][0]}")
            total_score += 0
    return total_score / total_cnt if total_cnt > 0 else -1


def sfe_aggregate_acc05_results(results, args):
    total_score = 0
    total_cnt = 0
    for result in results:
        try:
            score = 1.0 if float(result["iou_score"][0]) > 0.5 else 0.0
            if score < 0:
                continue
            total_score += score
            total_cnt += 1
        except:
            eval_logger.warning(f"Failed to convert execute iou score to float for {result['id']}: {result['iou_score'][0]}")
            total_score += 0
    return total_score / total_cnt if total_cnt > 0 else -1


def sfe_aggregate_acc07_results(results, args):
    total_score = 0
    total_cnt = 0
    for result in results:
        try:
            score = 1.0 if float(result["iou_score"][0]) > 0.7 else 0.0
            if score < 0:
                continue
            total_score += score
            total_cnt += 1
        except:
            eval_logger.warning(f"Failed to convert execute iou score to float for {result['id']}: {result['iou_score'][0]}")
            total_score += 0
    return total_score / total_cnt if total_cnt > 0 else -1


def sfe_aggregate_acc09_results(results, args):
    total_score = 0
    total_cnt = 0
    for result in results:
        try:
            score = 1.0 if float(result["iou_score"][0]) > 0.9 else 0.0
            if score < 0:
                continue
            total_score += score
            total_cnt += 1
        except:
            eval_logger.warning(f"Failed to convert execute iou score to float for {result['id']}: {result['iou_score'][0]}")
            total_score += 0
    return total_score / total_cnt if total_cnt > 0 else -1