Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
part-of-speech
Languages:
Spanish
Size:
10K - 100K
# coding=utf-8 | |
# Copyright 2020 HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""Introduction to the CoNLL-2002 Shared Task: Language-Independent Named Entity Recognition""" | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@inproceedings{tjong-kim-sang-2002-introduction, | |
title = "Introduction to the {C}o{NLL}-2002 Shared Task: Language-Independent Named Entity Recognition", | |
author = "Tjong Kim Sang, Erik F.", | |
booktitle = "{COLING}-02: The 6th Conference on Natural Language Learning 2002 ({C}o{NLL}-2002)", | |
year = "2002", | |
url = "https://www.aclweb.org/anthology/W02-2024", | |
} | |
""" | |
_DESCRIPTION = """\ | |
Named entities are phrases that contain the names of persons, organizations, locations, times and quantities. | |
Example: | |
[PER Wolff] , currently a journalist in [LOC Argentina] , played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid] . | |
The shared task of CoNLL-2002 concerns language-independent named entity recognition. | |
We will concentrate on four types of named entities: persons, locations, organizations and names of miscellaneous entities that do not belong to the previous three groups. | |
The participants of the shared task will be offered training and test data for at least two languages. | |
They will use the data for developing a named-entity recognition system that includes a machine learning component. | |
Information sources other than the training data may be used in this shared task. | |
We are especially interested in methods that can use additional unannotated data for improving their performance (for example co-training). | |
The train/validation/test sets are available in Spanish and Dutch. | |
For more details see https://www.clips.uantwerpen.be/conll2002/ner/ and https://www.aclweb.org/anthology/W02-2024/ | |
""" | |
_URL = "https://www.cs.upc.edu/~nlp/tools/nerc/" | |
_TRAINING_FILE = "esp.train.gz" | |
_DEV_FILE = "esp.testa.gz" | |
_TEST_FILE = "esp.testb.gz" | |
class Conll2002Config(datasets.BuilderConfig): | |
"""BuilderConfig for Conll2002""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig forConll2002. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(Conll2002Config, self).__init__(**kwargs) | |
class Conll2002(datasets.GeneratorBasedBuilder): | |
"""Conll2002 dataset.""" | |
BUILDER_CONFIGS = [ | |
Conll2002Config(name="es", version=datasets.Version("1.0.0"), description="Conll2002 Spanish dataset"), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"pos_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"AO", | |
"AQ", | |
"CC", | |
"CS", | |
"DA", | |
"DE", | |
"DD", | |
"DI", | |
"DN", | |
"DP", | |
"DT", | |
"Faa", | |
"Fat", | |
"Fc", | |
"Fd", | |
"Fe", | |
"Fg", | |
"Fh", | |
"Fia", | |
"Fit", | |
"Fp", | |
"Fpa", | |
"Fpt", | |
"Fs", | |
"Ft", | |
"Fx", | |
"Fz", | |
"I", | |
"NC", | |
"NP", | |
"P0", | |
"PD", | |
"PI", | |
"PN", | |
"PP", | |
"PR", | |
"PT", | |
"PX", | |
"RG", | |
"RN", | |
"SP", | |
"VAI", | |
"VAM", | |
"VAN", | |
"VAP", | |
"VAS", | |
"VMG", | |
"VMI", | |
"VMM", | |
"VMN", | |
"VMP", | |
"VMS", | |
"VSG", | |
"VSI", | |
"VSM", | |
"VSN", | |
"VSP", | |
"VSS", | |
"Y", | |
"Z", | |
] | |
) | |
if self.config.name == "es" | |
else datasets.features.ClassLabel( | |
names=["Adj", "Adv", "Art", "Conj", "Int", "Misc", "N", "Num", "Prep", "Pron", "Punc", "V"] | |
) | |
), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"O", | |
"B-PER", | |
"I-PER", | |
"B-ORG", | |
"I-ORG", | |
"B-LOC", | |
"I-LOC", | |
"B-MISC", | |
"I-MISC", | |
] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://www.aclweb.org/anthology/W02-2024/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
urls_to_download = { | |
"train": f"{_URL}{_TRAINING_FILE}", | |
"dev": f"{_URL}{_DEV_FILE}", | |
"test": f"{_URL}{_TEST_FILE}", | |
} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
] | |
def _generate_examples(self, filepath): | |
logger.info("⏳ Generating examples from = %s", filepath) | |
with open(filepath, encoding="latin-1") as f: | |
guid = 0 | |
tokens = [] | |
pos_tags = [] | |
ner_tags = [] | |
for line in f: | |
if line.startswith("-DOCSTART-") or line == "" or line == "\n": | |
if tokens: | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"pos_tags": pos_tags, | |
"ner_tags": ner_tags, | |
} | |
guid += 1 | |
tokens = [] | |
pos_tags = [] | |
ner_tags = [] | |
else: | |
# conll2002 tokens are space separated | |
splits = line.split(" ") | |
tokens.append(splits[0]) | |
pos_tags.append(splits[1]) | |
ner_tags.append(splits[2].rstrip()) | |
# last example | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"pos_tags": pos_tags, | |
"ner_tags": ner_tags, | |
} | |