Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
part-of-speech
Languages:
Spanish
Size:
10K - 100K
Upload CoNLL-NERC-es.py
Browse files- CoNLL-NERC-es.py +224 -0
CoNLL-NERC-es.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""Introduction to the CoNLL-2002 Shared Task: Language-Independent Named Entity Recognition"""
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
|
22 |
+
logger = datasets.logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
_CITATION = """\
|
26 |
+
@inproceedings{tjong-kim-sang-2002-introduction,
|
27 |
+
title = "Introduction to the {C}o{NLL}-2002 Shared Task: Language-Independent Named Entity Recognition",
|
28 |
+
author = "Tjong Kim Sang, Erik F.",
|
29 |
+
booktitle = "{COLING}-02: The 6th Conference on Natural Language Learning 2002 ({C}o{NLL}-2002)",
|
30 |
+
year = "2002",
|
31 |
+
url = "https://www.aclweb.org/anthology/W02-2024",
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
_DESCRIPTION = """\
|
36 |
+
Named entities are phrases that contain the names of persons, organizations, locations, times and quantities.
|
37 |
+
|
38 |
+
Example:
|
39 |
+
[PER Wolff] , currently a journalist in [LOC Argentina] , played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid] .
|
40 |
+
|
41 |
+
The shared task of CoNLL-2002 concerns language-independent named entity recognition.
|
42 |
+
We will concentrate on four types of named entities: persons, locations, organizations and names of miscellaneous entities that do not belong to the previous three groups.
|
43 |
+
The participants of the shared task will be offered training and test data for at least two languages.
|
44 |
+
They will use the data for developing a named-entity recognition system that includes a machine learning component.
|
45 |
+
Information sources other than the training data may be used in this shared task.
|
46 |
+
We are especially interested in methods that can use additional unannotated data for improving their performance (for example co-training).
|
47 |
+
|
48 |
+
The train/validation/test sets are available in Spanish and Dutch.
|
49 |
+
|
50 |
+
For more details see https://www.clips.uantwerpen.be/conll2002/ner/ and https://www.aclweb.org/anthology/W02-2024/
|
51 |
+
"""
|
52 |
+
|
53 |
+
_URL = "https://www.cs.upc.edu/~nlp/tools/nerc/"
|
54 |
+
_TRAINING_FILE = "esp.train.gz"
|
55 |
+
_DEV_FILE = "esp.testa.gz"
|
56 |
+
_TEST_FILE = "esp.testb.gz"
|
57 |
+
|
58 |
+
|
59 |
+
class Conll2002Config(datasets.BuilderConfig):
|
60 |
+
"""BuilderConfig for Conll2002"""
|
61 |
+
|
62 |
+
def __init__(self, **kwargs):
|
63 |
+
"""BuilderConfig forConll2002.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
**kwargs: keyword arguments forwarded to super.
|
67 |
+
"""
|
68 |
+
super(Conll2002Config, self).__init__(**kwargs)
|
69 |
+
|
70 |
+
|
71 |
+
class Conll2002(datasets.GeneratorBasedBuilder):
|
72 |
+
"""Conll2002 dataset."""
|
73 |
+
|
74 |
+
BUILDER_CONFIGS = [
|
75 |
+
Conll2002Config(name="es", version=datasets.Version("1.0.0"), description="Conll2002 Spanish dataset"),
|
76 |
+
]
|
77 |
+
|
78 |
+
def _info(self):
|
79 |
+
return datasets.DatasetInfo(
|
80 |
+
description=_DESCRIPTION,
|
81 |
+
features=datasets.Features(
|
82 |
+
{
|
83 |
+
"id": datasets.Value("string"),
|
84 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
85 |
+
"pos_tags": datasets.Sequence(
|
86 |
+
datasets.features.ClassLabel(
|
87 |
+
names=[
|
88 |
+
"AO",
|
89 |
+
"AQ",
|
90 |
+
"CC",
|
91 |
+
"CS",
|
92 |
+
"DA",
|
93 |
+
"DE",
|
94 |
+
"DD",
|
95 |
+
"DI",
|
96 |
+
"DN",
|
97 |
+
"DP",
|
98 |
+
"DT",
|
99 |
+
"Faa",
|
100 |
+
"Fat",
|
101 |
+
"Fc",
|
102 |
+
"Fd",
|
103 |
+
"Fe",
|
104 |
+
"Fg",
|
105 |
+
"Fh",
|
106 |
+
"Fia",
|
107 |
+
"Fit",
|
108 |
+
"Fp",
|
109 |
+
"Fpa",
|
110 |
+
"Fpt",
|
111 |
+
"Fs",
|
112 |
+
"Ft",
|
113 |
+
"Fx",
|
114 |
+
"Fz",
|
115 |
+
"I",
|
116 |
+
"NC",
|
117 |
+
"NP",
|
118 |
+
"P0",
|
119 |
+
"PD",
|
120 |
+
"PI",
|
121 |
+
"PN",
|
122 |
+
"PP",
|
123 |
+
"PR",
|
124 |
+
"PT",
|
125 |
+
"PX",
|
126 |
+
"RG",
|
127 |
+
"RN",
|
128 |
+
"SP",
|
129 |
+
"VAI",
|
130 |
+
"VAM",
|
131 |
+
"VAN",
|
132 |
+
"VAP",
|
133 |
+
"VAS",
|
134 |
+
"VMG",
|
135 |
+
"VMI",
|
136 |
+
"VMM",
|
137 |
+
"VMN",
|
138 |
+
"VMP",
|
139 |
+
"VMS",
|
140 |
+
"VSG",
|
141 |
+
"VSI",
|
142 |
+
"VSM",
|
143 |
+
"VSN",
|
144 |
+
"VSP",
|
145 |
+
"VSS",
|
146 |
+
"Y",
|
147 |
+
"Z",
|
148 |
+
]
|
149 |
+
)
|
150 |
+
if self.config.name == "es"
|
151 |
+
else datasets.features.ClassLabel(
|
152 |
+
names=["Adj", "Adv", "Art", "Conj", "Int", "Misc", "N", "Num", "Prep", "Pron", "Punc", "V"]
|
153 |
+
)
|
154 |
+
),
|
155 |
+
"ner_tags": datasets.Sequence(
|
156 |
+
datasets.features.ClassLabel(
|
157 |
+
names=[
|
158 |
+
"O",
|
159 |
+
"B-PER",
|
160 |
+
"I-PER",
|
161 |
+
"B-ORG",
|
162 |
+
"I-ORG",
|
163 |
+
"B-LOC",
|
164 |
+
"I-LOC",
|
165 |
+
"B-MISC",
|
166 |
+
"I-MISC",
|
167 |
+
]
|
168 |
+
)
|
169 |
+
),
|
170 |
+
}
|
171 |
+
),
|
172 |
+
supervised_keys=None,
|
173 |
+
homepage="https://www.aclweb.org/anthology/W02-2024/",
|
174 |
+
citation=_CITATION,
|
175 |
+
)
|
176 |
+
|
177 |
+
def _split_generators(self, dl_manager):
|
178 |
+
"""Returns SplitGenerators."""
|
179 |
+
urls_to_download = {
|
180 |
+
"train": f"{_URL}{_TRAINING_FILE}",
|
181 |
+
"dev": f"{_URL}{_DEV_FILE}",
|
182 |
+
"test": f"{_URL}{_TEST_FILE}",
|
183 |
+
}
|
184 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
185 |
+
|
186 |
+
return [
|
187 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
188 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
189 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
|
190 |
+
]
|
191 |
+
|
192 |
+
def _generate_examples(self, filepath):
|
193 |
+
logger.info("⏳ Generating examples from = %s", filepath)
|
194 |
+
with open(filepath, encoding="latin-1") as f:
|
195 |
+
guid = 0
|
196 |
+
tokens = []
|
197 |
+
pos_tags = []
|
198 |
+
ner_tags = []
|
199 |
+
for line in f:
|
200 |
+
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
|
201 |
+
if tokens:
|
202 |
+
yield guid, {
|
203 |
+
"id": str(guid),
|
204 |
+
"tokens": tokens,
|
205 |
+
"pos_tags": pos_tags,
|
206 |
+
"ner_tags": ner_tags,
|
207 |
+
}
|
208 |
+
guid += 1
|
209 |
+
tokens = []
|
210 |
+
pos_tags = []
|
211 |
+
ner_tags = []
|
212 |
+
else:
|
213 |
+
# conll2002 tokens are space separated
|
214 |
+
splits = line.split(" ")
|
215 |
+
tokens.append(splits[0])
|
216 |
+
pos_tags.append(splits[1])
|
217 |
+
ner_tags.append(splits[2].rstrip())
|
218 |
+
# last example
|
219 |
+
yield guid, {
|
220 |
+
"id": str(guid),
|
221 |
+
"tokens": tokens,
|
222 |
+
"pos_tags": pos_tags,
|
223 |
+
"ner_tags": ner_tags,
|
224 |
+
}
|