|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search.""" |
|
|
|
|
|
import json |
|
import os.path |
|
|
|
import datasets |
|
from datasets.tasks import QuestionAnsweringExtractive |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@article{pham2022PiC, |
|
title={PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search}, |
|
author={Pham, Thang M and Yoon, Seunghyun and Bui, Trung and Nguyen, Anh}, |
|
journal={arXiv preprint arXiv:2207.09068}, |
|
year={2022} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Phrase in Context is a curated benchmark for phrase understanding and semantic search, consisting of three tasks of increasing difficulty: Phrase Similarity (PS), Phrase Retrieval (PR) and Phrase Sense Disambiguation (PSD). The datasets are annotated by 13 linguistic experts on Upwork and verified by two groups: ~1000 AMT crowdworkers and another set of 5 linguistic experts. PiC benchmark is distributed under CC-BY-NC 4.0. |
|
""" |
|
|
|
_HOMEPAGE = "https://phrase-in-context.github.io/" |
|
|
|
_LICENSE = "CC-BY-NC-4.0" |
|
|
|
_URL = "https://auburn.edu/~tmp0038/PiC/" |
|
_SPLITS = { |
|
"train": "train-v1.0.json", |
|
"dev": "dev-v1.0.json", |
|
"test": "test-v1.0.json", |
|
} |
|
|
|
_PSD = "PSD" |
|
|
|
|
|
class PSDConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Phrase Sense Disambiguation in PiC.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for Phrase Sense Disambiguation in PiC. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(PSDConfig, self).__init__(**kwargs) |
|
|
|
|
|
class PhraseSenseDisambiguation(datasets.GeneratorBasedBuilder): |
|
"""Phrase Sense Disambiguation in PiC dataset. Version 1.0.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
PSDConfig( |
|
name=_PSD, |
|
version=datasets.Version("1.0.2"), |
|
description="The PiC Dataset for Phrase Sense Disambiguation at short passage level (~22 sentences)" |
|
) |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": datasets.Sequence( |
|
{ |
|
"text": datasets.Value("string"), |
|
"answer_start": datasets.Value("int32"), |
|
} |
|
) |
|
} |
|
), |
|
|
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
task_templates=[ |
|
QuestionAnsweringExtractive( |
|
question_column="question", context_column="context", answers_column="answers" |
|
) |
|
] |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls_to_download = { |
|
"train": os.path.join(_URL, self.config.name, _SPLITS["train"]), |
|
"dev": os.path.join(_URL, self.config.name, _SPLITS["dev"]), |
|
"test": os.path.join(_URL, self.config.name, _SPLITS["test"]) |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
key = 0 |
|
with open(filepath, encoding="utf-8") as f: |
|
pic_psd = json.load(f) |
|
for example in pic_psd["data"]: |
|
title = example.get("title", "") |
|
|
|
answer_starts = [answer["answer_start"] for answer in example["answers"]] |
|
answers = [answer["text"] for answer in example["answers"]] |
|
|
|
|
|
|
|
yield key, { |
|
"title": title, |
|
"context": example["context"], |
|
"question": example["question"], |
|
"id": example["id"], |
|
"answers": { |
|
"answer_start": answer_starts, |
|
"text": answers, |
|
} |
|
} |
|
key += 1 |
|
|