File size: 7,308 Bytes
b33ad61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
# -*- coding: utf-8 -*-
"""Microsoft Learn Scrap with Google Colab.py
# Web Scraping, Processing, and Embedding
## Install necessary libraries
"""
## pip install -q ipywidgets google-colab python-docx pypdf pandas nltk sentence-transformers torch tqdm pyarrow httpx beautifulsoup4 datasets requests
"""## Web scraping and data extraction script
This script crawls a website and extracts text content from each page.
"""
# This script to navigate to the link https://learn.microsoft.com/en-us/ and start web scrapping and data extraction automatically on every page must scrap and extract all data, 100% data
import requests
from bs4 import BeautifulSoup
from urllib.parse import urljoin, urlparse
def is_valid(url):
"""Checks whether `url` is a valid URL."""
try:
result = urlparse(url)
return all([result.scheme, result.netloc])
except:
return False
def get_all_website_links(url):
"""
Returns all URLs that is found on `url` in which it belongs to the same website
"""
urls = set()
domain_name = urlparse(url).netloc
try:
soup = BeautifulSoup(requests.get(url).content, "html.parser")
for a_tag in soup.findAll("a"):
href = a_tag.attrs.get("href")
if href == "" or href is None:
continue
href = urljoin(url, href)
parsed_href = urlparse(href)
href = parsed_href.scheme + "://" + parsed_href.netloc + parsed_href.path
if not is_valid(href):
continue
if parsed_href.netloc == domain_name:
urls.add(href)
except Exception as e:
print(f"Error processing {url}: {e}")
return urls
def scrape_page_data(url):
"""Scrapes all text content from a given URL."""
try:
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
# Extract all text from the page
text = soup.get_text(separator='\n', strip=True)
return text
except Exception as e:
print(f"Error scraping {url}: {e}")
return None
def crawl_website(start_url, max_pages=100):
"""Crawls a website and scrapes data from each page."""
visited_urls = set()
urls_to_visit = {start_url}
scraped_data = {}
while urls_to_visit and len(visited_urls) < max_pages:
current_url = urls_to_visit.pop()
if current_url in visited_urls:
continue
print(f"Visiting: {current_url}")
visited_urls.add(current_url)
# Scrape data
data = scrape_page_data(current_url)
if data:
scraped_data[current_url] = data
# Find new links
new_links = get_all_website_links(current_url)
for link in new_links:
if link not in visited_urls:
urls_to_visit.add(link)
return scraped_data
# Start the crawling process
start_url = "https://learn.microsoft.com/en-us/"
all_scraped_data = crawl_website(start_url)
# You can now process the `all_scraped_data` dictionary
# For example, print the number of pages scraped and the data from one page:
print(f"\nScraped data from {len(all_scraped_data)} pages.")
if all_scraped_data:
first_url = list(all_scraped_data.keys())[0]
print(f"\nData from the first scraped page ({first_url}):")
# print(all_scraped_data[first_url][:500]) # Print first 500 characters
"""## Data processing and embedding script
This script takes the scraped data, chunks it, and creates embeddings using a sentence transformer model.
"""
# This script to convert, format, embed the full scrapped and extracted data to structured, embedded data chunks
import torch
from sentence_transformers import SentenceTransformer # Changed import
from datasets import Dataset
from tqdm.auto import tqdm
# Check for GPU availability
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")
# Load a pre-trained sentence transformer model
model = SentenceTransformer('all-MiniLM-L6-v2').to(device)
def chunk_text(text, chunk_size=500, chunk_overlap=50):
"""Splits text into chunks with overlap."""
words = text.split()
chunks = []
i = 0
while i < len(words):
chunk = words[i:i + chunk_size]
chunks.append(" ".join(chunk))
i += chunk_size - chunk_overlap
if i >= len(words) - chunk_overlap and i < len(words): # Handle the last chunk
chunks.append(" ".join(words[i:]))
break
return chunks
def process_scraped_data(scraped_data, chunk_size=500, chunk_overlap=50):
"""
Converts scraped data into formatted chunks and embeds them.
Returns a list of dictionaries, each containing chunk text, source URL, and embedding.
"""
processed_chunks = []
for url, text in tqdm(scraped_data.items(), desc="Processing scraped data"):
if text:
chunks = chunk_text(text, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
for chunk in chunks:
processed_chunks.append({
'text': chunk,
'source': url,
})
return processed_chunks
def embed_chunks(processed_chunks, model, batch_size=32):
"""Embeds the text chunks using the sentence transformer model."""
# Extract texts for embedding
texts_to_embed = [chunk['text'] for chunk in processed_chunks]
# Create a Hugging Face Dataset
dataset = Dataset.from_dict({'text': texts_to_embed})
# Define a function to apply embeddings
def get_embeddings(batch):
return {'embedding': model.encode(batch['text'], convert_to_tensor=True).tolist()}
# Apply the embedding function in batches
dataset = dataset.map(get_embeddings, batched=True, batch_size=batch_size)
# Update the original processed_chunks list with embeddings
for i, item in enumerate(processed_chunks):
item['embedding'] = dataset[i]['embedding']
return processed_chunks
# --- Main script for processing and embedding ---
# Process the scraped data into chunks
formatted_chunks = process_scraped_data(all_scraped_data)
# Embed the chunks
embedded_data = embed_chunks(formatted_chunks, model)
# `embedded_data` is now a list of dictionaries, where each dictionary
# represents a chunk with its text, source URL, and embedding.
# You can now use this data for similarity search, indexing, etc.
print(f"\nCreated {len(embedded_data)} embedded chunks.")
if embedded_data:
print("\nExample of an embedded chunk:")
embedded_data[0]
"""## Save the embedded dataset to Google Drive
This script saves the processed and embedded data to a JSON file in your Google Drive.
"""
# This script to save all converted, formatted, embedded dataset to the "Output" file on My Drive
import json
from google.colab import drive
# Mount Google Drive
drive.mount('/content/drive')
# Define the output file path
output_file_path = '/content/drive/My Drive/Output/embedded_dataset.json'
# Ensure the output directory exists
import os
output_dir = os.path.dirname(output_file_path)
os.makedirs(output_dir, exist_ok=True)
# Save the embedded data to a JSON file
with open(output_file_path, 'w') as f:
json.dump(embedded_data, f, indent=2)
print(f"\nSaved embedded dataset to: {output_file_path}") |