hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
a082499766e01b8416387c8b260647f328d736b5
374
py
Python
src/config_writer.py
premkamal13/my-ai-assistant
8c2e60cf74ae36d0ad1177430651f34a59230f52
[ "MIT" ]
1
2019-07-12T07:40:47.000Z
2019-07-12T07:40:47.000Z
src/config_writer.py
premkamal13/my-ai-assistant
8c2e60cf74ae36d0ad1177430651f34a59230f52
[ "MIT" ]
null
null
null
src/config_writer.py
premkamal13/my-ai-assistant
8c2e60cf74ae36d0ad1177430651f34a59230f52
[ "MIT" ]
null
null
null
import configparser config = configparser.ConfigParser() config['APP_INFO'] = {'ASSISTANT_NAME': 'Agamya','USER_NAME': 'Kamal'} # replace the DEMO keyword with actual wolfram app id # Note to @self: Use the gitignored version of this file to find id config['APP_CREDS'] = {'WOLFRAM_APP_ID' : 'DEMO'} with open('.config', 'w+') as configfile: config.write(configfile)
34
70
0.724599
e53c57b84ad82d2d57ee3d7b59ec385d89330759
295
py
Python
server/djangoapp/admin.py
findsemaine/agfzb-CloudAppDevelopment_Capstone
56498093059d881ca9f4120f01a0a6ba1bf98115
[ "Apache-2.0" ]
null
null
null
server/djangoapp/admin.py
findsemaine/agfzb-CloudAppDevelopment_Capstone
56498093059d881ca9f4120f01a0a6ba1bf98115
[ "Apache-2.0" ]
null
null
null
server/djangoapp/admin.py
findsemaine/agfzb-CloudAppDevelopment_Capstone
56498093059d881ca9f4120f01a0a6ba1bf98115
[ "Apache-2.0" ]
null
null
null
from django.contrib import admin from .models import CarMake, CarModel class CarModelInline(admin.StackedInline): model = CarModel extra = 5 class CarMakeAdmin(admin.ModelAdmin): inlines = [CarModelInline] admin.site.register(CarMake, CarMakeAdmin) admin.site.register(CarModel)
24.583333
42
0.776271
6f937596a34474eee812a1c703d7a57f6929d547
14,063
py
Python
sdk/python/pulumi_azure_nextgen/servicefabric/v20200101preview/get_managed_cluster.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_nextgen/servicefabric/v20200101preview/get_managed_cluster.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_nextgen/servicefabric/v20200101preview/get_managed_cluster.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs __all__ = [ 'GetManagedClusterResult', 'AwaitableGetManagedClusterResult', 'get_managed_cluster', ] @pulumi.output_type class GetManagedClusterResult: """ The manged cluster resource """ def __init__(__self__, addon_features=None, admin_password=None, admin_user_name=None, azure_active_directory=None, client_connection_port=None, clients=None, cluster_certificate_thumbprint=None, cluster_code_version=None, cluster_id=None, cluster_state=None, dns_name=None, etag=None, fabric_settings=None, fqdn=None, http_gateway_connection_port=None, id=None, load_balancing_rules=None, location=None, name=None, provisioning_state=None, sku=None, tags=None, type=None): if addon_features and not isinstance(addon_features, list): raise TypeError("Expected argument 'addon_features' to be a list") pulumi.set(__self__, "addon_features", addon_features) if admin_password and not isinstance(admin_password, str): raise TypeError("Expected argument 'admin_password' to be a str") pulumi.set(__self__, "admin_password", admin_password) if admin_user_name and not isinstance(admin_user_name, str): raise TypeError("Expected argument 'admin_user_name' to be a str") pulumi.set(__self__, "admin_user_name", admin_user_name) if azure_active_directory and not isinstance(azure_active_directory, dict): raise TypeError("Expected argument 'azure_active_directory' to be a dict") pulumi.set(__self__, "azure_active_directory", azure_active_directory) if client_connection_port and not isinstance(client_connection_port, int): raise TypeError("Expected argument 'client_connection_port' to be a int") pulumi.set(__self__, "client_connection_port", client_connection_port) if clients and not isinstance(clients, list): raise TypeError("Expected argument 'clients' to be a list") pulumi.set(__self__, "clients", clients) if cluster_certificate_thumbprint and not isinstance(cluster_certificate_thumbprint, str): raise TypeError("Expected argument 'cluster_certificate_thumbprint' to be a str") pulumi.set(__self__, "cluster_certificate_thumbprint", cluster_certificate_thumbprint) if cluster_code_version and not isinstance(cluster_code_version, str): raise TypeError("Expected argument 'cluster_code_version' to be a str") pulumi.set(__self__, "cluster_code_version", cluster_code_version) if cluster_id and not isinstance(cluster_id, str): raise TypeError("Expected argument 'cluster_id' to be a str") pulumi.set(__self__, "cluster_id", cluster_id) if cluster_state and not isinstance(cluster_state, str): raise TypeError("Expected argument 'cluster_state' to be a str") pulumi.set(__self__, "cluster_state", cluster_state) if dns_name and not isinstance(dns_name, str): raise TypeError("Expected argument 'dns_name' to be a str") pulumi.set(__self__, "dns_name", dns_name) if etag and not isinstance(etag, str): raise TypeError("Expected argument 'etag' to be a str") pulumi.set(__self__, "etag", etag) if fabric_settings and not isinstance(fabric_settings, list): raise TypeError("Expected argument 'fabric_settings' to be a list") pulumi.set(__self__, "fabric_settings", fabric_settings) if fqdn and not isinstance(fqdn, str): raise TypeError("Expected argument 'fqdn' to be a str") pulumi.set(__self__, "fqdn", fqdn) if http_gateway_connection_port and not isinstance(http_gateway_connection_port, int): raise TypeError("Expected argument 'http_gateway_connection_port' to be a int") pulumi.set(__self__, "http_gateway_connection_port", http_gateway_connection_port) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if load_balancing_rules and not isinstance(load_balancing_rules, list): raise TypeError("Expected argument 'load_balancing_rules' to be a list") pulumi.set(__self__, "load_balancing_rules", load_balancing_rules) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if provisioning_state and not isinstance(provisioning_state, str): raise TypeError("Expected argument 'provisioning_state' to be a str") pulumi.set(__self__, "provisioning_state", provisioning_state) if sku and not isinstance(sku, dict): raise TypeError("Expected argument 'sku' to be a dict") pulumi.set(__self__, "sku", sku) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter(name="addonFeatures") def addon_features(self) -> Optional[Sequence[str]]: """ client certificates for the cluster. """ return pulumi.get(self, "addon_features") @property @pulumi.getter(name="adminPassword") def admin_password(self) -> Optional[str]: """ vm admin user password. """ return pulumi.get(self, "admin_password") @property @pulumi.getter(name="adminUserName") def admin_user_name(self) -> str: """ vm admin user name. """ return pulumi.get(self, "admin_user_name") @property @pulumi.getter(name="azureActiveDirectory") def azure_active_directory(self) -> Optional['outputs.AzureActiveDirectoryResponse']: """ Azure active directory. """ return pulumi.get(self, "azure_active_directory") @property @pulumi.getter(name="clientConnectionPort") def client_connection_port(self) -> Optional[int]: """ The port used for client connections to the cluster. """ return pulumi.get(self, "client_connection_port") @property @pulumi.getter def clients(self) -> Optional[Sequence['outputs.ClientCertificateResponse']]: """ client certificates for the cluster. """ return pulumi.get(self, "clients") @property @pulumi.getter(name="clusterCertificateThumbprint") def cluster_certificate_thumbprint(self) -> str: """ The cluster certificate thumbprint used node to node communication. """ return pulumi.get(self, "cluster_certificate_thumbprint") @property @pulumi.getter(name="clusterCodeVersion") def cluster_code_version(self) -> Optional[str]: """ The Service Fabric runtime version of the cluster. This property can only by set the user when **upgradeMode** is set to 'Manual'. To get list of available Service Fabric versions for new clusters use [ClusterVersion API](./ClusterVersion.md). To get the list of available version for existing clusters use **availableClusterVersions**. """ return pulumi.get(self, "cluster_code_version") @property @pulumi.getter(name="clusterId") def cluster_id(self) -> str: """ A service generated unique identifier for the cluster resource. """ return pulumi.get(self, "cluster_id") @property @pulumi.getter(name="clusterState") def cluster_state(self) -> str: """ The current state of the cluster. """ return pulumi.get(self, "cluster_state") @property @pulumi.getter(name="dnsName") def dns_name(self) -> str: """ The cluster dns name. """ return pulumi.get(self, "dns_name") @property @pulumi.getter def etag(self) -> str: """ Azure resource etag. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="fabricSettings") def fabric_settings(self) -> Optional[Sequence['outputs.SettingsSectionDescriptionResponse']]: """ The list of custom fabric settings to configure the cluster. """ return pulumi.get(self, "fabric_settings") @property @pulumi.getter def fqdn(self) -> str: """ the cluster Fully qualified domain name. """ return pulumi.get(self, "fqdn") @property @pulumi.getter(name="httpGatewayConnectionPort") def http_gateway_connection_port(self) -> Optional[int]: """ The port used for http connections to the cluster. """ return pulumi.get(self, "http_gateway_connection_port") @property @pulumi.getter def id(self) -> str: """ Azure resource identifier. """ return pulumi.get(self, "id") @property @pulumi.getter(name="loadBalancingRules") def load_balancing_rules(self) -> Optional[Sequence['outputs.LoadBalancingRuleResponse']]: """ Describes load balancing rules. """ return pulumi.get(self, "load_balancing_rules") @property @pulumi.getter def location(self) -> str: """ Azure resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ Azure resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ The provisioning state of the managed cluster resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def sku(self) -> Optional['outputs.SkuResponse']: """ The sku of the managed cluster """ return pulumi.get(self, "sku") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Azure resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ Azure resource type. """ return pulumi.get(self, "type") class AwaitableGetManagedClusterResult(GetManagedClusterResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetManagedClusterResult( addon_features=self.addon_features, admin_password=self.admin_password, admin_user_name=self.admin_user_name, azure_active_directory=self.azure_active_directory, client_connection_port=self.client_connection_port, clients=self.clients, cluster_certificate_thumbprint=self.cluster_certificate_thumbprint, cluster_code_version=self.cluster_code_version, cluster_id=self.cluster_id, cluster_state=self.cluster_state, dns_name=self.dns_name, etag=self.etag, fabric_settings=self.fabric_settings, fqdn=self.fqdn, http_gateway_connection_port=self.http_gateway_connection_port, id=self.id, load_balancing_rules=self.load_balancing_rules, location=self.location, name=self.name, provisioning_state=self.provisioning_state, sku=self.sku, tags=self.tags, type=self.type) def get_managed_cluster(cluster_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetManagedClusterResult: """ The manged cluster resource :param str cluster_name: The name of the cluster resource. :param str resource_group_name: The name of the resource group. """ __args__ = dict() __args__['clusterName'] = cluster_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:servicefabric/v20200101preview:getManagedCluster', __args__, opts=opts, typ=GetManagedClusterResult).value return AwaitableGetManagedClusterResult( addon_features=__ret__.addon_features, admin_password=__ret__.admin_password, admin_user_name=__ret__.admin_user_name, azure_active_directory=__ret__.azure_active_directory, client_connection_port=__ret__.client_connection_port, clients=__ret__.clients, cluster_certificate_thumbprint=__ret__.cluster_certificate_thumbprint, cluster_code_version=__ret__.cluster_code_version, cluster_id=__ret__.cluster_id, cluster_state=__ret__.cluster_state, dns_name=__ret__.dns_name, etag=__ret__.etag, fabric_settings=__ret__.fabric_settings, fqdn=__ret__.fqdn, http_gateway_connection_port=__ret__.http_gateway_connection_port, id=__ret__.id, load_balancing_rules=__ret__.load_balancing_rules, location=__ret__.location, name=__ret__.name, provisioning_state=__ret__.provisioning_state, sku=__ret__.sku, tags=__ret__.tags, type=__ret__.type)
39.838527
477
0.66579
13421c8526cb0bc2abfffb443a3de65a7e65d089
295
py
Python
cnns/nnlib/datasets/resize.py
adam-dziedzic/time-series-ml
81aaa27f1dd9ea3d7d62b661dac40cac6c1ef77a
[ "Apache-2.0" ]
1
2018-03-25T13:19:46.000Z
2018-03-25T13:19:46.000Z
cnns/nnlib/datasets/resize.py
adam-dziedzic/time-series-ml
81aaa27f1dd9ea3d7d62b661dac40cac6c1ef77a
[ "Apache-2.0" ]
null
null
null
cnns/nnlib/datasets/resize.py
adam-dziedzic/time-series-ml
81aaa27f1dd9ea3d7d62b661dac40cac6c1ef77a
[ "Apache-2.0" ]
null
null
null
import cv2 import glob def resize_img(image_path, size): img = cv2.imread(image_path) img = cv2.resize(img,(size,size), interpolation = cv2.INTER_CUBIC) cv2.imwrite(image_path,img) all_images = glob.glob('tiny-224/*/*/*/*') for image in all_images: resize_img(image, 224)
22.692308
70
0.691525
338b7764e3b4aa993e69e9770c4cb9a8b02cbf74
332
py
Python
sanskrit_parser/generator/generator.py
avinashvarna/sanskrit_parser
79338213128b29927fe2f06031379bb1e3864a83
[ "MIT" ]
54
2017-06-30T09:11:53.000Z
2022-03-22T15:35:41.000Z
sanskrit_parser/generator/generator.py
avinashvarna/sanskrit_parser
79338213128b29927fe2f06031379bb1e3864a83
[ "MIT" ]
159
2017-06-30T07:04:36.000Z
2021-06-17T17:03:43.000Z
sanskrit_parser/generator/generator.py
avinashvarna/sanskrit_parser
79338213128b29927fe2f06031379bb1e3864a83
[ "MIT" ]
18
2017-08-17T13:22:00.000Z
2022-01-20T01:08:58.000Z
# -*- coding: utf-8 -*- """ Intro ===== Experimental Sanskrit pada generator Process 1. PrakRiti (dhatu / prAtipadika) 2. pratyaya addition 2.a strIpratyaya 2.b samAsa 3. prakRti / pratyaya transformations 4. aNga transformations 5. prakRti + pratyaya sandhi 6. pada sandhi @author: Karthik Madathil (github: @kmadathil) """
15.809524
46
0.71988
8c9567c23bbf35dd4975851e8748ddb2077697ad
2,554
py
Python
project/tools/wrapper/__main__.py
GaetanLongree/MASI-TFE
f632e80d4e9772216821f9b00a3374e1c3903cb5
[ "MIT" ]
null
null
null
project/tools/wrapper/__main__.py
GaetanLongree/MASI-TFE
f632e80d4e9772216821f9b00a3374e1c3903cb5
[ "MIT" ]
null
null
null
project/tools/wrapper/__main__.py
GaetanLongree/MASI-TFE
f632e80d4e9772216821f9b00a3374e1c3903cb5
[ "MIT" ]
null
null
null
import getopt import sys import traceback from . import debug, setup, cleanup, execution, runtime_info, workload_manager, module_handler, api_communicator def main(argv): try: opts, args = getopt.getopt(argv, "i:") except getopt.GetoptError: debug.log("Error in the command parameters") sys.exit(2) input_file = None for opt, arg in opts: if opt == '-i': input_file = arg if input_file is not None: try: # Setup stage setup.run(input_file) # Module handling setup handler = module_handler.ModuleHandler() handler.from_dict(runtime_info.modules) # modules execution if runtime_info.modules is not None \ and 'preprocessing' in runtime_info.modules: try: preprocessing_output = handler.run('preprocessing', runtime_info.user_input) runtime_info.__update_input__(preprocessing_output['input']) runtime_info.__update_modules__(preprocessing_output['modules']) except Exception as err_msg: debug.log(err_msg) api_communicator.notify_client(err_msg) # Job Execution execution.run() # Wait for slurm to finish running the job terminated_successfully = execution.wait() if terminated_successfully \ and runtime_info.modules is not None \ and 'postprocessing' in runtime_info.modules: # Postprocessing modules execution try: postprocessing_output = handler.run('postprocessing', runtime_info.user_input) runtime_info.__update_input__(postprocessing_output['input']) runtime_info.__update_modules__(postprocessing_output['modules']) except Exception as err_msg: debug.log(err_msg) api_communicator.notify_client(err_msg) # Last Status update of the job api_communicator.update_job_status() # Cleanup of local files cleanup.run(runtime_info.get_all()) except BaseException as error: # api_communicator.notify_client("Error caught: {}".format(error)) debug.log("Error caught: {}".format(error)) debug.log("Traceback : {}".format(traceback.format_exc())) if __name__ == '__main__': main(sys.argv[1:])
36.485714
112
0.59397
786b85b71bd8a8364dbc2d9f954d8be87afb261e
852
py
Python
microrpc/server.py
jasonjohnson/microrpc
96bd3836c43a7fec5bf71b773d66f0f019d5f675
[ "MIT" ]
null
null
null
microrpc/server.py
jasonjohnson/microrpc
96bd3836c43a7fec5bf71b773d66f0f019d5f675
[ "MIT" ]
null
null
null
microrpc/server.py
jasonjohnson/microrpc
96bd3836c43a7fec5bf71b773d66f0f019d5f675
[ "MIT" ]
null
null
null
import pickle from socketserver import BaseRequestHandler, TCPServer, ThreadingMixIn class Handler(BaseRequestHandler): def handle(self): while True: buff = bytearray() while not buff.endswith(b'.'): buff += self.request.recv(256) method, args, kwargs = pickle.loads(buff) try: result = self.server.methods[method](*args, **kwargs) except Exception as e: result = e self.request.sendall(pickle.dumps(result)) class Server(ThreadingMixIn, TCPServer): def __init__(self, host='0.0.0.0', port=9090): super().__init__((host, port), Handler) self.methods = {} def rpc(self, func): self.methods[func.__name__] = func return func def run(self): self.serve_forever()
25.818182
70
0.584507
c3c1b93d1243f1ded99ea5049be502ae2ecc46f0
4,693
py
Python
.history/awards/settings_20201129191246.py
Nyash-Mauro/awwards
aa8200a4d2a26a9d022f0ebda280379c1b3761c3
[ "MIT" ]
null
null
null
.history/awards/settings_20201129191246.py
Nyash-Mauro/awwards
aa8200a4d2a26a9d022f0ebda280379c1b3761c3
[ "MIT" ]
null
null
null
.history/awards/settings_20201129191246.py
Nyash-Mauro/awwards
aa8200a4d2a26a9d022f0ebda280379c1b3761c3
[ "MIT" ]
null
null
null
""" Django settings for awards project. Generated by 'django-admin startproject' using Django 3.1.3. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ import os import django_heroku import dj_database_url from decouple import config, Csv from pathlib import Path import cloudinary import cloudinary.uploader import cloudinary.api from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'i2@2%*mlx=(oq$t1y*uu#9p=!ag@x=e@i%y@vdg!qct8nz054u' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'award', 'corsheaders', 'bootstrap4', 'tinymce', 'star_ratings', 'rest_framework', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'corsheaders.middleware.CorsMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'awards.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'awards.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Africa/Nairobi' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static"), ] MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' cloudinary.config( cloud_name="dapwcit3i", api_key="917726294659896", api_secret="PeLRKhRoA2E-r-5ykRTpuEBNcH4" ) MODE = config("MODE", default="dev") SECRET_KEY = config('SECRET_KEY') DEBUG = config('DEBUG', default=False, cast=bool) # development if config('MODE') == "dev": DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': config('DB_NAME'), 'USER': config('DB_USER'), 'PASSWORD': config('DB_PASSWORD'), 'HOST': config('DB_HOST'), 'PORT': '', } } # production else: DATABASES = { 'default': dj_database_url.config( default=config('DATABASE_URL') ) } db_from_env = dj_database_url.config(conn_max_age=500) DATABASES['default'].update(db_from_env) ALLOWED_HOSTS = config('ALLOWED_HOSTS', cast=Csv()) django_heroku.settings(locals()) STAR_RATINGS_RERATE = False STAR_RATINGS_RANGE = 10 STAR_RATINGS_STAR_HEIGHT = 20 STAR_RATINGS_STAR_WIDTH = 20
25.644809
91
0.691242
9c3929081e0b239e8030339b99d88fd9478999ca
3,117
py
Python
mars/services/lifecycle/api/web.py
haijohn/mars
672b3a33a70565f01b1a3f508908445491d85acf
[ "Apache-2.0" ]
1
2021-06-10T02:43:01.000Z
2021-06-10T02:43:01.000Z
mars/services/lifecycle/api/web.py
JeffroMF/mars
2805241ac55b50c4f6319baa41113fbf8c723832
[ "Apache-2.0" ]
null
null
null
mars/services/lifecycle/api/web.py
JeffroMF/mars
2805241ac55b50c4f6319baa41113fbf8c723832
[ "Apache-2.0" ]
null
null
null
# Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List from ....lib.aio import alru_cache from ....utils import serialize_serializable, deserialize_serializable from ...web import web_api, MarsServiceWebAPIHandler, MarsWebAPIClientMixin from .core import AbstractLifecycleAPI class LifecycleWebAPIHandler(MarsServiceWebAPIHandler): _root_pattern = '/api/session/(?P<session_id>[^/]+)/lifecycle' @alru_cache(cache_exceptions=False) async def _get_cluster_api(self): from ...cluster import ClusterAPI return await ClusterAPI.create(self._supervisor_addr) @alru_cache(cache_exceptions=False) async def _get_oscar_lifecycle_api(self, session_id: str): from .oscar import LifecycleAPI cluster_api = await self._get_cluster_api() [address] = await cluster_api.get_supervisors_by_keys([session_id]) return await LifecycleAPI.create(session_id, address) @web_api('', method='post', arg_filter={'action': 'decref_tileables'}) async def decref_tileables(self, session_id: str): tileable_keys = self.get_argument('tileable_keys').split(',') oscar_api = await self._get_oscar_lifecycle_api(session_id) await oscar_api.decref_tileables(tileable_keys) @web_api('', method='get', arg_filter={'action': 'get_all_chunk_ref_counts'}) async def get_all_chunk_ref_counts(self, session_id: str): oscar_api = await self._get_oscar_lifecycle_api(session_id) res = await oscar_api.get_all_chunk_ref_counts() self.write(serialize_serializable(res)) web_handlers = { LifecycleWebAPIHandler.get_root_pattern(): LifecycleWebAPIHandler } class WebLifecycleAPI(AbstractLifecycleAPI, MarsWebAPIClientMixin): def __init__(self, session_id: str, address: str): self._session_id = session_id self._address = address.rstrip('/') async def decref_tileables(self, tileable_keys: List[str]): path = f'{self._address}/api/session/{self._session_id}/lifecycle' \ f'?action=decref_tileables' await self._request_url( path, method='POST', headers={'Content-Type': 'application/x-www-form-urlencoded'}, body='tileable_keys=' + ','.join(tileable_keys) ) async def get_all_chunk_ref_counts(self) -> Dict[str, int]: path = f'{self._address}/api/session/{self._session_id}/lifecycle' \ f'?action=get_all_chunk_ref_counts' res = await self._request_url(path) return deserialize_serializable(res.body)
41.013158
81
0.72281
1dbd6d4ba9850c6c888e563cf8d747312616d463
10,009
py
Python
pyion2json/test_pyion2json.py
crouchcd/pyion2json
20d84c24052a877aa81f473a57cc9360adbabc15
[ "MIT" ]
3
2020-05-01T20:22:16.000Z
2020-12-09T14:03:56.000Z
pyion2json/test_pyion2json.py
crouchcd/pyion2json
20d84c24052a877aa81f473a57cc9360adbabc15
[ "MIT" ]
null
null
null
pyion2json/test_pyion2json.py
crouchcd/pyion2json
20d84c24052a877aa81f473a57cc9360adbabc15
[ "MIT" ]
null
null
null
import unittest import json import amazon.ion.simpleion as ion from pyion2json import ion_cursor_to_json _ION_NULLS = """[ null, null.null, // Identical to unadorned null null.bool, null.int, null.float, null.decimal, null.timestamp, null.string, null.symbol, null.blob, null.clob, null.struct, null.list, null.sexp ]""" _JSON_NULLS = json.dumps([ None ] * 14) _ION_BOOLS = """[ true, false ]""" _JSON_BOOLS = json.dumps([ True, False ]) _ION_INTS = """[ 0, // Zero. Surprise! -0, // ...the same value with a minus sign 123, // A normal int -123, // Another negative int 0xBeef, // An int denoted in hexadecimal 0b0101, // An int denoted in binary 1_2_3, // An int with underscores 0xFA_CE, // An int denoted in hexadecimal with underscores 0b10_10_10, // An int denoted in binary with underscores ]""" _JSON_INTS = json.dumps([ 0, -0, 123, -123, 0xBeef, 0b0101, 123, 0xFACE, 0b101010 ]) _ION_DECIMALS = """[ 0.123, -0.12d4, 0D0, 0., -0d0, -0., -0d-1, 123_456.789_012 ]""" _JSON_DECIMALS = json.dumps([ 0.123, -0.12e4, 0e0, 0., -0e0, -0., -0e-1, 123456.789012 ]) _ION_TIMESTAMPS = """[ 2007-02-23T12:14Z, // Seconds are optional, but local offset is not 2007-02-23T12:14:33.079-08:00, // A timestamp with millisecond precision and PST local time 2007-02-23T20:14:33.079Z, // The same instant in UTC ("zero" or "zulu") 2007-02-23T20:14:33.079+00:00, // The same instant, with explicit local offset 2007-02-23T20:14:33.079-00:00, // The same instant, with unknown local offset 2007-01-01T00:00-00:00, // Happy New Year in UTC, unknown local offset 2007-01-01, // The same instant, with days precision, unknown local offset 2007-01-01T, // The same value, different syntax. 2007-01T, // The same instant, with months precision, unknown local offset 2007T, // The same instant, with years precision, unknown local offset 2007-02-23, // A day, unknown local offset 2007-02-23T00:00Z, // The same instant, but more precise and in UTC 2007-02-23T00:00+00:00, // An equivalent format for the same value 2007-02-23T00:00:00-00:00 ]""" _JSON_TIMESTAMPS = json.dumps([ '2007-02-23 12:14:00+00:00', '2007-02-23 12:14:33.079000-08:00', '2007-02-23 20:14:33.079000+00:00', '2007-02-23 20:14:33.079000+00:00', '2007-02-23 20:14:33.079000', '2007-01-01 00:00:00', '2007-01-01 00:00:00', '2007-01-01 00:00:00', '2007-01-01 00:00:00', '2007-01-01 00:00:00', '2007-02-23 00:00:00', '2007-02-23 00:00:00+00:00', '2007-02-23 00:00:00+00:00', '2007-02-23 00:00:00' ]) _ION_STRINGS = """[ "", // An empty string value " my string ", // A normal string "\\"", // Contains one double-quote character "\uABCD", // Contains one unicode character xml::"<e a='v'>c</e>", // String with type annotation 'xml' ( '''hello ''' // Sexp with one element '''world!''' ), ("hello world!"), // The exact same sexp value // This Ion value is a string containing three newlines. The serialized // form's first newline is escaped into nothingness. '''\ The first line of the string. This is the second line of the string, and this is the third line. ''' ]""" _JSON_STRINGS = json.dumps([ '', ' my string ', '"', '\uABCD', '<e a=\'v\'>c</e>', ['hello world!'], ['hello world!'], '''\ The first line of the string. This is the second line of the string, and this is the third line. ''' ]) _ION_SYMBOLS = """[ 'myVar2', // A symbol myVar2, // The same symbol myvar2, // A different symbol 'hi ho', // Symbol requiring quotes '\\'ahoy\\'', // A symbol with embedded quotes '' // The empty symbol ]""" _JSON_SYMBOLS = json.dumps([ 'myVar2', 'myVar2', 'myvar2', 'hi ho', '\'ahoy\'', '' ]) _ION_BLOBS = """[ // A valid blob value with zero padding characters. {{ +AB/ }}, // A valid blob value with one required padding character. {{ VG8gaW5maW5pdHkuLi4gYW5kIGJleW9uZCE= }}, // A valid blob value with two required padding characters. {{ dHdvIHBhZGRpbmcgY2hhcmFjdGVycw== }} ]""" _JSON_BLOBS = json.dumps([ '+AB/', 'VG8gaW5maW5pdHkuLi4gYW5kIGJleW9uZCE=', 'dHdvIHBhZGRpbmcgY2hhcmFjdGVycw==' ]) _ION_CLOBS = """[ {{ "This is a CLOB of text." }}, shift_jis :: {{ '''Another clob with user-defined encoding, ''' '''this time on multiple lines.''' }} ]""" _JSON_CLOBS = json.dumps([ 'This is a CLOB of text.', 'Another clob with user-defined encoding, this time on multiple lines.' ]) _ION_STRUCTS = """[ { }, // An empty struct value { first : "Tom" , last: "Riddle" }, // Structure with two fields {"first":"Tom","last":"Riddle"}, // The same value with confusing style {center:{x:1.0, y:12.5}, radius:3}, // Nested struct { x:1, }, // Trailing comma is legal in Ion (unlike JSON) { "":42 }, // A struct value containing a field with an empty name { field_name: annotation:: value } ]""" _JSON_STRUCTS = json.dumps([ {}, {'first': 'Tom', 'last': 'Riddle'}, {'first': 'Tom', 'last': 'Riddle'}, {'center': {'x': 1.0, 'y': 12.5}, 'radius': 3}, {'x': 1, }, {'': 42}, {'field_name': 'value'} ]) _ION_LISTS = """[ [], // An empty list value [1, 2, 3], // List of three ints [ 1 , two ], // List of an int and a symbol [a , [b]] // Nested list ]""" _JSON_LISTS = json.dumps([ [], [1, 2, 3], [1, 'two'], ['a', ['b']], ]) _ION_SEXPS = """[ (), // An empty expression value (cons 1 2), // S-expression of three values ([hello][there]), // S-expression containing two lists (a+-b), ( 'a' '+-' 'b' ), (a.b;), ( 'a' '.' 'b' ';') ]""" _JSON_SEXPS = json.dumps([ [], ['cons', 1, 2], [['hello'], ['there']], ['a', '+-', 'b'], ['a', '+-', 'b'], ['a', '.', 'b', ';'], ['a', '.', 'b', ';'] ]) class TestPyIonToJson(unittest.TestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.maxDiff = None def test_ion_null(self): """Check that Ion `null` types convert to JSON `null` """ ion_cursor = ion.loads(_ION_NULLS) json_rows = ion_cursor_to_json(ion_cursor) self.assertEqual(json.dumps(json_rows), _JSON_NULLS) def test_ion_bool(self): """Check that Ion `bool` types convert to JSON `bool` """ ion_cursor = ion.loads(_ION_BOOLS) json_rows = ion_cursor_to_json(ion_cursor) self.assertEqual(json.dumps(json_rows), _JSON_BOOLS) def test_ion_int(self): """Check that Ion `int` types convert to JSON `number` """ ion_cursor = ion.loads(_ION_INTS) json_rows = ion_cursor_to_json(ion_cursor) self.assertEqual(json.dumps(json_rows), _JSON_INTS) def test_ion_decimal(self): """Check that Ion `decimal` types convert to JSON `number` """ ion_cursor = ion.loads(_ION_DECIMALS) json_rows = ion_cursor_to_json(ion_cursor) self.assertEqual(json.dumps(json_rows), _JSON_DECIMALS) def test_ion_timestamp(self): """Check that Ion `timestamp` types convert to JSON `string` """ ion_cursor = ion.loads(_ION_TIMESTAMPS) json_rows = ion_cursor_to_json(ion_cursor) self.assertEqual(json.dumps(json_rows), _JSON_TIMESTAMPS) def test_ion_string(self): """Check that Ion `string` types convert to JSON `string` """ ion_cursor = ion.loads(_ION_STRINGS) json_rows = ion_cursor_to_json(ion_cursor) self.assertEqual(json.dumps(json_rows), _JSON_STRINGS) def test_ion_symbol(self): """Check that Ion `symbol` types convert to JSON `string` """ ion_cursor = ion.loads(_ION_SYMBOLS) json_rows = ion_cursor_to_json(ion_cursor) self.assertEqual(json.dumps(json_rows), _JSON_SYMBOLS) def test_ion_blob(self): """Check that Ion `blob` types convert to JSON `string` """ ion_cursor = ion.loads(_ION_BLOBS) json_rows = ion_cursor_to_json(ion_cursor) self.assertEqual(json.dumps(json_rows), _JSON_BLOBS) def test_ion_clob(self): """Check that Ion `clob` types convert to JSON `string` """ ion_cursor = ion.loads(_ION_CLOBS) json_rows = ion_cursor_to_json(ion_cursor) self.assertEqual(json.dumps(json_rows), _JSON_CLOBS) def test_ion_struct(self): """Check that Ion `struct` types convert to JSON `object` """ ion_cursor = ion.loads(_ION_STRUCTS) json_rows = ion_cursor_to_json(ion_cursor) self.assertEqual(json.dumps(json_rows), _JSON_STRUCTS) def test_ion_list(self): """Check that Ion `list` types convert to JSON `array` """ ion_cursor = ion.loads(_ION_LISTS) json_rows = ion_cursor_to_json(ion_cursor) self.assertEqual(json.dumps(json_rows), _JSON_LISTS) def test_ion_sexp(self): """Check that Ion `sexp` types convert to JSON `array` """ ion_cursor = ion.loads(_ION_SEXPS) json_rows = ion_cursor_to_json(ion_cursor) self.assertEqual(json.dumps(json_rows), _JSON_SEXPS) if __name__ == '__main__': unittest.main()
29.438235
102
0.570187
9dff15a20ac27b9469cf8409889d721dd36f7686
534
py
Python
event/migrations/0017_auto_20200814_2151.py
Aleccc/gtcrew
7e6e7024afdbf48ee796cb1f9a86b913e6843dda
[ "MIT" ]
null
null
null
event/migrations/0017_auto_20200814_2151.py
Aleccc/gtcrew
7e6e7024afdbf48ee796cb1f9a86b913e6843dda
[ "MIT" ]
21
2019-02-14T02:47:34.000Z
2022-01-23T02:22:54.000Z
event/migrations/0017_auto_20200814_2151.py
Aleccc/gtcrew
7e6e7024afdbf48ee796cb1f9a86b913e6843dda
[ "MIT" ]
null
null
null
# Generated by Django 3.0.8 on 2020-08-15 01:51 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('team', '0017_auto_20200713_2157'), ('wagtailcore', '0052_pagelogentry'), ('event', '0016_auto_20200814_2141'), ] operations = [ migrations.RenameModel( old_name='RacerInline', new_name='Racer', ), migrations.RenameModel( old_name='ResultInline', new_name='Result', ), ]
22.25
47
0.576779
d1103e9f056445e64f726b4e069e026f211347c3
6,122
py
Python
ppr-api/src/ppr_api/models/test_search.py
cameron-freshworks/ppr
01d6f5d300c791aebad5e58bb4601e9be2ccfc46
[ "Apache-2.0" ]
null
null
null
ppr-api/src/ppr_api/models/test_search.py
cameron-freshworks/ppr
01d6f5d300c791aebad5e58bb4601e9be2ccfc46
[ "Apache-2.0" ]
2
2021-01-25T22:06:58.000Z
2021-01-25T22:07:01.000Z
ppr-api/src/ppr_api/models/test_search.py
cameron-freshworks/ppr
01d6f5d300c791aebad5e58bb4601e9be2ccfc46
[ "Apache-2.0" ]
null
null
null
# Copyright © 2021 Province of British Columbia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module holds model data and database operations for test searches.""" from __future__ import annotations from typing import List from .db import db from .test_search_result import TestSearchResult class TestSearch(db.Model): """This class maintains test searches detail information (for automated testing).""" __tablename__ = 'test_searches' id = db.Column('id', db.Integer, db.Sequence('test_searches_id_seq'), primary_key=True) search_criteria = db.Column('search_criteria', db.Text, nullable=False) run_time = db.Column('run_time', db.Float, nullable=False) # parent keys batch_id = db.Column('batch_id', db.Integer, db.ForeignKey('test_search_batches.id'), nullable=False, index=True) # relationships - test_search_batch search_batch = db.relationship('TestSearchBatch', foreign_keys=[batch_id], back_populates='searches', cascade='all, delete', uselist=False) # relationships - test_search_results results = db.relationship('TestSearchResult', back_populates='search') @property def json(self) -> dict: """Return the search as a json object.""" search = { 'criteria': self.search_criteria, 'matchesExact': { 'avgIndexDiff': self.avg_index_diff(TestSearchResult.MatchType.EXACT.value), 'firstFailIndex': self.fail_index(TestSearchResult.MatchType.EXACT.value), 'missedMatches': self.missed_matches(TestSearchResult.MatchType.EXACT.value), 'resultsApi': self.get_results( TestSearchResult.MatchType.EXACT.value, TestSearchResult.Source.API.value), 'resultsLegacy': self.get_results( TestSearchResult.MatchType.EXACT.value, TestSearchResult.Source.LEGACY.value) }, 'matchesSimilar': { 'avgIndexDiff': self.avg_index_diff(TestSearchResult.MatchType.SIMILAR.value), 'firstFailIndex': self.fail_index(TestSearchResult.MatchType.SIMILAR.value), 'missedMatches': self.missed_matches(TestSearchResult.MatchType.SIMILAR.value), 'resultsApi': self.get_results( TestSearchResult.MatchType.SIMILAR.value, TestSearchResult.Source.API.value), 'resultsLegacy': self.get_results( TestSearchResult.MatchType.SIMILAR.value, TestSearchResult.Source.LEGACY.value) }, 'runTime': self.run_time, } search['matchesExact']['passed'] = ( len(search['matchesExact']['missedMatches']) == 0 and search['matchesExact']['firstFailIndex'] == -1 ) search['matchesSimilar']['passed'] = ( len(search['matchesSimilar']['missedMatches']) == 0 and search['matchesSimilar']['firstFailIndex'] == -1 ) return search def avg_index_diff(self, match_type) -> float: """Return the average index diff between api/legacy results. Excludes missed results.""" api_results = self.get_results(match_type, TestSearchResult.Source.API.value) total_diff = 0 total_paired_results = 0 for result in api_results: if result['pairedIndex'] != -1: total_diff += abs(result['index'] - result['pairedIndex']) total_paired_results += 1 return (total_diff / total_paired_results) if total_paired_results else 0 def fail_index(self, match_type) -> int: """Return the first index that diffs between api/legacy results. Includes missed results.""" api_results = self.get_results(match_type, TestSearchResult.Source.API.value) for result in api_results: if result['pairedIndex'] != result['index']: return result['index'] return -1 def get_results(self, match_type, source) -> List[dict]: """Return results list of this search with given match type and source.""" results = db.session.query(TestSearchResult).filter( TestSearchResult.search_id == self.id, TestSearchResult.match_type == match_type, TestSearchResult.source == source ).order_by(TestSearchResult.index.asc()) results_json = [] for result in results: results_json.append(result.json) return results_json def missed_matches(self, match_type) -> list: """Return the missed matches for the given match type.""" missed = [] for result in self.get_results(match_type, TestSearchResult.Source.LEGACY.value): if result['pairedIndex'] == -1: missed.append(result) return missed def save(self): """Render a search to the local cache.""" db.session.add(self) db.session.commit() @classmethod def find_by_id(cls, search_id: int = None) -> TestSearch: """Return a search object by search ID.""" search = None if search_id: search = db.session.query(TestSearch).\ filter(TestSearch.id == search_id).one_or_none() return search @classmethod def find_all_by_batch_id(cls, batch_id: int = None) -> List[TestSearch]: """Return a list of search objects by batch ID.""" searches = [] if batch_id: searches = db.session.query(TestSearch).\ filter(TestSearch.batch_id == batch_id).all() return searches
42.513889
117
0.645541
cf52179226a6fc57df431857bfc47f5c4335a01b
20,066
py
Python
custominstall.py
JustSch/custom-install
9ffc854bfce41f05b80a8dc85dd8636d0939bd57
[ "MIT" ]
null
null
null
custominstall.py
JustSch/custom-install
9ffc854bfce41f05b80a8dc85dd8636d0939bd57
[ "MIT" ]
null
null
null
custominstall.py
JustSch/custom-install
9ffc854bfce41f05b80a8dc85dd8636d0939bd57
[ "MIT" ]
null
null
null
# This file is a part of custom-install.py. # # custom-install is copyright (c) 2019-2020 Ian Burgwin # This file is licensed under The MIT License (MIT). # You can find the full license text in LICENSE.md in the root of this project. from argparse import ArgumentParser from os import makedirs, scandir from os.path import dirname, join from random import randint from hashlib import sha256 from sys import platform from tempfile import TemporaryDirectory from typing import BinaryIO, TYPE_CHECKING import subprocess if TYPE_CHECKING: from os import PathLike from typing import Union from events import Events from pyctr.crypto import CryptoEngine, Keyslot, load_seeddb from pyctr.type.cia import CIAReader, CIASection from pyctr.type.ncch import NCCHSection from pyctr.util import roundup # used to run the save3ds_fuse binary next to the script script_dir: str = dirname(__file__) # missing contents are replaced with 0xFFFFFFFF in the cmd file CMD_MISSING = b'\xff\xff\xff\xff' # the size of each file and directory in a title's contents are rounded up to this TITLE_ALIGN_SIZE = 0x8000 # size to read at a time when copying files READ_SIZE = 0x200000 # version for cifinish.bin CIFINISH_VERSION = 3 # Placeholder for SDPathErrors class SDPathError(Exception): pass class InvalidCIFinishError(Exception): pass def load_cifinish(path: 'Union[PathLike, bytes, str]'): try: with open(path, 'rb') as f: header = f.read(0x10) if header[0:8] != b'CIFINISH': raise InvalidCIFinishError('CIFINISH magic not found') version = int.from_bytes(header[0x8:0xC], 'little') count = int.from_bytes(header[0xC:0x10], 'little') data = {} for _ in range(count): if version == 1: # ignoring the titlekey and common key index, since it's not useful in this scenario raw_entry = f.read(0x30) if len(raw_entry) != 0x30: raise InvalidCIFinishError(f'title entry is not 0x30 (version {version})') title_magic = raw_entry[0xA:0x10] title_id = int.from_bytes(raw_entry[0:8], 'little') has_seed = raw_entry[0x9] seed = raw_entry[0x20:0x30] elif version == 2: # this is assuming the "wrong" version created by an earlier version of this script # there wasn't a version of custom-install-finalize that really accepted this version raw_entry = f.read(0x20) if len(raw_entry) != 0x20: raise InvalidCIFinishError(f'title entry is not 0x20 (version {version})') title_magic = raw_entry[0:6] title_id = int.from_bytes(raw_entry[0x6:0xE], 'little') has_seed = raw_entry[0xE] seed = raw_entry[0x10:0x20] elif version == 3: raw_entry = f.read(0x20) if len(raw_entry) != 0x20: raise InvalidCIFinishError(f'title entry is not 0x20 (version {version})') title_magic = raw_entry[0:6] title_id = int.from_bytes(raw_entry[0x8:0x10], 'little') has_seed = raw_entry[0x6] seed = raw_entry[0x10:0x20] else: raise InvalidCIFinishError(f'unknown version {version}') if title_magic == b'TITLE\0': data[title_id] = {'seed': seed if has_seed else None} return data except FileNotFoundError: # allow the caller to easily create a new database in the same place where an existing one would be updated return {} def save_cifinish(path: 'Union[PathLike, bytes, str]', data: dict): with open(path, 'wb') as out: entries = sorted(data.items()) out.write(b'CIFINISH') out.write(CIFINISH_VERSION.to_bytes(4, 'little')) out.write(len(entries).to_bytes(4, 'little')) for tid, data in entries: finalize_entry_data = [ # magic b'TITLE\0', # has seed bool(data['seed']).to_bytes(1, 'little'), # padding b'\0', # title id tid.to_bytes(8, 'little'), # seed, if needed (data['seed'] if data['seed'] else (b'\0' * 0x10)) ] out.write(b''.join(finalize_entry_data)) class CustomInstall: cia: CIAReader def __init__(self, boot9, seeddb, movable, cias, sd, cifinish_out=None, skip_contents=False): self.event = Events() self.log_lines = [] # Stores all info messages for user to view self.crypto = CryptoEngine(boot9=boot9) self.crypto.setup_sd_key_from_file(movable) self.seeddb = seeddb self.cias = cias self.sd = sd self.skip_contents = skip_contents self.cifinish_out = cifinish_out self.movable = movable def copy_with_progress(self, src: BinaryIO, dst: BinaryIO, size: int, path: str): left = size cipher = self.crypto.create_ctr_cipher(Keyslot.SD, self.crypto.sd_path_to_iv(path)) while left > 0: to_read = min(READ_SIZE, left) data = cipher.encrypt(src.read(READ_SIZE)) dst.write(data) left -= to_read total_read = size - left self.event.update_percentage((total_read / size) * 100, total_read / 1048576, size / 1048576) def start(self): crypto = self.crypto # TODO: Move a lot of these into their own methods self.log("Finding path to install to...") [sd_path, id1s] = self.get_sd_path() if len(id1s) > 1: raise SDPathError(f'There are multiple id1 directories for id0 {crypto.id0.hex()}, ' f'please remove extra directories') elif len(id1s) == 0: raise SDPathError(f'Could not find a suitable id1 directory for id0 {crypto.id0.hex()}') if self.cifinish_out: cifinish_path = self.cifinish_out else: cifinish_path = join(self.sd, 'cifinish.bin') sd_path = join(sd_path, id1s[0]) title_info_entries = {} cifinish_data = load_cifinish(cifinish_path) load_seeddb(self.seeddb) # Now loop through all provided cia files for c in self.cias: self.log('Reading ' + c) try: cia = CIAReader(c) except Exception as e: self.log(f'Failed to load file: {type(e).__name__}: {e}') continue self.cia = cia tid_parts = (cia.tmd.title_id[0:8], cia.tmd.title_id[8:16]) try: self.log(f'Installing {cia.contents[0].exefs.icon.get_app_title().short_desc}...') except: self.log('Installing...') sizes = [1] * 5 if cia.tmd.save_size: # one for the data directory, one for the 00000001.sav file sizes.extend((1, cia.tmd.save_size)) for record in cia.content_info: sizes.append(record.size) # this calculates the size to put in the Title Info Entry title_size = sum(roundup(x, TITLE_ALIGN_SIZE) for x in sizes) # checks if this is dlc, which has some differences is_dlc = tid_parts[0] == '0004008c' # this checks if it has a manual (index 1) and is not DLC has_manual = (not is_dlc) and (1 in cia.contents) # this gets the extdata id from the extheader, stored in the storage info area try: with cia.contents[0].open_raw_section(NCCHSection.ExtendedHeader) as e: e.seek(0x200 + 0x30) extdata_id = e.read(8) except KeyError: # not an executable title extdata_id = b'\0' * 8 # cmd content id, starts with 1 for non-dlc contents cmd_id = len(cia.content_info) if is_dlc else 1 cmd_filename = f'{cmd_id:08x}.cmd' # get the title root where all the contents will be title_root = join(sd_path, 'title', *tid_parts) content_root = join(title_root, 'content') # generate the path used for the IV title_root_cmd = f'/title/{"/".join(tid_parts)}' content_root_cmd = title_root_cmd + '/content' if not self.skip_contents: makedirs(join(content_root, 'cmd'), exist_ok=True) if cia.tmd.save_size: makedirs(join(title_root, 'data'), exist_ok=True) if is_dlc: # create the separate directories for every 256 contents for x in range(((len(cia.content_info) - 1) // 256) + 1): makedirs(join(content_root, f'{x:08x}'), exist_ok=True) # maybe this will be changed in the future tmd_id = 0 tmd_filename = f'{tmd_id:08x}.tmd' # write the tmd enc_path = content_root_cmd + '/' + tmd_filename self.log(f'Writing {enc_path}...') with cia.open_raw_section(CIASection.TitleMetadata) as s: with open(join(content_root, tmd_filename), 'wb') as o: self.copy_with_progress(s, o, cia.sections[CIASection.TitleMetadata].size, enc_path) # write each content for co in cia.content_info: content_filename = co.id + '.app' if is_dlc: dir_index = format((co.cindex // 256), '08x') enc_path = content_root_cmd + f'/{dir_index}/{content_filename}' out_path = join(content_root, dir_index, content_filename) else: enc_path = content_root_cmd + '/' + content_filename out_path = join(content_root, content_filename) self.log(f'Writing {enc_path}...') with cia.open_raw_section(co.cindex) as s, open(out_path, 'wb') as o: self.copy_with_progress(s, o, co.size, enc_path) # generate a blank save if cia.tmd.save_size: enc_path = title_root_cmd + '/data/00000001.sav' out_path = join(title_root, 'data', '00000001.sav') cipher = crypto.create_ctr_cipher(Keyslot.SD, crypto.sd_path_to_iv(enc_path)) # in a new save, the first 0x20 are all 00s. the rest can be random data = cipher.encrypt(b'\0' * 0x20) self.log(f'Generating blank save at {enc_path}...') with open(out_path, 'wb') as o: o.write(data) o.write(b'\0' * (cia.tmd.save_size - 0x20)) # generate and write cmd enc_path = content_root_cmd + '/cmd/' + cmd_filename out_path = join(content_root, 'cmd', cmd_filename) self.log(f'Generating {enc_path}') highest_index = 0 content_ids = {} for record in cia.content_info: highest_index = record.cindex with cia.open_raw_section(record.cindex) as s: s.seek(0x100) cmac_data = s.read(0x100) id_bytes = bytes.fromhex(record.id)[::-1] cmac_data += record.cindex.to_bytes(4, 'little') + id_bytes cmac_ncch = crypto.create_cmac_object(Keyslot.CMACSDNAND) cmac_ncch.update(sha256(cmac_data).digest()) content_ids[record.cindex] = (id_bytes, cmac_ncch.digest()) # add content IDs up to the last one ids_by_index = [CMD_MISSING] * (highest_index + 1) installed_ids = [] cmacs = [] for x in range(len(ids_by_index)): try: info = content_ids[x] except KeyError: # "MISSING CONTENT!" # The 3DS does generate a cmac for missing contents, but I don't know how it works. # It doesn't matter anyway, the title seems to be fully functional. cmacs.append(bytes.fromhex('4D495353494E4720434F4E54454E5421')) else: ids_by_index[x] = info[0] cmacs.append(info[1]) installed_ids.append(info[0]) installed_ids.sort(key=lambda x: int.from_bytes(x, 'little')) final = (cmd_id.to_bytes(4, 'little') + len(ids_by_index).to_bytes(4, 'little') + len(installed_ids).to_bytes(4, 'little') + (1).to_bytes(4, 'little')) cmac_cmd_header = crypto.create_cmac_object(Keyslot.CMACSDNAND) cmac_cmd_header.update(final) final += cmac_cmd_header.digest() final += b''.join(ids_by_index) final += b''.join(installed_ids) final += b''.join(cmacs) cipher = crypto.create_ctr_cipher(Keyslot.SD, crypto.sd_path_to_iv(enc_path)) self.log(f'Writing {enc_path}') with open(out_path, 'wb') as o: o.write(cipher.encrypt(final)) # this starts building the title info entry title_info_entry_data = [ # title size title_size.to_bytes(8, 'little'), # title type, seems to usually be 0x40 0x40.to_bytes(4, 'little'), # title version int(cia.tmd.title_version).to_bytes(2, 'little'), # ncch version cia.contents[0].version.to_bytes(2, 'little'), # flags_0, only checking if there is a manual (1 if has_manual else 0).to_bytes(4, 'little'), # tmd content id, always starting with 0 (0).to_bytes(4, 'little'), # cmd content id cmd_id.to_bytes(4, 'little'), # flags_1, only checking save data (1 if cia.tmd.save_size else 0).to_bytes(4, 'little'), # extdataid low extdata_id[0:4], # reserved b'\0' * 4, # flags_2, only using a common value 0x100000000.to_bytes(8, 'little'), # product code cia.contents[0].product_code.encode('ascii').ljust(0x10, b'\0'), # reserved b'\0' * 0x10, # unknown randint(0, 0xFFFFFFFF).to_bytes(4, 'little'), # reserved b'\0' * 0x2c ] title_info_entries[cia.tmd.title_id] = b''.join(title_info_entry_data) cifinish_data[int(cia.tmd.title_id, 16)] = {'seed': (get_seed(cia.contents[0].program_id) if cia.contents[0].flags.uses_seed else None)} # This is saved regardless if any titles were installed, so the file can be upgraded just in case. save_cifinish(cifinish_path, cifinish_data) if title_info_entries: with TemporaryDirectory(suffix='-custom-install') as tempdir: # set up the common arguments for the two times we call save3ds_fuse save3ds_fuse_common_args = [ join(script_dir, 'bin', platform, 'save3ds_fuse'), '-b', crypto.b9_path, '-m', self.movable, '--sd', self.sd, '--db', 'sdtitle', tempdir ] # extract the title database to add our own entry to self.log('Extracting Title Database...') subprocess.run(save3ds_fuse_common_args + ['-x']) for title_id, entry in title_info_entries.items(): # write the title info entry to the temp directory with open(join(tempdir, title_id), 'wb') as o: o.write(entry) # import the directory, now including our title self.log('Importing into Title Database...') subprocess.run(save3ds_fuse_common_args + ['-i']) self.log('FINAL STEP:\nRun custom-install-finalize through homebrew launcher.') self.log('This will install a ticket and seed if required.') else: self.log('Did not install any titles.', 2) def get_sd_path(self): sd_path = join(self.sd, 'Nintendo 3DS', self.crypto.id0.hex()) id1s = [] for d in scandir(sd_path): if d.is_dir() and len(d.name) == 32: try: # check if the name can be converted to hex # I'm not sure what the 3DS does if there is a folder that is not a 32-char hex string. bytes.fromhex(d.name) except ValueError: continue else: id1s.append(d.name) return [sd_path, id1s] def log(self, message, mtype=0, errorname=None, end='\n'): """Logs an Message with a type. Format is similar to python errors There are 3 types of errors, indexed accordingly type 0 = Message type 1 = Warning type 2 = Error optionally, errorname can be a custom name as a string to identify errors easily """ if errorname: errorname += ": " else: # No errorname provided errorname = "" types = [ "", # Type 0 "Warning: ", # Type 1 "Error: " # Type 2 ] # Example: "Warning: UninformativeError: An error occured, try again."" msg_with_type = types[mtype] + errorname + str(message) self.log_lines.append(msg_with_type) self.event.on_log_msg(msg_with_type, end=end) return msg_with_type if __name__ == "__main__": parser = ArgumentParser(description='Manually install a CIA to the SD card for a Nintendo 3DS system.') parser.add_argument('cia', help='CIA files', nargs='+') parser.add_argument('-m', '--movable', help='movable.sed file', required=True) parser.add_argument('-b', '--boot9', help='boot9 file') parser.add_argument('-s', '--seeddb', help='seeddb file') parser.add_argument('--sd', help='path to SD root', required=True) parser.add_argument('--skip-contents', help="don't add contents, only add title info entry", action='store_true') parser.add_argument('--cifinish-out', help='path for cifinish.bin file, defaults to (SD root)/cifinish.bin') args = parser.parse_args() installer = CustomInstall(boot9=args.boot9, seeddb=args.seeddb, cias=args.cia, movable=args.movable, sd=args.sd, cifinish_out=args.cifinish_out, skip_contents=(args.skip_contents or False)) def log_handle(msg, end='\n'): print(msg, end=end) def percent_handle(total_percent, total_read, size): installer.log(f' {total_percent:>5.1f}% {total_read:>.1f} MiB / {size:.1f} MiB\r', end='') installer.event.on_log_msg += log_handle installer.event.update_percentage += percent_handle installer.start()
41.203285
148
0.547144
5e886667e495d30bf864d224193f954c5d8267bd
1,145
py
Python
returns/pointfree/cond.py
thecoblack/returns
ad76d4c5282ce53213cad57dc550e5b4565e2b48
[ "BSD-2-Clause" ]
null
null
null
returns/pointfree/cond.py
thecoblack/returns
ad76d4c5282ce53213cad57dc550e5b4565e2b48
[ "BSD-2-Clause" ]
null
null
null
returns/pointfree/cond.py
thecoblack/returns
ad76d4c5282ce53213cad57dc550e5b4565e2b48
[ "BSD-2-Clause" ]
null
null
null
from typing import Callable, Type, TypeVar from returns.interfaces.specific.result import ResultLikeN from returns.methods.cond import internal_cond from returns.primitives.hkt import Kind2, Kinded, kinded _ValueType = TypeVar('_ValueType') _ErrorType = TypeVar('_ErrorType') _ResultKind = TypeVar('_ResultKind', bound=ResultLikeN) def cond( container_type: Type[_ResultKind], success_value: _ValueType, error_value: _ErrorType, ) -> Kinded[Callable[[bool], Kind2[_ResultKind, _ValueType, _ErrorType]]]: """ Help us to reduce the boilerplate when choosing paths with ``ResultLikeN``. .. code:: python >>> from returns.pointfree import cond >>> from returns.result import Failure, Result, Success >>> assert cond(Result, 'success', 'failure')(True) == Success('success') >>> assert cond(Result, 'success', 'failure')(False) == Failure('failure') """ @kinded def factory( is_success: bool, ) -> Kind2[_ResultKind, _ValueType, _ErrorType]: return internal_cond( container_type, is_success, success_value, error_value, ) return factory
30.131579
80
0.69345
d3cda9d52e5f426b1c6f178552630f4c1c4408a4
114,138
py
Python
PPP/global_variables.py
nostrumbiodiscovery/PPP
7e5c948e5a5a8fd05f7024f9eb4513e85b6ac54d
[ "Apache-2.0" ]
null
null
null
PPP/global_variables.py
nostrumbiodiscovery/PPP
7e5c948e5a5a8fd05f7024f9eb4513e85b6ac54d
[ "Apache-2.0" ]
null
null
null
PPP/global_variables.py
nostrumbiodiscovery/PPP
7e5c948e5a5a8fd05f7024f9eb4513e85b6ac54d
[ "Apache-2.0" ]
1
2020-10-01T13:54:07.000Z
2020-10-01T13:54:07.000Z
default_supported_aminoacids = ["ALA", "ARG", "ASH", "ASN", "ASP", "CYS", "CYT", "GLH", "GLN", "GLU", "GLY", "HID", "HIE", "HIS", "HIP", "ILE", "LEU", "LYS", "LYN", "MET", "PHE", "PRO", "PTR", "SER", "TRP", "THR", "TYR", "VAL", "ACE", "NMA"] aminoacids_3letter = ['ALA', 'ARG', 'ASH', 'ASN', 'ASP', 'CYS', 'GLH', 'GLN', 'GLU', 'GLY', 'HID', 'HIE', 'HIS', 'HIP', 'ILE', 'LEU', 'LYS', 'LYN', 'MET', 'PHE', 'PRO', 'SER', 'TRP', 'THR', 'TYR', 'VAL'] aminoacids_1letter = ["A", "R", "D", "N", "D", "C", "E", "Q", "E", "G", "H", "H", "H", "H", "I", "L", "K", "K", "M", "F", "P", "S", "W", "T", "Y", "V"] protein_atomnames_dictionary = { "END": [["H1", "1H", "HN1", "HN1", "HT1"], ["H2", "2H", "HN2", "HN2", "HT2"], ["H3", "3H", "HN3", "H", "HN3", "HT3"], ["OXT", "O1", "OT2", "OXT", "OXT"]], "ALA": [['H', 'H', 'HN', 'H2', 'HN', 'H', 'HN'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB1', '1HB', '2HB', 'HB1', 'HB1', 'HB1', 'HB1'], ['HB2', '2HB', 'HB2', 'HB2', 'HB2', 'HB2', 'HB2'], ['HB3', '3HB', 'HB3', 'HB3', 'HB3', 'HB3', 'HB3'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['O', 'O', 'O', 'O', 'O', 'O', 'O']], "ARG": [['H', 'H', 'HN', 'H2', 'HN', 'H', 'HN'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB2', '1HB', '2HB', 'HB1', 'HB2', 'HB2', 'HB2'], ['HB3', '2HB', 'HB2', 'HB2', 'HB1', 'HB1', 'HB3'], ['HG2', '1HG', 'HG1', 'HG1', 'HG2', '2HG', 'HG2'], ['HG3', '2HG', 'HG2', 'HG2', 'HG1', 'HG1', 'HG3'], ['HD2', '1HD', 'HD1', 'HD1', 'HD2', 'HD2', '2HD'], ['HD3', '2HD', 'HD2', 'HD2', 'HD1', 'HD1', 'HD3'], ['HE', 'HE', 'HNE', 'HE', 'HE', 'HE', 'HE'], ['HH11', '1HH1', 'HN11', 'HH11', 'HH11', 'HH11', 'HH11'], ['HH12', '2HH1', 'HN12', 'HH12', 'HH12', 'HH12', 'HH12'], ['HH21', '1HH2', 'HN21', 'HH21', 'HH21', 'HH21', 'HH21'], ['HH22', '2HH2', 'HN22', 'HH22', 'HH22', 'HH22', 'HH22'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['CG', 'CG', 'CG', 'CG', 'CG', 'CG', 'CG'], ['CD', 'CD', 'CD', 'CD', 'CD', 'CD', 'CD'], ['CZ', 'CZ', 'CZ', 'CZ', 'CZ', 'CZ', 'CZ'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['NE', 'NE', 'NE', 'NE', 'NE', 'NE', 'NE'], ['NH1', 'NH1', 'NH1', 'NH1', 'NH1', 'NH1', 'NH1'], ['NH2', 'NH2', 'NH2', 'NH2', 'NH2', 'NH2', 'NH2'], ['O', 'O', 'O', 'O', 'O', 'O', 'O']], "ASH": [['H', 'H', 'HN', 'H2', 'HN', 'H', 'HN'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB2', '1HB', '2HB', 'HB1', 'HB2', 'HB2', 'HB2'], ['HB3', '2HB', 'HB2', 'HB2', 'HB1', 'HB1', 'HB3'], ['HD2', 'HD2', 'HD2'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['CG', 'CG', 'CG', 'CG', 'CG', 'CG', 'CG'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['O', 'O', 'O', 'O', 'O', 'O', 'O'], ['OD1', 'OD1', 'OD1', 'OD1', 'OD1', 'OD1', 'OD1'], ['OD2', 'OD2', 'OD2', 'OD2', 'OD2', 'OD2', 'OD2']], "ASN": [['H', 'H', 'HN', 'H2', 'HN', 'H', 'HN'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB2', '1HB', '2HB', 'HB1', 'HB2', 'HB2', 'HB2'], ['HB3', '2HB', 'HB2', 'HB2', 'HB1', 'HB1', 'HB3'], ['HD21', '1HD2', 'HN21', 'HD21', 'HD1', 'HD21', 'HD21'], ['HD22', '2HD2', 'HN22', 'HD22', 'HD2', 'HD22', 'HD22'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['CG', 'CG', 'CG', 'CG', 'CG', 'CG', 'CG'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['ND2', 'ND2', 'ND2', 'ND2', 'ND2', 'ND2', 'ND2'], ['O', 'O', 'O', 'O', 'O', 'O', 'O'], ['OD1', 'OD1', 'OD1', 'OD1', 'OD1', 'OD1', 'OD1']], "ASP": [['H', 'H', 'HN', 'H2', 'HN', 'H', 'HN'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB2', '1HB', '2HB', 'HB1', 'HB2', 'HB2', 'HB2'], ['HB3', '2HB', 'HB2', 'HB2', 'HB1', 'HB1', 'HB3'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['CG', 'CG', 'CG', 'CG', 'CG', 'CG', 'CG'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['O', 'O', 'O', 'O', 'O', 'O', 'O'], ['OD1', 'OD1', 'OD1', 'OD1', 'OD1', 'OD1', 'OD1'], ['OD2', 'OD2', 'OD2', 'OD2', 'OD2', 'OD2', 'OD2']], "CYS": [['H', 'H', 'HN', 'H2', 'HN', 'H', 'HN'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB2', '1HB', '2HB', 'HB1', 'HB2', 'HB2', 'HB2'], ['HB3', '2HB', 'HB2', 'HB2', 'HB1', 'HB1', 'HB3'], ['HG', 'HG', 'HSG', 'HG', 'HG', 'HG', 'HG'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['O', 'O', 'O', 'O', 'O', 'O', 'O'], ['SG', 'SG', 'SG', 'SG', 'SG', 'SG', 'SG']], "CYT": [['H', 'H', 'HN', 'HN', 'HN', 'H', 'HN'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB2', '1HB', '2HB', 'HB1', 'HB2', 'HB2', 'HB2'], ['HB3', '2HB', 'HB2', 'HB2', 'HB1', 'HB1', 'HB3'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['O', 'O', 'O', 'O', 'O', 'O', 'O'], ['SG', 'SG', 'SG', 'SG', 'SG', 'SG', 'SG']], "GLN": [['H', 'H', 'HN', 'H2', 'HN', 'H', 'HN'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB2', '1HB', 'HB1', '2HB', 'HB2', 'HB2', 'HB2'], ['HB3', '2HB', 'HB2', 'HB2', 'HB1', 'HB1', 'HB3'], ['HG2', '1HG', 'HG1', 'HG1', '2HG', 'HG2', 'HG2'], ['HG3', '2HG', 'HG2', 'HG2', 'HG1', 'HG1', 'HG3'], ['HE21', '1HE2', 'HN21', 'HE1', 'HE21', 'HE21', 'HE21'], ['HE22', '2HE2', 'HN22', 'HE2', 'HE22', 'HE22', 'HE22'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['CG', 'CG', 'CG', 'CG', 'CG', 'CG', 'CG'], ['CD', 'CD', 'CD', 'CD', 'CD', 'CD', 'CD'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['NE2', 'NE2', 'NE2', 'NE2', 'NE2', 'NE2', 'NE2'], ['O', 'O', 'O', 'O', 'O', 'O', 'O'], ['OE1', 'OE1', 'OE1', 'OE1', 'OE1', 'OE1', 'OE1']], "GLY": [['H', 'H', 'HN', 'H2', 'HN', 'H', 'HN'], ['HA2', '1HA', '2HA', 'HA1', 'HA2', 'HA2', 'HA1'], ['HA3', '2HA', 'HA2', 'HA2', 'HA1', 'HA1', 'HA2'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['O', 'O', 'O', 'O', 'O', 'O', 'O']], "GLU": [['H', 'H', 'HN', 'H2', 'HN', 'H', 'HN'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB2', '1HB', '2HB', 'HB1', 'HB2', 'HB2', 'HB2'], ['HB3', '2HB', 'HB2', 'HB2', 'HB1', 'HB1', 'HB3'], ['HG2', '1HG', 'HG1', 'HG1', 'HG2', '2HG', 'HG2'], ['HG3', '2HG', 'HG2', 'HG2', 'HG1', 'HG1', 'HG3'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['CG', 'CG', 'CG', 'CG', 'CG', 'CG', 'CG'], ['CD', 'CD', 'CD', 'CD', 'CD', 'CD', 'CD'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['O', 'O', 'O', 'O', 'O', 'O', 'O'], ['OE1', 'OE1', 'OE1', 'OE1', 'OE1', 'OE1', 'OE1'], ['OE2', 'OE2', 'OE2', 'OE2', 'OE2', 'OE2', 'OE2']], "GLH": [['H', 'H', 'HN', 'H2', 'HN', 'H', 'HN'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB2', '1HB', '2HB', 'HB1', 'HB2', 'HB2', 'HB2'], ['HB3', '2HB', 'HB2', 'HB2', 'HB1', 'HB1', 'HB3'], ['HG2', '1HG', 'HG1', '2HG', 'HG2', 'HG2', 'HG2'], ['HG3', '2HG', 'HG2', 'HG2', 'HG1', 'HG1', 'HG3'], ['HE2', 'HE2', 'HE2'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['CG', 'CG', 'CG', 'CG', 'CG', 'CG', 'CG'], ['CD', 'CD', 'CD', 'CD', 'CD', 'CD', 'CD'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['O', 'O', 'O', 'O', 'O', 'O', 'O'], ['OE1', 'OE1', 'OE1', 'OE1', 'OE1', 'OE1', 'OE1'], ['OE2', 'OE2', 'OE2', 'OE2', 'OE2', 'OE2', 'OE2']], "HIE": [['H', 'H', 'HN', 'H2', 'HN', 'H', 'HN1'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB2', '1HB', '2HB', 'HB1', 'HB2', 'HB2', 'HB2'], ['HB3', '2HB', 'HB2', 'HB2', 'HB1', 'HB1', 'HB3'], ['HD2', 'HD2', 'HD2', 'HD2', 'HD2', 'HD2', 'HD2'], ['HE1', 'HE1', 'HE1', 'HE1', 'HE1', 'HE1', 'HE1'], ['HE2', 'HNE2', 'HE2', 'HE2'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['CG', 'CG', 'CG', 'CG', 'CG', 'CG', 'CG'], ['CD2', 'CD2', 'CD2', 'CD2', 'CD2', 'CD2', 'CD2'], ['CE1', 'CE1', 'CE1', 'CE1', 'CE1', 'CE1', 'CE1'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['ND1', 'ND1', 'ND1', 'ND1', 'ND1', 'ND1', 'ND1'], ['NE2', 'NE2', 'NE2', 'NE2', 'NE2', 'NE2', 'NE2'], ['O', 'O', 'O', 'O', 'O', 'O', 'O']], "HID": [['H', 'H', 'HN', 'H2', 'HN', 'H', 'HN1'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB2', '1HB', '2HB', 'HB1', 'HB2', 'HB2', 'HB2'], ['HB3', '2HB', 'HB2', 'HB2', 'HB1', 'HB1', 'HB3'], ['HD1', 'HD1', 'HND1', 'HD1', 'HD1', 'HD1', 'HD1'], ['HD2', 'HD2', 'HD2', 'HD2', 'HD2', 'HD2', 'HD2'], ['HE1', 'HE1', 'HE1', 'HE1', 'HE1', 'HE1', 'HE1'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['CG', 'CG', 'CG', 'CG', 'CG', 'CG', 'CG'], ['CD2', 'CD2', 'CD2', 'CD2', 'CD2', 'CD2', 'CD2'], ['CE1', 'CE1', 'CE1', 'CE1', 'CE1', 'CE1', 'CE1'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['ND1', 'ND1', 'ND1', 'ND1', 'ND1', 'ND1', 'ND1'], ['NE2', 'NE2', 'NE2', 'NE2', 'NE2', 'NE2', 'NE2'], ['O', 'O', 'O', 'O', 'O', 'O', 'O']], "HIP": [['H', 'H', 'HN', 'H2', 'HN', 'H', 'HN1'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB2', '1HB', '2HB', 'HB1', 'HB2', 'HB2', 'HB2'], ['HB3', '2HB', 'HB2', 'HB2', 'HB1', 'HB1', 'HB3'], ['HD1', 'HD1', 'HND1', 'HD1', 'HD1', 'HD1', 'HD1'], ['HD2', 'HD2', 'HD2', 'HD2', 'HD2', 'HD2', 'HD2'], ['HE1', 'HE1', 'HE1', 'HE1', 'HE1', 'HE1', 'HE1'], ['HE2', 'HNE2', 'HE2', 'HE2'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['CG', 'CG', 'CG', 'CG', 'CG', 'CG', 'CG'], ['CD2', 'CD2', 'CD2', 'CD2', 'CD2', 'CD2', 'CD2'], ['CE1', 'CE1', 'CE1', 'CE1', 'CE1', 'CE1', 'CE1'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['ND1', 'ND1', 'ND1', 'ND1', 'ND1', 'ND1', 'ND1'], ['NE2', 'NE2', 'NE2', 'NE2', 'NE2', 'NE2', 'NE2'], ['O', 'O', 'O', 'O', 'O', 'O', 'O']], "ILE": [['H', 'H', 'HN', 'H2', 'HN', 'H', 'HN'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB', 'HB', 'HB', 'HB', 'HB3', 'HB', 'HB'], ['HG12', '1HG1', '2HG1', 'HG11', 'HG12', 'HG12', 'HG12'], ['HG13', '2HG1', 'HG12', 'HG12', 'HG11', 'HG11', 'HG13'], ['HG21', '1HG2', 'HG21', 'HG21', 'HG21', 'HG21', 'HG21'], ['HG22', '2HG2', 'HG22', 'HG22', 'HG22', 'HG22', 'HG22'], ['HG23', '3HG2', 'HG23', 'HG23', 'HG23', 'HG23', 'HG23'], ['HD11', '1HD1', 'HD11', 'HD11', 'HD11', 'HD11', 'HD11'], ['HD12', '2HD1', 'HD12', 'HD12', 'HD12', 'HD12', 'HD12'], ['HD13', '3HD1', 'HD13', 'HD13', 'HD13', 'HD13', 'HD13'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['CG1', 'CG1', 'CG1', 'CG1', 'CG1', 'CG1', 'CG1'], ['CG2', 'CG2', 'CG2', 'CG2', 'CG2', 'CG2', 'CG2'], ['CD1', 'CD1', 'CD1', 'CD1', 'CD1', 'CD1', 'CD1'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['O', 'O', 'O', 'O', 'O', 'O', 'O']], "LYN": [['H', 'H', 'HN', 'H2', 'HN', 'H1', 'HN'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB2', '1HB', '2HB', 'HB1', 'HB2', 'HB2', 'HB2'], ['HB3', '2HB', 'HB2', 'HB2', 'HB1', 'HB1', 'HB3'], ['HG2', '1HG', 'HG1', 'HG1', 'HG2', 'HG2', 'HG2'], ['HG3', '2HG', 'HG2', 'HG2', 'HG1', 'HG1', 'HG3'], ['HD2', '1HD', 'HD1', 'HD1', 'HD2', 'HD2', 'HD2'], ['HD3', '2HD', 'HD2', 'HD2', 'HD1', 'HD1', 'HD3'], ['HE2', '1HE', 'HE1', 'HE1', 'HE2', 'HE2', 'HE2'], ['HE3', '2HE', 'HE2', 'HE2', 'HE1', 'HE1', 'HE3'], ['HZ1', '1HZ', 'HNZ1', 'HZ1', 'HZ1', 'HZ1', 'H11'], ['HZ2', '2HZ', 'HNZ2', 'HZ2', 'HZ2', 'HZ2', 'H12'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['CG', 'CG', 'CG', 'CG', 'CG', 'CG', 'CG'], ['CD', 'CD', 'CD', 'CD', 'CD', 'CD', 'CD'], ['CE', 'CE', 'CE', 'CE', 'CE', 'CE', 'CE'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['NZ', 'NZ', 'N1', 'NZ', 'NZ', 'NZ', 'NZ'], ['O', 'O', 'O', 'O', 'O', 'O', 'O']], "LYS": [['H', 'H', 'HN', 'H2', 'HN', 'H1', 'HN'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB2', '1HB', '2HB', 'HB1', 'HB', 'HB2', 'HB2'], ['HB3', '2HB', 'HB2', 'HB2', 'HB1', 'HB1', 'HB3'], ['HG2', '1HG', 'HG1', 'HG1', '2HG', 'HG2', 'HG2'], ['HG3', '2HG', 'HG2', 'HG2', 'HG1', 'HG1', 'HG3'], ['HD2', '1HD', 'HD1', 'HD2', '2HD'], ['HD3', '2HD', 'HD2', 'HD2', 'HD1', 'HD1', 'HD3'], ['HE2', '1HE', 'HE1', '2HE', 'HE2'], ['HE3', '2HE', 'HE2', 'HE2', 'HE1', 'HE1', 'HE3'], ['HZ1', '1HZ', 'HNZ1', 'HZ1', 'HZ1', 'HZ1', 'H11'], ['HZ2', '2HZ', 'HNZ2', 'HZ2', 'HZ2', 'HZ2', 'H12'], ['HZ3', '3HZ', 'HNZ3', 'HZ', 'HZ3', 'HZ3', 'HZ3'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['CG', 'CG', 'CG', 'CG', 'CG', 'CG', 'CG'], ['CD', 'CD', 'CD', 'CD', 'CD', 'CD', 'CD'], ['CE', 'CE', 'CE', 'CE', 'CE', 'CE', 'CE'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['NZ', 'NZ', 'N1', 'NZ', 'NZ', 'NZ', 'NZ'], ['O', 'O', 'O', 'O', 'O', 'O', 'O']], "LEU": [['H', 'H', 'HN', 'H2', 'HN', 'H', 'HN'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB2', '1HB', '2HB', 'HB1', 'HB2', 'HB2', 'HB2'], ['HB3', '2HB', 'HB2', 'HB2', 'HB1', 'HB1', 'HB3'], ['HG', 'HG', 'HG', 'HG', 'HG', 'HG', 'HG'], ['HD11', '1HD1', 'HD11', 'HD11', 'HD11', 'HD11', 'HD11'], ['HD12', '2HD1', 'HD12', 'HD12', 'HD12', 'HD12', 'HD12'], ['HD13', '3HD1', 'HD13', 'HD13', 'HD13', 'HD13', 'HD13'], ['HD21', '1HD2', 'HD21', 'HD21', 'HD21', 'HD21', 'HD21'], ['HD22', '2HD2', 'HD22', 'HD22', 'HD22', 'HD22', 'HD22'], ['HD23', '3HD2', 'HD23', 'HD23', 'HD23', 'HD23', 'HD23'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['CG', 'CG', 'CG', 'CG', 'CG', 'CG', 'CG'], ['CD1', 'CD1', 'CD1', 'CD1', 'CD1', 'CD1', 'CD1'], ['CD2', 'CD2', 'CD2', 'CD2', 'CD2', 'CD2', 'CD2'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['O', 'O', 'O', 'O', 'O', 'O', 'O']], "MET": [['H', 'H', 'HN', 'H2', 'HN', 'H', 'HN'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB2', '1HB', '2HB', 'HB1', 'HB2', 'HB2', 'HB2'], ['HB3', '2HB', 'HB2', 'HB2', 'HB1', 'HB1', 'HB3'], ['HG2', '1HG', 'HG1', 'HG1', '2HG', 'HG2', 'HG2'], ['HG3', '2HG', 'HG2', 'HG2', 'HG1', 'HG1', 'HG3'], ['HE1', '1HE', 'HE1', 'HE1', 'HE1', 'HE1', 'HE1'], ['HE2', '2HE', 'HE2', 'HE2', 'HE2', 'HE2', 'HE2'], ['HE3', '3HE', 'HE3', 'HE3', 'HE3', 'HE3', 'HE3'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['CG', 'CG', 'CG', 'CG', 'CG', 'CG', 'CG'], ['CE', 'CE', 'CE', 'CE', 'CE', 'CE', 'CE'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['O', 'O', 'O', 'O', 'O', 'O', 'O'], ['SD', 'SD', 'SD', 'SD', 'SD', 'SD', 'SD']], "PHE": [['H', 'H', 'HN', 'H2', 'HN', 'H', 'HN'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB2', '1HB', '2HB', 'HB1', 'HB2', 'HB2', 'HB2'], ['HB3', '2HB', 'HB2', 'HB2', 'HB1', 'HB1', 'HB3'], ['HD1', 'HD1', 'HD1', 'HD1', 'HD1', 'HD1', 'HD1'], ['HD2', 'HD2', 'HD2', 'HD2', 'HD2', 'HD2', 'HD2'], ['HE1', 'HE1', 'HE1', 'HE1', 'HE1', 'HE1', 'HE1'], ['HE2', 'HE2', 'HE2', 'HE2', 'HE2', 'HE2', 'HE2'], ['HZ', 'HZ', 'HZ', 'HZ', 'HZ', 'HZ', 'HZ'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['CG', 'CG', 'CG', 'CG', 'CG', 'CG', 'CG'], ['CD1', 'CD1', 'CD1', 'CD1', 'CD1', 'CD1', 'CD1'], ['CD2', 'CD2', 'CD2', 'CD2', 'CD2', 'CD2', 'CD2'], ['CE1', 'CE1', 'CE1', 'CE1', 'CE1', 'CE1', 'CE1'], ['CE2', 'CE2', 'CE2', 'CE2', 'CE2', 'CE2', 'CE2'], ['CZ', 'CZ', 'CZ', 'CZ', 'CZ', 'CZ', 'CZ'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['O', 'O', 'O', 'O', 'O', 'O', 'O']], "PRO": [['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB2', '1HB', '2HB', 'HB1', 'HB2', 'HB2', 'HB2'], ['HB3', '2HB', 'HB2', 'HB2', 'HB1', 'HB1', 'HB3'], ['HG2', '1HG', '2HG', 'HG1', 'HG2', 'HG2', 'HG2'], ['HG3', '2HG', 'HG2', 'HG2', 'HG1', 'HG1', 'HG3'], ['HD2', '1HD', '2HD', 'HD1', 'HD2', 'HD2', 'HD2'], ['HD3', '2HD', 'HD1', 'HD2', 'HD1', 'HD1', 'HD3'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['CG', 'CG', 'CG', 'CG', 'CG', 'CG', 'CG'], ['CD', 'CD', 'CD', 'CD', 'CD', 'CD', 'CD'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['O', 'O', 'O', 'O', 'O', 'O', 'O']], "SER": [['H', 'H', 'HN', 'HN', 'H2', 'H', 'HN'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB2', '1HB', '2HB', 'HB1', 'HB2', 'HB2', 'HB2'], ['HB3', '2HB', 'HB2', 'HB2', 'HB1', 'HB1', 'HB3'], ['HG', 'HG', 'HOG', 'HG', 'HG', 'HG', 'HG'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['O', 'O', 'O', 'O', 'O', 'O', 'O'], ['OG', 'OG', 'OG', 'OG', 'OG', 'OG', 'OG']], "THR": [['H', 'H', 'HN', 'H2', 'HN', 'H', 'HN'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB', 'HB', 'HB', 'HB', 'HB1', 'HB3', 'HB'], ['HG1', 'HG1', 'HOG1', 'HG1', 'HG1', 'HG1', 'HG1'], ['HG21', '1HG2', 'HG21', 'HG21', 'HG21', 'HG21', 'HG21'], ['HG22', '2HG2', 'HG22', 'HG22', 'HG22', 'HG22', 'HG22'], ['HG23', '3HG2', 'HG23', 'HG23', 'HG23', 'HG23', 'HG23'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['CG2', 'CG2', 'CG2', 'CG2', 'CG2', 'CG2', 'CG2'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['O', 'O', 'O', 'O', 'O', 'O', 'O'], ['OG1', 'OG1', 'OG1', 'OG1', 'OG1', 'OG1', 'OG1']], "TRP": [['H', 'H', 'HN', 'H2', 'HN', 'H', 'HN'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB2', '1HB', '2HB', 'HB1', 'HB2', 'HB2', 'HB2'], ['HB3', '2HB', 'HB2', 'HB2', 'HB1', 'HB1', 'HB3'], ['HD1', 'HD1', 'HD1', 'HD1', 'HD1', 'HD1', 'HD1'], ['HE1', 'HE1', 'HNE1', 'HE1', 'HE1', 'HE1', 'HE1'], ['HE3', 'HE3', 'HE3', 'HE3', 'HE3', 'HE3', 'HE3'], ['HZ2', 'HZ2', 'HZ2', 'HZ2', 'HZ2', 'HZ2', 'HZ2'], ['HZ3', 'HZ3', 'HZ3', 'HZ3', 'HZ3', 'HZ3', 'HZ3'], ['HH2', 'HH2', 'HH2', 'HH2', 'HH2', 'HH2', 'HH2'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['CG', 'CG', 'CG', 'CG', 'CG', 'CG', 'CG'], ['CD1', 'CD1', 'CD1', 'CD1', 'CD1', 'CD1', 'CD1'], ['CD2', 'CD2', 'CD2', 'CD2', 'CD2', 'CD2', 'CD2'], ['CE2', 'CE2', 'CE2', 'CE2', 'CE2', 'CE2', 'CE2'], ['CE3', 'CE3', 'CE3', 'CE3', 'CE3', 'CE3', 'CE3'], ['CZ2', 'CZ2', 'CZ2', 'CZ2', 'CZ2', 'CZ2', 'CZ2'], ['CZ3', 'CZ3', 'CZ3', 'CZ3', 'CZ3', 'CZ3', 'CZ3'], ['CH2', 'CH2', 'CH2', 'CH2', 'CH2', 'CH2', 'CH2'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['NE1', 'NE1', 'NE1', 'NE1', 'NE1', 'NE1', 'NE1'], ['O', 'O', 'O', 'O', 'O', 'O', 'O']], "TYR": [['H', 'H', 'HN', 'H2', 'HN', 'H', 'HN'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB2', '1HB', '2HB', 'HB1', 'HB2', 'HB2', 'HB2'], ['HB3', '2HB', 'HB2', 'HB2', 'HB1', 'HB1', 'HB3'], ['HD1', 'HD1', 'HD1', 'HD1', 'HD1', 'HD1', 'HD1'], ['HD2', 'HD2', 'HD2', 'HD2', 'HD2', 'HD2', 'HD2'], ['HE1', 'HE1', 'HE1', 'HE1', 'HE1', 'HE1', 'HE1'], ['HE2', 'HE2', 'HE2', 'HE2', 'HE2', 'HE2', 'HE2'], ['HH', 'HH', 'HOH', 'HH', 'HH', 'HH', 'HH'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['CG', 'CG', 'CG', 'CG', 'CG', 'CG', 'CG'], ['CD1', 'CD1', 'CD1', 'CD1', 'CD1', 'CD1', 'CD1'], ['CD2', 'CD2', 'CD2', 'CD2', 'CD2', 'CD2', 'CD2'], ['CE1', 'CE1', 'CE1', 'CE1', 'CE1', 'CE1', 'CE1'], ['CE2', 'CE2', 'CE2', 'CE2', 'CE2', 'CE2', 'CE2'], ['CZ', 'CZ', 'CZ', 'CZ', 'CZ', 'CZ', 'CZ'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['O', 'O', 'O', 'O', 'O', 'O', 'O'], ['OH', 'OH', 'OH', 'OH', 'OH', 'OH', 'OH']], "VAL": [['H', 'H', 'HN', 'H2', 'HN', 'H', 'HN'], ['HA', 'HA', 'HA', 'HA', 'HA', 'HA', 'HA'], ['HB', 'HB', 'HB', 'HB3', 'HB', 'HB', 'HB'], ['HG11', '1HG1', 'HG11', 'HG11', 'HG11', 'HG11', 'HG11'], ['HG12', '2HG1', 'HG12', 'HG12', 'HG12', 'HG12', 'HG12'], ['HG13', '3HG1', 'HG13', 'HG13', 'HG13', 'HG13', 'HG13'], ['HG21', '1HG2', 'HG21', 'HG21', 'HG21', 'HG21', 'HG21'], ['HG22', '2HG2', 'HG22', 'HG22', 'HG22', 'HG22', 'HG22'], ['HG23', '3HG2', 'HG23', 'HG23', 'HG23', 'HG23', 'HG23'], ['C', 'C', 'C', 'C', 'C', 'C', 'C'], ['CA', 'CA', 'CA', 'CA', 'CA', 'CA', 'CA'], ['CB', 'CB', 'CB', 'CB', 'CB', 'CB', 'CB'], ['CG1', 'CG1', 'CG1', 'CG1', 'CG1', 'CG1', 'CG1'], ['CG2', 'CG2', 'CG2', 'CG2', 'CG2', 'CG2', 'CG2'], ['N', 'N', 'N', 'N', 'N', 'N', 'N'], ['O', 'O', 'O', 'O', 'O', 'O', 'O']], "HOH": [['1HW', 'H1', 'H1 1'], ['2HW', 'H2', 'H1 2'], ['OW', 'O', 'O1']], "ACE": [['CA', 'CH3'], ['HH31', 'HA1', 'H', '1H', 'H1'], ['HH32', 'HA2', '2H', 'H2'], ['HH33', 'HA3', '3H', 'H3'], ['C', 'C'], ['O', 'O']], "NMA": [['HH31', '1HA', 'HA1'], ['HH32', '2HA', 'HA2'], ['HH33', '3HA', 'HA3'], ['CA', 'C'], ['H', 'H'], ['N']], "PTR": [['H', 'H', 'HN', 'H2', 'HN2', 'H', 'HN'], ['N', 'N', 'N'], ['CA', 'CA', 'CA'], ['HA', 'HA', 'HA'], ['O1P', 'O1P', 'O1P'], ['O2P', 'O2P', 'O2P'], ['O3P', 'O3P', 'O3P'], ['P', 'P', 'P'], ['OH', 'OH', 'OH'], ['CZ', 'CZ', 'CZ'], ['C', 'C', 'C'], ['O', 'O', 'O'], ['CB', 'CB', 'CB'], ['CG', 'CG', 'CG'], ['HB2', 'HB2', 'HB2'], ['HB3', 'HB3', 'HB3'], ['CD1', 'CD1', 'CD1'], ['CD2', 'CD2', 'CD2'], ['HD1', 'HD1', 'HD1'], ['HD2', 'HD2', 'HD2'], ['CE2', 'CE2', 'CE2'], ['CE1', 'CE1', 'CE1'], ['HE2', 'HE2', 'HE2'], ['HE1', 'HE1', 'HE1'], ['H1', 'HN1'], ['H3', 'HN3']], } supported_metals = ["MN", "MG", "ZN", "CA", "CU", "FE", "NI", "CO", "PB"] coordination_geometries = { 'octahedric': [[90, 180], 6], 'tetrahedric': [[109.5], 4] } default_mutations_maps = { 'ALA-ARG': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['HB1', 'CG']], ['HG2', 'HG3', 'CD', 'HD2', 'HD3', 'NE', 'HE', 'CZ', 'NH1', 'NH2', 'HH11', 'HH12', 'HH21', 'HH22'], {'ARG-ALA': ['disappear', 1, 0], 'ALA-ARG': ['appear', 0, 1]}, ], 'ALA-ASH': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['HB1', 'CG']], ['OD1', 'OD2', 'HD2'], {'ALA-ASH': ['appear', 0, 1], 'ASH-ALA': ['disappear', 1, 0]}, ], 'ALA-ASN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['HB1', 'CG']], ['OD1', 'ND2', 'HD21', 'HD22'], {'ASN-ALA': ['disappear', 1, 0], 'ALA-ASN': ['appear', 0, 1]}, ], 'ALA-ASP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['HB1', 'CG']], ['OD1', 'OD2'], {'ALA-ASP': ['appear', 0, 1], 'ASP-ALA': ['disappear', 1, 0]}, ], 'ALA-CYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['HB1', 'SG']], ['HG'], {'CYS-ALA': ['disappear', 1, 0], 'ALA-CYS': ['appear', 0, 1]}, ], 'ALA-GLH': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['HB1', 'CG']], ['HG2', 'HG3', 'CD', 'OE1', 'OE2', 'HE2'], {'GLH-ALA': ['disappear', 1, 0], 'ALA-GLH': ['appear', 0, 1]}, ], 'ALA-GLN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['HB1', 'CG']], ['HG2', 'HG3', 'CD', 'OE1', 'NE2', 'HE21', 'HE22'], {'ALA-GLN': ['appear', 0, 1], 'GLN-ALA': ['disappear', 1, 0]}, ], 'ALA-GLU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['HB1', 'CG']], ['HG2', 'HG3', 'CD', 'OE1', 'OE2'], {'ALA-GLU': ['appear', 0, 1], 'GLU-ALA': ['disappear', 1, 0]}, ], 'ALA-GLY': [ ['N', 'H', 'CA', 'O', 'C'], [['HA', 'HA2'], ['CB', 'HA3']], ('HB1', 'HB2', 'HB3'), {'GLY-ALA': ['appear', 1, 0], 'ALA-GLY': ['disappear', 0, 1]}, ], 'ALA-HID': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['HB1', 'CG']], ['ND1', 'CD2', 'HD1', 'CE1', 'HD2', 'NE2', 'HE1'], {'HID-ALA': ['disappear', 1, 0], 'ALA-HID': ['appear', 0, 1]}, ], 'ALA-HIE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['HB1', 'CG']], ['ND1', 'CD2', 'CE1', 'HD2', 'NE2', 'HE1', 'HE2'], {'ALA-HIE': ['appear', 0, 1], 'HIE-ALA': ['disappear', 1, 0]}, ], 'ALA-HIP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['HB1', 'CG']], ['ND1', 'CD2', 'HD1', 'CE1', 'HD2', 'NE2', 'HE1', 'HE2'], {'HIP-ALA': ['disappear', 1, 0], 'ALA-HIP': ['appear', 0, 1]}, ], 'ALA-ILE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB1', 'HB'], ['HB2', 'CG1'], ['HB3', 'CG2']], ['HG12', 'HG13', 'CD1', 'HG21', 'HG22', 'HG23', 'HD11', 'HD12', 'HD13'], {'ILE-ALA': ['disappear', 1, 0], 'ALA-ILE': ['appear', 0, 1]}, ], 'ALA-LEU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['HB1', 'CG']], ['HG', 'CD1', 'CD2', 'HD11', 'HD12', 'HD13', 'HD21', 'HD22', 'HD23'], {'ALA-LEU': ['appear', 0, 1], 'LEU-ALA': ['disappear', 1, 0]}, ], 'ALA-LYN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['HB1', 'CG']], ['HG2', 'HG3', 'CD', 'HD2', 'HD3', 'CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2'], {'LYN-ALA': ['disappear', 1, 0], 'ALA-LYN': ['appear', 0, 1]}, ], 'ALA-LYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['HB1', 'CG']], ['HG2', 'HG3', 'CD', 'HD2', 'HD3', 'CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2', 'HZ3'], {'ALA-LYS': ['appear', 0, 1], 'LYS-ALA': ['disappear', 1, 0]}, ], 'ALA-MET': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['HB1', 'CG']], ['HG2', 'HG3', 'SD', 'CE', 'HE1', 'HE2', 'HE3'], {'MET-ALA': ['disappear', 1, 0], 'ALA-MET': ['appear', 0, 1]}, ], 'ALA-PHE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['HB1', 'CG']], ['CD1', 'CD2', 'HD1', 'CE1', 'HD2', 'CE2', 'HE1', 'CZ', 'HE2', 'HZ'], {'ALA-PHE': ['appear', 0, 1], 'PHE-ALA': ['disappear', 1, 0]}, ], 'ALA-PRO': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['HB1', 'CG'], ['H', 'CD']], ['HG2', 'HG3', 'HD2', 'HD3'], {'ALA-PRO': ['appear', 0, 1], 'PRO-ALA': ['disappear', 1, 0]}, ], 'ALA-SER': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['HB1', 'OG']], ['HG'], {'ALA-SER': ['appear', 0, 1], 'SER-ALA': ['disappear', 1, 0]}, ], 'ALA-THR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB1', 'HB'], ['HB2', 'OG1'], ['HB3', 'CG2']], ['HG1', 'HG21', 'HG22', 'HG23'], {'ALA-THR': ['appear', 0, 1], 'THR-ALA': ['disappear', 1, 0]}, ], 'ALA-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['HB1', 'CG']], ['CD1', 'CD2', 'HD1', 'NE1', 'CE3', 'CE2', 'HE1', 'HE3', 'CZ3', 'CZ2', 'HZ3', 'HZ2', 'CH2', 'HH2'], {'ALA-TRP': ['appear', 0, 1], 'TRP-ALA': ['disappear', 1, 0]}, ], 'ALA-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['HB1', 'CG']], ['CD1', 'CD2', 'HD1', 'CE1', 'HD2', 'CE2', 'HE1', 'CZ', 'HE2', 'OH', 'HH'], {'ALA-TYR': ['appear', 0, 1], 'TYR-ALA': ['disappear', 1, 0]}, ], 'ALA-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB1', 'HB'], ['HB2', 'CG1'], ['HB3', 'CG2']], ['HG11', 'HG12', 'HG13', 'HG21', 'HG22', 'HG23'], {'ALA-VAL': ['appear', 0, 1], 'VAL-ALA': ['disappear', 1, 0]}, ], 'ARG-ASH': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD2', 'HD2'], ['HG2', 'OD1'], ['HG3', 'OD2']], ['CD', 'HD3', 'NE', 'HE', 'CZ', 'NH1', 'NH2', 'HH11', 'HH12', 'HH21', 'HH22'], {'ARG-ASH': ['disappear', 0, 1], 'ASH-ARG': ['appear', 1, 0]}, ], 'ARG-ASN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'OD1'], ['HG3', 'ND2'], ['CD', 'HD21'], ['HD2', 'HD22']], ['HD3', 'NE', 'HE', 'CZ', 'NH1', 'NH2', 'HH11', 'HH12', 'HH21', 'HH22'], {'ASN-ARG': ['appear', 1, 0], 'ARG-ASN': ['disappear', 0, 1]}, ], 'ARG-ASP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'OD1'], ['HG3', 'OD2']], ['CD', 'HD2', 'HD3', 'NE', 'HE', 'CZ', 'NH1', 'NH2', 'HH11', 'HH12', 'HH21', 'HH22'], {'ARG-ASP': ['disappear', 0, 1], 'ASP-ARG': ['appear', 1, 0]}, ], 'ARG-CYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['CG', 'SG'], ['HG2', 'HG']], ['HG3', 'CD', 'HD2', 'HD3', 'NE', 'HE', 'CZ', 'NH1', 'NH2', 'HH11', 'HH12', 'HH21', 'HH22'], {'CYS-ARG': ['appear', 1, 0], 'ARG-CYS': ['disappear', 0, 1]}, ], 'ARG-GLH': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD'], [['HD2', 'OE1'], ['HD3', 'OE2'], ['NE', 'HE2']], ['HE', 'CZ', 'NH1', 'NH2', 'HH11', 'HH12', 'HH21', 'HH22'], {'GLH-ARG': ['appear', 1, 0], 'ARG-GLH': ['disappear', 0, 1]}, ], 'ARG-GLN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD'], [['HD2', 'OE1'], ['HD3', 'NE2'], ['NE', 'HE21'], ['HE', 'HE22']], ['CZ', 'NH1', 'NH2', 'HH11', 'HH12', 'HH21', 'HH22'], {'ARG-GLN': ['disappear', 0, 1], 'GLN-ARG': ['appear', 1, 0]}, ], 'ARG-GLU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD'], [['HD2', 'OE1'], ['HD3', 'OE2']], ['NE', 'HE', 'CZ', 'NH1', 'NH2', 'HH11', 'HH12', 'HH21', 'HH22'], {'ARG-GLU': ['disappear', 0, 1], 'GLU-ARG': ['appear', 1, 0]}, ], 'ARG-GLY': [ ['N', 'H', 'CA', 'O', 'C'], [['HA', 'HA2'], ['CB', 'HA3']], ('HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD', 'HD2', 'HD3', 'NE', 'HE', 'CZ', 'NH1', 'HH11', 'HH12', 'NH2', 'HH21', 'HH22'), {'GLY-ARG': ['appear', 1, 0], 'ARG-GLY': ['disappear', 0, 1]}, ], 'ARG-HID': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD2', 'HD2'], ['HG2', 'ND1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['HD3', 'CE1'], ['NE', 'NE2'], ['HE', 'HE1']], ['CZ', 'NH1', 'NH2', 'HH11', 'HH12', 'HH21', 'HH22'], {'ARG-HID': ['disappear', 0, 1], 'HID-ARG': ['appear', 1, 0]}, ], 'ARG-HIE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD2', 'HD2'], ['HG2', 'ND1'], ['HG3', 'CD2'], ['CD', 'CE1'], ['HD3', 'NE2'], ['NE', 'HE1'], ['HE', 'HE2']], ['CZ', 'NH1', 'NH2', 'HH11', 'HH12', 'HH21', 'HH22'], {'ARG-HIE': ['disappear', 0, 1], 'HIE-ARG': ['appear', 1, 0]}, ], 'ARG-HIP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD2', 'HD2'], ['HG2', 'ND1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['HD3', 'CE1'], ['NE', 'NE2'], ['HE', 'HE1'], ['CZ', 'HE2']], ['NH1', 'NH2', 'HH11', 'HH12', 'HH21', 'HH22'], {'HIP-ARG': ['appear', 1, 0], 'ARG-HIP': ['disappear', 0, 1]}, ], 'ARG-ILE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['HG2', 'HG12'], ['HG3', 'HG13'], ['CD', 'CD1'], ['HD2', 'HG21'], ['HD3', 'HG22'], ['NE', 'HG23'], ['HE', 'HD11'], ['CZ', 'HD12'], ['NH1', 'HD13']], ['NH2', 'HH11', 'HH12', 'HH21', 'HH22'], {'ILE-ARG': ['appear', 1, 0], 'ARG-ILE': ['disappear', 0, 1]}, ], 'ARG-LEU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'HG'], ['HG3', 'CD1'], ['CD', 'CD2'], ['HD2', 'HD11'], ['HD3', 'HD12'], ['NE', 'HD13'], ['HE', 'HD21'], ['CZ', 'HD22'], ['NH1', 'HD23']], ['NH2', 'HH11', 'HH12', 'HH21', 'HH22'], {'ARG-LEU': ['disappear', 0, 1], 'LEU-ARG': ['appear', 1, 0]}, ], 'ARG-LYN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD'], [['HD3', 'HD3'], ['HD2', 'HD2'], ['NE', 'CE'], ['HE', 'HE2'], ['CZ', 'HE3'], ['NH1', 'NZ'], ['NH2', 'HZ1'], ['HH11', 'HZ2']], ['HH12', 'HH21', 'HH22'], {'LYN-ARG': ['appear', 1, 0], 'ARG-LYN': ['disappear', 0, 1]}, ], 'ARG-LYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD'], [['HD3', 'HD3'], ['HD2', 'HD2'], ['NE', 'CE'], ['HE', 'HE2'], ['CZ', 'HE3'], ['NH1', 'NZ'], ['NH2', 'HZ1'], ['HH11', 'HZ2'], ['HH12', 'HZ3']], ['HH21', 'HH22'], {'ARG-LYS': ['disappear', 0, 1], 'LYS-ARG': ['appear', 1, 0]}, ], 'ARG-MET': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'HG2'], ['HG3', 'HG3'], ['CD', 'SD'], ['HD2', 'CE'], ['HD3', 'HE1'], ['NE', 'HE2'], ['HE', 'HE3']], ['CZ', 'NH1', 'NH2', 'HH11', 'HH12', 'HH21', 'HH22'], {'MET-ARG': ['appear', 1, 0], 'ARG-MET': ['disappear', 0, 1]}, ], 'ARG-PHE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['HD2', 'HD2'], ['HD3', 'CE1'], ['NE', 'CE2'], ['HE', 'HE1'], ['CZ', 'CZ'], ['NH1', 'HE2'], ['NH2', 'HZ']], ['HH11', 'HH12', 'HH21', 'HH22'], {'ARG-PHE': ['disappear', 0, 1], 'PHE-ARG': ['appear', 1, 0]}, ], 'ARG-PRO': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB2'], ['HB3', 'HB3'], ['CG', 'CG'], ['HG2', 'HG2'], ['HG3', 'HG3'], ['CD', 'CD'], ['HD3', 'HD3'], ['HD2', 'HD2']], ['H', 'NE', 'HE', 'CZ', 'NH1', 'NH2', 'HH11', 'HH12', 'HH21', 'HH22'], {'ARG-PRO': ['disappear', 0, 1], 'PRO-ARG': ['appear', 1, 0]}, ], 'ARG-SER': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['CG', 'OG'], ['HG2', 'HG']], ['HG3', 'CD', 'HD2', 'HD3', 'NE', 'HE', 'CZ', 'NH1', 'NH2', 'HH11', 'HH12', 'HH21', 'HH22'], {'ARG-SER': ['disappear', 0, 1], 'SER-ARG': ['appear', 1, 0]}, ], 'ARG-THR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'OG1'], ['CG', 'CG2'], ['HG2', 'HG1'], ['HG3', 'HG21'], ['CD', 'HG22'], ['HD2', 'HG23']], ['HD3', 'NE', 'HE', 'CZ', 'NH1', 'NH2', 'HH11', 'HH12', 'HH21', 'HH22'], {'ARG-THR': ['disappear', 0, 1], 'THR-ARG': ['appear', 1, 0]}, ], 'ARG-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['HD2', 'NE1'], ['HD3', 'CE3'], ['NE', 'CE2'], ['HE', 'HE1'], ['CZ', 'HE3'], ['NH1', 'CZ3'], ['NH2', 'CZ2'], ['HH11', 'HZ3'], ['HH12', 'HZ2'], ['HH21', 'CH2'], ['HH22', 'HH2']], [], {'ARG-TRP': ['', 0, 1], 'TRP-ARG': ['', 1, 0]}, ], 'ARG-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['CZ', 'CZ'], ['HD2', 'HD2'], ['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['HD3', 'CE1'], ['NE', 'CE2'], ['HE', 'HE1'], ['NH1', 'HE2'], ['NH2', 'OH'], ['HH11', 'HH']], ['HH12', 'HH21', 'HH22'], {'ARG-TYR': ['disappear', 0, 1], 'TYR-ARG': ['appear', 1, 0]}, ], 'ARG-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['HG2', 'HG11'], ['HG3', 'HG12'], ['CD', 'HG13'], ['HD2', 'HG21'], ['HD3', 'HG22'], ['NE', 'HG23']], ['HE', 'CZ', 'NH1', 'NH2', 'HH11', 'HH12', 'HH21', 'HH22'], {'ARG-VAL': ['disappear', 0, 1], 'VAL-ARG': ['appear', 1, 0]}, ], 'ASH-ASN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'OD1'], ['OD2', 'ND2'], ['HD2', 'HD21']], ['HD22'], {'ASH-ASN': ['appear', 0, 1], 'ASN-ASH': ['disappear', 1, 0]}, ], 'ASH-ASP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'OD1', 'OD2'], [], ['HD2'], {'ASP-ASH': ['appear', 1, 0], 'ASH-ASP': ['disappear', 0, 1]}, ], 'ASH-CYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['CG', 'SG'], ['OD1', 'HG']], ['OD2', 'HD2'], {'ASH-CYS': ['disappear', 0, 1], 'CYS-ASH': ['appear', 1, 0]}, ], 'ASH-GLH': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'HG2'], ['OD2', 'HG3'], ['HD2', 'CD']], ['OE1', 'OE2', 'HE2'], {'ASH-GLH': ['appear', 0, 1], 'GLH-ASH': ['disappear', 1, 0]}, ], 'ASH-GLN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'HG2'], ['OD2', 'HG3'], ['HD2', 'CD']], ['OE1', 'NE2', 'HE21', 'HE22'], {'ASH-GLN': ['appear', 0, 1], 'GLN-ASH': ['disappear', 1, 0]}, ], 'ASH-GLU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'HG2'], ['OD2', 'HG3'], ['HD2', 'CD']], ['OE1', 'OE2'], {'GLU-ASH': ['disappear', 1, 0], 'ASH-GLU': ['appear', 0, 1]}, ], 'ASH-GLY': [ ['N', 'H', 'CA', 'O', 'C'], [['HA', 'HA2'], ['CB', 'HA3']], ('HB2', 'HB3', 'CG', 'OD1', 'OD2', 'HD2'), {'ASH-GLY': ['disappear', 0, 1], 'GLY-ASH': ['appear', 1, 0]}, ], 'ASH-HID': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD2', 'HD2'], ['OD1', 'ND1'], ['OD2', 'CD2']], ['HD1', 'CE1', 'NE2', 'HE1'], {'HID-ASH': ['disappear', 1, 0], 'ASH-HID': ['appear', 0, 1]}, ], 'ASH-HIE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD2', 'HD2'], ['OD1', 'ND1'], ['OD2', 'CD2']], ['CE1', 'NE2', 'HE1', 'HE2'], {'HIE-ASH': ['disappear', 1, 0], 'ASH-HIE': ['appear', 0, 1]}, ], 'ASH-HIP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD2', 'HD2'], ['OD1', 'ND1'], ['OD2', 'CD2']], ['HD1', 'CE1', 'NE2', 'HE1', 'HE2'], {'ASH-HIP': ['appear', 0, 1], 'HIP-ASH': ['disappear', 1, 0]}, ], 'ASH-ILE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['OD1', 'HG12'], ['OD2', 'HG13'], ['HD2', 'CD1']], ['HG21', 'HG22', 'HG23', 'HD11', 'HD12', 'HD13'], {'ASH-ILE': ['appear', 0, 1], 'ILE-ASH': ['disappear', 1, 0]}, ], 'ASH-LEU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'HG'], ['OD2', 'CD1'], ['HD2', 'CD2']], ['HD11', 'HD12', 'HD13', 'HD21', 'HD22', 'HD23'], {'LEU-ASH': ['disappear', 1, 0], 'ASH-LEU': ['appear', 0, 1]}, ], 'ASH-LYN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD2', 'HD2'], ['OD1', 'HG2'], ['OD2', 'HG3']], ['CD', 'HD3', 'CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2'], {'ASH-LYN': ['appear', 0, 1], 'LYN-ASH': ['disappear', 1, 0]}, ], 'ASH-LYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD2', 'HD2'], ['OD1', 'HG2'], ['OD2', 'HG3']], ['CD', 'HD3', 'CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2', 'HZ3'], {'LYS-ASH': ['disappear', 1, 0], 'ASH-LYS': ['appear', 0, 1]}, ], 'ASH-MET': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'HG2'], ['OD2', 'HG3'], ['HD2', 'SD']], ['CE', 'HE1', 'HE2', 'HE3'], {'ASH-MET': ['appear', 0, 1], 'MET-ASH': ['disappear', 1, 0]}, ], 'ASH-PHE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD2', 'HD2'], ['OD1', 'CD1'], ['OD2', 'CD2']], ['HD1', 'CE1', 'CE2', 'HE1', 'CZ', 'HE2', 'HZ'], {'ASH-PHE': ['appear', 0, 1], 'PHE-ASH': ['disappear', 1, 0]}, ], 'ASH-PRO': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB2'], ['HB3', 'HB3'], ['CG', 'CG'], ['OD1', 'HG2'], ['OD2', 'HG3'], ['H', 'CD'], ['HD2', 'HD2']], ['HD3'], {'PRO-ASH': ['disappear', 1, 0], 'ASH-PRO': ['appear', 0, 1]}, ], 'ASH-SER': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['CG', 'OG'], ['OD1', 'HG']], ['OD2', 'HD2'], {'SER-ASH': ['appear', 1, 0], 'ASH-SER': ['disappear', 0, 1]}, ], 'ASH-THR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'OG1'], ['CG', 'CG2'], ['OD1', 'HG1'], ['OD2', 'HG21'], ['HD2', 'HG22']], ['HG23'], {'THR-ASH': ['disappear', 1, 0], 'ASH-THR': ['appear', 0, 1]}, ], 'ASH-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'CD1'], ['OD2', 'CD2'], ['HD2', 'HD1']], ['NE1', 'CE3', 'CE2', 'HE1', 'HE3', 'CZ3', 'CZ2', 'HZ3', 'HZ2', 'CH2', 'HH2'], {'TRP-ASH': ['disappear', 1, 0], 'ASH-TRP': ['appear', 0, 1]}, ], 'ASH-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD2', 'HD2'], ['OD1', 'CD1'], ['OD2', 'CD2']], ['HD1', 'CE1', 'CE2', 'HE1', 'CZ', 'HE2', 'OH', 'HH'], {'ASH-TYR': ['appear', 0, 1], 'TYR-ASH': ['disappear', 1, 0]}, ], 'ASH-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['OD1', 'HG11'], ['OD2', 'HG12'], ['HD2', 'HG13']], ['HG21', 'HG22', 'HG23'], {'ASH-VAL': ['appear', 0, 1], 'VAL-ASH': ['disappear', 1, 0]}, ], 'ASN-ASP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'OD1'], ['ND2', 'OD2']], ['HD21', 'HD22'], {'ASN-ASP': ['disappear', 0, 1], 'ASP-ASN': ['appear', 1, 0]}, ], 'ASN-CYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['CG', 'SG'], ['OD1', 'HG']], ['ND2', 'HD21', 'HD22'], {'ASN-CYS': ['disappear', 0, 1], 'CYS-ASN': ['appear', 1, 0]}, ], 'ASN-GLH': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'HG2'], ['ND2', 'HG3'], ['HD21', 'CD'], ['HD22', 'OE1']], ['OE2', 'HE2'], {'ASN-GLH': ['appear', 0, 1], 'GLH-ASN': ['disappear', 1, 0]}, ], 'ASN-GLN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'HG2'], ['ND2', 'HG3'], ['HD21', 'CD'], ['HD22', 'OE1']], ['NE2', 'HE21', 'HE22'], {'GLN-ASN': ['disappear', 1, 0], 'ASN-GLN': ['appear', 0, 1]}, ], 'ASN-GLU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'HG2'], ['ND2', 'HG3'], ['HD21', 'CD'], ['HD22', 'OE1']], ['OE2'], {'GLU-ASN': ['disappear', 1, 0], 'ASN-GLU': ['appear', 0, 1]}, ], 'ASN-GLY': [ ['N', 'H', 'CA', 'O', 'C'], [['HA', 'HA2'], ['CB', 'HA3']], ('HB2', 'HB3', 'CG', 'OD1', 'ND2', 'HD21', 'HD22'), {'ASN-GLY': ['disappear', 0, 1], 'GLY-ASN': ['appear', 1, 0]}, ], 'ASN-HID': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'ND1'], ['ND2', 'CD2'], ['HD21', 'HD1'], ['HD22', 'CE1']], ['HD2', 'NE2', 'HE1'], {'ASN-HID': ['appear', 0, 1], 'HID-ASN': ['disappear', 1, 0]}, ], 'ASN-HIE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'ND1'], ['ND2', 'CD2'], ['HD21', 'CE1'], ['HD22', 'HD2']], ['NE2', 'HE1', 'HE2'], {'ASN-HIE': ['appear', 0, 1], 'HIE-ASN': ['disappear', 1, 0]}, ], 'ASN-HIP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'ND1'], ['ND2', 'CD2'], ['HD21', 'HD1'], ['HD22', 'CE1']], ['HD2', 'NE2', 'HE1', 'HE2'], {'ASN-HIP': ['appear', 0, 1], 'HIP-ASN': ['disappear', 1, 0]}, ], 'ASN-ILE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['OD1', 'HG12'], ['ND2', 'HG13'], ['HD21', 'CD1'], ['HD22', 'HG21']], ['HG22', 'HG23', 'HD11', 'HD12', 'HD13'], {'ASN-ILE': ['appear', 0, 1], 'ILE-ASN': ['disappear', 1, 0]}, ], 'ASN-LEU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD22', 'HD22'], ['HD21', 'HD21'], ['OD1', 'HG'], ['ND2', 'CD1']], ['CD2', 'HD11', 'HD12', 'HD13', 'HD23'], {'ASN-LEU': ['appear', 0, 1], 'LEU-ASN': ['disappear', 1, 0]}, ], 'ASN-LYN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'HG2'], ['ND2', 'HG3'], ['HD21', 'CD'], ['HD22', 'HD2']], ['HD3', 'CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2'], {'LYN-ASN': ['disappear', 1, 0], 'ASN-LYN': ['appear', 0, 1]}, ], 'ASN-LYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'HG2'], ['ND2', 'HG3'], ['HD21', 'CD'], ['HD22', 'HD2']], ['HD3', 'CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2', 'HZ3'], {'ASN-LYS': ['appear', 0, 1], 'LYS-ASN': ['disappear', 1, 0]}, ], 'ASN-MET': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'HG2'], ['ND2', 'HG3'], ['HD21', 'SD'], ['HD22', 'CE']], ['HE1', 'HE2', 'HE3'], {'MET-ASN': ['disappear', 1, 0], 'ASN-MET': ['appear', 0, 1]}, ], 'ASN-PHE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'CD1'], ['ND2', 'CD2'], ['HD21', 'HD1'], ['HD22', 'CE1']], ['HD2', 'CE2', 'HE1', 'CZ', 'HE2', 'HZ'], {'PHE-ASN': ['disappear', 1, 0], 'ASN-PHE': ['appear', 0, 1]}, ], 'ASN-PRO': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB2'], ['HB3', 'HB3'], ['CG', 'CG'], ['OD1', 'HG2'], ['ND2', 'HG3'], ['H', 'CD'], ['HD21', 'HD2'], ['HD22', 'HD3']], [], {'PRO-ASN': ['', 1, 0], 'ASN-PRO': ['', 0, 1]}, ], 'ASN-SER': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['CG', 'OG'], ['OD1', 'HG']], ['ND2', 'HD21', 'HD22'], {'ASN-SER': ['disappear', 0, 1], 'SER-ASN': ['appear', 1, 0]}, ], 'ASN-THR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'OG1'], ['CG', 'CG2'], ['OD1', 'HG1'], ['ND2', 'HG21'], ['HD21', 'HG22'], ['HD22', 'HG23']], [], {'THR-ASN': ['', 1, 0], 'ASN-THR': ['', 0, 1]}, ], 'ASN-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'CD1'], ['ND2', 'CD2'], ['HD21', 'HD1'], ['HD22', 'NE1']], ['CE3', 'CE2', 'HE1', 'HE3', 'CZ3', 'CZ2', 'HZ3', 'HZ2', 'CH2', 'HH2'], {'TRP-ASN': ['disappear', 1, 0], 'ASN-TRP': ['appear', 0, 1]}, ], 'ASN-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'CD1'], ['ND2', 'CD2'], ['HD21', 'HD1'], ['HD22', 'CE1']], ['HD2', 'CE2', 'HE1', 'CZ', 'HE2', 'OH', 'HH'], {'ASN-TYR': ['appear', 0, 1], 'TYR-ASN': ['disappear', 1, 0]}, ], 'ASN-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['OD1', 'HG11'], ['ND2', 'HG12'], ['HD21', 'HG13'], ['HD22', 'HG21']], ['HG22', 'HG23'], {'ASN-VAL': ['appear', 0, 1], 'VAL-ASN': ['disappear', 1, 0]}, ], 'ASP-CYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['CG', 'SG'], ['OD1', 'HG']], ['OD2'], {'ASP-CYS': ['disappear', 0, 1], 'CYS-ASP': ['appear', 1, 0]}, ], 'ASP-GLH': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'HG2'], ['OD2', 'HG3']], ['CD', 'OE1', 'OE2', 'HE2'], {'ASP-GLH': ['appear', 0, 1], 'GLH-ASP': ['disappear', 1, 0]}, ], 'ASP-GLN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'HG2'], ['OD2', 'HG3']], ['CD', 'OE1', 'NE2', 'HE21', 'HE22'], {'ASP-GLN': ['appear', 0, 1], 'GLN-ASP': ['disappear', 1, 0]}, ], 'ASP-GLU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'HG2'], ['OD2', 'HG3']], ['CD', 'OE1', 'OE2'], {'GLU-ASP': ['disappear', 1, 0], 'ASP-GLU': ['appear', 0, 1]}, ], 'ASP-GLY': [ ['N', 'H', 'CA', 'O', 'C'], [['HA', 'HA2'], ['CB', 'HA3']], ('HB2', 'HB3', 'CG', 'OD1', 'OD2'), {'ASP-GLY': ['disappear', 0, 1], 'GLY-ASP': ['appear', 1, 0]}, ], 'ASP-HID': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'ND1'], ['OD2', 'CD2']], ['HD1', 'CE1', 'HD2', 'NE2', 'HE1'], {'HID-ASP': ['disappear', 1, 0], 'ASP-HID': ['appear', 0, 1]}, ], 'ASP-HIE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'ND1'], ['OD2', 'CD2']], ['CE1', 'HD2', 'NE2', 'HE1', 'HE2'], {'HIE-ASP': ['disappear', 1, 0], 'ASP-HIE': ['appear', 0, 1]}, ], 'ASP-HIP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'ND1'], ['OD2', 'CD2']], ['HD1', 'CE1', 'HD2', 'NE2', 'HE1', 'HE2'], {'ASP-HIP': ['appear', 0, 1], 'HIP-ASP': ['disappear', 1, 0]}, ], 'ASP-ILE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['OD1', 'HG12'], ['OD2', 'HG13']], ['CD1', 'HG21', 'HG22', 'HG23', 'HD11', 'HD12', 'HD13'], {'ASP-ILE': ['appear', 0, 1], 'ILE-ASP': ['disappear', 1, 0]}, ], 'ASP-LEU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'HG'], ['OD2', 'CD1']], ['CD2', 'HD11', 'HD12', 'HD13', 'HD21', 'HD22', 'HD23'], {'LEU-ASP': ['disappear', 1, 0], 'ASP-LEU': ['appear', 0, 1]}, ], 'ASP-LYN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'HG2'], ['OD2', 'HG3']], ['CD', 'HD2', 'HD3', 'CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2'], {'ASP-LYN': ['appear', 0, 1], 'LYN-ASP': ['disappear', 1, 0]}, ], 'ASP-LYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'HG2'], ['OD2', 'HG3']], ['CD', 'HD2', 'HD3', 'CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2', 'HZ3'], {'LYS-ASP': ['disappear', 1, 0], 'ASP-LYS': ['appear', 0, 1]}, ], 'ASP-MET': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'HG2'], ['OD2', 'HG3']], ['SD', 'CE', 'HE1', 'HE2', 'HE3'], {'ASP-MET': ['appear', 0, 1], 'MET-ASP': ['disappear', 1, 0]}, ], 'ASP-PHE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'CD1'], ['OD2', 'CD2']], ['HD1', 'CE1', 'HD2', 'CE2', 'HE1', 'CZ', 'HE2', 'HZ'], {'ASP-PHE': ['appear', 0, 1], 'PHE-ASP': ['disappear', 1, 0]}, ], 'ASP-PRO': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB2'], ['HB3', 'HB3'], ['CG', 'CG'], ['OD1', 'HG2'], ['OD2', 'HG3'], ['H', 'CD']], ['HD2', 'HD3'], {'PRO-ASP': ['disappear', 1, 0], 'ASP-PRO': ['appear', 0, 1]}, ], 'ASP-SER': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['CG', 'OG'], ['OD1', 'HG']], ['OD2'], {'SER-ASP': ['appear', 1, 0], 'ASP-SER': ['disappear', 0, 1]}, ], 'ASP-THR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'OG1'], ['CG', 'CG2'], ['OD1', 'HG1'], ['OD2', 'HG21']], ['HG22', 'HG23'], {'THR-ASP': ['disappear', 1, 0], 'ASP-THR': ['appear', 0, 1]}, ], 'ASP-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'CD1'], ['OD2', 'CD2']], ['HD1', 'NE1', 'CE3', 'CE2', 'HE1', 'HE3', 'CZ3', 'CZ2', 'HZ3', 'HZ2', 'CH2', 'HH2'], {'TRP-ASP': ['disappear', 1, 0], 'ASP-TRP': ['appear', 0, 1]}, ], 'ASP-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['OD1', 'CD1'], ['OD2', 'CD2']], ['HD1', 'CE1', 'HD2', 'CE2', 'HE1', 'CZ', 'HE2', 'OH', 'HH'], {'ASP-TYR': ['appear', 0, 1], 'TYR-ASP': ['disappear', 1, 0]}, ], 'ASP-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['OD1', 'HG11'], ['OD2', 'HG12']], ['HG13', 'HG21', 'HG22', 'HG23'], {'ASP-VAL': ['appear', 0, 1], 'VAL-ASP': ['disappear', 1, 0]}, ], 'CYS-GLH': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['SG', 'CG'], ['HG', 'HG2']], ['HG3', 'CD', 'OE1', 'OE2', 'HE2'], {'CYS-GLH': ['appear', 0, 1], 'GLH-CYS': ['disappear', 1, 0]}, ], 'CYS-GLN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['SG', 'CG'], ['HG', 'HG2']], ['HG3', 'CD', 'OE1', 'NE2', 'HE21', 'HE22'], {'GLN-CYS': ['disappear', 1, 0], 'CYS-GLN': ['appear', 0, 1]}, ], 'CYS-GLU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['SG', 'CG'], ['HG', 'HG2']], ['HG3', 'CD', 'OE1', 'OE2'], {'CYS-GLU': ['appear', 0, 1], 'GLU-CYS': ['disappear', 1, 0]}, ], 'CYS-GLY': [ ['N', 'H', 'CA', 'O', 'C'], [['HA', 'HA2'], ['CB', 'HA3']], ('HB2', 'HB3', 'SG', 'HG'), {'CYS-GLY': ['disappear', 0, 1], 'GLY-CYS': ['appear', 1, 0]}, ], 'CYS-HID': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['SG', 'CG'], ['HG', 'ND1']], ['CD2', 'HD1', 'CE1', 'HD2', 'NE2', 'HE1'], {'HID-CYS': ['disappear', 1, 0], 'CYS-HID': ['appear', 0, 1]}, ], 'CYS-HIE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['SG', 'CG'], ['HG', 'ND1']], ['CD2', 'CE1', 'HD2', 'NE2', 'HE1', 'HE2'], {'CYS-HIE': ['appear', 0, 1], 'HIE-CYS': ['disappear', 1, 0]}, ], 'CYS-HIP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['SG', 'CG'], ['HG', 'ND1']], ['CD2', 'HD1', 'CE1', 'HD2', 'NE2', 'HE1', 'HE2'], {'CYS-HIP': ['appear', 0, 1], 'HIP-CYS': ['disappear', 1, 0]}, ], 'CYS-ILE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['SG', 'CG2'], ['HG', 'HG12']], ['HG13', 'CD1', 'HG21', 'HG22', 'HG23', 'HD11', 'HD12', 'HD13'], {'CYS-ILE': ['appear', 0, 1], 'ILE-CYS': ['disappear', 1, 0]}, ], 'CYS-LEU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HG', 'HG'], ['HB3', 'HB3'], ['HB2', 'HB2'], ['SG', 'CG']], ['CD1', 'CD2', 'HD11', 'HD12', 'HD13', 'HD21', 'HD22', 'HD23'], {'CYS-LEU': ['appear', 0, 1], 'LEU-CYS': ['disappear', 1, 0]}, ], 'CYS-LYN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['SG', 'CG'], ['HG', 'HG2']], ['HG3', 'CD', 'HD2', 'HD3', 'CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2'], {'CYS-LYN': ['appear', 0, 1], 'LYN-CYS': ['disappear', 1, 0]}, ], 'CYS-LYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['SG', 'CG'], ['HG', 'HG2']], ['HG3', 'CD', 'HD2', 'HD3', 'CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2', 'HZ3'], {'LYS-CYS': ['disappear', 1, 0], 'CYS-LYS': ['appear', 0, 1]}, ], 'CYS-MET': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['SG', 'CG'], ['HG', 'HG2']], ['HG3', 'SD', 'CE', 'HE1', 'HE2', 'HE3'], {'CYS-MET': ['appear', 0, 1], 'MET-CYS': ['disappear', 1, 0]}, ], 'CYS-PHE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['SG', 'CG'], ['HG', 'CD1']], ['CD2', 'HD1', 'CE1', 'HD2', 'CE2', 'HE1', 'CZ', 'HE2', 'HZ'], {'PHE-CYS': ['disappear', 1, 0], 'CYS-PHE': ['appear', 0, 1]}, ], 'CYS-PRO': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['SG', 'CG'], ['HG', 'HG2'], ['H', 'CD']], ['HG3', 'HD2', 'HD3'], {'CYS-PRO': ['appear', 0, 1], 'PRO-CYS': ['disappear', 1, 0]}, ], 'CYS-SER': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HG', 'HG'], ['HB3', 'HB3'], ['HB2', 'HB2'], ['SG', 'OG']], [], {'CYS-SER': ['', 0, 1], 'SER-CYS': ['', 1, 0]}, ], 'CYS-THR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'OG1'], ['SG', 'CG2'], ['HG', 'HG1']], ['HG21', 'HG22', 'HG23'], {'CYS-THR': ['appear', 0, 1], 'THR-CYS': ['disappear', 1, 0]}, ], 'CYS-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['SG', 'CG'], ['HG', 'CD1']], ['CD2', 'HD1', 'NE1', 'CE3', 'CE2', 'HE1', 'HE3', 'CZ3', 'CZ2', 'HZ3', 'HZ2', 'CH2', 'HH2'], {'CYS-TRP': ['appear', 0, 1], 'TRP-CYS': ['disappear', 1, 0]}, ], 'CYS-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['SG', 'CG'], ['HG', 'CD1']], ['CD2', 'HD1', 'CE1', 'HD2', 'CE2', 'HE1', 'CZ', 'HE2', 'OH', 'HH'], {'TYR-CYS': ['disappear', 1, 0], 'CYS-TYR': ['appear', 0, 1]}, ], 'CYS-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['SG', 'CG2'], ['HG', 'HG11']], ['HG12', 'HG13', 'HG21', 'HG22', 'HG23'], {'VAL-CYS': ['disappear', 1, 0], 'CYS-VAL': ['appear', 0, 1]}, ], 'GLH-GLN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD'], [['OE1', 'OE1'], ['OE2', 'NE2'], ['HE2', 'HE21']], ['HE22'], {'GLN-GLH': ['disappear', 1, 0], 'GLH-GLN': ['appear', 0, 1]}, ], 'GLH-GLU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD', 'OE1', 'OE2'], [], ['HE2'], {'GLU-GLH': ['appear', 1, 0], 'GLH-GLU': ['disappear', 0, 1]}, ], 'GLH-GLY': [ ['N', 'H', 'CA', 'C', 'O'], [['HA', 'HA2'], ['CB', 'HA3']], ('HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD', 'OE1', 'OE2', 'HE2'), {'GLH-GLY': ['disappear', 0, 1], 'GLY-GLH': ['appear', 1, 0]}, ], 'GLH-HID': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'ND1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'CE1'], ['OE2', 'HD2'], ['HE2', 'NE2']], ['HE1'], {'HID-GLH': ['disappear', 1, 0], 'GLH-HID': ['appear', 0, 1]}, ], 'GLH-HIE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HE2', 'HE2'], ['HG2', 'ND1'], ['HG3', 'CD2'], ['CD', 'CE1'], ['OE1', 'HD2'], ['OE2', 'NE2']], ['HE1'], {'HIE-GLH': ['disappear', 1, 0], 'GLH-HIE': ['appear', 0, 1]}, ], 'GLH-HIP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HE2', 'HE2'], ['HG2', 'ND1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'CE1'], ['OE2', 'HD2']], ['NE2', 'HE1'], {'GLH-HIP': ['appear', 0, 1], 'HIP-GLH': ['disappear', 1, 0]}, ], 'GLH-ILE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['HG2', 'HG12'], ['HG3', 'HG13'], ['CD', 'CD1'], ['OE1', 'HG21'], ['OE2', 'HG22'], ['HE2', 'HG23']], ['HD11', 'HD12', 'HD13'], {'ILE-GLH': ['disappear', 1, 0], 'GLH-ILE': ['appear', 0, 1]}, ], 'GLH-LEU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'HG'], ['HG3', 'CD1'], ['CD', 'CD2'], ['OE1', 'HD11'], ['OE2', 'HD12'], ['HE2', 'HD13']], ['HD21', 'HD22', 'HD23'], {'LEU-GLH': ['disappear', 1, 0], 'GLH-LEU': ['appear', 0, 1]}, ], 'GLH-LYN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD'], [['HE2', 'HE2'], ['OE1', 'HD2'], ['OE2', 'HD3']], ['CE', 'HE3', 'NZ', 'HZ1', 'HZ2'], {'GLH-LYN': ['appear', 0, 1], 'LYN-GLH': ['disappear', 1, 0]}, ], 'GLH-LYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD'], [['HE2', 'HE2'], ['OE1', 'HD2'], ['OE2', 'HD3']], ['CE', 'HE3', 'NZ', 'HZ1', 'HZ2', 'HZ3'], {'LYS-GLH': ['disappear', 1, 0], 'GLH-LYS': ['appear', 0, 1]}, ], 'GLH-MET': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'HG2'], ['HG3', 'HG3'], ['HE2', 'HE2'], ['CD', 'SD'], ['OE1', 'CE'], ['OE2', 'HE1']], ['HE3'], {'GLH-MET': ['appear', 0, 1], 'MET-GLH': ['disappear', 1, 0]}, ], 'GLH-PHE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HE2', 'HE2'], ['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'CE1'], ['OE2', 'HD2']], ['CE2', 'HE1', 'CZ', 'HZ'], {'PHE-GLH': ['disappear', 1, 0], 'GLH-PHE': ['appear', 0, 1]}, ], 'GLH-PRO': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB2'], ['HB3', 'HB3'], ['CG', 'CG'], ['HG2', 'HG2'], ['HG3', 'HG3'], ['CD', 'CD'], ['OE1', 'HD2'], ['OE2', 'HD3']], ['H', 'HE2'], {'GLH-PRO': ['disappear', 0, 1], 'PRO-GLH': ['appear', 1, 0]}, ], 'GLH-SER': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['CG', 'OG'], ['HG2', 'HG']], ['HG3', 'CD', 'OE1', 'OE2', 'HE2'], {'SER-GLH': ['appear', 1, 0], 'GLH-SER': ['disappear', 0, 1]}, ], 'GLH-THR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'OG1'], ['CG', 'CG2'], ['HG2', 'HG1'], ['HG3', 'HG21'], ['CD', 'HG22'], ['OE1', 'HG23']], ['OE2', 'HE2'], {'THR-GLH': ['appear', 1, 0], 'GLH-THR': ['disappear', 0, 1]}, ], 'GLH-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'NE1'], ['OE2', 'CE3'], ['HE2', 'CE2']], ['HE1', 'HE3', 'CZ3', 'CZ2', 'HZ3', 'HZ2', 'CH2', 'HH2'], {'GLH-TRP': ['appear', 0, 1], 'TRP-GLH': ['disappear', 1, 0]}, ], 'GLH-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HE2', 'HE2'], ['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'CE1'], ['OE2', 'HD2']], ['CE2', 'HE1', 'CZ', 'OH', 'HH'], {'TYR-GLH': ['disappear', 1, 0], 'GLH-TYR': ['appear', 0, 1]}, ], 'GLH-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['HG2', 'HG11'], ['HG3', 'HG12'], ['CD', 'HG13'], ['OE1', 'HG21'], ['OE2', 'HG22'], ['HE2', 'HG23']], [], {'VAL-GLH': ['', 1, 0], 'GLH-VAL': ['', 0, 1]}, ], 'GLN-GLU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD'], [['OE1', 'OE1'], ['NE2', 'OE2']], ['HE21', 'HE22'], {'GLU-GLN': ['appear', 1, 0], 'GLN-GLU': ['disappear', 0, 1]}, ], 'GLN-GLY': [ ['N', 'H', 'CA', 'C', 'O'], [['HA', 'HA2'], ['CB', 'HA3']], ['HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD', 'OE1', 'NE2', 'HE21', 'HE22'], {'GLY-GLN': ['appear', 1, 0], 'GLN-GLY': ['disappear', 0, 1]}, ], 'GLN-HID': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['NE2', 'NE2'], ['HG2', 'ND1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'CE1'], ['HE21', 'HD2'], ['HE22', 'HE1']], [], {'GLN-HID': ['', 0, 1], 'HID-GLN': ['', 1, 0]}, ], 'GLN-HIE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['NE2', 'NE2'], ['HG2', 'ND1'], ['HG3', 'CD2'], ['CD', 'CE1'], ['OE1', 'HD2'], ['HE21', 'HE1'], ['HE22', 'HE2']], [], {'GLN-HIE': ['', 0, 1], 'HIE-GLN': ['', 1, 0]}, ], 'GLN-HIP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['NE2', 'NE2'], ['HG2', 'ND1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'CE1'], ['HE21', 'HD2'], ['HE22', 'HE1']], ['HE2'], {'HIP-GLN': ['disappear', 1, 0], 'GLN-HIP': ['appear', 0, 1]}, ], 'GLN-ILE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['HG2', 'HG12'], ['HG3', 'HG13'], ['CD', 'CD1'], ['OE1', 'HG21'], ['NE2', 'HG22'], ['HE21', 'HG23'], ['HE22', 'HD11']], ['HD12', 'HD13'], {'GLN-ILE': ['appear', 0, 1], 'ILE-GLN': ['disappear', 1, 0]}, ], 'GLN-LEU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'HG'], ['HG3', 'CD1'], ['CD', 'CD2'], ['OE1', 'HD11'], ['NE2', 'HD12'], ['HE21', 'HD13'], ['HE22', 'HD21']], ['HD22', 'HD23'], {'GLN-LEU': ['appear', 0, 1], 'LEU-GLN': ['disappear', 1, 0]}, ], 'GLN-LYN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD'], [['OE1', 'HD2'], ['NE2', 'HD3'], ['HE21', 'CE'], ['HE22', 'HE2']], ['HE3', 'NZ', 'HZ1', 'HZ2'], {'LYN-GLN': ['disappear', 1, 0], 'GLN-LYN': ['appear', 0, 1]}, ], 'GLN-LYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD'], [['OE1', 'HD2'], ['NE2', 'HD3'], ['HE21', 'CE'], ['HE22', 'HE2']], ['HE3', 'NZ', 'HZ1', 'HZ2', 'HZ3'], {'GLN-LYS': ['appear', 0, 1], 'LYS-GLN': ['disappear', 1, 0]}, ], 'GLN-MET': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'HG2'], ['HG3', 'HG3'], ['CD', 'SD'], ['OE1', 'CE'], ['NE2', 'HE1'], ['HE21', 'HE2'], ['HE22', 'HE3']], [], {'MET-GLN': ['', 1, 0], 'GLN-MET': ['', 0, 1]}, ], 'GLN-PHE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'CE1'], ['NE2', 'HD2'], ['HE21', 'CE2'], ['HE22', 'HE1']], ['CZ', 'HE2', 'HZ'], {'PHE-GLN': ['disappear', 1, 0], 'GLN-PHE': ['appear', 0, 1]}, ], 'GLN-PRO': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB2'], ['HB3', 'HB3'], ['CG', 'CG'], ['HG2', 'HG2'], ['HG3', 'HG3'], ['CD', 'CD'], ['OE1', 'HD2'], ['NE2', 'HD3']], ['H', 'HE21', 'HE22'], {'GLN-PRO': ['disappear', 0, 1], 'PRO-GLN': ['appear', 1, 0]}, ], 'GLN-SER': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['CG', 'OG'], ['HG2', 'HG']], ['HG3', 'CD', 'OE1', 'NE2', 'HE21', 'HE22'], {'GLN-SER': ['disappear', 0, 1], 'SER-GLN': ['appear', 1, 0]}, ], 'GLN-THR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'OG1'], ['CG', 'CG2'], ['HG2', 'HG1'], ['HG3', 'HG21'], ['CD', 'HG22'], ['OE1', 'HG23']], ['NE2', 'HE21', 'HE22'], {'THR-GLN': ['appear', 1, 0], 'GLN-THR': ['disappear', 0, 1]}, ], 'GLN-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'NE1'], ['NE2', 'CE3'], ['HE21', 'CE2'], ['HE22', 'HE1']], ['HE3', 'CZ3', 'CZ2', 'HZ3', 'HZ2', 'CH2', 'HH2'], {'TRP-GLN': ['disappear', 1, 0], 'GLN-TRP': ['appear', 0, 1]}, ], 'GLN-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'CE1'], ['NE2', 'HD2'], ['HE21', 'CE2'], ['HE22', 'HE1']], ['CZ', 'HE2', 'OH', 'HH'], {'GLN-TYR': ['appear', 0, 1], 'TYR-GLN': ['disappear', 1, 0]}, ], 'GLN-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['HG2', 'HG11'], ['HG3', 'HG12'], ['CD', 'HG13'], ['OE1', 'HG21'], ['NE2', 'HG22'], ['HE21', 'HG23']], ['HE22'], {'GLN-VAL': ['disappear', 0, 1], 'VAL-GLN': ['appear', 1, 0]}, ], 'GLU-GLY': [ ['N', 'H', 'CA', 'O', 'C'], [['HA', 'HA2'], ['CB', 'HA3']], ('HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD', 'OE1', 'OE2'), {'GLU-GLY': ['disappear', 0, 1], 'GLY-GLU': ['appear', 1, 0]}, ], 'GLU-HID': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'ND1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'CE1'], ['OE2', 'HD2']], ['NE2', 'HE1'], {'GLU-HID': ['appear', 0, 1], 'HID-GLU': ['disappear', 1, 0]}, ], 'GLU-HIE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'ND1'], ['HG3', 'CD2'], ['CD', 'CE1'], ['OE1', 'HD2'], ['OE2', 'NE2']], ['HE1', 'HE2'], {'GLU-HIE': ['appear', 0, 1], 'HIE-GLU': ['disappear', 1, 0]}, ], 'GLU-HIP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'ND1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'CE1'], ['OE2', 'HD2']], ['NE2', 'HE1', 'HE2'], {'GLU-HIP': ['appear', 0, 1], 'HIP-GLU': ['disappear', 1, 0]}, ], 'GLU-ILE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['HG2', 'HG12'], ['HG3', 'HG13'], ['CD', 'CD1'], ['OE1', 'HG21'], ['OE2', 'HG22']], ['HG23', 'HD11', 'HD12', 'HD13'], {'GLU-ILE': ['appear', 0, 1], 'ILE-GLU': ['disappear', 1, 0]}, ], 'GLU-LEU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'HG'], ['HG3', 'CD1'], ['CD', 'CD2'], ['OE1', 'HD11'], ['OE2', 'HD12']], ['HD13', 'HD21', 'HD22', 'HD23'], {'GLU-LEU': ['appear', 0, 1], 'LEU-GLU': ['disappear', 1, 0]}, ], 'GLU-LYN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD'], [['OE1', 'HD2'], ['OE2', 'HD3']], ['CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2'], {'LYN-GLU': ['disappear', 1, 0], 'GLU-LYN': ['appear', 0, 1]}, ], 'GLU-LYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD'], [['OE1', 'HD2'], ['OE2', 'HD3']], ['CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2', 'HZ3'], {'GLU-LYS': ['appear', 0, 1], 'LYS-GLU': ['disappear', 1, 0]}, ], 'GLU-MET': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'HG2'], ['HG3', 'HG3'], ['CD', 'SD'], ['OE1', 'CE'], ['OE2', 'HE1']], ['HE2', 'HE3'], {'MET-GLU': ['disappear', 1, 0], 'GLU-MET': ['appear', 0, 1]}, ], 'GLU-PHE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'CE1'], ['OE2', 'HD2']], ['CE2', 'HE1', 'CZ', 'HE2', 'HZ'], {'PHE-GLU': ['disappear', 1, 0], 'GLU-PHE': ['appear', 0, 1]}, ], 'GLU-PRO': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB2'], ['HB3', 'HB3'], ['CG', 'CG'], ['HG2', 'HG2'], ['HG3', 'HG3'], ['CD', 'CD'], ['OE1', 'HD2'], ['OE2', 'HD3']], ['H'], {'PRO-GLU': ['appear', 1, 0], 'GLU-PRO': ['disappear', 0, 1]}, ], 'GLU-SER': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['CG', 'OG'], ['HG2', 'HG']], ['HG3', 'CD', 'OE1', 'OE2'], {'GLU-SER': ['disappear', 0, 1], 'SER-GLU': ['appear', 1, 0]}, ], 'GLU-THR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'OG1'], ['CG', 'CG2'], ['HG2', 'HG1'], ['HG3', 'HG21'], ['CD', 'HG22'], ['OE1', 'HG23']], ['OE2'], {'THR-GLU': ['appear', 1, 0], 'GLU-THR': ['disappear', 0, 1]}, ], 'GLU-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'NE1'], ['OE2', 'CE3']], ['CE2', 'HE1', 'HE3', 'CZ3', 'CZ2', 'HZ3', 'HZ2', 'CH2', 'HH2'], {'TRP-GLU': ['disappear', 1, 0], 'GLU-TRP': ['appear', 0, 1]}, ], 'GLU-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'CE1'], ['OE2', 'HD2']], ['CE2', 'HE1', 'CZ', 'HE2', 'OH', 'HH'], {'GLU-TYR': ['appear', 0, 1], 'TYR-GLU': ['disappear', 1, 0]}, ], 'GLU-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['HG2', 'HG11'], ['HG3', 'HG12'], ['CD', 'HG13'], ['OE1', 'HG21'], ['OE2', 'HG22']], ['HG23'], {'GLU-VAL': ['appear', 0, 1], 'VAL-GLU': ['disappear', 1, 0]}, ], 'GLY-HID': [ ['N', 'H', 'CA', 'C', 'O'], [['HA2', 'HA'], ['HA3', 'CB']], ('HB2', 'HB3', 'CG', 'ND1', 'HD1', 'CD2', 'HD2', 'CE1', 'HE1', 'NE2'), {'GLY-HID': ['appear', 0, 1], 'HID-GLY': ['disappear', 1, 0]}, ], 'GLY-HIE': [ ['C', 'N', 'H', 'CA', 'O'], [['HA2', 'HA'], ['HA3', 'CB']], ('HB2', 'HB3', 'CG', 'ND1', 'CD2', 'HD2', 'CE1', 'HE1', 'NE2', 'HE2'), {'HIE-GLY': ['disappear', 1, 0], 'GLY-HIE': ['appear', 0, 1]}, ], 'GLY-HIP': [ ['C', 'N', 'H', 'CA', 'O'], [['HA2', 'HA'], ['HA3', 'CB']], ('HB2', 'HB3', 'CG', 'ND1', 'HD1', 'CD2', 'HD2', 'CE1', 'HE1', 'NE2', 'HE2'), {'GLY-HIP': ['appear', 0, 1], 'HIP-GLY': ['disappear', 1, 0]}, ], 'GLY-ILE': [ ['C', 'N', 'H', 'CA', 'O'], [['HA2', 'HA'], ['HA3', 'CB']], ('HB', 'CG1', 'HG12', 'HG13', 'CG2', 'HG21', 'HG22', 'HG23', 'CD1', 'HD11', 'HD12', 'HD13'), {'ILE-GLY': ['disappear', 1, 0], 'GLY-ILE': ['appear', 0, 1]}, ], 'GLY-LEU': [ ['C', 'N', 'H', 'CA', 'O'], [['HA2', 'HA'], ['HA3', 'CB']], ('HB2', 'HB3', 'CG', 'HG', 'CD1', 'HD11', 'HD12', 'HD13', 'CD2', 'HD21', 'HD22', 'HD23'), {'LEU-GLY': ['disappear', 1, 0], 'GLY-LEU': ['appear', 0, 1]}, ], 'GLY-LYN': [ ['C', 'N', 'H', 'CA', 'O'], [['HA2', 'HA'], ['HA3', 'CB']], ('HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD', 'HD2', 'HD3', 'CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2'), {'GLY-LYN': ['appear', 0, 1], 'LYN-GLY': ['disappear', 1, 0]}, ], 'GLY-LYS': [ ['C', 'N', 'H', 'CA', 'O'], [['HA2', 'HA'], ['HA3', 'CB']], ('HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD', 'HD2', 'HD3', 'CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2', 'HZ3'), {'LYS-GLY': ['disappear', 1, 0], 'GLY-LYS': ['appear', 0, 1]}, ], 'GLY-MET': [ ['C', 'N', 'H', 'CA', 'O'], [['HA2', 'HA'], ['HA3', 'CB']], ('HB2', 'HB3', 'CG', 'HG2', 'HG3', 'SD', 'CE', 'HE1', 'HE2', 'HE3'), {'GLY-MET': ['appear', 0, 1], 'MET-GLY': ['disappear', 1, 0]}, ], 'GLY-PHE': [ ['C', 'N', 'H', 'CA', 'O'], [['HA2', 'HA'], ['HA3', 'CB']], ('HB2', 'HB3', 'CG', 'CD1', 'HD1', 'CD2', 'HD2', 'CE1', 'HE1', 'CE2', 'HE2', 'CZ', 'HZ'), {'GLY-PHE': ['appear', 0, 1], 'PHE-GLY': ['disappear', 1, 0]}, ], 'GLY-PRO': [ ['C', 'N', 'CA', 'O'], [['HA2', 'HA'], ['HA3', 'CB'], ['H', 'CD']], ['HB2', 'HB3', 'CG', 'HG2', 'HG3', 'HD2', 'HD3'], {'GLY-PRO': ['appear', 0, 1], 'PRO-GLY': ['disappear', 1, 0]} ], 'GLY-SER': [ ['C', 'N', 'H', 'CA', 'O'], [['HA2', 'HA'], ['HA3', 'CB']], ('HB2', 'HB3', 'OG', 'HG'), {'SER-GLY': ['disappear', 1, 0], 'GLY-SER': ['appear', 0, 1]}, ], 'GLY-THR': [ ['C', 'N', 'H', 'CA', 'O'], [['HA2', 'HA'], ['HA3', 'CB']], ('HB', 'OG1', 'HG1', 'CG2', 'HG21', 'HG22', 'HG23'), {'GLY-THR': ['appear', 0, 1], 'THR-GLY': ['disappear', 1, 0]}, ], 'GLY-TRP': [ ['C', 'N', 'H', 'CA', 'O'], [['HA2', 'HA'], ['HA3', 'CB']], ('HB2', 'HB3', 'CG', 'CD1', 'HD1', 'CD2', 'NE1', 'HE1', 'CE3', 'HE3', 'CE2', 'CZ3', 'HZ3', 'CZ2', 'HZ2', 'CH2', 'HH2'), {'GLY-TRP': ['appear', 0, 1], 'TRP-GLY': ['disappear', 1, 0]}, ], 'GLY-TYR': [ ['C', 'N', 'H', 'CA', 'O'], [['HA2', 'HA'], ['HA3', 'CB']], ('HB2', 'HB3', 'CG', 'CD1', 'HD1', 'CD2', 'HD2', 'CE1', 'HE1', 'CE2', 'HE2', 'CZ', 'OH', 'HH'), {'TYR-GLY': ['disappear', 1, 0], 'GLY-TYR': ['appear', 0, 1]}, ], 'GLY-VAL': [ ['C', 'N', 'H', 'CA', 'O'], [['HA2', 'HA'], ['HA3', 'CB']], ('HB', 'CG1', 'HG11', 'HG12', 'HG13', 'CG2', 'HG21', 'HG22', 'HG23'), {'VAL-GLY': ['disappear', 1, 0], 'GLY-VAL': ['appear', 0, 1]}, ], 'HID-HIE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'ND1', 'CD2', 'HD2', 'CE1', 'HE1', 'NE2'], [['HD1', 'HE2']], [], {'HID-HIE': ['', 0, 1], 'HIE-HID': ['', 1, 0]}, ], 'HID-HIP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'ND1', 'CD2', 'HD2', 'CE1', 'HE1', 'NE2', 'HD1'], [], ['HE2'], {'HID-HIP': ['appear', 1, 0], 'HIP-HID': ['disappear', 0, 1]}, ], 'HID-ILE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['ND1', 'HG12'], ['CD2', 'HG13'], ['HD1', 'CD1'], ['CE1', 'HG21'], ['HD2', 'HG22'], ['NE2', 'HG23'], ['HE1', 'HD11']], ['HD12', 'HD13'], {'ILE-HID': ['disappear', 1, 0], 'HID-ILE': ['appear', 0, 1]}, ], 'HID-LEU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['CD2', 'CD2'], ['ND1', 'HG'], ['HD1', 'CD1'], ['CE1', 'HD11'], ['HD2', 'HD12'], ['NE2', 'HD13'], ['HE1', 'HD21']], ['HD22', 'HD23'], {'HID-LEU': ['appear', 0, 1], 'LEU-HID': ['disappear', 1, 0]}, ], 'HID-LYN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD2', 'HD2'], ['ND1', 'HG2'], ['CD2', 'HG3'], ['HD1', 'CD'], ['CE1', 'HD3'], ['NE2', 'CE'], ['HE1', 'HE2']], ['HE3', 'NZ', 'HZ1', 'HZ2'], {'LYN-HID': ['disappear', 1, 0], 'HID-LYN': ['appear', 0, 1]}, ], 'HID-LYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD2', 'HD2'], ['ND1', 'HG2'], ['CD2', 'HG3'], ['HD1', 'CD'], ['CE1', 'HD3'], ['NE2', 'CE'], ['HE1', 'HE2']], ['HE3', 'NZ', 'HZ1', 'HZ2', 'HZ3'], {'HID-LYS': ['appear', 0, 1], 'LYS-HID': ['disappear', 1, 0]}, ], 'HID-MET': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HE1', 'HE1'], ['ND1', 'HG2'], ['CD2', 'HG3'], ['HD1', 'SD'], ['CE1', 'CE'], ['HD2', 'HE2'], ['NE2', 'HE3']], [], {'HID-MET': ['', 0, 1], 'MET-HID': ['', 1, 0]}, ], 'HID-PHE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['ND1', 'CD1'], ['HD1', 'HD1'], ['CD2', 'CD2'], ['HD2', 'HD2'], ['CE1', 'CE1'], ['HE1', 'HE1'], ['NE2', 'CE2']], ['HE2', 'CZ', 'HZ'], {'HID-PHE': ['appear', 0, 1], 'PHE-HID': ['disappear', 1, 0]}, ], 'HID-PRO': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB2'], ['HB3', 'HB3'], ['CG', 'CG'], ['ND1', 'HG2'], ['CD2', 'HG3'], ['CE1', 'CD'], ['HD2', 'HD2'], ['HE1', 'HD3']], ['H', 'HD1', 'NE2'], {'HID-PRO': ['disappear', 0, 1], 'PRO-HID': ['appear', 1, 0]}, ], 'HID-SER': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['CG', 'OG'], ['ND1', 'HG']], ['CD2', 'HD1', 'CE1', 'HD2', 'NE2', 'HE1'], {'HID-SER': ['disappear', 0, 1], 'SER-HID': ['appear', 1, 0]}, ], 'HID-THR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'OG1'], ['CG', 'CG2'], ['ND1', 'HG1'], ['CD2', 'HG21'], ['HD1', 'HG22'], ['CE1', 'HG23']], ['HD2', 'NE2', 'HE1'], {'HID-THR': ['disappear', 0, 1], 'THR-HID': ['appear', 1, 0]}, ], 'HID-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['ND1', 'CD1'], ['HD1', 'HD1'], ['CD2', 'CD2'], ['CE1', 'NE1'], ['NE2', 'CE3'], ['HD2', 'CE2'], ['HE1', 'HE1']], ['CZ3', 'HZ3', 'CZ2', 'HZ2', 'CH2', 'HH2', 'HE3'], {'HID-TRP': ['appear', 0, 1], 'TRP-HID': ['disappear', 1, 0]}, ], 'HID-TYR': [ ['N', 'CA', 'HA', 'C', 'H', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['ND1', 'CD1'], ['HD1', 'HD1'], ['CD2', 'CD2'], ['HD2', 'HD2'], ['CE1', 'CE1'], ['HE1', 'HE1'], ['NE2', 'CE2']], ['HE2', 'CZ', 'OH', 'HH'], {'HID-TYR': ['appear', 0, 1], 'PHE-TYR': ['disappear', 1, 0]}, ], 'HID-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['ND1', 'HG11'], ['CD2', 'HG12'], ['HD1', 'HG13'], ['CE1', 'HG21'], ['HD2', 'HG22'], ['NE2', 'HG23']], ['HE1'], {'HID-VAL': ['disappear', 0, 1], 'VAL-HID': ['appear', 1, 0]}, ], 'HIE-HIP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'HB2', 'HB3', 'CG', 'CB', 'ND1', 'CD2', 'HD2', 'CE1', 'HE1', 'NE2', 'HE2'], [], ['HD1'], {'HIE-HIP': ['appear', 1, 0], 'HIP-HIE': ['disappear', 0, 1]}, ], 'HIE-ILE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['ND1', 'HG12'], ['CD2', 'HG13'], ['CE1', 'CD1'], ['HD2', 'HG21'], ['NE2', 'HG22'], ['HE1', 'HG23'], ['HE2', 'HD11']], ['HD12', 'HD13'], {'HIE-ILE': ['appear', 0, 1], 'ILE-HIE': ['disappear', 1, 0]}, ], 'HIE-LEU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['CD2', 'CD2'], ['ND1', 'HG'], ['CE1', 'CD1'], ['HD2', 'HD11'], ['NE2', 'HD12'], ['HE1', 'HD13'], ['HE2', 'HD21']], ['HD22', 'HD23'], {'HIE-LEU': ['appear', 0, 1], 'LEU-HIE': ['disappear', 1, 0]}, ], 'HIE-LYN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD2', 'HD2'], ['HE2', 'HE2'], ['ND1', 'HG2'], ['CD2', 'HG3'], ['CE1', 'CD'], ['NE2', 'HD3'], ['HE1', 'CE']], ['HE3', 'NZ', 'HZ1', 'HZ2'], {'LYN-HIE': ['disappear', 1, 0], 'HIE-LYN': ['appear', 0, 1]}, ], 'HIE-LYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD2', 'HD2'], ['HE2', 'HE2'], ['ND1', 'HG2'], ['CD2', 'HG3'], ['CE1', 'CD'], ['NE2', 'HD3'], ['HE1', 'CE']], ['HE3', 'NZ', 'HZ1', 'HZ2', 'HZ3'], {'HIE-LYS': ['appear', 0, 1], 'LYS-HIE': ['disappear', 1, 0]}, ], 'HIE-MET': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HE1', 'HE1'], ['HE2', 'HE2'], ['ND1', 'HG2'], ['CD2', 'HG3'], ['CE1', 'SD'], ['HD2', 'CE'], ['NE2', 'HE3']], [], {'MET-HIE': ['', 1, 0], 'HIE-MET': ['', 0, 1]}, ], 'HIE-PHE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['ND1', 'CD1'], ['HE2', 'HE2'], ['CD2', 'CD2'], ['HD2', 'HD2'], ['CE1', 'CE1'], ['HE1', 'HE1'], ['NE2', 'CE2']], ['HD1', 'CZ', 'HZ'], {'HIE-PHE': ['appear', 0, 1], 'PHE-HIE': ['disappear', 1, 0]}, ], 'HIE-PRO': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB2'], ['HB3', 'HB3'], ['CG', 'CG'], ['ND1', 'HG2'], ['CD2', 'HG3'], ['CE1', 'CD'], ['HD2', 'HD2'], ['HE1', 'HD3']], ['H', 'NE2', 'HE2'], {'HIE-PRO': ['disappear', 0, 1], 'PRO-HIE': ['appear', 1, 0]}, ], 'HIE-SER': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['CG', 'OG'], ['ND1', 'HG']], ['CD2', 'CE1', 'HD2', 'NE2', 'HE1', 'HE2'], {'HIE-SER': ['disappear', 0, 1], 'SER-HIE': ['appear', 1, 0]}, ], 'HIE-THR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'OG1'], ['CG', 'CG2'], ['ND1', 'HG1'], ['CD2', 'HG21'], ['CE1', 'HG22'], ['HD2', 'HG23']], ['NE2', 'HE1', 'HE2'], {'THR-HIE': ['appear', 1, 0], 'HIE-THR': ['disappear', 0, 1]}, ], 'HIE-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['ND1', 'CD1'], ['CD2', 'CD2'], ['CE1', 'NE1'], ['NE2', 'CE3'], ['HE2', 'HE3'], ['HD2', 'CE2'], ['HE1', 'HE1']], ['CZ3', 'HZ3', 'HD1', 'CZ2', 'HZ2', 'CH2', 'HH2'], {'HIE-TRP': ['appear', 0, 1], 'TRP-HIE': ['disappear', 1, 0]}, ], 'HIE-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['ND1', 'CD1'], ['HE2', 'HE2'], ['CD2', 'CD2'], ['HD2', 'HD2'], ['CE1', 'CE1'], ['HE1', 'HE1'], ['NE2', 'CE2']], ['HD1', 'CZ', 'OH', 'HH'], {'HIE-TYR': ['appear', 0, 1], 'TYR-HIE': ['disappear', 1, 0]}, ], 'HIE-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['ND1', 'HG11'], ['CD2', 'HG12'], ['CE1', 'HG13'], ['HD2', 'HG21'], ['NE2', 'HG22'], ['HE1', 'HG23']], ['HE2'], {'VAL-HIE': ['appear', 1, 0], 'HIE-VAL': ['disappear', 0, 1]}, ], 'HIP-ILE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['ND1', 'HG12'], ['CD2', 'HG13'], ['HD1', 'CD1'], ['CE1', 'HG21'], ['HD2', 'HG22'], ['NE2', 'HG23'], ['HE1', 'HD11'], ['HE2', 'HD12']], ['HD13'], {'ILE-HIP': ['disappear', 1, 0], 'HIP-ILE': ['appear', 0, 1]}, ], 'HIP-LEU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['CD2', 'CD2'], ['ND1', 'HG'], ['HD1', 'CD1'], ['CE1', 'HD11'], ['HD2', 'HD12'], ['NE2', 'HD13'], ['HE1', 'HD21'], ['HE2', 'HD22']], ['HD23'], {'HIP-LEU': ['appear', 0, 1], 'LEU-HIP': ['disappear', 1, 0]}, ], 'HIP-LYN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD2', 'HD2'], ['HE2', 'HE2'], ['ND1', 'HG2'], ['CD2', 'HG3'], ['HD1', 'CD'], ['CE1', 'HD3'], ['NE2', 'CE'], ['HE1', 'HE3']], ['NZ', 'HZ1', 'HZ2'], {'HIP-LYN': ['appear', 0, 1], 'LYN-HIP': ['disappear', 1, 0]}, ], 'HIP-LYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD2', 'HD2'], ['HE2', 'HE2'], ['ND1', 'HG2'], ['CD2', 'HG3'], ['HD1', 'CD'], ['CE1', 'HD3'], ['NE2', 'CE'], ['HE1', 'HE3']], ['NZ', 'HZ1', 'HZ2', 'HZ3'], {'LYS-HIP': ['disappear', 1, 0], 'HIP-LYS': ['appear', 0, 1]}, ], 'HIP-MET': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HE1', 'HE1'], ['HE2', 'HE2'], ['ND1', 'HG2'], ['CD2', 'HG3'], ['HD1', 'SD'], ['CE1', 'CE'], ['HD2', 'HE3']], ['NE2'], {'HIP-MET': ['disappear', 0, 1], 'MET-HIP': ['appear', 1, 0]}, ], 'HIP-PHE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['ND1', 'CD1'], ['HD1', 'HD1'], ['CD2', 'CD2'], ['HD2', 'HD2'], ['CE1', 'CE1'], ['HE1', 'HE1'], ['HE2', 'HE2'], ['NE2', 'CE2']], ['CZ', 'HZ'], {'HIP-PHE': ['appear', 0, 1], 'PHE-HIP': ['disappear', 1, 0]}, ], 'HIP-PRO': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB2'], ['HB3', 'HB3'], ['CG', 'CG'], ['ND1', 'HG2'], ['CD2', 'HG3'], ['CE1', 'CD'], ['HD2', 'HD2'], ['HE1', 'HD3']], ['H', 'NE2', 'HD1', 'HE2'], {'HIP-PRO': ['disappear', 0, 1], 'PRO-HIP': ['appear', 1, 0]}, ], 'HIP-SER': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['CG', 'OG'], ['ND1', 'HG']], ['CD2', 'HD1', 'CE1', 'HD2', 'NE2', 'HE1', 'HE2'], {'HIP-SER': ['disappear', 0, 1], 'SER-HIP': ['appear', 1, 0]}, ], 'HIP-THR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'OG1'], ['CG', 'CG2'], ['ND1', 'HG1'], ['CD2', 'HG21'], ['HD1', 'HG22'], ['CE1', 'HG23']], ['HD2', 'NE2', 'HE1', 'HE2'], {'HIP-THR': ['disappear', 0, 1], 'THR-HIP': ['appear', 1, 0]}, ], 'HIP-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['ND1', 'CD1'], ['HD1', 'HD1'], ['CD2', 'CD2'], ['CE1', 'NE1'], ['NE2', 'CE3'], ['HE2', 'HE3'], ['HD2', 'CE2'], ['HE1', 'HE1']], ['CZ3', 'HZ3', 'CZ2', 'HZ2', 'CH2', 'HH2'], {'HIP-TRP': ['appear', 0, 1], 'TRP-HIP': ['disappear', 1, 0]}, ], 'HIP-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['ND1', 'CD1'], ['HD1', 'HD1'], ['CD2', 'CD2'], ['HD2', 'HD2'], ['CE1', 'CE1'], ['HE1', 'HE1'], ['NE2', 'CE2'], ['HE2', 'HE2']], ['CZ', 'OH', 'HH'], {'HIP-TYR': ['appear', 0, 1], 'TYR-HIP': ['disappear', 1, 0]}, ], 'HIP-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['ND1', 'HG11'], ['CD2', 'HG12'], ['HD1', 'HG13'], ['CE1', 'HG21'], ['HD2', 'HG22'], ['NE2', 'HG23']], ['HE1', 'HE2'], {'VAL-HIP': ['appear', 1, 0], 'HIP-VAL': ['disappear', 0, 1]}, ], 'ILE-LEU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB', 'HB2'], ['CG1', 'HB3'], ['CG2', 'CG'], ['CD1', 'CD1'], ['HG13', 'CD2'], ['HG12', 'HG'], ['HG21', 'HD21'], ['HG22', 'HD22'], ['HD11', 'HD11'], ['HD12', 'HD12'], ['HD13', 'HD13'], ['HG23', 'HD23']], [], {'LEU-ILE': ['', 1, 0], 'ILE-LEU': ['', 0, 1]}, ], 'ILE-LYN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB', 'HB2'], ['CG1', 'HB3'], ['CG2', 'CG'], ['HG12', 'HG2'], ['HG13', 'HG3'], ['CD1', 'CD'], ['HG21', 'HD2'], ['HG22', 'HD3'], ['HG23', 'CE'], ['HD11', 'HE2'], ['HD12', 'HE3'], ['HD13', 'NZ']], ['HZ1', 'HZ2'], {'ILE-LYN': ['appear', 0, 1], 'LYN-ILE': ['disappear', 1, 0]}, ], 'ILE-LYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB', 'HB2'], ['CG1', 'HB3'], ['CG2', 'CG'], ['HG12', 'HG2'], ['HG13', 'HG3'], ['CD1', 'CD'], ['HG21', 'HD2'], ['HG22', 'HD3'], ['HG23', 'CE'], ['HD11', 'HE2'], ['HD12', 'HE3'], ['HD13', 'NZ']], ['HZ1', 'HZ2', 'HZ3'], {'LYS-ILE': ['disappear', 1, 0], 'ILE-LYS': ['appear', 0, 1]}, ], 'ILE-MET': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB', 'HB2'], ['CG1', 'HB3'], ['CG2', 'CG'], ['HG12', 'HG2'], ['HG13', 'HG3'], ['CD1', 'SD'], ['HG21', 'CE'], ['HG22', 'HE1'], ['HG23', 'HE2'], ['HD11', 'HE3']], ['HD12', 'HD13'], {'ILE-MET': ['disappear', 0, 1], 'MET-ILE': ['appear', 1, 0]}, ], 'ILE-PHE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB', 'HB2'], ['CG1', 'HB3'], ['CG2', 'CG'], ['CD1', 'CD1'], ['HG12', 'CD2'], ['HG23', 'CE2'], ['HG13', 'HD1'], ['HG21', 'CE1'], ['HG22', 'HD2'], ['HD11', 'HE1'], ['HD12', 'CZ'], ['HD13', 'HE2']], ['HZ'], {'PHE-ILE': ['disappear', 1, 0], 'ILE-PHE': ['appear', 0, 1]}, ], 'ILE-PRO': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB', 'HB2'], ['CG1', 'HB3'], ['CG2', 'CG'], ['HG12', 'HG2'], ['HG13', 'HG3'], ['CD1', 'CD'], ['HG21', 'HD2'], ['HG22', 'HD3']], ['H', 'HG23', 'HD11', 'HD12', 'HD13'], {'ILE-PRO': ['disappear', 0, 1], 'PRO-ILE': ['appear', 1, 0]}, ], 'ILE-SER': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB', 'HB2'], ['CG1', 'HB3'], ['CG2', 'OG'], ['HG12', 'HG']], ['HG13', 'CD1', 'HG21', 'HG22', 'HG23', 'HD11', 'HD12', 'HD13'], {'SER-ILE': ['appear', 1, 0], 'ILE-SER': ['disappear', 0, 1]}, ], 'ILE-THR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HG21', 'HG21'], ['HB', 'HB'], ['HG23', 'HG23'], ['CG2', 'CG2'], ['HG22', 'HG22'], ['CG1', 'OG1'], ['HG12', 'HG1']], ['HG13', 'CD1', 'HD11', 'HD12', 'HD13'], {'THR-ILE': ['appear', 1, 0], 'ILE-THR': ['disappear', 0, 1]}, ], 'ILE-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['CD1', 'CD1'], ['HB', 'HB2'], ['CG1', 'HB3'], ['CG2', 'CG'], ['HG12', 'CD2'], ['HG13', 'HD1'], ['HG21', 'NE1'], ['HG22', 'CE3'], ['HG23', 'CE2'], ['HD11', 'HE1'], ['HD12', 'HE3'], ['HD13', 'CZ3']], ['CZ2', 'HZ3', 'HZ2', 'CH2', 'HH2'], {'TRP-ILE': ['disappear', 1, 0], 'ILE-TRP': ['appear', 0, 1]}, ], 'ILE-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB', 'HB2'], ['CG1', 'HB3'], ['CG2', 'CG'], ['CD1', 'CD1'], ['HG12', 'CD2'], ['HG13', 'HD1'], ['HG21', 'CE1'], ['HG22', 'HD2'], ['HG23', 'CE2'], ['HD11', 'HE1'], ['HD12', 'CZ'], ['HD13', 'HE2']], ['OH', 'HH'], {'TYR-ILE': ['disappear', 1, 0], 'ILE-TYR': ['appear', 0, 1]}, ], 'ILE-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['CG2', 'CG2'], ['HB', 'HB'], ['CG1', 'CG1'], ['HG12', 'HG12'], ['HG13', 'HG13'], ['HG21', 'HG21'], ['HG23', 'HG23'], ['HG22', 'HG22'], ['CD1', 'HG11']], ['HD11', 'HD12', 'HD13'], {'VAL-ILE': ['appear', 1, 0], 'ILE-VAL': ['disappear', 0, 1]}, ], 'LEU-LYN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG', 'HG2'], ['CD1', 'HG3'], ['CD2', 'CD'], ['HD11', 'HD2'], ['HD12', 'HD3'], ['HD13', 'CE'], ['HD21', 'HE2'], ['HD22', 'HE3'], ['HD23', 'NZ']], ['HZ1', 'HZ2'], {'LYN-LEU': ['disappear', 1, 0], 'LEU-LYN': ['appear', 0, 1]}, ], 'LEU-LYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG', 'HG2'], ['CD1', 'HG3'], ['CD2', 'CD'], ['HD11', 'HD2'], ['HD12', 'HD3'], ['HD13', 'CE'], ['HD21', 'HE2'], ['HD22', 'HE3'], ['HD23', 'NZ']], ['HZ1', 'HZ2', 'HZ3'], {'LEU-LYS': ['appear', 0, 1], 'LYS-LEU': ['disappear', 1, 0]}, ], 'LEU-MET': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG', 'HG2'], ['CD1', 'HG3'], ['CD2', 'SD'], ['HD11', 'CE'], ['HD12', 'HE1'], ['HD13', 'HE2'], ['HD21', 'HE3']], ['HD22', 'HD23'], {'MET-LEU': ['appear', 1, 0], 'LEU-MET': ['disappear', 0, 1]}, ], 'LEU-PHE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['CD1', 'CD1'], ['CD2', 'CD2'], ['HG', 'HD1'], ['HD11', 'CE1'], ['HD12', 'HD2'], ['HD13', 'CE2'], ['HD21', 'HE1'], ['HD22', 'CZ'], ['HD23', 'HE2']], ['HZ'], {'PHE-LEU': ['disappear', 1, 0], 'LEU-PHE': ['appear', 0, 1]}, ], 'LEU-PRO': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB2'], ['HB3', 'HB3'], ['CG', 'CG'], ['HG', 'HG2'], ['CD1', 'HG3'], ['HD11', 'HD2'], ['HD12', 'HD3'], ['HD13', 'CD']], ['H', 'CD2', 'HD21', 'HD22', 'HD23'], {'PRO-LEU': ['appear', 1, 0], 'LEU-PRO': ['disappear', 0, 1]}, ], 'LEU-SER': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['CG', 'OG'], ['HG', 'HG']], ['CD1', 'CD2', 'HD11', 'HD12', 'HD13', 'HD21', 'HD22', 'HD23'], {'LEU-SER': ['disappear', 0, 1], 'SER-LEU': ['appear', 1, 0]}, ], 'LEU-THR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'OG1'], ['CG', 'CG2'], ['HG', 'HG1'], ['CD1', 'HG21'], ['CD2', 'HG22'], ['HD11', 'HG23']], ['HD12', 'HD13', 'HD21', 'HD22', 'HD23'], {'THR-LEU': ['appear', 1, 0], 'LEU-THR': ['disappear', 0, 1]}, ], 'LEU-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['CD1', 'CD1'], ['CD2', 'CD2'], ['HG', 'HD1'], ['HD11', 'NE1'], ['HD12', 'CE3'], ['HD13', 'CE2'], ['HD21', 'HE1'], ['HD22', 'HE3'], ['HD23', 'CZ3']], ['CZ2', 'HZ3', 'HZ2', 'CH2', 'HH2'], {'TRP-LEU': ['disappear', 1, 0], 'LEU-TRP': ['appear', 0, 1]}, ], 'LEU-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['CD1', 'CD1'], ['CD2', 'CD2'], ['HG', 'HD1'], ['HD11', 'CE1'], ['HD12', 'HD2'], ['HD13', 'CE2'], ['HD21', 'HE1'], ['HD22', 'CZ'], ['HD23', 'HE2']], ['OH', 'HH'], {'TYR-LEU': ['disappear', 1, 0], 'LEU-TYR': ['appear', 0, 1]}, ], 'LEU-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['HG', 'HG11'], ['CD1', 'HG12'], ['CD2', 'HG13'], ['HD11', 'HG21'], ['HD12', 'HG22'], ['HD13', 'HG23']], ['HD21', 'HD22', 'HD23'], {'VAL-LEU': ['appear', 1, 0], 'LEU-VAL': ['disappear', 0, 1]}, ], 'LYN-LYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD', 'HD2', 'HD3', 'CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2'], [], ['HZ3'], {'LYN-LYS': ['appear', 0, 1], 'LYS-LYN': ['disappear', 1, 0]}, ], 'LYN-MET': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['CE', 'CE'], ['HG2', 'HG2'], ['HG3', 'HG3'], ['HE2', 'HE2'], ['HE3', 'HE3'], ['CD', 'SD'], ['HD2', 'HE1']], ['HD3', 'NZ', 'HZ1', 'HZ2'], {'LYN-MET': ['disappear', 0, 1], 'MET-LYN': ['appear', 1, 0]}, ], 'LYN-PHE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD2', 'HD2'], ['HE2', 'HE2'], ['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['HD3', 'CE1'], ['CE', 'CE2'], ['HE3', 'HE1'], ['NZ', 'CZ'], ['HZ1', 'HZ']], ['HZ2'], {'LYN-PHE': ['disappear', 0, 1], 'PHE-LYN': ['appear', 1, 0]}, ], 'LYN-PRO': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB2'], ['HB3', 'HB3'], ['CG', 'CG'], ['HG2', 'HG2'], ['HG3', 'HG3'], ['CD', 'CD'], ['HD3', 'HD3'], ['HD2', 'HD2']], ['H', 'CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2'], {'PRO-LYN': ['appear', 1, 0], 'LYN-PRO': ['disappear', 0, 1]}, ], 'LYN-SER': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['CG', 'OG'], ['HG2', 'HG']], ['HG3', 'CD', 'HD2', 'HD3', 'CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2'], {'SER-LYN': ['appear', 1, 0], 'LYN-SER': ['disappear', 0, 1]}, ], 'LYN-THR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'OG1'], ['CG', 'CG2'], ['HG2', 'HG1'], ['HG3', 'HG21'], ['CD', 'HG22'], ['HD2', 'HG23']], ['HD3', 'CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2'], {'LYN-THR': ['disappear', 0, 1], 'THR-LYN': ['appear', 1, 0]}, ], 'LYN-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HZ2', 'HZ2'], ['HE3', 'HE3'], ['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['HD2', 'NE1'], ['HD3', 'CE3'], ['CE', 'CE2'], ['HE2', 'HE1'], ['NZ', 'CZ3'], ['HZ1', 'CZ2']], ['HZ3', 'CH2', 'HH2'], {'TRP-LYN': ['disappear', 1, 0], 'LYN-TRP': ['appear', 0, 1]}, ], 'LYN-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD2', 'HD2'], ['HE2', 'HE2'], ['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['HD3', 'CE1'], ['CE', 'CE2'], ['HE3', 'HE1'], ['NZ', 'CZ'], ['HZ1', 'OH'], ['HZ2', 'HH']], [], {'TYR-LYN': ['', 1, 0], 'LYN-TYR': ['', 0, 1]}, ], 'LYN-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['HG2', 'HG11'], ['HG3', 'HG12'], ['CD', 'HG13'], ['HD2', 'HG21'], ['HD3', 'HG22'], ['CE', 'HG23']], ['HE2', 'HE3', 'NZ', 'HZ1', 'HZ2'], {'VAL-LYN': ['appear', 1, 0], 'LYN-VAL': ['disappear', 0, 1]}, ], 'LYS-MET': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['CD', 'SD'], ['CE', 'CE'], ['HG2', 'HG2'], ['HG3', 'HG3'], ['HE2', 'HE2'], ['HE3', 'HE3'], ['HD2', 'HE1']], ['HD3', 'NZ', 'HZ1', 'HZ2', 'HZ3'], {'MET-LYS': ['appear', 1, 0], 'LYS-MET': ['disappear', 0, 1]}, ], 'LYS-PHE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD2', 'HD2'], ['HE2', 'HE2'], ['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['HD3', 'CE1'], ['CE', 'CE2'], ['HE3', 'HE1'], ['NZ', 'CZ'], ['HZ1', 'HZ']], ['HZ2', 'HZ3'], {'LYS-PHE': ['disappear', 0, 1], 'PHE-LYS': ['appear', 1, 0]}, ], 'LYS-PRO': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB2'], ['HB3', 'HB3'], ['CG', 'CG'], ['HG2', 'HG2'], ['HG3', 'HG3'], ['CD', 'CD'], ['HD3', 'HD3'], ['HD2', 'HD2']], ['H', 'CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2', 'HZ3'], {'LYS-PRO': ['disappear', 0, 1], 'PRO-LYS': ['appear', 1, 0]}, ], 'LYS-SER': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['CG', 'OG'], ['HG2', 'HG']], ['HG3', 'CD', 'HD2', 'HD3', 'CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2', 'HZ3'], {'LYS-SER': ['disappear', 0, 1], 'SER-LYS': ['appear', 1, 0]}, ], 'LYS-THR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'OG1'], ['CG', 'CG2'], ['HG2', 'HG1'], ['HG3', 'HG21'], ['CD', 'HG22'], ['HD2', 'HG23']], ['HD3', 'CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2', 'HZ3'], {'LYS-THR': ['disappear', 0, 1], 'THR-LYS': ['appear', 1, 0]}, ], 'LYS-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HZ2', 'HZ2'], ['HZ3', 'HZ3'], ['HE3', 'HE3'], ['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['HD2', 'NE1'], ['HD3', 'CE3'], ['CE', 'CE2'], ['HE2', 'HE1'], ['NZ', 'CZ3'], ['HZ1', 'CZ2']], ['CH2', 'HH2'], {'LYS-TRP': ['appear', 0, 1], 'TRP-LYS': ['disappear', 1, 0]}, ], 'LYS-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HD2', 'HD2'], ['HE2', 'HE2'], ['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['HD3', 'CE1'], ['CE', 'CE2'], ['HE3', 'HE1'], ['NZ', 'CZ'], ['HZ1', 'OH'], ['HZ2', 'HH']], ['HZ3'], {'LYS-TYR': ['disappear', 0, 1], 'TYR-LYS': ['appear', 1, 0]}, ], 'LYS-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['HG2', 'HG11'], ['HG3', 'HG12'], ['CD', 'HG13'], ['HD2', 'HG21'], ['HD3', 'HG22'], ['CE', 'HG23']], ['HE2', 'HE3', 'NZ', 'HZ1', 'HZ2', 'HZ3'], {'LYS-VAL': ['disappear', 0, 1], 'VAL-LYS': ['appear', 1, 0]}, ], 'MET-PHE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['SD', 'HD1'], ['HG2', 'CD1'], ['HG3', 'CD2'], ['CE', 'CE1'], ['HE1', 'HE1'], ['HE2', 'HE2'], ['HE3', 'HD2']], ['CE2', 'CZ', 'HZ'], {'MET-PHE': ['appear', 0, 1], 'PHE-MET': ['disappear', 1, 0]}, ], 'MET-PRO': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB2'], ['HB3', 'HB3'], ['CG', 'CG'], ['HG2', 'HG2'], ['HG3', 'HG3'], ['SD', 'CD'], ['CE', 'HD3'], ['HE1', 'HD2']], ['H', 'HE2', 'HE3'], {'MET-PRO': ['disappear', 0, 1], 'PRO-MET': ['appear', 1, 0]}, ], 'MET-SER': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['CG', 'OG'], ['HG2', 'HG']], ['HG3', 'SD', 'CE', 'HE1', 'HE2', 'HE3'], {'SER-MET': ['appear', 1, 0], 'MET-SER': ['disappear', 0, 1]}, ], 'MET-THR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'OG1'], ['CG', 'CG2'], ['HG2', 'HG1'], ['HG3', 'HG21'], ['SD', 'HG22'], ['CE', 'HG23']], ['HE1', 'HE2', 'HE3'], {'MET-THR': ['disappear', 0, 1], 'THR-MET': ['appear', 1, 0]}, ], 'MET-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'CD1'], ['HG3', 'CD2'], ['SD', 'HD1'], ['CE', 'NE1'], ['HE2', 'CE3'], ['HE1', 'HE1'], ['HE3', 'HE3']], ['CE2', 'CZ3', 'CZ2', 'HZ3', 'HZ2', 'CH2', 'HH2'], {'MET-TRP': ['appear', 0, 1], 'TRP-MET': ['disappear', 1, 0]}, ], 'MET-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'CD1'], ['HG3', 'CD2'], ['SD', 'HD1'], ['CE', 'CE1'], ['HE3', 'HD2'], ['HE1', 'HE1'], ['HE2', 'CE2']], ['HE2', 'CZ', 'OH', 'HH'], {'TYR-MET': ['disappear', 1, 0], 'MET-TYR': ['appear', 0, 1]}, ], 'MET-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'CG1'], ['HB3', 'CG2'], ['CG', 'HB'], ['HG2', 'HG11'], ['HG3', 'HG12'], ['SD', 'HG13'], ['CE', 'HG21'], ['HE1', 'HG22'], ['HE2', 'HG23']], ['HE3'], {'VAL-MET': ['appear', 1, 0], 'MET-VAL': ['disappear', 0, 1]}, ], 'PHE-PRO': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB2'], ['HB3', 'HB3'], ['CG', 'CG'], ['CD1', 'HG2'], ['CD2', 'HG3'], ['CE1', 'CD'], ['HD2', 'HD2'], ['HD1', 'HD3']], ['H', 'HE1', 'CE2', 'HE2', 'CZ', 'HZ'], {'PHE-PRO': ['disappear', 0, 1], 'PRO-PHE': ['appear', 1, 0]} ], 'PHE-SER': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['CG', 'OG'], ['CD1', 'HG']], ['CD2', 'HD1', 'CE1', 'HD2', 'CE2', 'HE1', 'CZ', 'HE2', 'HZ'], {'PHE-SER': ['disappear', 0, 1], 'SER-PHE': ['appear', 1, 0]}, ], 'PHE-THR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'OG1'], ['CG', 'CG2'], ['CD1', 'HG1'], ['CD2', 'HG21'], ['HD1', 'HG22'], ['CE1', 'HG23']], ['HD2', 'CE2', 'HE1', 'CZ', 'HE2', 'HZ'], {'THR-PHE': ['appear', 1, 0], 'PHE-THR': ['disappear', 0, 1]}, ], 'PHE-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['CD1', 'CD1'], ['HD1', 'HD1'], ['CD2', 'CD2'], ['HD2', 'NE1'], ['CE1', 'CE3'], ['HE1', 'HE3'], ['CE2', 'CE2'], ['HE2', 'HE1'], ['CZ', 'CZ3'], ['HZ', 'HZ3']], ['CZ2', 'HZ2', 'CH2', 'HH2'], {'PHE-TRP': ['appear', 0, 1], 'TRP-PHE': ['disappear', 1, 0]} ], 'PHE-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'CD1', 'HD1', 'CD2', 'HD2', 'CE1', 'HE1', 'CE2', 'HE2', 'CZ'], [['HZ', 'OH']], ['HH'], {'PHE-TYR': ['appear', 0, 1], 'TYR-PHE': ['disappear', 1, 0]} ], 'PHE-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['CD1', 'HG11'], ['CD2', 'HG12'], ['HD1', 'HG13'], ['CE1', 'HG21'], ['HD2', 'HG22'], ['CE2', 'HG23']], ['HE1', 'CZ', 'HE2', 'HZ'], {'PHE-VAL': ['disappear', 0, 1], 'VAL-PHE': ['appear', 1, 0]}, ], 'PRO-SER': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB2'], ['HB3', 'HB3'], ['CG', 'OG'], ['HG2', 'HG'], ['CD', 'H']], ['HG3', 'HD2', 'HD3'], {'PRO-SER': ['disappear', 0, 1], 'SER-PRO': ['appear', 1, 0]} ], 'PRO-THR': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'OG1'], ['CG', 'CG2'], ['HG2', 'HG1'], ['HG3', 'HG21'], ['CD', 'H'], ['HD2', 'HG22'], ['HD3', 'HG23']], [], {'PRO-THR': ['', 0, 1], 'THR-PRO': ['', 1, 0]} ], 'PRO-TRP': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB2'], ['HB3', 'HB3'], ['CG', 'CG'], ['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'H'], ['HD2', 'HD1'], ['HD3', 'NE1']], ['CE3', 'CE2', 'HE1', 'HE3', 'CZ3', 'CZ2', 'HZ3', 'HZ2', 'CH2', 'HH2'], {'PRO-TRP': ['appear', 0, 1], 'THR-PRO': ['disappear', 1, 0]} ], 'PRO-TYR': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB2'], ['HB3', 'HB3'], ['CG', 'CG'], ['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'H'], ['HD2', 'HD1'], ['HD3', 'HD2']], ['CE1', 'HD2', 'CE2', 'HE1', 'CZ', 'HE2', 'OH', 'HH'], {'PRO-TYR': ['appear', 0, 1], 'TYR-PRO': ['disappear', 1, 0]} ], 'PRO-VAL': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['CG', 'CG1'], ['HB3', 'CG2'], ['HG2', 'HG11'], ['HG3', 'HG12'], ['CD', 'H'], ['HD2', 'HG13'], ['HD3', 'HG21']], ['HG22', 'HG23'], {'PRO-VAL': ['appear', 0, 1], 'VAL-PRO': ['disappear', 1, 0]} ], 'SER-THR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'OG1'], ['OG', 'CG2'], ['HG', 'HG1']], ['HG21', 'HG22', 'HG23'], {'THR-SER': ['disappear', 1, 0], 'SER-THR': ['appear', 0, 1]}, ], 'SER-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['OG', 'CG'], ['HG', 'CD1']], ['CD2', 'HD1', 'NE1', 'CE3', 'CE2', 'HE1', 'HE3', 'CZ3', 'CZ2', 'HZ3', 'HZ2', 'CH2', 'HH2'], {'TRP-SER': ['disappear', 1, 0], 'SER-TRP': ['appear', 0, 1]}, ], 'SER-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['OG', 'CG'], ['HG', 'CD1']], ['CD2', 'HD1', 'CE1', 'HD2', 'CE2', 'HE1', 'CZ', 'HE2', 'OH', 'HH'], {'SER-TYR': ['appear', 0, 1], 'TYR-SER': ['disappear', 1, 0]}, ], 'SER-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['OG', 'CG2'], ['HG', 'HG11']], ['HG12', 'HG13', 'HG21', 'HG22', 'HG23'], {'SER-VAL': ['appear', 0, 1], 'VAL-SER': ['disappear', 1, 0]}, ], 'THR-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB', 'HB2'], ['OG1', 'HB3'], ['CG2', 'CG'], ['HG1', 'CD1'], ['HG21', 'CD2'], ['HG22', 'HD1'], ['HG23', 'NE1']], ['CE3', 'CE2', 'HE1', 'HE3', 'CZ3', 'CZ2', 'HZ3', 'HZ2', 'CH2', 'HH2'], {'TRP-THR': ['disappear', 1, 0], 'THR-TRP': ['appear', 0, 1]}, ], 'THR-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB', 'HB2'], ['OG1', 'HB3'], ['CG2', 'CG'], ['HG1', 'CD1'], ['HG21', 'CD2'], ['HG22', 'HD1'], ['HG23', 'CE1']], ['HD2', 'CE2', 'HE1', 'CZ', 'HE2', 'OH', 'HH'], {'THR-TYR': ['appear', 0, 1], 'TYR-THR': ['disappear', 1, 0]}, ], 'THR-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HG21', 'HG21'], ['HB', 'HB'], ['HG23', 'HG23'], ['CG2', 'CG2'], ['HG22', 'HG22'], ['OG1', 'CG1'], ['HG1', 'HG11']], ['HG12', 'HG13'], {'THR-VAL': ['appear', 0, 1], 'VAL-THR': ['disappear', 1, 0]}, ], 'TRP-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['CD1', 'CD1'], ['HD1', 'HD1'], ['CD2', 'CD2'], ['NE1', 'HD2'], ['CE3', 'CE1'], ['HE1', 'HE1'], ['CE2', 'CE2'], ['HE3', 'HE2'], ['CZ3', 'CZ'], ['HZ3', 'OH'], ['CZ2', 'HH']], ['HZ2', 'CH2', 'HH2'], {'TRP-TYR': ['disappear', 0, 1], 'TYR-TRP': ['appear', 1, 0]} ], 'TRP-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['CD1', 'HG11'], ['CD2', 'HG12'], ['HD1', 'HG13'], ['NE1', 'HG21'], ['CE3', 'HG22'], ['CE2', 'HG23']], ['HE1', 'HE3', 'CZ3', 'CZ2', 'HZ3', 'HZ2', 'CH2', 'HH2'], {'VAL-TRP': ['appear', 1, 0], 'TRP-VAL': ['disappear', 0, 1]}, ], 'TYR-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['CD1', 'HG11'], ['CD2', 'HG12'], ['HD1', 'HG13'], ['CE1', 'HG21'], ['HD2', 'HG22'], ['CE2', 'HG23']], ['HE1', 'CZ', 'HE2', 'OH', 'HH'], {'TYR-VAL': ['disappear', 0, 1], 'VAL-TYR': ['appear', 1, 0]}, ], } input_keywords = { "all": ["ARG", "HIE", "HID", "HIP", "LYS", "ASP", "GLU", "SER", "THR", "ASN", "GLN", "CYS", "GLY", "PRO", "ALA", "VAL", "ILE", "LEU", "MET", "PHE", "TYR", "TRP"], "all_protonated": ["ARG", "HIE", "HID", "HIP", "LYS", "LYN", "ASP", "ASH", "GLU", "GLH", "SER", "THR", "ASN", "GLN", "CYS", "CYT", "GLY", "PRO", "ALA", "VAL", "ILE", "LEU", "MET", "PHE", "TYR", "TRP"], "positive": ["ARG", "HIE", "HID", "HIP", "LYS"], "positive_protonated": ["ARG", "HIE", "HID", "HIP", "LYS", "LYN"], "negative": ["ASP", "GLU"], "negative_protonated": ["ASP", "ASH", "GLU", "GLH"], "polar": ["SER", "THR", "ASN", "GLN"], "special": ["CYS", "CYT", "GLY", "PRO"], "hydrophobic": ["ALA", "VAL", "ILE", "LEU", "MET", "PHE", "TYR", "TRP"] }
52.094021
156
0.325895
ab2c4cc62e2c4375c03fa7576732d8a2a67653ad
746
py
Python
setup.py
RichardPan01/wechat_articles_spider
b91385603cd0e09d76e96fc1876f75c8f22c43f2
[ "Apache-2.0" ]
null
null
null
setup.py
RichardPan01/wechat_articles_spider
b91385603cd0e09d76e96fc1876f75c8f22c43f2
[ "Apache-2.0" ]
null
null
null
setup.py
RichardPan01/wechat_articles_spider
b91385603cd0e09d76e96fc1876f75c8f22c43f2
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="wechatarticles", version="0.5.7", author="wnma3mz", author_email="wnma3mz@gmail.com", description="wechat articles scrapy", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/wnma3mz/wechat_articles_spider", packages=setuptools.find_packages(), install_requires=[ 'requests>=2.20.0', 'beautifulsoup4>=4.7.1' ], classifiers=( "Programming Language :: Python :: 3", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", ), )
28.692308
61
0.662198
8547cc6a3a41ed2ad00b01b2126b131f3048cfce
50,522
py
Python
mmseg/ops/tensor_color_jitter.py
openseg-group/mmsegmentation
23939f09d2b0bd30fc26eb7f8af974f1f5441210
[ "Apache-2.0" ]
2
2020-07-10T12:13:56.000Z
2020-11-09T07:09:29.000Z
mmseg/ops/tensor_color_jitter.py
openseg-group/mmsegmentation
23939f09d2b0bd30fc26eb7f8af974f1f5441210
[ "Apache-2.0" ]
null
null
null
mmseg/ops/tensor_color_jitter.py
openseg-group/mmsegmentation
23939f09d2b0bd30fc26eb7f8af974f1f5441210
[ "Apache-2.0" ]
2
2020-07-28T09:12:55.000Z
2021-01-04T07:49:59.000Z
import warnings from typing import Optional, Dict, Tuple import torch from torch import Tensor from torch.nn.functional import grid_sample, conv2d, interpolate, pad as torch_pad from torch.jit.annotations import List, BroadcastingList2 def _is_tensor_a_torch_image(x: Tensor) -> bool: return x.ndim >= 2 def _get_image_size(img: Tensor) -> List[int]: """Returns (w, h) of tensor image""" if _is_tensor_a_torch_image(img): return [img.shape[-1], img.shape[-2]] raise TypeError("Unexpected input type") def _get_image_num_channels(img: Tensor) -> int: if img.ndim == 2: return 1 elif img.ndim > 2: return img.shape[-3] raise TypeError("Input ndim should be 2 or more. Got {}".format(img.ndim)) def _max_value(dtype: torch.dtype) -> float: # TODO: replace this method with torch.iinfo when it gets torchscript support. # https://github.com/pytorch/pytorch/issues/41492 a = torch.tensor(2, dtype=dtype) signed = 1 if torch.tensor(0, dtype=dtype).is_signed() else 0 bits = 1 max_value = torch.tensor(-signed, dtype=torch.long) while True: next_value = a.pow(bits - signed).sub(1) if next_value > max_value: max_value = next_value bits *= 2 else: return max_value.item() return max_value.item() def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor: """PRIVATE METHOD. Convert a tensor image to the given ``dtype`` and scale the values accordingly .. warning:: Module ``transforms.functional_tensor`` is private and should not be used in user application. Please, consider instead using methods from `transforms.functional` module. Args: image (torch.Tensor): Image to be converted dtype (torch.dtype): Desired data type of the output Returns: (torch.Tensor): Converted image .. note:: When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly. If converted back and forth, this mismatch has no effect. Raises: RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range of the integer ``dtype``. """ if image.dtype == dtype: return image # TODO: replace with image.dtype.is_floating_point when torchscript supports it if torch.empty(0, dtype=image.dtype).is_floating_point(): # TODO: replace with dtype.is_floating_point when torchscript supports it if torch.tensor(0, dtype=dtype).is_floating_point(): return image.to(dtype) # float to int if (image.dtype == torch.float32 and dtype in (torch.int32, torch.int64)) or ( image.dtype == torch.float64 and dtype == torch.int64 ): msg = f"The cast from {image.dtype} to {dtype} cannot be performed safely." raise RuntimeError(msg) # https://github.com/pytorch/vision/pull/2078#issuecomment-612045321 # For data in the range 0-1, (float * 255).to(uint) is only 255 # when float is exactly 1.0. # `max + 1 - epsilon` provides more evenly distributed mapping of # ranges of floats to ints. eps = 1e-3 max_val = _max_value(dtype) result = image.mul(max_val + 1.0 - eps) return result.to(dtype) else: input_max = _max_value(image.dtype) output_max = _max_value(dtype) # int to float # TODO: replace with dtype.is_floating_point when torchscript supports it if torch.tensor(0, dtype=dtype).is_floating_point(): image = image.to(dtype) return image / input_max # int to int if input_max > output_max: # factor should be forced to int for torch jit script # otherwise factor is a float and image // factor can produce different results factor = int((input_max + 1) // (output_max + 1)) image = image // factor return image.to(dtype) else: # factor should be forced to int for torch jit script # otherwise factor is a float and image * factor can produce different results factor = int((output_max + 1) // (input_max + 1)) image = image.to(dtype) return image * factor def vflip(img: Tensor) -> Tensor: """PRIVATE METHOD. Vertically flip the given the Image Tensor. .. warning:: Module ``transforms.functional_tensor`` is private and should not be used in user application. Please, consider instead using methods from `transforms.functional` module. Args: img (Tensor): Image Tensor to be flipped in the form [..., C, H, W]. Returns: Tensor: Vertically flipped image Tensor. """ if not _is_tensor_a_torch_image(img): raise TypeError('tensor is not a torch image.') return img.flip(-2) def hflip(img: Tensor) -> Tensor: """PRIVATE METHOD. Horizontally flip the given the Image Tensor. .. warning:: Module ``transforms.functional_tensor`` is private and should not be used in user application. Please, consider instead using methods from `transforms.functional` module. Args: img (Tensor): Image Tensor to be flipped in the form [..., C, H, W]. Returns: Tensor: Horizontally flipped image Tensor. """ if not _is_tensor_a_torch_image(img): raise TypeError('tensor is not a torch image.') return img.flip(-1) def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor: """PRIVATE METHOD. Crop the given Image Tensor. .. warning:: Module ``transforms.functional_tensor`` is private and should not be used in user application. Please, consider instead using methods from `transforms.functional` module. Args: img (Tensor): Image to be cropped in the form [..., H, W]. (0,0) denotes the top left corner of the image. top (int): Vertical component of the top left corner of the crop box. left (int): Horizontal component of the top left corner of the crop box. height (int): Height of the crop box. width (int): Width of the crop box. Returns: Tensor: Cropped image. """ if not _is_tensor_a_torch_image(img): raise TypeError("tensor is not a torch image.") return img[..., top:top + height, left:left + width] def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor: """PRIVATE METHOD. Convert the given RGB Image Tensor to Grayscale. .. warning:: Module ``transforms.functional_tensor`` is private and should not be used in user application. Please, consider instead using methods from `transforms.functional` module. For RGB to Grayscale conversion, ITU-R 601-2 luma transform is performed which is L = R * 0.2989 + G * 0.5870 + B * 0.1140 Args: img (Tensor): Image to be converted to Grayscale in the form [C, H, W]. num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1. Returns: Tensor: Grayscale version of the image. if num_output_channels = 1 : returned image is single channel if num_output_channels = 3 : returned image is 3 channel with r = g = b """ if img.ndim < 3: raise TypeError("Input image tensor should have at least 3 dimensions, but found {}".format(img.ndim)) c = img.shape[-3] if c != 3: raise TypeError("Input image tensor should 3 channels, but found {}".format(c)) if num_output_channels not in (1, 3): raise ValueError('num_output_channels should be either 1 or 3') r, g, b = img.unbind(dim=-3) # This implementation closely follows the TF one: # https://github.com/tensorflow/tensorflow/blob/v2.3.0/tensorflow/python/ops/image_ops_impl.py#L2105-L2138 l_img = (0.2989 * r + 0.587 * g + 0.114 * b).to(img.dtype) l_img = l_img.unsqueeze(dim=-3) if num_output_channels == 3: return l_img.expand(img.shape) return l_img def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor: """PRIVATE METHOD. Adjust brightness of an RGB image. .. warning:: Module ``transforms.functional_tensor`` is private and should not be used in user application. Please, consider instead using methods from `transforms.functional` module. Args: img (Tensor): Image to be adjusted. brightness_factor (float): How much to adjust the brightness. Can be any non negative number. 0 gives a black image, 1 gives the original image while 2 increases the brightness by a factor of 2. Returns: Tensor: Brightness adjusted image. """ if brightness_factor < 0: raise ValueError('brightness_factor ({}) is not non-negative.'.format(brightness_factor)) if not _is_tensor_a_torch_image(img): raise TypeError('tensor is not a torch image.') return _blend(img, torch.zeros_like(img), brightness_factor) def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor: """PRIVATE METHOD. Adjust contrast of an RGB image. .. warning:: Module ``transforms.functional_tensor`` is private and should not be used in user application. Please, consider instead using methods from `transforms.functional` module. Args: img (Tensor): Image to be adjusted. contrast_factor (float): How much to adjust the contrast. Can be any non negative number. 0 gives a solid gray image, 1 gives the original image while 2 increases the contrast by a factor of 2. Returns: Tensor: Contrast adjusted image. """ if contrast_factor < 0: raise ValueError('contrast_factor ({}) is not non-negative.'.format(contrast_factor)) if not _is_tensor_a_torch_image(img): raise TypeError('tensor is not a torch image.') dtype = img.dtype if torch.is_floating_point(img) else torch.float32 mean = torch.mean(rgb_to_grayscale(img).to(dtype), dim=(-3, -2, -1), keepdim=True) return _blend(img, mean, contrast_factor) def adjust_hue(img: Tensor, hue_factor: float) -> Tensor: """PRIVATE METHOD. Adjust hue of an image. .. warning:: Module ``transforms.functional_tensor`` is private and should not be used in user application. Please, consider instead using methods from `transforms.functional` module. The image hue is adjusted by converting the image to HSV and cyclically shifting the intensities in the hue channel (H). The image is then converted back to original image mode. `hue_factor` is the amount of shift in H channel and must be in the interval `[-0.5, 0.5]`. See `Hue`_ for more details. .. _Hue: https://en.wikipedia.org/wiki/Hue Args: img (Tensor): Image to be adjusted. Image type is either uint8 or float. hue_factor (float): How much to shift the hue channel. Should be in [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in HSV space in positive and negative direction respectively. 0 means no shift. Therefore, both -0.5 and 0.5 will give an image with complementary colors while 0 gives the original image. Returns: Tensor: Hue adjusted image. """ if not (-0.5 <= hue_factor <= 0.5): raise ValueError('hue_factor ({}) is not in [-0.5, 0.5].'.format(hue_factor)) if not (isinstance(img, torch.Tensor) and _is_tensor_a_torch_image(img)): raise TypeError('Input img should be Tensor image') orig_dtype = img.dtype if img.dtype == torch.uint8: img = img.to(dtype=torch.float32) / 255.0 img = _rgb2hsv(img) h, s, v = img.unbind(dim=-3) h = (h + hue_factor) % 1.0 img = torch.stack((h, s, v), dim=-3) img_hue_adj = _hsv2rgb(img) if orig_dtype == torch.uint8: img_hue_adj = (img_hue_adj * 255.0).to(dtype=orig_dtype) return img_hue_adj def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor: """PRIVATE METHOD. Adjust color saturation of an RGB image. .. warning:: Module ``transforms.functional_tensor`` is private and should not be used in user application. Please, consider instead using methods from `transforms.functional` module. Args: img (Tensor): Image to be adjusted. saturation_factor (float): How much to adjust the saturation. Can be any non negative number. 0 gives a black and white image, 1 gives the original image while 2 enhances the saturation by a factor of 2. Returns: Tensor: Saturation adjusted image. """ if saturation_factor < 0: raise ValueError('saturation_factor ({}) is not non-negative.'.format(saturation_factor)) if not _is_tensor_a_torch_image(img): raise TypeError('tensor is not a torch image.') return _blend(img, rgb_to_grayscale(img), saturation_factor) def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor: r"""PRIVATE METHOD. Adjust gamma of an RGB image. .. warning:: Module ``transforms.functional_tensor`` is private and should not be used in user application. Please, consider instead using methods from `transforms.functional` module. Also known as Power Law Transform. Intensities in RGB mode are adjusted based on the following equation: .. math:: `I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}` See `Gamma Correction`_ for more details. .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction Args: img (Tensor): Tensor of RBG values to be adjusted. gamma (float): Non negative real number, same as :math:`\gamma` in the equation. gamma larger than 1 make the shadows darker, while gamma smaller than 1 make dark regions lighter. gain (float): The constant multiplier. """ if not isinstance(img, torch.Tensor): raise TypeError('Input img should be a Tensor.') if gamma < 0: raise ValueError('Gamma should be a non-negative real number') result = img dtype = img.dtype if not torch.is_floating_point(img): result = convert_image_dtype(result, torch.float32) result = (gain * result ** gamma).clamp(0, 1) result = convert_image_dtype(result, dtype) result = result.to(dtype) return result def center_crop(img: Tensor, output_size: BroadcastingList2[int]) -> Tensor: """DEPRECATED. Crop the Image Tensor and resize it to desired size. .. warning:: Module ``transforms.functional_tensor`` is private and should not be used in user application. Please, consider instead using methods from `transforms.functional` module. .. warning:: This method is deprecated and will be removed in future releases. Please, use ``F.center_crop`` instead. Args: img (Tensor): Image to be cropped. output_size (sequence or int): (height, width) of the crop box. If int, it is used for both directions Returns: Tensor: Cropped image. """ warnings.warn( "This method is deprecated and will be removed in future releases. " "Please, use ``F.center_crop`` instead." ) if not _is_tensor_a_torch_image(img): raise TypeError('tensor is not a torch image.') _, image_width, image_height = img.size() crop_height, crop_width = output_size # crop_top = int(round((image_height - crop_height) / 2.)) # Result can be different between python func and scripted func # Temporary workaround: crop_top = int((image_height - crop_height + 1) * 0.5) # crop_left = int(round((image_width - crop_width) / 2.)) # Result can be different between python func and scripted func # Temporary workaround: crop_left = int((image_width - crop_width + 1) * 0.5) return crop(img, crop_top, crop_left, crop_height, crop_width) def five_crop(img: Tensor, size: BroadcastingList2[int]) -> List[Tensor]: """DEPRECATED. Crop the given Image Tensor into four corners and the central crop. .. warning:: Module ``transforms.functional_tensor`` is private and should not be used in user application. Please, consider instead using methods from `transforms.functional` module. .. warning:: This method is deprecated and will be removed in future releases. Please, use ``F.five_crop`` instead. .. Note:: This transform returns a List of Tensors and there may be a mismatch in the number of inputs and targets your ``Dataset`` returns. Args: img (Tensor): Image to be cropped. size (sequence or int): Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. Returns: List: List (tl, tr, bl, br, center) Corresponding top left, top right, bottom left, bottom right and center crop. """ warnings.warn( "This method is deprecated and will be removed in future releases. " "Please, use ``F.five_crop`` instead." ) if not _is_tensor_a_torch_image(img): raise TypeError('tensor is not a torch image.') assert len(size) == 2, "Please provide only two dimensions (h, w) for size." _, image_width, image_height = img.size() crop_height, crop_width = size if crop_width > image_width or crop_height > image_height: msg = "Requested crop size {} is bigger than input size {}" raise ValueError(msg.format(size, (image_height, image_width))) tl = crop(img, 0, 0, crop_width, crop_height) tr = crop(img, image_width - crop_width, 0, image_width, crop_height) bl = crop(img, 0, image_height - crop_height, crop_width, image_height) br = crop(img, image_width - crop_width, image_height - crop_height, image_width, image_height) center = center_crop(img, (crop_height, crop_width)) return [tl, tr, bl, br, center] def ten_crop(img: Tensor, size: BroadcastingList2[int], vertical_flip: bool = False) -> List[Tensor]: """DEPRECATED. Crop the given Image Tensor into four corners and the central crop plus the flipped version of these (horizontal flipping is used by default). .. warning:: Module ``transforms.functional_tensor`` is private and should not be used in user application. Please, consider instead using methods from `transforms.functional` module. .. warning:: This method is deprecated and will be removed in future releases. Please, use ``F.ten_crop`` instead. .. Note:: This transform returns a List of images and there may be a mismatch in the number of inputs and targets your ``Dataset`` returns. Args: img (Tensor): Image to be cropped. size (sequence or int): Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. vertical_flip (bool): Use vertical flipping instead of horizontal Returns: List: List (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip) Corresponding top left, top right, bottom left, bottom right and center crop and same for the flipped image's tensor. """ warnings.warn( "This method is deprecated and will be removed in future releases. " "Please, use ``F.ten_crop`` instead." ) if not _is_tensor_a_torch_image(img): raise TypeError('tensor is not a torch image.') assert len(size) == 2, "Please provide only two dimensions (h, w) for size." first_five = five_crop(img, size) if vertical_flip: img = vflip(img) else: img = hflip(img) second_five = five_crop(img, size) return first_five + second_five def _blend(img1: Tensor, img2: Tensor, ratio: float) -> Tensor: bound = 1.0 if img1.is_floating_point() else 255.0 return (ratio * img1 + (1.0 - ratio) * img2).clamp(0, bound).to(img1.dtype) def _rgb2hsv(img): r, g, b = img.unbind(dim=-3) # Implementation is based on https://github.com/python-pillow/Pillow/blob/4174d4267616897df3746d315d5a2d0f82c656ee/ # src/libImaging/Convert.c#L330 maxc = torch.max(img, dim=-3).values minc = torch.min(img, dim=-3).values # The algorithm erases S and H channel where `maxc = minc`. This avoids NaN # from happening in the results, because # + S channel has division by `maxc`, which is zero only if `maxc = minc` # + H channel has division by `(maxc - minc)`. # # Instead of overwriting NaN afterwards, we just prevent it from occuring so # we don't need to deal with it in case we save the NaN in a buffer in # backprop, if it is ever supported, but it doesn't hurt to do so. eqc = maxc == minc cr = maxc - minc # Since `eqc => cr = 0`, replacing denominator with 1 when `eqc` is fine. ones = torch.ones_like(maxc) s = cr / torch.where(eqc, ones, maxc) # Note that `eqc => maxc = minc = r = g = b`. So the following calculation # of `h` would reduce to `bc - gc + 2 + rc - bc + 4 + rc - bc = 6` so it # would not matter what values `rc`, `gc`, and `bc` have here, and thus # replacing denominator with 1 when `eqc` is fine. cr_divisor = torch.where(eqc, ones, cr) rc = (maxc - r) / cr_divisor gc = (maxc - g) / cr_divisor bc = (maxc - b) / cr_divisor hr = (maxc == r) * (bc - gc) hg = ((maxc == g) & (maxc != r)) * (2.0 + rc - bc) hb = ((maxc != g) & (maxc != r)) * (4.0 + gc - rc) h = (hr + hg + hb) h = torch.fmod((h / 6.0 + 1.0), 1.0) return torch.stack((h, s, maxc), dim=-3) def _hsv2rgb(img): h, s, v = img.unbind(dim=-3) i = torch.floor(h * 6.0) f = (h * 6.0) - i i = i.to(dtype=torch.int32) p = torch.clamp((v * (1.0 - s)), 0.0, 1.0) q = torch.clamp((v * (1.0 - s * f)), 0.0, 1.0) t = torch.clamp((v * (1.0 - s * (1.0 - f))), 0.0, 1.0) i = i % 6 mask = i.unsqueeze(dim=-3) == torch.arange(6, device=i.device).view(-1, 1, 1) a1 = torch.stack((v, q, p, p, t, v), dim=-3) a2 = torch.stack((t, v, v, q, p, p), dim=-3) a3 = torch.stack((p, p, t, v, v, q), dim=-3) a4 = torch.stack((a1, a2, a3), dim=-4) return torch.einsum("...ijk, ...xijk -> ...xjk", mask.to(dtype=img.dtype), a4) def _pad_symmetric(img: Tensor, padding: List[int]) -> Tensor: # padding is left, right, top, bottom # crop if needed if padding[0] < 0 or padding[1] < 0 or padding[2] < 0 or padding[3] < 0: crop_left, crop_right, crop_top, crop_bottom = [-min(x, 0) for x in padding] img = img[..., crop_top:img.shape[-2] - crop_bottom, crop_left:img.shape[-1] - crop_right] padding = [max(x, 0) for x in padding] in_sizes = img.size() x_indices = [i for i in range(in_sizes[-1])] # [0, 1, 2, 3, ...] left_indices = [i for i in range(padding[0] - 1, -1, -1)] # e.g. [3, 2, 1, 0] right_indices = [-(i + 1) for i in range(padding[1])] # e.g. [-1, -2, -3] x_indices = torch.tensor(left_indices + x_indices + right_indices) y_indices = [i for i in range(in_sizes[-2])] top_indices = [i for i in range(padding[2] - 1, -1, -1)] bottom_indices = [-(i + 1) for i in range(padding[3])] y_indices = torch.tensor(top_indices + y_indices + bottom_indices) ndim = img.ndim if ndim == 3: return img[:, y_indices[:, None], x_indices[None, :]] elif ndim == 4: return img[:, :, y_indices[:, None], x_indices[None, :]] else: raise RuntimeError("Symmetric padding of N-D tensors are not supported yet") def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor: r"""PRIVATE METHOD. Pad the given Tensor Image on all sides with specified padding mode and fill value. .. warning:: Module ``transforms.functional_tensor`` is private and should not be used in user application. Please, consider instead using methods from `transforms.functional` module. Args: img (Tensor): Image to be padded. padding (int or tuple or list): Padding on each border. If a single int is provided this is used to pad all borders. If a tuple or list of length 2 is provided this is the padding on left/right and top/bottom respectively. If a tuple or list of length 4 is provided this is the padding for the left, top, right and bottom borders respectively. In torchscript mode padding as single int is not supported, use a tuple or list of length 1: ``[padding, ]``. fill (int): Pixel fill value for constant fill. Default is 0. This value is only used when the padding_mode is constant padding_mode (str): Type of padding. Should be: constant, edge or reflect. Default is constant. Mode symmetric is not yet supported for Tensor inputs. - constant: pads with a constant value, this value is specified with fill - edge: pads with the last value on the edge of the image - reflect: pads with reflection of image (without repeating the last value on the edge) padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode will result in [3, 2, 1, 2, 3, 4, 3, 2] - symmetric: pads with reflection of image (repeating the last value on the edge) padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode will result in [2, 1, 1, 2, 3, 4, 4, 3] Returns: Tensor: Padded image. """ if not _is_tensor_a_torch_image(img): raise TypeError("tensor is not a torch image.") if not isinstance(padding, (int, tuple, list)): raise TypeError("Got inappropriate padding arg") if not isinstance(fill, (int, float)): raise TypeError("Got inappropriate fill arg") if not isinstance(padding_mode, str): raise TypeError("Got inappropriate padding_mode arg") if isinstance(padding, tuple): padding = list(padding) if isinstance(padding, list) and len(padding) not in [1, 2, 4]: raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " + "{} element tuple".format(len(padding))) if padding_mode not in ["constant", "edge", "reflect", "symmetric"]: raise ValueError("Padding mode should be either constant, edge, reflect or symmetric") if isinstance(padding, int): if torch.jit.is_scripting(): # This maybe unreachable raise ValueError("padding can't be an int while torchscripting, set it as a list [value, ]") pad_left = pad_right = pad_top = pad_bottom = padding elif len(padding) == 1: pad_left = pad_right = pad_top = pad_bottom = padding[0] elif len(padding) == 2: pad_left = pad_right = padding[0] pad_top = pad_bottom = padding[1] else: pad_left = padding[0] pad_top = padding[1] pad_right = padding[2] pad_bottom = padding[3] p = [pad_left, pad_right, pad_top, pad_bottom] if padding_mode == "edge": # remap padding_mode str padding_mode = "replicate" elif padding_mode == "symmetric": # route to another implementation return _pad_symmetric(img, p) need_squeeze = False if img.ndim < 4: img = img.unsqueeze(dim=0) need_squeeze = True out_dtype = img.dtype need_cast = False if (padding_mode != "constant") and img.dtype not in (torch.float32, torch.float64): # Here we temporary cast input tensor to float # until pytorch issue is resolved : # https://github.com/pytorch/pytorch/issues/40763 need_cast = True img = img.to(torch.float32) img = torch_pad(img, p, mode=padding_mode, value=float(fill)) if need_squeeze: img = img.squeeze(dim=0) if need_cast: img = img.to(out_dtype) return img def resize(img: Tensor, size: List[int], interpolation: int = 2) -> Tensor: r"""PRIVATE METHOD. Resize the input Tensor to the given size. .. warning:: Module ``transforms.functional_tensor`` is private and should not be used in user application. Please, consider instead using methods from `transforms.functional` module. Args: img (Tensor): Image to be resized. size (int or tuple or list): Desired output size. If size is a sequence like (h, w), the output size will be matched to this. If size is an int, the smaller edge of the image will be matched to this number maintaining the aspect ratio. i.e, if height > width, then image will be rescaled to :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`. In torchscript mode padding as a single int is not supported, use a tuple or list of length 1: ``[size, ]``. interpolation (int, optional): Desired interpolation. Default is bilinear (=2). Other supported values: nearest(=0) and bicubic(=3). Returns: Tensor: Resized image. """ if not _is_tensor_a_torch_image(img): raise TypeError("tensor is not a torch image.") if not isinstance(size, (int, tuple, list)): raise TypeError("Got inappropriate size arg") if not isinstance(interpolation, int): raise TypeError("Got inappropriate interpolation arg") _interpolation_modes = { 0: "nearest", 2: "bilinear", 3: "bicubic", } if interpolation not in _interpolation_modes: raise ValueError("This interpolation mode is unsupported with Tensor input") if isinstance(size, tuple): size = list(size) if isinstance(size, list) and len(size) not in [1, 2]: raise ValueError("Size must be an int or a 1 or 2 element tuple/list, not a " "{} element tuple/list".format(len(size))) w, h = _get_image_size(img) if isinstance(size, int): size_w, size_h = size, size elif len(size) < 2: size_w, size_h = size[0], size[0] else: size_w, size_h = size[1], size[0] # Convention (h, w) if isinstance(size, int) or len(size) < 2: if w < h: size_h = int(size_w * h / w) else: size_w = int(size_h * w / h) if (w <= h and w == size_w) or (h <= w and h == size_h): return img # make image NCHW need_squeeze = False if img.ndim < 4: img = img.unsqueeze(dim=0) need_squeeze = True mode = _interpolation_modes[interpolation] out_dtype = img.dtype need_cast = False if img.dtype not in (torch.float32, torch.float64): need_cast = True img = img.to(torch.float32) # Define align_corners to avoid warnings align_corners = False if mode in ["bilinear", "bicubic"] else None img = interpolate(img, size=[size_h, size_w], mode=mode, align_corners=align_corners) if need_squeeze: img = img.squeeze(dim=0) if need_cast: if mode == "bicubic": img = img.clamp(min=0, max=255) img = img.to(out_dtype) return img def _assert_grid_transform_inputs( img: Tensor, matrix: Optional[List[float]], resample: int, fillcolor: Optional[int], _interpolation_modes: Dict[int, str], coeffs: Optional[List[float]] = None, ): if not (isinstance(img, torch.Tensor) and _is_tensor_a_torch_image(img)): raise TypeError("Input img should be Tensor Image") if matrix is not None and not isinstance(matrix, list): raise TypeError("Argument matrix should be a list") if matrix is not None and len(matrix) != 6: raise ValueError("Argument matrix should have 6 float values") if coeffs is not None and len(coeffs) != 8: raise ValueError("Argument coeffs should have 8 float values") if fillcolor is not None: warnings.warn("Argument fill/fillcolor is not supported for Tensor input. Fill value is zero") if resample not in _interpolation_modes: raise ValueError("Resampling mode '{}' is unsupported with Tensor input".format(resample)) def _cast_squeeze_in(img: Tensor, req_dtype: torch.dtype) -> Tuple[Tensor, bool, bool, torch.dtype]: need_squeeze = False # make image NCHW if img.ndim < 4: img = img.unsqueeze(dim=0) need_squeeze = True out_dtype = img.dtype need_cast = False if out_dtype != req_dtype: need_cast = True img = img.to(req_dtype) return img, need_cast, need_squeeze, out_dtype def _cast_squeeze_out(img: Tensor, need_cast: bool, need_squeeze: bool, out_dtype: torch.dtype): if need_squeeze: img = img.squeeze(dim=0) if need_cast: # it is better to round before cast img = torch.round(img).to(out_dtype) return img def _apply_grid_transform(img: Tensor, grid: Tensor, mode: str) -> Tensor: img, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(img, grid.dtype) if img.shape[0] > 1: # Apply same grid to a batch of images grid = grid.expand(img.shape[0], grid.shape[1], grid.shape[2], grid.shape[3]) img = grid_sample(img, grid, mode=mode, padding_mode="zeros", align_corners=False) img = _cast_squeeze_out(img, need_cast, need_squeeze, out_dtype) return img def _gen_affine_grid( theta: Tensor, w: int, h: int, ow: int, oh: int, ) -> Tensor: # https://github.com/pytorch/pytorch/blob/74b65c32be68b15dc7c9e8bb62459efbfbde33d8/aten/src/ATen/native/ # AffineGridGenerator.cpp#L18 # Difference with AffineGridGenerator is that: # 1) we normalize grid values after applying theta # 2) we can normalize by other image size, such that it covers "extend" option like in PIL.Image.rotate d = 0.5 base_grid = torch.empty(1, oh, ow, 3, dtype=theta.dtype, device=theta.device) x_grid = torch.linspace(-ow * 0.5 + d, ow * 0.5 + d - 1, steps=ow, device=theta.device) base_grid[..., 0].copy_(x_grid) y_grid = torch.linspace(-oh * 0.5 + d, oh * 0.5 + d - 1, steps=oh, device=theta.device).unsqueeze_(-1) base_grid[..., 1].copy_(y_grid) base_grid[..., 2].fill_(1) rescaled_theta = theta.transpose(1, 2) / torch.tensor([0.5 * w, 0.5 * h], dtype=theta.dtype, device=theta.device) output_grid = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta) return output_grid.view(1, oh, ow, 2) def affine( img: Tensor, matrix: List[float], resample: int = 0, fillcolor: Optional[int] = None ) -> Tensor: """PRIVATE METHOD. Apply affine transformation on the Tensor image keeping image center invariant. .. warning:: Module ``transforms.functional_tensor`` is private and should not be used in user application. Please, consider instead using methods from `transforms.functional` module. Args: img (Tensor): image to be rotated. matrix (list of floats): list of 6 float values representing inverse matrix for affine transformation. resample (int, optional): An optional resampling filter. Default is nearest (=0). Other supported values: bilinear(=2). fillcolor (int, optional): this option is not supported for Tensor input. Fill value for the area outside the transform in the output image is always 0. Returns: Tensor: Transformed image. """ _interpolation_modes = { 0: "nearest", 2: "bilinear", } _assert_grid_transform_inputs(img, matrix, resample, fillcolor, _interpolation_modes) dtype = img.dtype if torch.is_floating_point(img) else torch.float32 theta = torch.tensor(matrix, dtype=dtype, device=img.device).reshape(1, 2, 3) shape = img.shape # grid will be generated on the same device as theta and img grid = _gen_affine_grid(theta, w=shape[-1], h=shape[-2], ow=shape[-1], oh=shape[-2]) mode = _interpolation_modes[resample] return _apply_grid_transform(img, grid, mode) def _compute_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]: # Inspired of PIL implementation: # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054 # pts are Top-Left, Top-Right, Bottom-Left, Bottom-Right points. pts = torch.tensor([ [-0.5 * w, -0.5 * h, 1.0], [-0.5 * w, 0.5 * h, 1.0], [0.5 * w, 0.5 * h, 1.0], [0.5 * w, -0.5 * h, 1.0], ]) theta = torch.tensor(matrix, dtype=torch.float).reshape(1, 2, 3) new_pts = pts.view(1, 4, 3).bmm(theta.transpose(1, 2)).view(4, 2) min_vals, _ = new_pts.min(dim=0) max_vals, _ = new_pts.max(dim=0) # Truncate precision to 1e-4 to avoid ceil of Xe-15 to 1.0 tol = 1e-4 cmax = torch.ceil((max_vals / tol).trunc_() * tol) cmin = torch.floor((min_vals / tol).trunc_() * tol) size = cmax - cmin return int(size[0]), int(size[1]) def rotate( img: Tensor, matrix: List[float], resample: int = 0, expand: bool = False, fill: Optional[int] = None ) -> Tensor: """PRIVATE METHOD. Rotate the Tensor image by angle. .. warning:: Module ``transforms.functional_tensor`` is private and should not be used in user application. Please, consider instead using methods from `transforms.functional` module. Args: img (Tensor): image to be rotated. matrix (list of floats): list of 6 float values representing inverse matrix for rotation transformation. Translation part (``matrix[2]`` and ``matrix[5]``) should be in pixel coordinates. resample (int, optional): An optional resampling filter. Default is nearest (=0). Other supported values: bilinear(=2). expand (bool, optional): Optional expansion flag. If true, expands the output image to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. Note that the expand flag assumes rotation around the center and no translation. fill (n-tuple or int or float): this option is not supported for Tensor input. Fill value for the area outside the transform in the output image is always 0. Returns: Tensor: Rotated image. .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters """ _interpolation_modes = { 0: "nearest", 2: "bilinear", } _assert_grid_transform_inputs(img, matrix, resample, fill, _interpolation_modes) w, h = img.shape[-1], img.shape[-2] ow, oh = _compute_output_size(matrix, w, h) if expand else (w, h) dtype = img.dtype if torch.is_floating_point(img) else torch.float32 theta = torch.tensor(matrix, dtype=dtype, device=img.device).reshape(1, 2, 3) # grid will be generated on the same device as theta and img grid = _gen_affine_grid(theta, w=w, h=h, ow=ow, oh=oh) mode = _interpolation_modes[resample] return _apply_grid_transform(img, grid, mode) def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype, device: torch.device): # https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/ # src/libImaging/Geometry.c#L394 # # x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1) # y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1) # theta1 = torch.tensor([[ [coeffs[0], coeffs[1], coeffs[2]], [coeffs[3], coeffs[4], coeffs[5]] ]], dtype=dtype, device=device) theta2 = torch.tensor([[ [coeffs[6], coeffs[7], 1.0], [coeffs[6], coeffs[7], 1.0] ]], dtype=dtype, device=device) d = 0.5 base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device) x_grid = torch.linspace(d, ow * 1.0 + d - 1.0, steps=ow, device=device) base_grid[..., 0].copy_(x_grid) y_grid = torch.linspace(d, oh * 1.0 + d - 1.0, steps=oh, device=device).unsqueeze_(-1) base_grid[..., 1].copy_(y_grid) base_grid[..., 2].fill_(1) rescaled_theta1 = theta1.transpose(1, 2) / torch.tensor([0.5 * ow, 0.5 * oh], dtype=dtype, device=device) output_grid1 = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta1) output_grid2 = base_grid.view(1, oh * ow, 3).bmm(theta2.transpose(1, 2)) output_grid = output_grid1 / output_grid2 - 1.0 return output_grid.view(1, oh, ow, 2) def perspective( img: Tensor, perspective_coeffs: List[float], interpolation: int = 2, fill: Optional[int] = None ) -> Tensor: """PRIVATE METHOD. Perform perspective transform of the given Tensor image. .. warning:: Module ``transforms.functional_tensor`` is private and should not be used in user application. Please, consider instead using methods from `transforms.functional` module. Args: img (Tensor): Image to be transformed. perspective_coeffs (list of float): perspective transformation coefficients. interpolation (int): Interpolation type. Default, ``PIL.Image.BILINEAR``. fill (n-tuple or int or float): this option is not supported for Tensor input. Fill value for the area outside the transform in the output image is always 0. Returns: Tensor: transformed image. """ if not (isinstance(img, torch.Tensor) and _is_tensor_a_torch_image(img)): raise TypeError('Input img should be Tensor Image') _interpolation_modes = { 0: "nearest", 2: "bilinear", } _assert_grid_transform_inputs( img, matrix=None, resample=interpolation, fillcolor=fill, _interpolation_modes=_interpolation_modes, coeffs=perspective_coeffs ) ow, oh = img.shape[-1], img.shape[-2] dtype = img.dtype if torch.is_floating_point(img) else torch.float32 grid = _perspective_grid(perspective_coeffs, ow=ow, oh=oh, dtype=dtype, device=img.device) mode = _interpolation_modes[interpolation] return _apply_grid_transform(img, grid, mode) def _get_gaussian_kernel1d(kernel_size: int, sigma: float) -> Tensor: ksize_half = (kernel_size - 1) * 0.5 x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size) pdf = torch.exp(-0.5 * (x / sigma).pow(2)) kernel1d = pdf / pdf.sum() return kernel1d def _get_gaussian_kernel2d( kernel_size: List[int], sigma: List[float], dtype: torch.dtype, device: torch.device ) -> Tensor: kernel1d_x = _get_gaussian_kernel1d(kernel_size[0], sigma[0]).to(device, dtype=dtype) kernel1d_y = _get_gaussian_kernel1d(kernel_size[1], sigma[1]).to(device, dtype=dtype) kernel2d = torch.mm(kernel1d_y[:, None], kernel1d_x[None, :]) return kernel2d def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: List[float]) -> Tensor: """PRIVATE METHOD. Performs Gaussian blurring on the img by given kernel. .. warning:: Module ``transforms.functional_tensor`` is private and should not be used in user application. Please, consider instead using methods from `transforms.functional` module. Args: img (Tensor): Image to be blurred kernel_size (sequence of int or int): Kernel size of the Gaussian kernel ``(kx, ky)``. sigma (sequence of float or float, optional): Standard deviation of the Gaussian kernel ``(sx, sy)``. Returns: Tensor: An image that is blurred using gaussian kernel of given parameters """ if not (isinstance(img, torch.Tensor) or _is_tensor_a_torch_image(img)): raise TypeError('img should be Tensor Image. Got {}'.format(type(img))) dtype = img.dtype if torch.is_floating_point(img) else torch.float32 kernel = _get_gaussian_kernel2d(kernel_size, sigma, dtype=dtype, device=img.device) kernel = kernel.expand(img.shape[-3], 1, kernel.shape[0], kernel.shape[1]) img, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(img, kernel.dtype) # padding = (left, right, top, bottom) padding = [kernel_size[0] // 2, kernel_size[0] // 2, kernel_size[1] // 2, kernel_size[1] // 2] img = torch_pad(img, padding, mode="reflect") img = conv2d(img, kernel, groups=img.shape[-3]) img = _cast_squeeze_out(img, need_cast, need_squeeze, out_dtype) return img class TensorColorJitter(torch.nn.Module): """Randomly change the brightness, contrast and saturation of an image. Args: brightness (float or tuple of float (min, max)): How much to jitter brightness. brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness] or the given [min, max]. Should be non negative numbers. contrast (float or tuple of float (min, max)): How much to jitter contrast. contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast] or the given [min, max]. Should be non negative numbers. saturation (float or tuple of float (min, max)): How much to jitter saturation. saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation] or the given [min, max]. Should be non negative numbers. hue (float or tuple of float (min, max)): How much to jitter hue. hue_factor is chosen uniformly from [-hue, hue] or the given [min, max]. Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5. """ def __init__(self, brightness=0, contrast=0, saturation=0, hue=0): super().__init__() self.brightness = self._check_input(brightness, 'brightness') self.contrast = self._check_input(contrast, 'contrast') self.saturation = self._check_input(saturation, 'saturation') self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5), clip_first_on_zero=False) @torch.jit.unused def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True): if isinstance(value, numbers.Number): if value < 0: raise ValueError("If {} is a single number, it must be non negative.".format(name)) value = [center - float(value), center + float(value)] if clip_first_on_zero: value[0] = max(value[0], 0.0) elif isinstance(value, (tuple, list)) and len(value) == 2: if not bound[0] <= value[0] <= value[1] <= bound[1]: raise ValueError("{} values should be between {}".format(name, bound)) else: raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name)) # if value is 0 or (1., 1.) for brightness/contrast/saturation # or (0., 0.) for hue, do nothing if value[0] == value[1] == center: value = None return value @staticmethod @torch.jit.unused def get_params(brightness, contrast, saturation, hue): """Get a randomized transform to be applied on image. Arguments are same as that of __init__. Returns: Transform which randomly adjusts brightness, contrast and saturation in a random order. """ transforms = [] if brightness is not None: brightness_factor = random.uniform(brightness[0], brightness[1]) transforms.append(Lambda(lambda img: adjust_brightness(img, brightness_factor))) if contrast is not None: contrast_factor = random.uniform(contrast[0], contrast[1]) transforms.append(Lambda(lambda img: adjust_contrast(img, contrast_factor))) if saturation is not None: saturation_factor = random.uniform(saturation[0], saturation[1]) transforms.append(Lambda(lambda img: adjust_saturation(img, saturation_factor))) if hue is not None: hue_factor = random.uniform(hue[0], hue[1]) transforms.append(Lambda(lambda img: adjust_hue(img, hue_factor))) random.shuffle(transforms) transform = Compose(transforms) return transform def forward(self, img): """ Args: img (Tensor): Input image. Returns: PIL Image or Tensor: Color jittered image. """ fn_idx = torch.randperm(4) for fn_id in fn_idx: if fn_id == 0 and self.brightness is not None: brightness = self.brightness brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item() img = adjust_brightness(img, brightness_factor) if fn_id == 1 and self.contrast is not None: contrast = self.contrast contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item() img = adjust_contrast(img, contrast_factor) if fn_id == 2 and self.saturation is not None: saturation = self.saturation saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item() img = adjust_saturation(img, saturation_factor) if fn_id == 3 and self.hue is not None: hue = self.hue hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item() img = adjust_hue(img, hue_factor) return img def __repr__(self): format_string = self.__class__.__name__ + '(' format_string += 'brightness={0}'.format(self.brightness) format_string += ', contrast={0}'.format(self.contrast) format_string += ', saturation={0}'.format(self.saturation) format_string += ', hue={0})'.format(self.hue) return format_string
38.833205
119
0.643066
112b0f7d095701eeb2325ef241d8653a506ec96b
12,065
py
Python
tools/custom_check.py
tuhinspatra/tyro-zulip-bot
29c149af1b01955e50564e31cff03331fa723880
[ "MIT" ]
1
2020-05-25T11:52:31.000Z
2020-05-25T11:52:31.000Z
tools/custom_check.py
armag-pro/tyro-zulip-bot
29c149af1b01955e50564e31cff03331fa723880
[ "MIT" ]
6
2020-03-24T16:39:54.000Z
2021-04-30T20:46:43.000Z
tools/custom_check.py
tuhinspatra/tyro-zulip-bot
29c149af1b01955e50564e31cff03331fa723880
[ "MIT" ]
3
2019-01-26T21:40:16.000Z
2019-02-24T20:16:26.000Z
from __future__ import print_function from __future__ import absolute_import import os import re import traceback from server_lib.printer import print_err, colors from typing import cast, Any, Callable, Dict, List, Optional, Tuple def build_custom_checkers(by_lang): # type: (Dict[str, List[str]]) -> Tuple[Callable[[], bool], Callable[[], bool]] RuleList = List[Dict[str, Any]] def custom_check_file(fn, identifier, rules, skip_rules=None, max_length=None): # type: (str, str, RuleList, Optional[Any], Optional[int]) -> bool failed = False color = next(colors) line_tups = [] for i, line in enumerate(open(fn)): line_newline_stripped = line.strip('\n') line_fully_stripped = line_newline_stripped.strip() skip = False for rule in skip_rules or []: if re.match(rule, line): skip = True if line_fully_stripped.endswith(' # nolint'): continue if skip: continue tup = (i, line, line_newline_stripped, line_fully_stripped) line_tups.append(tup) rules_to_apply = [] fn_dirname = os.path.dirname(fn) for rule in rules: exclude_list = rule.get('exclude', set()) if fn in exclude_list or fn_dirname in exclude_list: continue if rule.get("include_only"): found = False for item in rule.get("include_only", set()): if item in fn: found = True if not found: continue rules_to_apply.append(rule) for rule in rules_to_apply: exclude_lines = { line for (exclude_fn, line) in rule.get('exclude_line', set()) if exclude_fn == fn } pattern = rule['pattern'] for (i, line, line_newline_stripped, line_fully_stripped) in line_tups: if line_fully_stripped in exclude_lines: exclude_lines.remove(line_fully_stripped) continue try: line_to_check = line_fully_stripped if rule.get('strip') is not None: if rule['strip'] == '\n': line_to_check = line_newline_stripped else: raise Exception("Invalid strip rule") if re.search(pattern, line_to_check): print_err(identifier, color, '{} at {} line {}:'.format( rule['description'], fn, i+1)) print_err(identifier, color, line) failed = True except Exception: print("Exception with %s at %s line %s" % (rule['pattern'], fn, i+1)) traceback.print_exc() if exclude_lines: print('Please remove exclusions for file %s: %s' % (fn, exclude_lines)) lastLine = None for (i, line, line_newline_stripped, line_fully_stripped) in line_tups: if isinstance(line, bytes): line_length = len(line.decode("utf-8")) else: line_length = len(line) if (max_length is not None and line_length > max_length and '# type' not in line and 'test' not in fn and 'example' not in fn and not re.match("\[[ A-Za-z0-9_:,&()-]*\]: http.*", line) and not re.match("`\{\{ external_api_uri_subdomain \}\}[^`]+`", line) and "#ignorelongline" not in line and 'migrations' not in fn): print("Line too long (%s) at %s line %s: %s" % (len(line), fn, i+1, line_newline_stripped)) failed = True lastLine = line if lastLine and ('\n' not in lastLine): print("No newline at the end of file. Fix with `sed -i '$a\\' %s`" % (fn,)) failed = True return failed whitespace_rules = [ # This linter should be first since bash_rules depends on it. {'pattern': '\s+$', 'strip': '\n', 'description': 'Fix trailing whitespace'}, {'pattern': '\t', 'strip': '\n', 'description': 'Fix tab-based whitespace'}, ] # type: RuleList markdown_whitespace_rules = list([rule for rule in whitespace_rules if rule['pattern'] != '\s+$']) + [ # Two spaces trailing a line with other content is okay--it's a markdown line break. # This rule finds one space trailing a non-space, three or more trailing spaces, and # spaces on an empty line. {'pattern': '((?<!\s)\s$)|(\s\s\s+$)|(^\s+$)', 'strip': '\n', 'description': 'Fix trailing whitespace'}, {'pattern': '^#+[A-Za-z0-9]', 'strip': '\n', 'description': 'Missing space after # in heading'}, ] # type: RuleList python_rules = cast(RuleList, [ {'pattern': '".*"%\([a-z_].*\)?$', 'description': 'Missing space around "%"'}, {'pattern': "'.*'%\([a-z_].*\)?$", 'description': 'Missing space around "%"'}, # This rule is constructed with + to avoid triggering on itself {'pattern': " =" + '[^ =>~"]', 'description': 'Missing whitespace after "="'}, {'pattern': '":\w[^"]*$', 'description': 'Missing whitespace after ":"'}, {'pattern': "':\w[^']*$", 'description': 'Missing whitespace after ":"'}, {'pattern': "^\s+[#]\w", 'strip': '\n', 'description': 'Missing whitespace after "#"'}, {'pattern': "assertEquals[(]", 'description': 'Use assertEqual, not assertEquals (which is deprecated).'}, {'pattern': 'self: Any', 'description': 'you can omit Any annotation for self', 'good_lines': ['def foo (self):'], 'bad_lines': ['def foo(self: Any):']}, {'pattern': "== None", 'description': 'Use `is None` to check whether something is None'}, {'pattern': "type:[(]", 'description': 'Missing whitespace after ":" in type annotation'}, {'pattern': "# type [(]", 'description': 'Missing : after type in type annotation'}, {'pattern': "#type", 'description': 'Missing whitespace after "#" in type annotation'}, {'pattern': 'if[(]', 'description': 'Missing space between if and ('}, {'pattern': ", [)]", 'description': 'Unnecessary whitespace between "," and ")"'}, {'pattern': "% [(]", 'description': 'Unnecessary whitespace between "%" and "("'}, # This next check could have false positives, but it seems pretty # rare; if we find any, they can be added to the exclude list for # this rule. {'pattern': ' % [a-zA-Z0-9_.]*\)?$', 'description': 'Used % comprehension without a tuple'}, {'pattern': '.*%s.* % \([a-zA-Z0-9_.]*\)$', 'description': 'Used % comprehension without a tuple'}, # This rule might give false positives in virtualenv setup files which should be excluded, # and comments which should be rewritten to avoid use of "python2", "python3", etc. {'pattern': 'python[23]', 'include_only': set(['zulip/', 'zulip_botserver/']), 'description': 'Explicit python invocations should not include a version'}, {'pattern': '__future__', 'include_only': set(['zulip_bots/zulip_bots/bots/']), 'description': 'Bots no longer need __future__ imports.'}, {'pattern': '#!/usr/bin/env python$', 'include_only': set(['zulip_bots/']), 'description': 'Python shebangs must be python3'}, {'pattern': '(^|\s)open\s*\(', 'description': 'open() should not be used in Zulip\'s bots. Use functions' ' provided by the bots framework to access the filesystem.', 'include_only': set(['zulip_bots/zulip_bots/bots/'])}, {'pattern': 'pprint', 'description': 'Used pprint, which is most likely a debugging leftover. For user output, use print().'}, {'pattern': '\(BotTestCase\)', 'bad_lines': ['class TestSomeBot(BotTestCase):'], 'description': 'Bot test cases should directly inherit from BotTestCase *and* DefaultTests.'}, {'pattern': '\(DefaultTests, BotTestCase\)', 'bad_lines': ['class TestSomeBot(DefaultTests, BotTestCase):'], 'good_lines': ['class TestSomeBot(BotTestCase, DefaultTests):'], 'description': 'Bot test cases should inherit from BotTestCase before DefaultTests.'}, ]) + whitespace_rules bash_rules = [ {'pattern': '#!.*sh [-xe]', 'description': 'Fix shebang line with proper call to /usr/bin/env for Bash path, change -x|-e switches' ' to set -x|set -e'}, ] + whitespace_rules[0:1] # type: RuleList prose_style_rules = [ {'pattern': '[^\/\#\-\"]([jJ]avascript)', # exclude usage in hrefs/divs 'description': "javascript should be spelled JavaScript"}, {'pattern': '[^\/\-\.\"\'\_\=\>]([gG]ithub)[^\.\-\_\"\<]', # exclude usage in hrefs/divs 'description': "github should be spelled GitHub"}, {'pattern': '[oO]rganisation', # exclude usage in hrefs/divs 'description': "Organization is spelled with a z"}, {'pattern': '!!! warning', 'description': "!!! warning is invalid; it's spelled '!!! warn'"}, {'pattern': '[^-_]botserver(?!rc)|bot server', 'description': "Use Botserver instead of botserver or Botserver."}, ] # type: RuleList json_rules = [] # type: RuleList # fix newlines at ends of files # It is okay that json_rules is empty, because the empty list # ensures we'll still check JSON files for whitespace. markdown_rules = markdown_whitespace_rules + prose_style_rules + [ {'pattern': '\[(?P<url>[^\]]+)\]\((?P=url)\)', 'description': 'Linkified markdown URLs should use cleaner <http://example.com> syntax.'} ] help_markdown_rules = markdown_rules + [ {'pattern': '[a-z][.][A-Z]', 'description': "Likely missing space after end of sentence"}, {'pattern': '[rR]ealm', 'description': "Realms are referred to as Organizations in user-facing docs."}, ] txt_rules = whitespace_rules def check_custom_checks_py(): # type: () -> bool failed = False for fn in by_lang['py']: if 'custom_check.py' in fn: continue if custom_check_file(fn, 'py', python_rules, max_length=140): failed = True return failed def check_custom_checks_nonpy(): # type: () -> bool failed = False for fn in by_lang['sh']: if custom_check_file(fn, 'sh', bash_rules): failed = True for fn in by_lang['json']: if custom_check_file(fn, 'json', json_rules): failed = True markdown_docs_length_exclude = { "zulip_bots/zulip_bots/bots/converter/doc.md", "tools/server_lib/README.md", } for fn in by_lang['md']: max_length = None if fn not in markdown_docs_length_exclude: max_length = 120 rules = markdown_rules if fn.startswith("templates/zerver/help"): rules = help_markdown_rules if custom_check_file(fn, 'md', rules, max_length=max_length): failed = True for fn in by_lang['txt'] + by_lang['text']: if custom_check_file(fn, 'txt', txt_rules): failed = True for fn in by_lang['yaml']: if custom_check_file(fn, 'yaml', txt_rules): failed = True return failed return (check_custom_checks_py, check_custom_checks_nonpy)
44.685185
113
0.5477
def56c559708e37e9d67fc12f0b9bb73e731bfeb
2,414
py
Python
src/sage/combinat/algebraic_combinatorics.py
saraedum/sage-renamed
d2da67b14da2ad766a5906425d60d43a3b3e1270
[ "BSL-1.0" ]
null
null
null
src/sage/combinat/algebraic_combinatorics.py
saraedum/sage-renamed
d2da67b14da2ad766a5906425d60d43a3b3e1270
[ "BSL-1.0" ]
null
null
null
src/sage/combinat/algebraic_combinatorics.py
saraedum/sage-renamed
d2da67b14da2ad766a5906425d60d43a3b3e1270
[ "BSL-1.0" ]
null
null
null
r""" Algebraic combinatorics ======================= Quickref -------- .. TODO:: write it! Thematic tutorials ------------------ .. TODO:: get Sphinx to create those cross links properly - `Algebraic Combinatorics in Sage <../../../../thematic_tutorials/algebraic_combinatorics.html>`_ - `Lie Methods and Related Combinatorics in Sage <../../../../thematic_tutorials/lie.html>`_ - `Linear Programming (Mixed Integer) <../../../../thematic_tutorials/linear_programming.html>`_ Enumerated sets of combinatorial objects ---------------------------------------- - :ref:`sage.combinat.catalog_partitions` - :class:`~sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPattern`, :class:`~sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPatterns` - :class:`~sage.combinat.knutson_tao_puzzles.KnutsonTaoPuzzleSolver` Combinatorial Hopf Algebras --------------------------- - :ref:`sage.combinat.sf` - :ref:`sage.combinat.ncsf_qsym` - :ref:`sage.combinat.schubert_polynomial` - :ref:`sage.combinat.ncsym` - :ref:`sage.combinat.grossman_larson_algebras` - :ref:`sage.combinat.fqsym` - :ref:`sage.combinat.chas.wqsym` Groups and Algebras ------------------- - :ref:`Catalog of algebras <sage.algebras.catalog>` - :ref:`Groups <sage.groups.groups_catalog>` - :class:`SymmetricGroup`, :class:`CoxeterGroup`, :class:`WeylGroup` - :class:`~sage.combinat.diagram_algebras.PartitionAlgebra` - :class:`~sage.algebras.iwahori_hecke_algebra.IwahoriHeckeAlgebra` - :class:`~sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra` - :class:`~sage.algebras.nil_coxeter_algebra.NilCoxeterAlgebra` - :class:`~sage.algebras.affine_nil_temperley_lieb.AffineNilTemperleyLiebTypeA` - :ref:`sage.combinat.descent_algebra` - :ref:`sage.combinat.diagram_algebras` Combinatorial Representation Theory ----------------------------------- - :ref:`sage.combinat.root_system` - :ref:`sage.combinat.crystals` - :ref:`sage.combinat.rigged_configurations` - :ref:`sage.combinat.cluster_algebra_quiver` - :class:`~sage.combinat.kazhdan_lusztig.KazhdanLusztigPolynomial` - :class:`~sage.combinat.symmetric_group_representations.SymmetricGroupRepresentation` - :ref:`sage.combinat.yang_baxter_graph` - :ref:`sage.combinat.hall_polynomial` Operads and their algebras -------------------------- - :ref:`sage.combinat.free_dendriform_algebra` - :ref:`sage.combinat.free_prelie_algebra` - :ref:`sage.algebras.free_zinbiel_algebra` """
34.485714
145
0.718724
137d123ef820285f36696eae718fe84dde3fb541
179,869
py
Python
CPAC/pipeline/cpac_pipeline.py
tbweng/C-PAC
12a1807865273891aa3a566429ac9fe76c12532c
[ "BSD-3-Clause" ]
null
null
null
CPAC/pipeline/cpac_pipeline.py
tbweng/C-PAC
12a1807865273891aa3a566429ac9fe76c12532c
[ "BSD-3-Clause" ]
null
null
null
CPAC/pipeline/cpac_pipeline.py
tbweng/C-PAC
12a1807865273891aa3a566429ac9fe76c12532c
[ "BSD-3-Clause" ]
null
null
null
import os import time import six import re import csv import shutil import pickle import copy import json import pandas as pd import pkg_resources as p import networkx as nx import logging as cb_logging from time import strftime import nipype import nipype.pipeline.engine as pe import nipype.interfaces.fsl as fsl import nipype.interfaces.io as nio import nipype.interfaces.utility as util import nipype.interfaces.afni as afni from nipype.interfaces.afni import preprocess import nipype.interfaces.ants as ants import nipype.interfaces.c3 as c3 from nipype.interfaces.utility import Merge from nipype.pipeline.engine.utils import format_dot from nipype import config from nipype import logging from indi_aws import aws_utils, fetch_creds import CPAC from CPAC.network_centrality.pipeline import ( create_network_centrality_workflow ) from CPAC.anat_preproc.anat_preproc import create_anat_preproc from CPAC.EPI_DistCorr.EPI_DistCorr import create_EPI_DistCorr from CPAC.func_preproc.func_preproc import ( create_func_preproc, create_wf_edit_func ) from CPAC.seg_preproc.seg_preproc import create_seg_preproc from CPAC.warp.pipeline import ( output_to_standard, z_score_standardize, fisher_z_score_standardize, output_smooth, calc_avg ) from CPAC.warp.pipeline import ants_apply_warps_asl_mni from CPAC.registration import ( create_bbregister_asl_to_anat, create_register_asl_to_anat ) from CPAC.registration import ( create_fsl_flirt_linear_reg, create_fsl_fnirt_nonlinear_reg, create_register_func_to_anat, create_bbregister_func_to_anat, create_wf_calculate_ants_warp, create_wf_apply_ants_warp, create_wf_c3d_fsl_to_itk, create_wf_collect_transforms ) from CPAC.nuisance import create_nuisance_workflow, bandpass_voxels, NuisanceRegressor from CPAC.aroma import create_aroma from CPAC.median_angle import create_median_angle_correction from CPAC.generate_motion_statistics import motion_power_statistics from CPAC.scrubbing import create_scrubbing_preproc from CPAC.timeseries import ( create_surface_registration, get_roi_timeseries, get_voxel_timeseries, get_vertices_timeseries, get_spatial_map_timeseries ) from CPAC.network_centrality import ( create_resting_state_graphs, get_cent_zscore ) from CPAC.warp.pipeline import ( ants_apply_warps_func_mni, ants_apply_inverse_warps_template_to_func ) from CPAC.vmhc.vmhc import create_vmhc from CPAC.reho.reho import create_reho from CPAC.alff.alff import create_alff from CPAC.sca.sca import create_sca, create_temporal_reg from CPAC.connectome.pipeline import create_connectome from CPAC.utils.symlinks import create_symlinks from CPAC.utils.datasource import ( create_func_datasource, create_anat_datasource, create_roi_mask_dataflow, create_spatial_map_dataflow, create_check_for_s3_node ) from CPAC.utils import Configuration, Strategy, Outputs, function, find_files from CPAC.qc.pipeline import create_qc_workflow from CPAC.qc.utils import generate_qc_pages from CPAC.utils.utils import ( extract_one_d, get_scan_params, get_tr, extract_txt, create_log, extract_output_mean, create_output_mean_csv, get_zscore, get_fisher_zscore, add_afni_prefix ) logger = logging.getLogger('nipype.workflow') # TODO ASH move to somewhere else def pick_wm(seg_prob_list): seg_prob_list.sort() return seg_prob_list[-1] def create_log_node(workflow, logged_wf, output, index, scan_id=None): try: log_dir = workflow.config['logging']['log_directory'] if logged_wf: log_wf = create_log(wf_name='log_%s' % logged_wf.name) log_wf.inputs.inputspec.workflow = logged_wf.name log_wf.inputs.inputspec.index = index log_wf.inputs.inputspec.log_dir = log_dir workflow.connect(logged_wf, output, log_wf, 'inputspec.inputs') else: log_wf = create_log(wf_name='log_done_%s' % scan_id, scan_id=scan_id) log_wf.base_dir = log_dir log_wf.inputs.inputspec.workflow = 'DONE' log_wf.inputs.inputspec.index = index log_wf.inputs.inputspec.log_dir = log_dir log_wf.inputs.inputspec.inputs = log_dir return log_wf except Exception as e: print(e) def prep_workflow(sub_dict, c, run, pipeline_timing_info=None, p_name=None, plugin='MultiProc', plugin_args=None): ''' Function to prepare and, optionally, run the C-PAC workflow Parameters ---------- sub_dict : dictionary subject dictionary with anatomical and functional image paths c : Configuration object CPAC pipeline configuration dictionary object run : boolean flag to indicate whether to run the prepared workflow pipeline_timing_info : list (optional); default=None list of pipeline info for reporting timing information p_name : string (optional); default=None name of pipeline plugin : string (optional); defaule='MultiProc' nipype plugin to utilize when the workflow is ran plugin_args : dictionary (optional); default=None plugin-specific arguments for the workflow plugin Returns ------- workflow : nipype workflow the prepared nipype workflow object containing the parameters specified in the config ''' # Import packages from CPAC.utils.utils import check_config_resources, check_system_deps import pickle ndmg_out = False # Assure that changes on config will not affect other parts c = copy.copy(c) subject_id = sub_dict['subject_id'] if sub_dict['unique_id']: subject_id += "_" + sub_dict['unique_id'] log_dir = os.path.join(c.logDirectory, 'pipeline_%s' % c.pipelineName, subject_id) if not os.path.exists(log_dir): os.makedirs(os.path.join(log_dir)) # TODO ASH Enforce c.run_logging to be boolean # TODO ASH Schema validation config.update_config({ 'logging': { 'log_directory': log_dir, 'log_to_file': bool(getattr(c, 'run_logging', True)) } }) logging.update_logging(config) # Start timing here pipeline_start_time = time.time() # at end of workflow, take timestamp again, take time elapsed and check # tempfile add time to time data structure inside tempfile, and increment # number of subjects # Check pipeline config resources sub_mem_gb, num_cores_per_sub, num_ants_cores = \ check_config_resources(c) if plugin_args: plugin_args['memory_gb'] = sub_mem_gb plugin_args['n_procs'] = num_cores_per_sub else: plugin_args = {'memory_gb': sub_mem_gb, 'n_procs': num_cores_per_sub} # perhaps in future allow user to set threads maximum # this is for centrality mostly # import mkl numThreads = '1' os.environ['OMP_NUM_THREADS'] = '1' # str(num_cores_per_sub) os.environ['MKL_NUM_THREADS'] = '1' # str(num_cores_per_sub) os.environ['ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS'] = str(num_ants_cores) # calculate maximum potential use of cores according to current pipeline # configuration max_core_usage = int(c.maxCoresPerParticipant) * \ int(c.numParticipantsAtOnce) information = """ C-PAC version: {cpac_version} Setting maximum number of cores per participant to {cores} Setting number of participants at once to {participants} Setting OMP_NUM_THREADS to {threads} Setting MKL_NUM_THREADS to {threads} Setting ANTS/ITK thread usage to {ants_threads} Maximum potential number of cores that might be used during this run: {max_cores} """ logger.info(information.format( cpac_version=CPAC.__version__, cores=c.maxCoresPerParticipant, participants=c.numParticipantsAtOnce, threads=numThreads, ants_threads=c.num_ants_threads, max_cores=max_core_usage )) # TODO ASH temporary code, remove # TODO ASH maybe scheme validation/normalization already_skullstripped = c.already_skullstripped[0] if already_skullstripped == 2: already_skullstripped = 0 elif already_skullstripped == 3: already_skullstripped = 1 subject_info = {} subject_info['subject_id'] = subject_id subject_info['start_time'] = pipeline_start_time # Check system dependencies check_system_deps(check_ants='ANTS' in c.regOption, check_ica_aroma='1' in str(c.runICA[0])) # absolute paths of the dirs c.workingDirectory = os.path.abspath(c.workingDirectory) if 's3://' not in c.outputDirectory: c.outputDirectory = os.path.abspath(c.outputDirectory) # Workflow setup workflow_name = 'resting_preproc_' + str(subject_id) workflow = pe.Workflow(name=workflow_name) workflow.base_dir = c.workingDirectory workflow.config['execution'] = { 'hash_method': 'timestamp', 'crashdump_dir': os.path.abspath(c.crashLogDirectory) } # Extract credentials path if it exists try: creds_path = sub_dict['creds_path'] if creds_path and 'none' not in creds_path.lower(): if os.path.exists(creds_path): input_creds_path = os.path.abspath(creds_path) else: err_msg = 'Credentials path: "%s" for subject "%s" was not ' \ 'found. Check this path and try again.' % ( creds_path, subject_id) raise Exception(err_msg) else: input_creds_path = None except KeyError: input_creds_path = None # TODO ASH normalize file paths with schema validator template_anat_keys = [ ("anat", "template_brain_only_for_anat"), ("anat", "template_skull_for_anat"), ("anat", "ref_mask"), ("anat", "template_symmetric_brain_only"), ("anat", "template_symmetric_skull"), ("anat", "dilated_symmetric_brain_mask"), ("anat", "templateSpecificationFile"), ("anat", "lateral_ventricles_mask"), ("anat", "PRIORS_CSF"), ("anat", "PRIORS_GRAY"), ("anat", "PRIORS_WHITE"), ("other", "configFileTwomm"), ] for key_type, key in template_anat_keys: node = create_check_for_s3_node( key, getattr(c, key), key_type, input_creds_path, c.workingDirectory ) setattr(c, key, node) if c.reGenerateOutputs is True: working_dir = os.path.join(c.workingDirectory, workflow_name) erasable = list(find_files(working_dir, '*sink*')) + \ list(find_files(working_dir, '*link*')) + \ list(find_files(working_dir, '*log*')) for f in erasable: if os.path.isfile(f): os.remove(f) else: shutil.rmtree(f) """"""""""""""""""""""""""""""""""""""""""""""""""" PREPROCESSING """"""""""""""""""""""""""""""""""""""""""""""""""" strat_initial = Strategy() strat_list = [] num_strat = 0 workflow_bit_id = {} workflow_counter = 0 anat_flow = create_anat_datasource('anat_gather_%d' % num_strat) anat_flow.inputs.inputnode.subject = subject_id anat_flow.inputs.inputnode.anat = sub_dict['anat'] anat_flow.inputs.inputnode.creds_path = input_creds_path anat_flow.inputs.inputnode.dl_dir = c.workingDirectory strat_initial.update_resource_pool({ 'anatomical': (anat_flow, 'outputspec.anat') }) if 'brain_mask' in sub_dict.keys(): if sub_dict['brain_mask'] and sub_dict['brain_mask'].lower() != 'none': brain_flow = create_anat_datasource('brain_gather_%d' % num_strat) brain_flow.inputs.inputnode.subject = subject_id brain_flow.inputs.inputnode.anat = sub_dict['brain_mask'] brain_flow.inputs.inputnode.creds_path = input_creds_path brain_flow.inputs.inputnode.dl_dir = c.workingDirectory strat_initial.update_resource_pool({ 'anatomical_brain_mask': (brain_flow, 'outputspec.anat') }) strat_list.append(strat_initial) workflow_bit_id['anat_preproc'] = workflow_counter new_strat_list = [] for num_strat, strat in enumerate(strat_list): if 'anatomical_brain_mask' in strat: anat_preproc = create_anat_preproc(method='mask', already_skullstripped=already_skullstripped, wf_name='anat_preproc_mask_%d' % num_strat) node, out_file = strat['anatomical_brain'] workflow.connect(node, out_file, anat_preproc, 'inputspec.anat') node, out_file = strat['anatomical_brain_mask'] workflow.connect(node, out_file, anat_preproc, 'inputspec.brain_mask') strat.append_name(anat_preproc.name) strat.set_leaf_properties(anat_preproc, 'outputspec.brain') strat.update_resource_pool({ 'anatomical_brain': (anat_preproc, 'outputspec.brain'), 'anatomical_reorient': (anat_preproc, 'outputspec.reorient'), }) create_log_node(workflow, anat_preproc, 'outputspec.brain', num_strat) strat_list += new_strat_list new_strat_list = [] for num_strat, strat in enumerate(strat_list): if 'anatomical_brain_mask' in strat: continue if "AFNI" not in c.skullstrip_option and "BET" not in c.skullstrip_option: err = '\n\n[!] C-PAC says: Your skull-stripping method options ' \ 'setting does not include either \'AFNI\' or \'BET\'.\n\n' \ 'Options you provided:\nskullstrip_option: {0}' \ '\n\n'.format(str(c.skullstrip_option)) raise Exception(err) if "AFNI" in c.skullstrip_option: anat_preproc = create_anat_preproc(method='afni', already_skullstripped=already_skullstripped, wf_name='anat_preproc_afni_%d' % num_strat) anat_preproc.inputs.AFNI_options.set( shrink_factor=c.skullstrip_shrink_factor, var_shrink_fac=c.skullstrip_var_shrink_fac, shrink_fac_bot_lim=c.skullstrip_shrink_factor_bot_lim, avoid_vent=c.skullstrip_avoid_vent, niter=c.skullstrip_n_iterations, pushout=c.skullstrip_pushout, touchup=c.skullstrip_touchup, fill_hole=c.skullstrip_fill_hole, avoid_eyes=c.skullstrip_avoid_eyes, use_edge=c.skullstrip_use_edge, exp_frac=c.skullstrip_exp_frac, smooth_final=c.skullstrip_smooth_final, push_to_edge=c.skullstrip_push_to_edge, use_skull=c.skullstrip_use_skull, perc_int=c.skullstrip_perc_int, max_inter_iter=c.skullstrip_max_inter_iter, blur_fwhm=c.skullstrip_blur_fwhm, fac=c.skullstrip_fac, ) node, out_file = strat['anatomical'] workflow.connect(node, out_file, anat_preproc, 'inputspec.anat') if "BET" in c.skullstrip_option: strat = strat.fork() new_strat_list.append(strat) strat.append_name(anat_preproc.name) strat.set_leaf_properties(anat_preproc, 'outputspec.brain') strat.update_resource_pool({ 'anatomical_brain': (anat_preproc, 'outputspec.brain'), 'anatomical_reorient': (anat_preproc, 'outputspec.reorient'), }) create_log_node(workflow, anat_preproc, 'outputspec.brain', num_strat) strat_list += new_strat_list new_strat_list = [] for num_strat, strat in enumerate(strat_list): if 'anatomical_brain_mask' in strat: continue if 'anatomical_brain' in strat: continue if "BET" in c.skullstrip_option: anat_preproc = create_anat_preproc(method='fsl', already_skullstripped=already_skullstripped, wf_name='anat_preproc_bet_%d' % num_strat) anat_preproc.inputs.BET_options.set( frac=c.bet_frac, mask_boolean=c.bet_mask_boolean, mesh_boolean=c.bet_mesh_boolean, outline=c.bet_outline, padding=c.bet_padding, radius=c.bet_radius, reduce_bias=c.bet_reduce_bias, remove_eyes=c.bet_remove_eyes, robust=c.bet_robust, skull=c.bet_skull, surfaces=c.bet_surfaces, threshold=c.bet_threshold, vertical_gradient=c.bet_vertical_gradient, ) node, out_file = strat['anatomical'] workflow.connect(node, out_file, anat_preproc, 'inputspec.anat') strat.append_name(anat_preproc.name) strat.set_leaf_properties(anat_preproc, 'outputspec.brain') strat.update_resource_pool({ 'anatomical_brain': (anat_preproc, 'outputspec.brain'), 'anatomical_reorient': (anat_preproc, 'outputspec.reorient'), }) create_log_node(workflow, anat_preproc, 'outputspec.brain', num_strat) strat_list += new_strat_list # Set Up FWHM iterable # T1 -> Template, Non-linear registration (FNIRT or ANTS) new_strat_list = [] workflow_counter += 1 # either run FSL anatomical-to-MNI registration, or... workflow_bit_id['anat_mni_register'] = workflow_counter if 'FSL' in c.regOption: for num_strat, strat in enumerate(strat_list): # this is to prevent the user from running FNIRT if they are # providing already-skullstripped inputs. this is because # FNIRT requires an input with the skull still on if already_skullstripped == 1: err_msg = '\n\n[!] CPAC says: FNIRT (for anatomical ' \ 'registration) will not work properly if you ' \ 'are providing inputs that have already been ' \ 'skull-stripped.\n\nEither switch to using ' \ 'ANTS for registration or provide input ' \ 'images that have not been already ' \ 'skull-stripped.\n\n' logger.info(err_msg) raise Exception flirt_reg_anat_mni = create_fsl_flirt_linear_reg( 'anat_mni_flirt_register_%d' % num_strat ) node, out_file = strat['anatomical_brain'] workflow.connect(node, out_file, flirt_reg_anat_mni, 'inputspec.input_brain') # pass the reference files workflow.connect( c.template_brain_only_for_anat, 'local_path', flirt_reg_anat_mni, 'inputspec.reference_brain' ) if 'ANTS' in c.regOption: strat = strat.fork() new_strat_list.append(strat) strat.append_name(flirt_reg_anat_mni.name) strat.set_leaf_properties(flirt_reg_anat_mni, 'outputspec.output_brain') strat.update_resource_pool({ 'anatomical_to_mni_linear_xfm': (flirt_reg_anat_mni, 'outputspec.linear_xfm'), 'mni_to_anatomical_linear_xfm': (flirt_reg_anat_mni, 'outputspec.invlinear_xfm'), 'anatomical_to_standard': (flirt_reg_anat_mni, 'outputspec.output_brain') }) create_log_node(workflow, flirt_reg_anat_mni, 'outputspec.output_brain', num_strat) strat_list += new_strat_list new_strat_list = [] try: fsl_linear_reg_only = c.fsl_linear_reg_only except AttributeError: fsl_linear_reg_only = [0] if 'FSL' in c.regOption and 0 in fsl_linear_reg_only: for num_strat, strat in enumerate(strat_list): nodes = strat.get_nodes_names() if 'anat_mni_flirt_register' in nodes: fnirt_reg_anat_mni = create_fsl_fnirt_nonlinear_reg( 'anat_mni_fnirt_register_%d' % num_strat ) node, out_file = strat['anatomical_brain'] workflow.connect(node, out_file, fnirt_reg_anat_mni, 'inputspec.input_brain') # pass the reference files workflow.connect( c.template_brain_only_for_anat, 'local_path', fnirt_reg_anat_mni, 'inputspec.reference_brain' ) node, out_file = strat['anatomical_reorient'] workflow.connect(node, out_file, fnirt_reg_anat_mni, 'inputspec.input_skull') node, out_file = strat['anatomical_to_mni_linear_xfm'] workflow.connect(node, out_file, fnirt_reg_anat_mni, 'inputspec.linear_aff') workflow.connect( c.template_skull_for_anat, 'local_path', fnirt_reg_anat_mni, 'inputspec.reference_skull' ) workflow.connect( c.ref_mask, 'local_path', fnirt_reg_anat_mni, 'inputspec.ref_mask' ) # assign the FSL FNIRT config file specified in pipeline # config.yml fnirt_reg_anat_mni.inputs.inputspec.fnirt_config = c.fnirtConfig if 1 in fsl_linear_reg_only: strat = strat.fork() new_strat_list.append(strat) strat.append_name(fnirt_reg_anat_mni.name) strat.set_leaf_properties(fnirt_reg_anat_mni, 'outputspec.output_brain') strat.update_resource_pool({ 'anatomical_to_mni_nonlinear_xfm': (fnirt_reg_anat_mni, 'outputspec.nonlinear_xfm'), 'anatomical_to_standard': (fnirt_reg_anat_mni, 'outputspec.output_brain') }, override=True) create_log_node(workflow, fnirt_reg_anat_mni, 'outputspec.output_brain', num_strat) strat_list += new_strat_list new_strat_list = [] for num_strat, strat in enumerate(strat_list): nodes = strat.get_nodes_names() # or run ANTS anatomical-to-MNI registration instead if 'ANTS' in c.regOption and \ 'anat_mni_flirt_register' not in nodes and \ 'anat_mni_fnirt_register' not in nodes: ants_reg_anat_mni = \ create_wf_calculate_ants_warp( 'anat_mni_ants_register_%d' % num_strat, num_threads=num_ants_cores ) # calculating the transform with the skullstripped is # reported to be better, but it requires very high # quality skullstripping. If skullstripping is imprecise # registration with skull is preferred # TODO ASH assess with schema validator if 1 in c.regWithSkull: if already_skullstripped == 1: err_msg = '\n\n[!] CPAC says: You selected ' \ 'to run anatomical registration with ' \ 'the skull, but you also selected to ' \ 'use already-skullstripped images as ' \ 'your inputs. This can be changed ' \ 'in your pipeline configuration ' \ 'editor.\n\n' logger.info(err_msg) raise Exception # get the skull-stripped anatomical from resource pool node, out_file = strat['anatomical_brain'] # pass the anatomical to the workflow workflow.connect(node, out_file, ants_reg_anat_mni, 'inputspec.anatomical_brain') # pass the reference file workflow.connect( c.template_brain_only_for_anat, 'local_path', ants_reg_anat_mni, 'inputspec.reference_brain' ) # get the reorient skull-on anatomical from resource pool node, out_file = strat['anatomical_reorient'] # pass the anatomical to the workflow workflow.connect(node, out_file, ants_reg_anat_mni, 'inputspec.anatomical_skull') # pass the reference file workflow.connect( c.template_skull_for_anat, 'local_path', ants_reg_anat_mni, 'inputspec.reference_skull' ) else: node, out_file = strat['anatomical_brain'] workflow.connect(node, out_file, ants_reg_anat_mni, 'inputspec.anatomical_brain') # pass the reference file workflow.connect( c.template_brain_only_for_anat, 'local_path', ants_reg_anat_mni, 'inputspec.reference_brain' ) ants_reg_anat_mni.inputs.inputspec.set( dimension=3, use_histogram_matching=True, winsorize_lower_quantile=0.01, winsorize_upper_quantile=0.99, metric=['MI', 'MI', 'CC'], metric_weight=[1, 1, 1], radius_or_number_of_bins=[32, 32, 4], sampling_strategy=['Regular', 'Regular', None], sampling_percentage=[0.25, 0.25, None], number_of_iterations=[ [1000, 500, 250, 100], [1000, 500, 250, 100], [100, 100, 70, 20] ], convergence_threshold=[1e-8, 1e-8, 1e-9], convergence_window_size=[10, 10, 15], transforms=['Rigid', 'Affine', 'SyN'], transform_parameters=[[0.1], [0.1], [0.1, 3, 0]], shrink_factors=[ [8, 4, 2, 1], [8, 4, 2, 1], [6, 4, 2, 1] ], smoothing_sigmas=[ [3, 2, 1, 0], [3, 2, 1, 0], [3, 2, 1, 0] ] ) strat.append_name(ants_reg_anat_mni.name) strat.set_leaf_properties(ants_reg_anat_mni, 'outputspec.normalized_output_brain') strat.update_resource_pool({ 'ants_initial_xfm': (ants_reg_anat_mni, 'outputspec.ants_initial_xfm'), 'ants_rigid_xfm': (ants_reg_anat_mni, 'outputspec.ants_rigid_xfm'), 'ants_affine_xfm': (ants_reg_anat_mni, 'outputspec.ants_affine_xfm'), 'anatomical_to_mni_nonlinear_xfm': (ants_reg_anat_mni, 'outputspec.warp_field'), 'mni_to_anatomical_nonlinear_xfm': (ants_reg_anat_mni, 'outputspec.inverse_warp_field'), 'anat_to_mni_ants_composite_xfm': (ants_reg_anat_mni, 'outputspec.composite_transform'), 'anatomical_to_standard': (ants_reg_anat_mni, 'outputspec.normalized_output_brain') }) create_log_node(workflow, ants_reg_anat_mni, 'outputspec.normalized_output_brain', num_strat) strat_list += new_strat_list # [SYMMETRIC] T1 -> Symmetric Template, Non-linear registration (FNIRT/ANTS) new_strat_list = [] workflow_counter += 1 if 1 in c.runVMHC and 1 in getattr(c, 'runFunctional', [1]): workflow_bit_id['anat_mni_symmetric_register'] = workflow_counter for num_strat, strat in enumerate(strat_list): nodes = strat.get_nodes_names() if 'FSL' in c.regOption and \ 'anat_mni_ants_register' not in nodes: # this is to prevent the user from running FNIRT if they are # providing already-skullstripped inputs. this is because # FNIRT requires an input with the skull still on # TODO ASH normalize w schema validation to bool if already_skullstripped == 1: err_msg = '\n\n[!] CPAC says: FNIRT (for anatomical ' \ 'registration) will not work properly if you ' \ 'are providing inputs that have already been ' \ 'skull-stripped.\n\nEither switch to using ' \ 'ANTS for registration or provide input ' \ 'images that have not been already ' \ 'skull-stripped.\n\n' logger.info(err_msg) raise Exception flirt_reg_anat_symm_mni = create_fsl_flirt_linear_reg( 'anat_symmetric_mni_flirt_register_%d' % num_strat ) node, out_file = strat['anatomical_brain'] workflow.connect(node, out_file, flirt_reg_anat_symm_mni, 'inputspec.input_brain') # pass the reference files workflow.connect( c.template_symmetric_brain_only, 'local_path', flirt_reg_anat_symm_mni, 'inputspec.reference_brain' ) if 'ANTS' in c.regOption: strat = strat.fork() new_strat_list.append(strat) strat.append_name(flirt_reg_anat_symm_mni.name) strat.set_leaf_properties(flirt_reg_anat_symm_mni, 'outputspec.output_brain') strat.update_resource_pool({ 'anatomical_to_symmetric_mni_linear_xfm': ( flirt_reg_anat_symm_mni, 'outputspec.linear_xfm'), 'symmetric_mni_to_anatomical_linear_xfm': ( flirt_reg_anat_symm_mni, 'outputspec.invlinear_xfm'), 'symmetric_anatomical_to_standard': ( flirt_reg_anat_symm_mni, 'outputspec.output_brain') }) create_log_node(workflow, flirt_reg_anat_symm_mni, 'outputspec.output_brain', num_strat) strat_list += new_strat_list new_strat_list = [] try: fsl_linear_reg_only = c.fsl_linear_reg_only except AttributeError: fsl_linear_reg_only = [0] if 'FSL' in c.regOption and 0 in fsl_linear_reg_only: for num_strat, strat in enumerate(strat_list): nodes = strat.get_nodes_names() if 'anat_mni_flirt_register' in nodes: fnirt_reg_anat_symm_mni = create_fsl_fnirt_nonlinear_reg( 'anat_symmetric_mni_fnirt_register_%d' % num_strat ) node, out_file = strat['anatomical_brain'] workflow.connect(node, out_file, fnirt_reg_anat_symm_mni, 'inputspec.input_brain') # pass the reference files workflow.connect( c.template_brain_only_for_anat, 'local_path', fnirt_reg_anat_symm_mni, 'inputspec.reference_brain' ) node, out_file = strat['anatomical_reorient'] workflow.connect(node, out_file, fnirt_reg_anat_symm_mni, 'inputspec.input_skull') node, out_file = strat['anatomical_to_mni_linear_xfm'] workflow.connect(node, out_file, fnirt_reg_anat_symm_mni, 'inputspec.linear_aff') workflow.connect( c.template_symmetric_skull, 'local_path', fnirt_reg_anat_symm_mni, 'inputspec.reference_skull' ) workflow.connect( c.dilated_symmetric_brain_mask, 'local_path', fnirt_reg_anat_symm_mni, 'inputspec.ref_mask' ) strat.append_name(fnirt_reg_anat_symm_mni.name) strat.set_leaf_properties(fnirt_reg_anat_symm_mni, 'outputspec.output_brain') strat.update_resource_pool({ 'anatomical_to_symmetric_mni_nonlinear_xfm': ( fnirt_reg_anat_symm_mni, 'outputspec.nonlinear_xfm'), 'symmetric_anatomical_to_standard': ( fnirt_reg_anat_symm_mni, 'outputspec.output_brain') }, override=True) create_log_node(workflow, fnirt_reg_anat_symm_mni, 'outputspec.output_brain', num_strat) strat_list += new_strat_list new_strat_list = [] for num_strat, strat in enumerate(strat_list): nodes = strat.get_nodes_names() # or run ANTS anatomical-to-MNI registration instead if 'ANTS' in c.regOption and \ 'anat_mni_flirt_register' not in nodes and \ 'anat_mni_fnirt_register' not in nodes and \ 'anat_symmetric_mni_flirt_register' not in nodes and \ 'anat_symmetric_mni_fnirt_register' not in nodes: ants_reg_anat_symm_mni = \ create_wf_calculate_ants_warp( 'anat_symmetric_mni_ants_register_%d' % num_strat, num_threads=num_ants_cores ) # calculating the transform with the skullstripped is # reported to be better, but it requires very high # quality skullstripping. If skullstripping is imprecise # registration with skull is preferred if 1 in c.regWithSkull: if already_skullstripped == 1: err_msg = '\n\n[!] CPAC says: You selected ' \ 'to run anatomical registration with ' \ 'the skull, but you also selected to ' \ 'use already-skullstripped images as ' \ 'your inputs. This can be changed ' \ 'in your pipeline configuration ' \ 'editor.\n\n' logger.info(err_msg) raise Exception # get the skullstripped anatomical from resource pool node, out_file = strat['anatomical_brain'] # pass the anatomical to the workflow workflow.connect(node, out_file, ants_reg_anat_symm_mni, 'inputspec.anatomical_brain') # pass the reference file workflow.connect(c.template_symmetric_brain_only, 'local_path', ants_reg_anat_symm_mni, 'inputspec.reference_brain') # get the reorient skull-on anatomical from resource # pool node, out_file = strat['anatomical_reorient'] # pass the anatomical to the workflow workflow.connect(node, out_file, ants_reg_anat_symm_mni, 'inputspec.anatomical_skull') # pass the reference file workflow.connect(c.template_symmetric_skull, 'local_path', ants_reg_anat_symm_mni, 'inputspec.reference_skull') else: # get the skullstripped anatomical from resource pool node, out_file = strat['anatomical_brain'] workflow.connect(node, out_file, ants_reg_anat_symm_mni, 'inputspec.anatomical_brain') # pass the reference file workflow.connect(c.template_symmetric_brain_only, 'local_path', ants_reg_anat_symm_mni, 'inputspec.reference_brain') ants_reg_anat_symm_mni.inputs.inputspec.set( dimension=3, use_histogram_matching=True, winsorize_lower_quantile=0.01, winsorize_upper_quantile=0.99, metric=['MI', 'MI', 'CC'], metric_weight=[1, 1, 1], radius_or_number_of_bins=[32, 32, 4], sampling_strategy=['Regular', 'Regular', None], sampling_percentage=[0.25, 0.25, None], number_of_iterations=[[1000, 500, 250, 100], [1000, 500, 250, 100], [100, 100, 70, 20]], convergence_threshold=[1e-8, 1e-8, 1e-9], convergence_window_size=[10, 10, 15], transforms=['Rigid', 'Affine', 'SyN'], transform_parameters=[[0.1], [0.1], [0.1, 3, 0]], shrink_factors=[[8, 4, 2, 1], [8, 4, 2, 1], [6, 4, 2, 1]], smoothing_sigmas=[[3, 2, 1, 0], [3, 2, 1, 0], [3, 2, 1, 0]] ) strat.append_name(ants_reg_anat_symm_mni.name) strat.set_leaf_properties(ants_reg_anat_symm_mni, 'outputspec.normalized_output_brain') strat.update_resource_pool({ 'ants_symmetric_initial_xfm': (ants_reg_anat_symm_mni, 'outputspec.ants_initial_xfm'), 'ants_symmetric_rigid_xfm': (ants_reg_anat_symm_mni, 'outputspec.ants_rigid_xfm'), 'ants_symmetric_affine_xfm': (ants_reg_anat_symm_mni, 'outputspec.ants_affine_xfm'), 'anatomical_to_symmetric_mni_nonlinear_xfm': (ants_reg_anat_symm_mni, 'outputspec.warp_field'), 'symmetric_mni_to_anatomical_nonlinear_xfm': (ants_reg_anat_symm_mni, 'outputspec.inverse_warp_field'), 'anat_to_symmetric_mni_ants_composite_xfm': (ants_reg_anat_symm_mni, 'outputspec.composite_transform'), 'symmetric_anatomical_to_standard': (ants_reg_anat_symm_mni, 'outputspec.normalized_output_brain') }) create_log_node(workflow, ants_reg_anat_symm_mni, 'outputspec.normalized_output_brain', num_strat) strat_list += new_strat_list # Inserting Segmentation Preprocessing Workflow new_strat_list = [] workflow_counter += 1 if 1 in c.runSegmentationPreprocessing: workflow_bit_id['seg_preproc'] = workflow_counter for num_strat, strat in enumerate(strat_list): nodes = strat.get_nodes_names() seg_preproc = None # TODO ASH based on config, instead of nodes? if 'anat_mni_fnirt_register' in nodes or 'anat_mni_flirt_register' in nodes: seg_preproc = create_seg_preproc(c, use_ants=False, wf_name='seg_preproc_%d' % num_strat) elif 'anat_mni_ants_register' in nodes: seg_preproc = create_seg_preproc(c, use_ants=True, wf_name='seg_preproc_%d' % num_strat) # TODO ASH review if seg_preproc is None: continue node, out_file = strat['anatomical_brain'] workflow.connect(node, out_file, seg_preproc, 'inputspec.brain') if 'anat_mni_fnirt_register' in nodes or 'anat_mni_flirt_register' in nodes: node, out_file = strat['mni_to_anatomical_linear_xfm'] workflow.connect(node, out_file, seg_preproc, 'inputspec.standard2highres_mat') elif 'anat_mni_ants_register' in nodes: node, out_file = strat['ants_initial_xfm'] workflow.connect(node, out_file, seg_preproc, 'inputspec.standard2highres_init') node, out_file = strat['ants_rigid_xfm'] workflow.connect(node, out_file, seg_preproc, 'inputspec.standard2highres_rig') node, out_file = strat['ants_affine_xfm'] workflow.connect(node, out_file, seg_preproc, 'inputspec.standard2highres_mat') workflow.connect(c.PRIORS_CSF, 'local_path', seg_preproc, 'inputspec.PRIOR_CSF') workflow.connect(c.PRIORS_GRAY, 'local_path', seg_preproc, 'inputspec.PRIOR_GRAY') workflow.connect(c.PRIORS_WHITE, 'local_path', seg_preproc, 'inputspec.PRIOR_WHITE') # TODO ASH review with forking function if 0 in c.runSegmentationPreprocessing: strat = strat.fork() new_strat_list.append(strat) strat.append_name(seg_preproc.name) strat.update_resource_pool({ 'anatomical_gm_mask': (seg_preproc, 'outputspec.gm_mask'), 'anatomical_csf_mask': (seg_preproc, 'outputspec.csf_mask'), 'anatomical_wm_mask': (seg_preproc, 'outputspec.wm_mask'), 'seg_probability_maps': (seg_preproc, 'outputspec.probability_maps'), 'seg_mixeltype': (seg_preproc, 'outputspec.mixeltype'), 'seg_partial_volume_map': (seg_preproc, 'outputspec.partial_volume_map'), 'seg_partial_volume_files': (seg_preproc, 'outputspec.partial_volume_files'), }) create_log_node(workflow, seg_preproc, 'outputspec.partial_volume_map', num_strat) # print(str(strat.get_resource_pool())) strat_list += new_strat_list # Inserting Functional Data workflow if 'func' in sub_dict and \ 1 in getattr(c, 'runFunctional', [1]): # pipeline needs to have explicit [0] to disable functional workflow for num_strat, strat in enumerate(strat_list): asl_paths_dict = {} func_paths_dict = {} for func_key, func_dict in sub_dict['func'].iteritems(): # select bold scans only if 'scantype' not in func_dict or func_dict['scantype'] != 'asl': func_paths_dict[func_key] = func_dict print('func paths: ', func_paths_dict) # select asl scans if 'scantype' in func_dict and func_dict['scantype'] == 'asl': asl_paths_dict[func_key] = func_dict print('asl paths: ', asl_paths_dict) # if asl file exist, create asl workflow if any(asl_paths_dict): # Start ASL workflow builder from CPAC.asl_preproc.asl_preproc import create_asl_preproc print("Begin ASL workflow builder...") asl_preproc = create_asl_preproc(c, strat, wf_name='asl_preproc_%d' % num_strat) # datasource for asl asl_wf = create_func_datasource(asl_paths_dict, 'asl_gather_%d' % num_strat) asl_wf.inputs.inputnode.set( subject=subject_id, creds_path=input_creds_path, dl_dir=c.workingDirectory ) asl_wf.get_node('inputnode').iterables = \ ("scan", asl_paths_dict.keys()) workflow.connect(asl_wf, 'outputspec.rest', asl_preproc, 'inputspec.asl_file') print(str(strat.get_resource_pool())) # get the reorient skull-on anatomical from resource # pool node, out_file = strat['anatomical_reorient'] # pass the anatomical to the workflow workflow.connect(node, out_file, asl_preproc, 'inputspec.anatomical_skull') # get the skullstripped anatomical from resource pool node, out_file = strat['anatomical_brain'] # pass the anatomical to the workflow workflow.connect(node, out_file, asl_preproc, 'inputspec.anatomical_brain') # Input segmentation pve for white matter # segmentation node, out_file = strat['seg_partial_volume_files'] workflow.connect(node, (out_file, pick_wm), asl_preproc, 'inputspec.seg_wm_pve') # 7/8/19 try: move reg to cpac_pipepline.py # 7/10/19: use the asl2anat.mat from oxford_asl """ # Func -> T1 Registration (Initial Linear reg) dist_corr = False asl_to_anat = create_register_asl_to_anat(dist_corr, 'asl_to_anat_FLIRT' '_%d' % num_strat) # Input registration parameters asl_to_anat.inputs.inputspec.interp = 'trilinear' # Input functional image (mean functional) workflow.connect(asl_preproc, 'outputspec.meanasl', asl_to_anat, 'inputspec.asl') # Input skull-stripped anatomical (anat.nii.gz) node, out_file = strat['anatomical_brain'] workflow.connect(node, out_file, asl_to_anat, 'inputspec.anat') strat.update_resource_pool({ 'mean_asl_in_anat': (asl_to_anat, 'outputspec.anat_asl_nobbreg'), 'asl_to_anat_linear_xfm': (asl_to_anat, 'outputspec.asl_to_anat_linear_xfm_nobbreg') }) # Func -> T1 Registration (BBREG) asl_to_anat_bbreg = create_bbregister_asl_to_anat( dist_corr, 'asl_to_anat_bbreg_%d' % num_strat ) # Input registration parameters # TODO: $FSLDIR asl_to_anat_bbreg.inputs.inputspec.bbr_schedule = \ '/usr/share/fsl/6.0/etc/flirtsch/bbr.sch' # Input mean asl image workflow.connect(asl_preproc, 'outputspec.meanasl', asl_to_anat_bbreg, 'inputspec.asl') # Input anatomical whole-head image (reoriented) node, out_file = strat['anatomical_reorient'] workflow.connect(node, out_file, asl_to_anat_bbreg, 'inputspec.anat_skull') # Input initial linear reg workflow.connect(asl_to_anat, 'outputspec.asl_to_anat_linear_xfm_nobbreg', asl_to_anat_bbreg, 'inputspec.linear_reg_matrix') # Input segmentation probability maps for white matter # segmentation node, out_file = strat['seg_probability_maps'] workflow.connect(node, (out_file, pick_wm), asl_to_anat_bbreg, 'inputspec.anat_wm_segmentation') strat.update_resource_pool({ 'mean_asl_in_anat': (asl_to_anat_bbreg, 'outputspec.anat_asl'), 'asl_to_anat_linear_xfm': (asl_to_anat_bbreg, 'outputspec.asl_to_anat_linear_xfm') }, override=True) """ # T1 -> MNI (done in main pipeline) ################## ### asl -> MNI ### ################## warp_diffdata_wf = ants_apply_warps_asl_mni( workflow, strat, num_strat, num_ants_cores, asl_preproc, 'outputspec.diffdata', asl_preproc, 'outputspec.meanasl', c.template_brain_only_for_func, "diffdata_to_standard", "Linear", 3 ) create_log_node(workflow, warp_diffdata_wf, 'outputspec.output_image', num_strat) warp_perfusion_wf = ants_apply_warps_asl_mni( workflow, strat, num_strat, num_ants_cores, asl_preproc, 'outputspec.perfusion_image', asl_preproc, 'outputspec.meanasl', c.template_brain_only_for_func, "perfusion_image_to_standard", "Linear", 3 ) create_log_node(workflow, warp_perfusion_wf, 'outputspec.output_image', num_strat) # Start BOLD workflow builder func_wf = create_func_datasource(func_paths_dict, 'func_gather_%d' % num_strat) func_wf.inputs.inputnode.set( subject=subject_id, creds_path=input_creds_path, dl_dir=c.workingDirectory ) func_wf.get_node('inputnode').iterables = \ ("scan", func_paths_dict.keys()) # Add in nodes to get parameters from configuration file # a node which checks if scan_parameters are present for each scan scan_params = \ pe.Node(function.Function(input_names=['data_config_scan_params', 'subject_id', 'scan', 'pipeconfig_tr', 'pipeconfig_tpattern', 'pipeconfig_start_indx', 'pipeconfig_stop_indx'], output_names=['tr', 'tpattern', 'ref_slice', 'start_indx', 'stop_indx'], function=get_scan_params, as_module=True), name='scan_params_%d' % num_strat) if "Selected Functional Volume" in c.func_reg_input: get_func_volume = pe.Node(interface=afni.Calc(), name='get_func_volume_%d' % num_strat) get_func_volume.inputs.set( expr='a', single_idx=c.func_reg_input_volume, outputtype='NIFTI_GZ' ) workflow.connect(func_wf, 'outputspec.rest', get_func_volume, 'in_file_a') # wire in the scan parameter workflow workflow.connect(func_wf, 'outputspec.scan_params', scan_params, 'data_config_scan_params') workflow.connect(func_wf, 'outputspec.subject', scan_params, 'subject_id') workflow.connect(func_wf, 'outputspec.scan', scan_params, 'scan') # connect in constants scan_params.inputs.set( pipeconfig_tr=c.TR, pipeconfig_tpattern=c.slice_timing_pattern, pipeconfig_start_indx=c.startIdx, pipeconfig_stop_indx=c.stopIdx ) # node to convert TR between seconds and milliseconds convert_tr = pe.Node(function.Function(input_names=['tr'], output_names=['tr'], function=get_tr, as_module=True), name='convert_tr_%d' % num_strat) strat.update_resource_pool({ 'raw_functional': (func_wf, 'outputspec.rest'), 'scan_id': (func_wf, 'outputspec.scan') }) strat.set_leaf_properties(func_wf, 'outputspec.rest') if 1 in c.runEPI_DistCorr: try: strat.update_resource_pool({ "fmap_phase_diff": (func_wf, 'outputspec.phase_diff'), "fmap_magnitude": (func_wf, 'outputspec.magnitude') }) except: err = "\n\n[!] You have selected to run field map " \ "distortion correction, but at least one of your " \ "scans listed in your data configuration file is " \ "missing either a field map phase difference file " \ "or a field map magnitude file, or both.\n\n" raise Exception(err) if "Selected Functional Volume" in c.func_reg_input: strat.update_resource_pool({ 'selected_func_volume': (get_func_volume, 'out_file') }) # Truncate scan length based on configuration information for num_strat, strat in enumerate(strat_list): trunc_wf = create_wf_edit_func( wf_name="edit_func_%d" % (num_strat) ) # find the output data on the leaf node node, out_file = strat.get_leaf_properties() # connect the functional data from the leaf node into the wf workflow.connect(node, out_file, trunc_wf, 'inputspec.func') # connect the other input parameters workflow.connect(scan_params, 'start_indx', trunc_wf, 'inputspec.start_idx') workflow.connect(scan_params, 'stop_indx', trunc_wf, 'inputspec.stop_idx') # replace the leaf node with the output from the recently added # workflow strat.set_leaf_properties(trunc_wf, 'outputspec.edited_func') # EPI Field-Map based Distortion Correction new_strat_list = [] workflow_counter += 1 if 1 in c.runEPI_DistCorr: workflow_bit_id['epi_distcorr'] = workflow_counter for num_strat, strat in enumerate(strat_list): if 'BET' in c.fmap_distcorr_skullstrip: epi_distcorr = create_EPI_DistCorr( use_BET=True, wf_name='epi_distcorr_%d' % (num_strat) ) epi_distcorr.inputs.bet_frac_input.bet_frac = c.fmap_distcorr_frac epi_distcorr.get_node('bet_frac_input').iterables = \ ('bet_frac', c.fmap_distcorr_frac) else: epi_distcorr = create_EPI_DistCorr( use_BET=False, wf_name='epi_distcorr_%d' % (num_strat) ) epi_distcorr.inputs.afni_threshold_input.afni_threshold = \ c.fmap_distcorr_threshold epi_distcorr.inputs.deltaTE_input.deltaTE = c.fmap_distcorr_deltaTE epi_distcorr.inputs.dwellT_input.dwellT = c.fmap_distcorr_dwell_time epi_distcorr.inputs.dwell_asym_ratio_input.dwell_asym_ratio = c.fmap_distcorr_dwell_asym_ratio epi_distcorr.get_node('deltaTE_input').iterables = ( 'deltaTE', c.fmap_distcorr_deltaTE ) epi_distcorr.get_node('dwellT_input').iterables = ( 'dwellT', c.fmap_distcorr_dwell_time ) epi_distcorr.get_node('dwell_asym_ratio_input').iterables = ( 'dwell_asym_ratio', c.fmap_distcorr_dwell_asym_ratio ) node, out_file = strat.get_leaf_properties() workflow.connect(node, out_file, epi_distcorr, 'inputspec.func_file') node, out_file = strat['anatomical_reorient'] workflow.connect(node, out_file, epi_distcorr, 'inputspec.anat_file') node, out_file = strat['fmap_phase_diff'] workflow.connect(node, out_file, epi_distcorr, 'inputspec.fmap_pha') node, out_file = strat['fmap_magnitude'] workflow.connect(node, out_file, epi_distcorr, 'inputspec.fmap_mag') # TODO ASH review forking if 0 in c.runEPI_DistCorr: strat = strat.fork() new_strat_list.append(strat) strat.append_name(epi_distcorr.name) strat.update_resource_pool({ 'despiked_fieldmap': (epi_distcorr, 'outputspec.fmap_despiked'), 'fieldmap_mask': (epi_distcorr, 'outputspec.fieldmapmask'), 'prepared_fieldmap_map': (epi_distcorr, 'outputspec.fieldmap') }) strat_list += new_strat_list # Slice Timing Correction Workflow new_strat_list = [] if 1 in c.slice_timing_correction: for num_strat, strat in enumerate(strat_list): # create TShift AFNI node func_slice_timing_correction = pe.Node( interface=preprocess.TShift(), name='func_slice_timing_correction_%d' % (num_strat)) func_slice_timing_correction.inputs.outputtype = 'NIFTI_GZ' node, out_file = strat.get_leaf_properties() workflow.connect(node, out_file, func_slice_timing_correction, 'in_file') # TODO ASH normalize TR w schema validation # we might prefer to use the TR stored in the NIFTI header # if not, use the value in the scan_params node if c.TR: if isinstance(c.TR, str): if "None" in c.TR or "none" in c.TR: pass else: workflow.connect(scan_params, 'tr', func_slice_timing_correction, 'tr') else: workflow.connect(scan_params, 'tr', func_slice_timing_correction, 'tr') if not "Use NIFTI Header" in c.slice_timing_pattern: # add the @ prefix to the tpattern file going into # AFNI 3dTshift - needed this so the tpattern file # output from get_scan_params would be tied downstream # via a connection (to avoid poofing) add_prefix = pe.Node(util.Function(input_names=['tpattern'], output_names=[ 'afni_prefix'], function=add_afni_prefix), name='func_slice_timing_correction_add_afni_prefix_%d' % num_strat) workflow.connect(scan_params, 'tpattern', add_prefix, 'tpattern') workflow.connect(add_prefix, 'afni_prefix', func_slice_timing_correction, 'tpattern') # add the name of the node to the strat name strat.append_name(func_slice_timing_correction.name) # set the leaf node strat.set_leaf_properties(func_slice_timing_correction, 'out_file') # add the outputs to the resource pool strat.update_resource_pool({ 'slice_time_corrected': (func_slice_timing_correction, 'out_file') }) # add new strats (if forked) strat_list += new_strat_list # Functional Image Preprocessing Workflow new_strat_list = [] workflow_counter += 1 workflow_bit_id['func_preproc'] = workflow_counter if '3dAutoMask' in c.functionalMasking: for num_strat, strat in enumerate(strat_list): func_preproc = create_func_preproc(use_bet=False, wf_name='func_preproc_automask_%d' % num_strat) node, out_file = strat.get_leaf_properties() workflow.connect(node, out_file, func_preproc, 'inputspec.func') # TODO ASH review forking if 'BET' in c.functionalMasking: strat = strat.clone() new_strat_list.append(strat) strat.append_name(func_preproc.name) strat.set_leaf_properties(func_preproc, 'outputspec.preprocessed') # add stuff to resource pool if we need it strat.update_resource_pool({ 'mean_functional': (func_preproc, 'outputspec.example_func'), 'functional_preprocessed_mask': (func_preproc, 'outputspec.preprocessed_mask'), 'movement_parameters': (func_preproc, 'outputspec.movement_parameters'), 'max_displacement': (func_preproc, 'outputspec.max_displacement'), 'functional_preprocessed': (func_preproc, 'outputspec.preprocessed'), 'functional_brain_mask': (func_preproc, 'outputspec.mask'), 'motion_correct': (func_preproc, 'outputspec.motion_correct'), 'coordinate_transformation': (func_preproc, 'outputspec.oned_matrix_save') }) print('mean_functional: ', strat['mean_functional']) create_log_node(workflow, func_preproc, 'outputspec.preprocessed', num_strat) strat_list += new_strat_list new_strat_list = [] for num_strat, strat in enumerate(strat_list): nodes = strat.get_nodes_names() if 'BET' in c.functionalMasking and 'func_preproc_automask' not in nodes: func_preproc = create_func_preproc(use_bet=True, wf_name='func_preproc_bet_%d' % num_strat) node, out_file = strat.get_leaf_properties() workflow.connect(node, out_file, func_preproc, 'inputspec.func') strat.append_name(func_preproc.name) strat.set_leaf_properties(func_preproc, 'outputspec.preprocessed') # TODO redundant with above resource pool additions? strat.update_resource_pool({ 'mean_functional': (func_preproc, 'outputspec.example_func'), 'functional_preprocessed_mask': (func_preproc, 'outputspec.preprocessed_mask'), 'movement_parameters': (func_preproc, 'outputspec.movement_parameters'), 'max_displacement': (func_preproc, 'outputspec.max_displacement'), 'functional_preprocessed': (func_preproc, 'outputspec.preprocessed'), 'functional_brain_mask': (func_preproc, 'outputspec.mask'), 'motion_correct': (func_preproc, 'outputspec.motion_correct'), 'coordinate_transformation': (func_preproc, 'outputspec.oned_matrix_save'), }) create_log_node(workflow, func_preproc, 'outputspec.preprocessed', num_strat) strat_list += new_strat_list new_strat_list = [] workflow_counter += 1 # Func -> T1 Registration (Initial Linear reg) # Depending on configuration, either passes output matrix to # Func -> Template ApplyWarp, or feeds into linear reg of BBReg operation # (if BBReg is enabled) new_strat_list = [] workflow_counter += 1 if 1 in c.runRegisterFuncToAnat: workflow_bit_id['func_to_anat'] = workflow_counter for num_strat, strat in enumerate(strat_list): nodes = strat.get_nodes_names() # if field map-based distortion correction is on, but BBR is off, # send in the distortion correction files here # TODO: is this robust to the possibility of forking both # TODO: distortion correction and BBR at the same time? # TODO: (note if you are forking with BBR on/off, at this point # TODO: there is still only one strat, so you would have to fork # TODO: here instead to have a func->anat with fieldmap and # TODO: without, and send the without-fieldmap to the BBR fork) dist_corr = False if 'epi_distcorr' in nodes and 1 not in c.runBBReg: dist_corr = True # TODO: for now, disabling dist corr when BBR is disabled err = "\n\n[!] Field map distortion correction is enabled, " \ "but Boundary-Based Registration is off- BBR is " \ "required for distortion correction.\n\n" raise Exception(err) func_to_anat = create_register_func_to_anat(dist_corr, 'func_to_anat_FLIRT' '_%d' % num_strat) # Input registration parameters func_to_anat.inputs.inputspec.interp = 'trilinear' # TODO ASH normalize strings with enums? if 'Mean Functional' in c.func_reg_input: # Input functional image (mean functional) node, out_file = strat['mean_functional'] workflow.connect(node, out_file, func_to_anat, 'inputspec.func') elif 'Selected Functional Volume' in c.func_reg_input: # Input functional image (specific volume) node, out_file = strat['selected_func_volume'] workflow.connect(node, out_file, func_to_anat, 'inputspec.func') # Input skull-stripped anatomical (anat.nii.gz) node, out_file = strat['anatomical_brain'] workflow.connect(node, out_file, func_to_anat, 'inputspec.anat') if dist_corr: # apply field map distortion correction outputs to # the func->anat registration func_to_anat.inputs.echospacing_input.set( echospacing=c.fmap_distcorr_dwell_time[0] ) func_to_anat.inputs.pedir_input.set( pedir=c.fmap_distcorr_pedir ) node, out_file = strat["despiked_fieldmap"] workflow.connect(node, out_file, func_to_anat, 'inputspec.fieldmap') node, out_file = strat["fieldmap_mask"] workflow.connect(node, out_file, func_to_anat, 'inputspec.fieldmapmask') # TODO ASH review forking if 0 in c.runRegisterFuncToAnat: strat = strat.fork() new_strat_list.append(strat) strat.append_name(func_to_anat.name) # strat.set_leaf_properties(func_mni_warp, 'out_file') strat.update_resource_pool({ 'mean_functional_in_anat': (func_to_anat, 'outputspec.anat_func_nobbreg'), 'functional_to_anat_linear_xfm': (func_to_anat, 'outputspec.func_to_anat_linear_xfm_nobbreg') }) # create_log_node(workflow, func_to_anat, 'outputspec.mni_func', num_strat) strat_list += new_strat_list # Func -> T1 Registration (BBREG) # Outputs 'functional_to_anat_linear_xfm', a matrix file of the # functional-to-anatomical registration warp to be applied LATER in # func_mni_warp, which accepts it as input 'premat' new_strat_list = [] workflow_counter += 1 if 1 in c.runRegisterFuncToAnat and 1 in c.runBBReg: workflow_bit_id['func_to_anat_bbreg'] = workflow_counter for num_strat, strat in enumerate(strat_list): nodes = strat.get_nodes_names() # this is needed here in case tissue segmentation is set on/off # and you have bbreg enabled- this will ensure bbreg will run for # the strat that has segmentation but will not run (thus avoiding # a crash) on the strat without segmentation if 'seg_preproc' in nodes: dist_corr = False if 'epi_distcorr' in nodes: dist_corr = True func_to_anat_bbreg = create_bbregister_func_to_anat( dist_corr, 'func_to_anat_bbreg_%d' % num_strat ) # Input registration parameters func_to_anat_bbreg.inputs.inputspec.bbr_schedule = \ c.boundaryBasedRegistrationSchedule # TODO ASH normalize strings with enums? if 'Mean Functional' in c.func_reg_input: # Input functional image (mean functional) node, out_file = strat['mean_functional'] workflow.connect(node, out_file, func_to_anat_bbreg, 'inputspec.func') elif 'Selected Functional Volume' in c.func_reg_input: # Input functional image (specific volume) node, out_file = strat['selected_func_volume'] workflow.connect(node, out_file, func_to_anat_bbreg, 'inputspec.func') # Input anatomical whole-head image (reoriented) node, out_file = strat['anatomical_reorient'] workflow.connect(node, out_file, func_to_anat_bbreg, 'inputspec.anat_skull') node, out_file = strat['functional_to_anat_linear_xfm'] workflow.connect(node, out_file, func_to_anat_bbreg, 'inputspec.linear_reg_matrix') # Input segmentation probability maps for white matter # segmentation node, out_file = strat['seg_probability_maps'] workflow.connect(node, (out_file, pick_wm), func_to_anat_bbreg, 'inputspec.anat_wm_segmentation') if dist_corr: # apply field map distortion correction outputs to # the func->anat registration func_to_anat_bbreg.inputs.echospacing_input.echospacing = c.fmap_distcorr_dwell_time[ 0] func_to_anat_bbreg.inputs.pedir_input.pedir = c.fmap_distcorr_pedir node, out_file = strat["despiked_fieldmap"] workflow.connect(node, out_file, func_to_anat_bbreg, 'inputspec.fieldmap') node, out_file = strat["fieldmap_mask"] workflow.connect(node, out_file, func_to_anat_bbreg, 'inputspec.fieldmapmask') # TODO ASH review forking if 0 in c.runBBReg: strat = strat.fork() new_strat_list.append(strat) strat.append_name(func_to_anat_bbreg.name) strat.update_resource_pool({ 'mean_functional_in_anat': (func_to_anat_bbreg, 'outputspec.anat_func'), 'functional_to_anat_linear_xfm': (func_to_anat_bbreg, 'outputspec.func_to_anat_linear_xfm') }, override=True) # create_log_node(workflow, func_to_anat, 'outputspec.mni_func', num_strat) else: # TODO ASH review # anatomical segmentation is not being run in this particular # strategy/fork - we don't want this to stop workflow building # unless there is only one strategy if len(strat_list) > 1: pass else: err = "\n\n[!] Boundary-based registration (BBR) for " \ "functional-to-anatomical registration is " \ "enabled, but anatomical segmentation is not. " \ "BBR requires the outputs of segmentation. " \ "Please modify your pipeline configuration and " \ "run again.\n\n" raise Exception(err) strat_list += new_strat_list # Inserting Generate Motion Statistics Workflow workflow_counter += 1 workflow_bit_id['gen_motion_stats'] = workflow_counter for num_strat, strat in enumerate(strat_list): gen_motion_stats = motion_power_statistics( 'gen_motion_stats_%d' % num_strat ) # Special case where the workflow is not getting outputs from # resource pool but is connected to functional datasource workflow.connect(func_wf, 'outputspec.subject', gen_motion_stats, 'inputspec.subject_id') workflow.connect(func_wf, 'outputspec.scan', gen_motion_stats, 'inputspec.scan_id') node, out_file = strat['motion_correct'] workflow.connect(node, out_file, gen_motion_stats, 'inputspec.motion_correct') node, out_file = strat['movement_parameters'] workflow.connect(node, out_file, gen_motion_stats, 'inputspec.movement_parameters') node, out_file = strat['max_displacement'] workflow.connect(node, out_file, gen_motion_stats, 'inputspec.max_displacement') node, out_file = strat['functional_brain_mask'] workflow.connect(node, out_file, gen_motion_stats, 'inputspec.mask') node, out_file = strat['coordinate_transformation'] workflow.connect(node, out_file, gen_motion_stats, 'inputspec.transformations') strat.append_name(gen_motion_stats.name) strat.update_resource_pool({ 'frame_wise_displacement_power': (gen_motion_stats, 'outputspec.FDP_1D'), 'frame_wise_displacement_jenkinson': (gen_motion_stats, 'outputspec.FDJ_1D'), 'dvars': (gen_motion_stats, 'outputspec.DVARS_1D'), 'power_params': (gen_motion_stats, 'outputspec.power_params'), 'motion_params': (gen_motion_stats, 'outputspec.motion_params') }) new_strat_list = [] workflow_bit_id['aroma_preproc'] = workflow_counter for num_strat, strat in enumerate(strat_list): if 1 in c.runICA: nodes = strat.get_nodes_names() if 'none' in str(c.TR).lower(): TR = None else: TR = float(c.TR) # FNIRT ONLY! ANTS further below! if 'FSL' in c.regOption and \ 'anat_symmetric_mni_ants_register' not in nodes and \ 'anat_mni_ants_register' not in nodes: aroma_preproc = create_aroma(tr=TR, wf_name='create_aroma_%d' % num_strat) aroma_preproc.inputs.params.denoise_type = c.aroma_denoise_type #aroma_preproc.inputs.params.dim = c.aroma_dim aroma_preproc.inputs.inputspec.out_dir = os.path.join( c.workingDirectory, workflow_name, 'create_aroma_%d' % num_strat ) node, out_file = strat.get_leaf_properties() workflow.connect(node, out_file, aroma_preproc, 'inputspec.denoise_file') node, out_file = strat['functional_to_anat_linear_xfm'] workflow.connect(node, out_file, aroma_preproc, 'inputspec.mat_file') node, out_file = strat['anatomical_to_mni_nonlinear_xfm'] workflow.connect(node, out_file, aroma_preproc, 'inputspec.fnirt_warp_file') if c.aroma_denoise_type == 'nonaggr': strat.set_leaf_properties(aroma_preproc, 'outputspec.nonaggr_denoised_file') strat.update_resource_pool({ 'ica_aroma_denoised_functional': ( aroma_preproc, 'outputspec.nonaggr_denoised_file') } ) elif c.aroma_denoise_type == 'aggr': strat.set_leaf_properties(aroma_preproc, 'outputspec.aggr_denoised_file') strat.update_resource_pool({ 'ica_aroma_denoised_functional': ( aroma_preproc, 'outputspec.aggr_denoised_file') } ) strat.append_name(aroma_preproc.name) elif 'ANTS' in c.regOption and \ 'anat_symmetric_mni_flirt_register' not in nodes and \ 'anat_symmetric_mni_fnirt_register' not in nodes and \ 'anat_mni_flirt_register' not in nodes and \ 'anat_mni_fnirt_register' not in nodes: # we don't have the FNIRT warp file, so we need to calculate # ICA-AROMA de-noising in template space # 4D FUNCTIONAL apply warp node, out_file = strat.get_leaf_properties() mean_func_node, mean_func_out_file = strat["mean_functional"] # Insert it on the resource pool, so no need to connect externally ants_apply_warps_func_mni( workflow, strat, num_strat, num_ants_cores, node, out_file, mean_func_node, mean_func_out_file, c.template_brain_only_for_func, "ica_aroma_functional_to_standard", "Linear", 3 ) aroma_preproc = create_aroma(tr=TR, wf_name='create_aroma_%d' % num_strat) aroma_preproc.inputs.params.denoise_type = c.aroma_denoise_type #aroma_preproc.inputs.params.dim = c.aroma_dim aroma_preproc.inputs.inputspec.out_dir = os.path.join( c.workingDirectory, workflow_name, 'create_aroma_%d' % num_strat) node, out_file = strat['ica_aroma_functional_to_standard'] workflow.connect(node, out_file, aroma_preproc, 'inputspec.denoise_file') # warp back if c.aroma_denoise_type == 'nonaggr': node, out_file = ( aroma_preproc, 'outputspec.nonaggr_denoised_file' ) elif c.aroma_denoise_type == 'aggr': node, out_file = ( aroma_preproc, 'outputspec.aggr_denoised_file' ) ants_apply_inverse_warps_template_to_func( workflow, strat, num_strat, num_ants_cores, node, out_file, mean_func_node, mean_func_out_file, "ica_aroma_denoised_functional", "Linear", 3 ) node, out_file = strat["ica_aroma_denoised_functional"] strat.set_leaf_properties(node, out_file) if c.aroma_denoise_type == 'nonaggr': create_log_node(workflow, aroma_preproc, 'outputspec.nonaggr_denoised_file', num_strat) elif c.aroma_denoise_type == 'aggr': create_log_node(workflow, aroma_preproc, 'outputspec.aggr_denoised_file', num_strat) strat.append_name(aroma_preproc.name) strat_list += new_strat_list # Inserting Nuisance Workflow new_strat_list = [] workflow_counter += 1 if 1 in c.runNuisance: workflow_bit_id['nuisance'] = workflow_counter for num_strat, strat in enumerate(strat_list): # for each strategy, create a new one without nuisance if 0 in c.runNuisance: new_strat_list.append(strat.fork()) nodes = strat.get_nodes_names() has_segmentation = 'seg_preproc' in nodes use_ants = 'anat_mni_fnirt_register' not in nodes and 'anat_mni_flirt_register' not in nodes for regressors_selector_i, regressors_selector in enumerate(c.Regressors): new_strat = strat.fork() # to guarantee immutability regressors_selector = NuisanceRegressor( copy.deepcopy(regressors_selector), copy.deepcopy(c.Regressors) ) # remove tissue regressors when there is no segmentation # on the strategy if not has_segmentation: for reg in ['aCompCor', 'WhiteMatter', 'GreyMatter', 'CerebrospinalFluid']: if reg in regressors_selector: del regressors_selector[reg] nuisance_regression_workflow = create_nuisance_workflow( regressors_selector, use_ants=use_ants, name='nuisance_{0}_{1}'.format(regressors_selector_i, num_strat) ) node, out_file = new_strat['anatomical_brain'] workflow.connect( node, out_file, nuisance_regression_workflow, 'inputspec.anatomical_file_path' ) if has_segmentation: workflow.connect( c.lateral_ventricles_mask, 'local_path', nuisance_regression_workflow, 'inputspec.lat_ventricles_mask_file_path' ) node, out_file = new_strat['anatomical_gm_mask'] workflow.connect( node, out_file, nuisance_regression_workflow, 'inputspec.gm_mask_file_path' ) node, out_file = new_strat['anatomical_wm_mask'] workflow.connect( node, out_file, nuisance_regression_workflow, 'inputspec.wm_mask_file_path' ) node, out_file = new_strat['anatomical_csf_mask'] workflow.connect( node, out_file, nuisance_regression_workflow, 'inputspec.csf_mask_file_path' ) node, out_file = new_strat['movement_parameters'] workflow.connect( node, out_file, nuisance_regression_workflow, 'inputspec.motion_parameters_file_path' ) node, out_file= new_strat['functional_to_anat_linear_xfm'] workflow.connect( node, out_file, nuisance_regression_workflow, 'inputspec.func_to_anat_linear_xfm_file_path' ) node, out_file = new_strat.get_leaf_properties() workflow.connect( node, out_file, nuisance_regression_workflow, 'inputspec.functional_file_path' ) node, out_file = new_strat['frame_wise_displacement_jenkinson'] workflow.connect( node, out_file, nuisance_regression_workflow, 'inputspec.fd_j_file_path' ) node, out_file = new_strat['frame_wise_displacement_power'] workflow.connect( node, out_file, nuisance_regression_workflow, 'inputspec.fd_p_file_path' ) node, out_file = new_strat['dvars'] workflow.connect( node, out_file, nuisance_regression_workflow, 'inputspec.dvars_file_path' ) node, out_file = new_strat['functional_brain_mask'] workflow.connect( node, out_file, nuisance_regression_workflow, 'inputspec.functional_brain_mask_file_path' ) nuisance_regression_workflow.get_node('inputspec').iterables = ([ ('selector', [regressors_selector]), ]) if use_ants: # pass the ants_affine_xfm to the input for the # INVERSE transform, but ants_affine_xfm gets inverted # within the workflow node, out_file = new_strat['ants_initial_xfm'] workflow.connect( node, out_file, nuisance_regression_workflow, 'inputspec.anat_to_mni_initial_xfm_file_path' ) node, out_file = new_strat['ants_rigid_xfm'] workflow.connect( node, out_file, nuisance_regression_workflow, 'inputspec.anat_to_mni_rigid_xfm_file_path' ) node, out_file = new_strat['ants_affine_xfm'] workflow.connect( node, out_file, nuisance_regression_workflow, 'inputspec.anat_to_mni_affine_xfm_file_path' ) else: node, out_file = new_strat['mni_to_anatomical_linear_xfm'] workflow.connect( node, out_file, nuisance_regression_workflow, 'inputspec.mni_to_anat_linear_xfm_file_path' ) new_strat.append_name(nuisance_regression_workflow.name) new_strat.set_leaf_properties( nuisance_regression_workflow, 'outputspec.residual_file_path' ) new_strat.update_resource_pool({ 'nuisance_regression_selector': regressors_selector, 'functional_nuisance_residuals': ( nuisance_regression_workflow, 'outputspec.residual_file_path') , 'functional_nuisance_regressors': ( nuisance_regression_workflow, 'outputspec.regressors_file_path' ), }) new_strat_list.append(new_strat) # Be aware that this line is supposed to override the current strat_list: it is not a typo/mistake! # Each regressor forks the strategy, instead of reusing it, to keep the code simple strat_list = new_strat_list # Inserting Median Angle Correction Workflow new_strat_list = [] workflow_counter += 1 # TODO ASH normalize w schema val if 1 in c.runMedianAngleCorrection: workflow_bit_id['median_angle_corr'] = workflow_counter for num_strat, strat in enumerate(strat_list): # for each strategy, create a new one without median angle if 0 in c.runMedianAngleCorrection: new_strat_list.append(strat.fork()) median_angle_corr = create_median_angle_correction( 'median_angle_corr_%d' % num_strat ) median_angle_corr.get_node('median_angle_correct').iterables = \ ('target_angle_deg', c.targetAngleDeg) node, out_file = strat.get_leaf_properties() workflow.connect(node, out_file, median_angle_corr, 'inputspec.subject') strat.append_name(median_angle_corr.name) strat.set_leaf_properties(median_angle_corr, 'outputspec.subject') strat.update_resource_pool({ 'functional_median_angle_corrected': (median_angle_corr, 'outputspec.subject') }) create_log_node(workflow, median_angle_corr, 'outputspec.subject', num_strat) strat_list += new_strat_list for num_strat, strat in enumerate(strat_list): # Keep non-bandpassed version of the output for ALFF strat.update_resource_pool({ 'functional_freq_unfiltered': strat.get_leaf_properties() }) # Inserting Bandpassing Workflow for num_strat, strat in enumerate(strat_list): if 'nuisance_regression_selector' not in strat: continue if not strat['nuisance_regression_selector'].get('Bandpass'): continue bandpass_selector = strat['nuisance_regression_selector']['Bandpass'] frequency_filter = pe.Node( function.Function(input_names=['realigned_file', 'bandpass_freqs', 'sample_period'], output_names=['bandpassed_file'], function=bandpass_voxels, as_module=True), name='frequency_filter_%d' % num_strat ) frequency_filter.inputs.bandpass_freqs = [ bandpass_selector.get('bottom_frequency'), bandpass_selector.get('top_frequency') ] node, out_file = strat.get_leaf_properties() workflow.connect(node, out_file, frequency_filter, 'realigned_file') strat.append_name(frequency_filter.name) strat.set_leaf_properties(frequency_filter, 'bandpassed_file') strat.update_resource_pool({ 'functional_freq_filtered': (frequency_filter, 'bandpassed_file') }) # Func -> Template, uses antsApplyTransforms (ANTS) or ApplyWarp (FSL) to # apply the warp; also includes mean functional warp new_strat_list = [] if 1 in c.runRegisterFuncToMNI: for num_strat, strat in enumerate(strat_list): nodes = strat.get_nodes_names() # Run FSL ApplyWarp if 'anat_mni_flirt_register' in nodes or 'anat_mni_fnirt_register' in nodes: func_mni_warp = pe.Node(interface=fsl.ApplyWarp(), name='func_mni_fsl_warp_%d' % num_strat) func_mni_warp.inputs.ref_file = c.template_brain_only_for_func functional_brain_mask_to_standard = pe.Node( interface=fsl.ApplyWarp(), name='func_mni_fsl_warp_mask_%d' % num_strat ) functional_brain_mask_to_standard.inputs.interp = 'nn' functional_brain_mask_to_standard.inputs.ref_file = c.template_skull_for_func mean_functional_warp = pe.Node( interface=fsl.ApplyWarp(), name='mean_func_fsl_warp_%d' % num_strat ) mean_functional_warp.inputs.ref_file = c.template_brain_only_for_func motion_correct_warp = pe.Node( interface=fsl.ApplyWarp(), name="motion_correct_fsl_warp_%d" % num_strat ) motion_correct_warp.inputs.ref_file = c.template_brain_only_for_func if 'anat_mni_fnirt_register' in nodes: node, out_file = strat['anatomical_to_mni_nonlinear_xfm'] workflow.connect(node, out_file, func_mni_warp, 'field_file') workflow.connect(node, out_file, functional_brain_mask_to_standard, 'field_file') workflow.connect(node, out_file, mean_functional_warp, 'field_file') workflow.connect(node, out_file, motion_correct_warp, 'field_file') node, out_file = strat['functional_to_anat_linear_xfm'] workflow.connect(node, out_file, func_mni_warp, 'premat') workflow.connect(node, out_file, functional_brain_mask_to_standard, 'premat') workflow.connect(node, out_file, mean_functional_warp, 'premat') workflow.connect(node, out_file, motion_correct_warp, 'premat') node, out_file = strat.get_leaf_properties() workflow.connect(node, out_file, func_mni_warp, 'in_file') node, out_file = strat['functional_brain_mask'] workflow.connect(node, out_file, functional_brain_mask_to_standard, 'in_file') node, out_file = strat['mean_functional'] workflow.connect(node, out_file, mean_functional_warp, 'in_file') node, out_file = strat['motion_correct'] workflow.connect(node, out_file, motion_correct_warp, 'in_file') elif 'anat_mni_flirt_register' in nodes: func_anat_warp = pe.Node(interface=fsl.ApplyWarp(), name='func_anat_fsl_warp_%d' % num_strat) functional_brain_mask_to_anat = pe.Node( interface=fsl.ApplyWarp(), name='func_anat_fsl_warp_mask_%d' % num_strat ) functional_brain_mask_to_anat.inputs.interp = 'nn' mean_functional_to_anat = pe.Node( interface=fsl.ApplyWarp(), name='mean_func_to_anat_fsl_warp_%d' % num_strat ) motion_correct_to_anat_warp = pe.Node( interface=fsl.ApplyWarp(), name="motion_correct_to_anat_fsl_warp_%d" % num_strat ) node, out_file = strat.get_leaf_properties() workflow.connect(node, out_file, func_anat_warp, 'in_file') node, out_file = strat['functional_brain_mask'] workflow.connect(node, out_file, functional_brain_mask_to_anat, 'in_file') node, out_file = strat['mean_functional'] workflow.connect(node, out_file, mean_functional_to_anat, 'in_file') node, out_file = strat['motion_correct'] workflow.connect(node, out_file, motion_correct_to_anat_warp, 'in_file') node, out_file = strat['anatomical_brain'] workflow.connect(node, out_file, func_anat_warp, 'ref_file') workflow.connect(node, out_file, functional_brain_mask_to_anat, 'ref_file') workflow.connect(node, out_file, mean_functional_to_anat, 'ref_file') workflow.connect(node, out_file, motion_correct_to_anat_warp, 'ref_file') node, out_file = strat['functional_to_anat_linear_xfm'] workflow.connect(node, out_file, func_anat_warp, 'premat') workflow.connect(node, out_file, functional_brain_mask_to_anat, 'premat') workflow.connect(node, out_file, mean_functional_to_anat, 'premat') workflow.connect(node, out_file, motion_correct_to_anat_warp, 'premat') node, out_file = strat.get_leaf_properties() workflow.connect(func_anat_warp, 'out_file', func_mni_warp, 'in_file') workflow.connect(functional_brain_mask_to_anat, 'out_file', functional_brain_mask_to_standard, 'in_file') workflow.connect(mean_functional_to_anat, 'out_file', mean_functional_warp, 'in_file') workflow.connect(motion_correct_to_anat_warp, 'out_file', motion_correct_warp, 'in_file') node, out_file = strat['anatomical_to_mni_linear_xfm'] workflow.connect(node, out_file, func_mni_warp, 'premat') workflow.connect(node, out_file, functional_brain_mask_to_standard, 'premat') workflow.connect(node, out_file, mean_functional_warp, 'premat') workflow.connect(node, out_file, motion_correct_warp, 'premat') strat.update_resource_pool({ 'functional_to_standard': (func_mni_warp, 'out_file'), 'functional_brain_mask_to_standard': (functional_brain_mask_to_standard, 'out_file'), 'mean_functional_to_standard': (mean_functional_warp, 'out_file'), 'motion_correct_to_standard': (motion_correct_warp, 'out_file') }) strat.append_name(func_mni_warp.name) create_log_node(workflow, func_mni_warp, 'out_file', num_strat) strat_list += new_strat_list for num_strat, strat in enumerate(strat_list): nodes = strat.get_nodes_names() if 'ANTS' in c.regOption and \ 'anat_mni_flirt_register' not in nodes and \ 'anat_mni_fnirt_register' not in nodes: # ANTS warp application # 4D FUNCTIONAL apply warp node, out_file = strat.get_leaf_properties() node2, out_file2 = \ strat["mean_functional"] warp_func_wf = ants_apply_warps_func_mni( workflow, strat, num_strat, num_ants_cores, node, out_file, node2, out_file2, c.template_brain_only_for_func, "functional_to_standard", "Linear", 3 ) create_log_node(workflow, warp_func_wf, 'outputspec.output_image', num_strat) # 4D FUNCTIONAL MOTION-CORRECTED apply warp node, out_file = \ strat['motion_correct'] node2, out_file2 = \ strat["mean_functional"] warp_motion_wf = ants_apply_warps_func_mni( workflow, strat, num_strat, num_ants_cores, node, out_file, node2, out_file2, c.template_brain_only_for_func, "motion_correct_to_standard", "Linear", 3 ) create_log_node(workflow, warp_motion_wf, 'outputspec.output_image', num_strat) # FUNCTIONAL BRAIN MASK (binary, no timeseries) apply warp node, out_file = \ strat["functional_brain_mask"] warp_mask_wf = ants_apply_warps_func_mni( workflow, strat, num_strat, num_ants_cores, node, out_file, node, out_file, c.template_brain_only_for_func, "functional_brain_mask_to_standard", "NearestNeighbor", 0 ) create_log_node(workflow, warp_mask_wf, 'outputspec.output_image', num_strat) # FUNCTIONAL MEAN (no timeseries) apply warp node, out_file = \ strat["mean_functional"] warp_mean_wf = ants_apply_warps_func_mni( workflow, strat, num_strat, num_ants_cores, node, out_file, node, out_file, c.template_brain_only_for_func, "mean_functional_to_standard", "Linear", 0 ) create_log_node(workflow, warp_mean_wf, 'outputspec.output_image', num_strat) strat_list += new_strat_list # Derivatives # Inserting ALFF/fALFF workflow # NOTE: this is calculated using the functional time series from # before frequency filtering and beyond new_strat_list = [] if 1 in c.runALFF: for num_strat, strat in enumerate(strat_list): alff = create_alff('alff_falff_%d' % num_strat) alff.inputs.hp_input.hp = c.highPassFreqALFF alff.inputs.lp_input.lp = c.lowPassFreqALFF alff.get_node('hp_input').iterables = ('hp', c.highPassFreqALFF) alff.get_node('lp_input').iterables = ('lp', c.lowPassFreqALFF) node, out_file = strat['functional_freq_unfiltered'] workflow.connect(node, out_file, alff, 'inputspec.rest_res') node, out_file = strat['functional_brain_mask'] workflow.connect(node, out_file, alff, 'inputspec.rest_mask') strat.append_name(alff.name) strat.update_resource_pool({ 'alff': (alff, 'outputspec.alff_img'), 'falff': (alff, 'outputspec.falff_img') }) create_log_node(workflow, alff, 'outputspec.falff_img', num_strat) strat_list += new_strat_list # Inserting VMHC Workflow new_strat_list = [] if 1 in c.runVMHC: for num_strat, strat in enumerate(strat_list): nodes = strat.get_nodes_names() if 'func_mni_fsl_warp' in nodes: if 'anat_mni_fnirt_register' not in nodes and 'anat_mni_flirt_register' in nodes: vmhc = create_vmhc(False, True, 'vmhc_%d' % num_strat) elif 'anat_mni_fnirt_register' in nodes: vmhc = create_vmhc(False, False, 'vmhc_%d' % num_strat) else: vmhc = create_vmhc(True, False, 'vmhc_%d' % num_strat, int(num_ants_cores)) vmhc.inputs.inputspec.standard_for_func = c.template_skull_for_func vmhc.inputs.fwhm_input.fwhm = c.fwhm vmhc.get_node('fwhm_input').iterables = ('fwhm', c.fwhm) node, out_file = strat.get_leaf_properties() workflow.connect(node, out_file, vmhc, 'inputspec.rest_res') node, out_file = strat['functional_to_anat_linear_xfm'] workflow.connect(node, out_file, vmhc, 'inputspec.example_func2highres_mat') node, out_file = strat['functional_brain_mask'] workflow.connect(node, out_file, vmhc, 'inputspec.rest_mask') node, out_file = strat['mean_functional'] workflow.connect(node, out_file, vmhc, 'inputspec.mean_functional') node, out_file = strat['anatomical_brain'] workflow.connect(node, out_file, vmhc, 'inputspec.brain') # TODO ASH normalize w schema val if 'ANTS' in c.regOption and \ 'anat_mni_flirt_register' not in nodes and \ 'anat_mni_fnirt_register' not in nodes and \ 'anat_symmetric_mni_flirt_register' not in nodes and \ 'anat_symmetric_mni_fnirt_register' not in nodes: node, out_file = strat['ants_symmetric_initial_xfm'] workflow.connect(node, out_file, vmhc, 'inputspec.ants_symm_initial_xfm') node, out_file = strat['ants_symmetric_rigid_xfm'] workflow.connect(node, out_file, vmhc, 'inputspec.ants_symm_rigid_xfm') node, out_file = strat['ants_symmetric_affine_xfm'] workflow.connect(node, out_file, vmhc, 'inputspec.ants_symm_affine_xfm') node, out_file = strat['anatomical_to_symmetric_mni_nonlinear_xfm'] workflow.connect(node, out_file, vmhc, 'inputspec.ants_symm_warp_field') else: if 'anat_mni_fnirt_register' in nodes: node, out_file = strat['anatomical_to_symmetric_mni_nonlinear_xfm'] workflow.connect(node, out_file, vmhc, 'inputspec.fnirt_nonlinear_warp') elif 'anat_mni_flirt_register' in nodes: node, out_file = strat[ 'anatomical_to_symmetric_mni_linear_xfm'] workflow.connect(node, out_file, vmhc, 'inputspec.flirt_linear_aff') strat.update_resource_pool({ 'vmhc_raw_score': (vmhc, 'outputspec.VMHC_FWHM_img'), 'vmhc_fisher_zstd': (vmhc, 'outputspec.VMHC_Z_FWHM_img'), 'vmhc_fisher_zstd_zstat_map': (vmhc, 'outputspec.VMHC_Z_stat_FWHM_img') }) strat.append_name(vmhc.name) create_log_node( workflow, vmhc, 'outputspec.VMHC_FWHM_img', num_strat) strat_list += new_strat_list # Inserting REHO Workflow if 1 in c.runReHo: new_strat_list = [] for num_strat, strat in enumerate(strat_list): preproc = create_reho() cluster_size = c.clusterSize # TODO ASH schema validator # Check the cluster size is supported if cluster_size not in [7, 19, 27]: err_msg = 'Cluster size specified: %d, is not supported. ' \ 'Change to 7, 19, or 27 and try again' % cluster_size raise Exception(err_msg) else: preproc.inputs.inputspec.cluster_size = cluster_size reho = preproc.clone('reho_%d' % num_strat) node, out_file = strat.get_leaf_properties() workflow.connect(node, out_file, reho, 'inputspec.rest_res_filt') node, out_file = strat['functional_brain_mask'] workflow.connect(node, out_file, reho, 'inputspec.rest_mask') create_log_node(workflow, reho, 'outputspec.raw_reho_map', num_strat) strat_list += new_strat_list ts_analysis_dict = {} sca_analysis_dict = {} # TODO ASH normalize w schema val if c.tsa_roi_paths: tsa_roi_dict = c.tsa_roi_paths[0] # Timeseries and SCA config selections processing # flip the dictionary for roi_path in tsa_roi_dict.keys(): ts_analysis_to_run = map( lambda x: x.strip(), tsa_roi_dict[roi_path].split(",") ) if any( corr in ts_analysis_to_run for corr in [ "PearsonCorr", "PartialCorr" ] ) and "Avg" not in ts_analysis_to_run: ts_analysis_to_run += ["Avg"] for analysis_type in ts_analysis_to_run: if analysis_type not in ts_analysis_dict.keys(): ts_analysis_dict[analysis_type] = [] ts_analysis_dict[analysis_type].append(roi_path) # c.tsa_roi_paths and c.sca_roi_paths come in a format as such: # a list containing a dictionary # [ # { # '/path/to/rois1.nii.gz': 'Avg, MultReg', # '/path/to/rois2.nii.gz': 'Avg, MultReg', # '/path/to/rois3.nii.gz': 'Avg, MultReg', # '/path/to/rois4.nii.gz': 'DualReg' # } # ] # TODO ASH normalize w schema val if 1 in c.runROITimeseries: # TODO ASH normalize w schema val if not c.tsa_roi_paths: err = "\n\n[!] CPAC says: Time Series Extraction is " \ "set to run, but no ROI NIFTI file paths were provided!" \ "\n\n" raise Exception(err) # TODO ASH normalize w schema val if 1 in c.runSCA: # TODO ASH normalize w schema val if c.sca_roi_paths: sca_roi_dict = c.sca_roi_paths[0] else: err = "\n\n[!] CPAC says: Seed-based Correlation Analysis is " \ "set to run, but no ROI NIFTI file paths were provided!" \ "\n\n" raise Exception(err) # flip the dictionary for roi_path in sca_roi_dict.keys(): for analysis_type in sca_roi_dict[roi_path].split(","): analysis_type = analysis_type.replace(" ", "") if analysis_type not in sca_analysis_dict.keys(): sca_analysis_dict[analysis_type] = [] sca_analysis_dict[analysis_type].append(roi_path) # Section: Spatial Regression Based Time Series new_strat_list = [] if "SpatialReg" in ts_analysis_dict.keys() or \ "DualReg" in sca_analysis_dict.keys(): for num_strat, strat in enumerate(strat_list): if "SpatialReg" in ts_analysis_dict.keys(): resample_spatial_map_to_native_space = pe.Node( interface=fsl.FLIRT(), name='resample_spatial_map_to_native_space_%d' % num_strat ) resample_spatial_map_to_native_space.inputs.set( interp='nearestneighbour', apply_xfm=True, in_matrix_file=c.identityMatrix ) spatial_map_dataflow = create_spatial_map_dataflow( ts_analysis_dict["SpatialReg"], 'spatial_map_dataflow_%d' % num_strat ) spatial_map_dataflow.inputs.inputspec.set( creds_path=input_creds_path, dl_dir=c.workingDirectory ) spatial_map_timeseries = get_spatial_map_timeseries( 'spatial_map_timeseries_%d' % num_strat ) spatial_map_timeseries.inputs.inputspec.demean = True # c.spatialDemean node, out_file = strat['functional_to_standard'] node2, out_file2 = strat['functional_brain_mask_to_standard'] # resample the input functional file and functional mask # to spatial map workflow.connect(node, out_file, resample_spatial_map_to_native_space, 'reference') workflow.connect(spatial_map_dataflow, 'select_spatial_map.out_file', resample_spatial_map_to_native_space, 'in_file') # connect it to the spatial_map_timeseries workflow.connect(resample_spatial_map_to_native_space, 'out_file', spatial_map_timeseries, 'inputspec.spatial_map') workflow.connect(node2, out_file2, spatial_map_timeseries, 'inputspec.subject_mask') workflow.connect(node, out_file, spatial_map_timeseries, 'inputspec.subject_rest') strat.append_name(spatial_map_timeseries.name) strat.update_resource_pool({ 'spatial_map_timeseries': (spatial_map_timeseries, 'outputspec.subject_timeseries') }) create_log_node(workflow, spatial_map_timeseries, 'outputspec.subject_timeseries', num_strat) if "DualReg" in sca_analysis_dict.keys(): resample_spatial_map_to_native_space_for_dr = pe.Node( interface=fsl.FLIRT(), name='resample_spatial_map_to_native_space_for_DR_%d' % num_strat ) resample_spatial_map_to_native_space_for_dr.inputs.set( interp='nearestneighbour', apply_xfm=True, in_matrix_file=c.identityMatrix ) spatial_map_dataflow_for_dr = create_spatial_map_dataflow( sca_analysis_dict["DualReg"], 'spatial_map_dataflow_for_DR_%d' % num_strat ) spatial_map_dataflow_for_dr.inputs.inputspec.set( creds_path=input_creds_path, dl_dir=c.workingDirectory ) spatial_map_timeseries_for_dr = get_spatial_map_timeseries( 'spatial_map_timeseries_for_DR_%d' % num_strat ) spatial_map_timeseries_for_dr.inputs.inputspec.demean = True # c.spatialDemean node, out_file = strat['functional_to_standard'] node2, out_file2 = strat['functional_brain_mask_to_standard'] # resample the input functional file and functional mask # to spatial map workflow.connect(node, out_file, resample_spatial_map_to_native_space_for_dr, 'reference') workflow.connect(spatial_map_dataflow_for_dr, 'select_spatial_map.out_file', resample_spatial_map_to_native_space_for_dr, 'in_file') # connect it to the spatial_map_timeseries workflow.connect( resample_spatial_map_to_native_space_for_dr, 'out_file', spatial_map_timeseries_for_dr, 'inputspec.spatial_map' ) workflow.connect(node, out_file, spatial_map_timeseries_for_dr, 'inputspec.subject_rest') strat.append_name(spatial_map_timeseries_for_dr.name) strat.update_resource_pool({ 'spatial_map_timeseries_for_DR': ( spatial_map_timeseries_for_dr, 'outputspec.subject_timeseries') }) create_log_node(workflow, spatial_map_timeseries_for_dr, 'outputspec.subject_timeseries', num_strat) strat_list += new_strat_list if 1 in c.runROITimeseries and ("Avg" in ts_analysis_dict.keys() or \ "Avg" in sca_analysis_dict.keys() or \ "MultReg" in sca_analysis_dict.keys()): # ROI Based Time Series new_strat_list = [] for num_strat, strat in enumerate(strat_list): if "Avg" in ts_analysis_dict.keys(): resample_functional_to_roi = pe.Node(interface=fsl.FLIRT(), name='resample_functional_to_roi_%d' % num_strat) resample_functional_to_roi.inputs.set( interp='trilinear', apply_xfm=True, in_matrix_file=c.identityMatrix ) roi_dataflow = create_roi_mask_dataflow( ts_analysis_dict["Avg"], 'roi_dataflow_%d' % num_strat ) roi_dataflow.inputs.inputspec.set( creds_path=input_creds_path, dl_dir=c.workingDirectory ) roi_timeseries = get_roi_timeseries( 'roi_timeseries_%d' % num_strat ) roi_timeseries.inputs.inputspec.output_type = c.roiTSOutputs node, out_file = strat['functional_to_standard'] # resample the input functional file to roi workflow.connect(node, out_file, resample_functional_to_roi, 'in_file') workflow.connect(roi_dataflow, 'outputspec.out_file', resample_functional_to_roi, 'reference') # connect it to the roi_timeseries workflow.connect(roi_dataflow, 'outputspec.out_file', roi_timeseries, 'input_roi.roi') workflow.connect(resample_functional_to_roi, 'out_file', roi_timeseries, 'inputspec.rest') strat.append_name(roi_timeseries.name) strat.update_resource_pool({ 'roi_timeseries': (roi_timeseries, 'outputspec.roi_outputs'), 'functional_to_roi': (resample_functional_to_roi, 'out_file') }) create_log_node(workflow, roi_timeseries, 'outputspec.roi_outputs', num_strat) if "Avg" in sca_analysis_dict.keys(): # same workflow, except to run TSE and send it to the resource # pool so that it will not get sent to SCA resample_functional_to_roi_for_sca = pe.Node( interface=fsl.FLIRT(), name='resample_functional_to_roi_for_sca_%d' % num_strat ) resample_functional_to_roi_for_sca.inputs.set( interp='trilinear', apply_xfm=True, in_matrix_file=c.identityMatrix ) roi_dataflow_for_sca = create_roi_mask_dataflow( sca_analysis_dict["Avg"], 'roi_dataflow_for_sca_%d' % num_strat ) roi_dataflow_for_sca.inputs.inputspec.set( creds_path=input_creds_path, dl_dir=c.workingDirectory ) roi_timeseries_for_sca = get_roi_timeseries( 'roi_timeseries_for_sca_%d' % num_strat ) node, out_file = strat['functional_to_standard'] # resample the input functional file to roi workflow.connect(node, out_file, resample_functional_to_roi_for_sca, 'in_file') workflow.connect(roi_dataflow_for_sca, 'outputspec.out_file', resample_functional_to_roi_for_sca, 'reference') # connect it to the roi_timeseries workflow.connect(roi_dataflow_for_sca, 'outputspec.out_file', roi_timeseries_for_sca, 'input_roi.roi') workflow.connect(resample_functional_to_roi_for_sca, 'out_file', roi_timeseries_for_sca, 'inputspec.rest') strat.append_name(roi_timeseries_for_sca.name) strat.update_resource_pool({ 'roi_timeseries_for_SCA': (roi_timeseries_for_sca, 'outputspec.roi_outputs'), 'functional_to_roi_for_SCA': (resample_functional_to_roi, 'out_file') }) create_log_node(workflow, roi_timeseries_for_sca, 'outputspec.roi_outputs', num_strat) if "MultReg" in sca_analysis_dict.keys(): # same workflow, except to run TSE and send it to the resource # pool so that it will not get sent to SCA resample_functional_to_roi_for_multreg = pe.Node( interface=fsl.FLIRT(), name='resample_functional_to_roi_for_mult_reg_%d' % num_strat ) resample_functional_to_roi_for_multreg.inputs.set( interp='trilinear', apply_xfm=True, in_matrix_file=c.identityMatrix ) roi_dataflow_for_multreg = create_roi_mask_dataflow( sca_analysis_dict["MultReg"], 'roi_dataflow_for_mult_reg_%d' % num_strat ) roi_dataflow_for_multreg.inputs.inputspec.set( creds_path=input_creds_path, dl_dir=c.workingDirectory ) roi_timeseries_for_multreg = get_roi_timeseries( 'roi_timeseries_for_mult_reg_%d' % num_strat ) node, out_file = strat['functional_to_standard'] # resample the input functional file to roi workflow.connect(node, out_file, resample_functional_to_roi_for_multreg, 'in_file') workflow.connect(roi_dataflow_for_multreg, 'outputspec.out_file', resample_functional_to_roi_for_multreg, 'reference') # connect it to the roi_timeseries workflow.connect(roi_dataflow_for_multreg, 'outputspec.out_file', roi_timeseries_for_multreg, 'input_roi.roi') workflow.connect(resample_functional_to_roi_for_multreg, 'out_file', roi_timeseries_for_multreg, 'inputspec.rest') strat.append_name(roi_timeseries_for_multreg.name) strat.update_resource_pool({ 'roi_timeseries_for_SCA_multreg': (roi_timeseries_for_multreg, 'outputspec.roi_outputs') }) create_log_node(workflow, roi_timeseries_for_multreg, 'outputspec.roi_outputs', num_strat) strat_list += new_strat_list # Connectome if "PearsonCorr" in ts_analysis_dict.keys() or \ "PartialCorr" in ts_analysis_dict.keys(): for num_strat, strat in enumerate(strat_list): if "PearsonCorr" in ts_analysis_dict.keys(): connectome_wf = create_connectome('connectome_PearsonCorr_%d' % num_strat) connectome_wf.inputs.inputspec.method = "PearsonCorr" node, out_file = strat['roi_timeseries'] workflow.connect(node, out_file, connectome_wf, 'inputspec.time_series') strat.update_resource_pool({ 'connectome_PearsonCorr': (connectome_wf, 'outputspec.connectome') }) if "PartialCorr" in ts_analysis_dict.keys(): connectome_wf = create_connectome('connectome_PartialCorr_%d' % num_strat) connectome_wf.inputs.inputspec.method = "PartialCorr" node, out_file = strat['roi_timeseries'] workflow.connect(node, out_file, connectome_wf, 'inputspec.time_series') strat.update_resource_pool({ 'connectome_PartialCorr': (connectome_wf, 'outputspec.connectome') }) # Voxel Based Time Series new_strat_list = [] if "Voxel" in ts_analysis_dict.keys(): for num_strat, strat in enumerate(strat_list): resample_functional_to_mask = pe.Node(interface=fsl.FLIRT(), name='resample_functional_to_mask_%d' % num_strat) resample_functional_to_mask.inputs.set( interp='trilinear', apply_xfm=True, in_matrix_file=c.identityMatrix ) mask_dataflow = create_roi_mask_dataflow(ts_analysis_dict["Voxel"], 'mask_dataflow_%d' % num_strat) voxel_timeseries = get_voxel_timeseries( 'voxel_timeseries_%d' % num_strat) voxel_timeseries.inputs.inputspec.output_type = c.roiTSOutputs node, out_file = strat['functional_to_standard'] # resample the input functional file to mask workflow.connect(node, out_file, resample_functional_to_mask, 'in_file') workflow.connect(mask_dataflow, 'outputspec.out_file', resample_functional_to_mask, 'reference') # connect it to the voxel_timeseries workflow.connect(mask_dataflow, 'outputspec.out_file', voxel_timeseries, 'input_mask.mask') workflow.connect(resample_functional_to_mask, 'out_file', voxel_timeseries, 'inputspec.rest') strat.append_name(voxel_timeseries.name) strat.update_resource_pool({ 'voxel_timeseries': (voxel_timeseries, 'outputspec.mask_outputs') }) create_log_node(workflow, voxel_timeseries, 'outputspec.mask_outputs', num_strat) strat_list += new_strat_list # Inserting SCA workflow for ROI INPUT new_strat_list = [] if "Avg" in sca_analysis_dict.keys(): for num_strat, strat in enumerate(strat_list): sca_roi = create_sca('sca_roi_%d' % num_strat) node, out_file = strat.get_leaf_properties() workflow.connect(node, out_file, sca_roi, 'inputspec.functional_file') node, out_file = strat['roi_timeseries_for_SCA'] workflow.connect(node, (out_file, extract_one_d), sca_roi, 'inputspec.timeseries_one_d') strat.update_resource_pool({ 'sca_roi_files': (sca_roi, 'outputspec.correlation_files') }) create_log_node(workflow, sca_roi, 'outputspec.correlation_stack', num_strat) strat.append_name(sca_roi.name) strat_list += new_strat_list # (Dual Regression) Temporal Regression for Dual Regression new_strat_list = [] if "DualReg" in sca_analysis_dict.keys(): for num_strat, strat in enumerate(strat_list): dr_temp_reg = create_temporal_reg( 'temporal_dual_regression_%d' % num_strat ) dr_temp_reg.inputs.inputspec.normalize = c.mrsNorm dr_temp_reg.inputs.inputspec.demean = True node, out_file = strat['spatial_map_timeseries_for_DR'] node2, out_file2 = strat.get_leaf_properties() node3, out_file3 = strat['functional_brain_mask'] workflow.connect(node2, out_file2, dr_temp_reg, 'inputspec.subject_rest') workflow.connect(node, out_file, dr_temp_reg, 'inputspec.subject_timeseries') workflow.connect(node3, out_file3, dr_temp_reg, 'inputspec.subject_mask') strat.update_resource_pool({ 'dr_tempreg_maps_files': (dr_temp_reg, 'outputspec.temp_reg_map_files'), 'dr_tempreg_maps_zstat_files': (dr_temp_reg, 'outputspec.temp_reg_map_z_files') }) strat.append_name(dr_temp_reg.name) create_log_node(workflow, dr_temp_reg, 'outputspec.temp_reg_map', num_strat) strat_list += new_strat_list # (Multiple Regression) Temporal Regression for SCA new_strat_list = [] if "MultReg" in sca_analysis_dict.keys(): for num_strat, strat in enumerate(strat_list): sc_temp_reg = create_temporal_reg( 'temporal_regression_sca_%d' % num_strat, which='RT' ) sc_temp_reg.inputs.inputspec.normalize = c.mrsNorm sc_temp_reg.inputs.inputspec.demean = True node, out_file = strat['functional_to_standard'] node2, out_file2 = strat['roi_timeseries_for_SCA_multreg'] node3, out_file3 = strat['functional_brain_mask_to_standard'] workflow.connect(node, out_file, sc_temp_reg, 'inputspec.subject_rest') workflow.connect(node2, (out_file2, extract_one_d), sc_temp_reg, 'inputspec.subject_timeseries') workflow.connect(node3, out_file3, sc_temp_reg, 'inputspec.subject_mask') strat.update_resource_pool({ 'sca_tempreg_maps_files': (sc_temp_reg, 'outputspec.temp_reg_map_files'), 'sca_tempreg_maps_zstat_files': (sc_temp_reg, 'outputspec.temp_reg_map_z_files') }) create_log_node(workflow, sc_temp_reg, 'outputspec.temp_reg_map', num_strat) strat.append_name(sc_temp_reg.name) strat_list += new_strat_list # Section: Network centrality # TODO ASH handle as boolean on schema validator / normalizer if 1 in c.runNetworkCentrality: # TODO ASH move to schema validator # validate the mask file path # if not c.templateSpecificationFile.endswith(".nii") and \ # not c.templateSpecificationFile.endswith(".nii.gz"): # err = "\n\n[!] CPAC says: The Network Centrality mask " \ # "specification file must be a NIFTI file (ending in .nii " \ # "or .nii.gz).\nFile path you provided: %s\n\n" \ # % c.templateSpecificationFile # raise Exception(err) strat_list = create_network_centrality_workflow( workflow, c, strat_list, { "creds_path": input_creds_path, "dl_dir": c.workingDirectory } ) ''' Loop through the resource pool and connect the nodes for: - applying warps to standard - z-score standardization - smoothing - calculating output averages ''' for num_strat, strat in enumerate(strat_list): if 1 in c.runRegisterFuncToMNI: rp = strat.get_resource_pool() for key in sorted(rp.keys()): # connect nodes to apply warps to template if key in Outputs.native_nonsmooth: # smoothing happens at the end, so only the non-smooth # named output labels for the native-space outputs strat = output_to_standard( workflow, key, strat, num_strat, c) elif key in Outputs.native_nonsmooth_mult: strat = output_to_standard(workflow, key, strat, num_strat, c, map_node=True) if "Before" in c.smoothing_order: # run smoothing before Z-scoring if 1 in c.run_smoothing: rp = strat.get_resource_pool() for key in sorted(rp.keys()): # connect nodes for smoothing if "centrality" in key: # centrality needs its own mask strat = output_smooth(workflow, key, c.templateSpecificationFile, c.fwhm, strat, num_strat, map_node=True) elif key in Outputs.native_nonsmooth: # native space strat = output_smooth(workflow, key, "functional_brain_mask", c.fwhm, strat, num_strat) elif key in Outputs.native_nonsmooth_mult: # native space with multiple files (map nodes) strat = output_smooth(workflow, key, "functional_brain_mask", c.fwhm, strat, num_strat, map_node=True) elif key in Outputs.template_nonsmooth: # template space strat = output_smooth(workflow, key, "functional_brain_mask_to_standard", c.fwhm, strat, num_strat) elif key in Outputs.template_nonsmooth_mult: # template space with multiple files (map nodes) strat = output_smooth(workflow, key, "functional_brain_mask_to_standard", c.fwhm, strat, num_strat, map_node=True) if 1 in c.runZScoring: rp = strat.get_resource_pool() for key in sorted(rp.keys()): # connect nodes for z-score standardization if "sca_roi_files_to_standard" in key: # correlation files need the r-to-z strat = fisher_z_score_standardize(workflow, key, "roi_timeseries_for_SCA", strat, num_strat, map_node=True) elif "centrality" in key: # specific mask strat = z_score_standardize(workflow, key, c.templateSpecificationFile, strat, num_strat, map_node=True) elif key in Outputs.template_raw: # raw score, in template space strat = z_score_standardize(workflow, key, "functional_brain_mask_to_standard", strat, num_strat) elif key in Outputs.template_raw_mult: # same as above but multiple files so mapnode required strat = z_score_standardize(workflow, key, "functional_brain_mask_to_standard", strat, num_strat, map_node=True) elif "After" in c.smoothing_order: # run smoothing after Z-scoring if 1 in c.runZScoring: rp = strat.get_resource_pool() for key in sorted(rp.keys()): # connect nodes for z-score standardization if "sca_roi_files_to_standard" in key: # correlation files need the r-to-z strat = fisher_z_score_standardize(workflow, key, "roi_timeseries_for_SCA", strat, num_strat, map_node=True) elif "centrality" in key: # specific mask strat = z_score_standardize(workflow, key, c.templateSpecificationFile, strat, num_strat, map_node=True) elif key in Outputs.template_raw: # raw score, in template space strat = z_score_standardize(workflow, key, "functional_brain_mask_to_standard", strat, num_strat) elif key in Outputs.template_raw_mult: # same as above but multiple files so mapnode required strat = z_score_standardize(workflow, key, "functional_brain_mask_to_standard", strat, num_strat, map_node=True) if 1 in c.run_smoothing: rp = strat.get_resource_pool() for key in sorted(rp.keys()): # connect nodes for smoothing if "centrality" in key: # centrality needs its own mask strat = output_smooth(workflow, key, c.templateSpecificationFile, c.fwhm, strat, num_strat, map_node=True) elif key in Outputs.native_nonsmooth: # native space strat = output_smooth(workflow, key, "functional_brain_mask", c.fwhm, strat, num_strat) elif key in Outputs.native_nonsmooth_mult: # native space with multiple files (map nodes) strat = output_smooth(workflow, key, "functional_brain_mask", c.fwhm, strat, num_strat, map_node=True) elif key in Outputs.template_nonsmooth: # template space strat = output_smooth(workflow, key, "functional_brain_mask_to_standard", c.fwhm, strat, num_strat) elif key in Outputs.template_nonsmooth_mult: # template space with multiple files (map nodes) strat = output_smooth(workflow, key, "functional_brain_mask_to_standard", c.fwhm, strat, num_strat, map_node=True) rp = strat.get_resource_pool() for key in sorted(rp.keys()): # connect nodes to calculate averages if key in Outputs.average: # the outputs we need the averages for strat = calc_avg(workflow, key, strat, num_strat) elif key in Outputs.average_mult: # those outputs, but the ones with multiple files (map nodes) strat = calc_avg(workflow, key, strat, num_strat, map_node=True) # Quality Control qc_montage_id_a = {} qc_montage_id_s = {} qc_plot_id = {} qc_hist_id = {} if 1 in c.generateQualityControlImages: qc_montage_id_a, qc_montage_id_s, qc_hist_id, qc_plot_id = \ create_qc_workflow(workflow, c, strat_list, Outputs.qc) logger.info('\n\n' + 'Pipeline building completed.' + '\n\n') # Run the pipeline only if the user signifies. # otherwise, only construct the pipeline (above) if run == 1: try: workflow.write_graph(graph2use='hierarchical', format='png') except: pass # this section creates names for the different branched strategies. # it identifies where the pipeline has forked and then appends the # name of the forked nodes to the branch name in the output directory # fork_points is a list of lists, each list containing node names of # nodes run in that strat/fork that are unique to that strat/fork fork_points = Strategy.get_forking_points(strat_list) fork_names = [] # here 'fork_point' is an individual strat with its unique nodes for fork_point in fork_points: fork_name = [] for fork in fork_point: fork_label = '' if 'ants' in fork: fork_label = 'ants' if 'fnirt' in fork: fork_label = 'fnirt' elif 'flirt_register' in fork: fork_label = 'linear-only' if 'automask' in fork: fork_label = 'func-3dautomask' if 'bet' in fork: fork_label = 'func-bet' if 'epi_distcorr' in fork: fork_label = 'dist-corr' if 'bbreg' in fork: fork_label = 'bbreg' if 'nuisance' in fork: fork_label = 'nuisance' if 'frequency_filter' in fork: fork_label = 'freq-filter' if 'median' in fork: fork_label = 'median' if 'motion_stats' in fork: fork_label = 'motion' if 'slice' in fork: fork_label = 'slice' if 'anat_preproc_afni' in fork: fork_label = 'anat-afni' if 'anat_preproc_bet' in fork: fork_label = 'anat-bet' fork_name += [fork_label] fork_names.append('_'.join(fork_name)) # match each strat_list with fork point list fork_points_labels = dict(zip(strat_list, fork_names)) # DataSink pipeline_ids = [] scan_ids = ['scan_anat'] scan_ids += ['scan_' + str(scan_id) for scan_id in sub_dict['func']] for num_strat, strat in enumerate(strat_list): if p_name is None or p_name == 'None': pipeline_id = c.pipelineName else: pipeline_id = p_name if fork_points_labels[strat]: pipeline_id += '_' + fork_points_labels[strat] pipeline_ids.append(pipeline_id) # TODO enforce value with schema validation # Extract credentials path for output if it exists try: # Get path to creds file creds_path = '' if c.awsOutputBucketCredentials: creds_path = str(c.awsOutputBucketCredentials) creds_path = os.path.abspath(creds_path) if c.outputDirectory.lower().startswith('s3://'): # Test for s3 write access s3_write_access = \ aws_utils.test_bucket_access(creds_path, c.outputDirectory) if not s3_write_access: raise Exception('Not able to write to bucket!') except Exception as e: if c.outputDirectory.lower().startswith('s3://'): err_msg = 'There was an error processing credentials or ' \ 'accessing the S3 bucket. Check and try again.\n' \ 'Error: %s' % e raise Exception(err_msg) # TODO enforce value with schema validation try: encrypt_data = bool(c.s3Encryption[0]) except: encrypt_data = False ndmg_out = False try: # let's encapsulate this inside a Try..Except block so if # someone doesn't have ndmg_outputs in their pipe config, # it will default to the regular datasink # TODO: update this when we change to the optionals # TODO: only pipe config if 1 in c.ndmg_mode: ndmg_out = True except: pass if ndmg_out: # create the graphs from CPAC.utils.ndmg_utils import ndmg_roi_timeseries, \ ndmg_create_graphs atlases = [] if 'Avg' in ts_analysis_dict.keys(): atlases = ts_analysis_dict['Avg'] roi_dataflow_for_ndmg = create_roi_mask_dataflow(atlases, 'roi_dataflow_for_ndmg_%d' % num_strat ) resample_functional_to_roi = pe.Node(interface=fsl.FLIRT(), name='resample_functional_to_roi_ndmg_%d' % num_strat) resample_functional_to_roi.inputs.set( interp='trilinear', apply_xfm=True, in_matrix_file=c.identityMatrix ) workflow.connect(roi_dataflow_for_ndmg, 'outputspec.out_file', resample_functional_to_roi, 'reference') ndmg_ts_imports = ['import os', 'import nibabel as nb', 'import numpy as np'] ndmg_ts = pe.Node(util.Function(input_names=['func_file', 'label_file'], output_names=['roi_ts', 'rois', 'roits_file'], function=ndmg_roi_timeseries, imports=ndmg_ts_imports), name='ndmg_ts_%d' % num_strat) node, out_file = strat['functional_to_standard'] workflow.connect(node, out_file, resample_functional_to_roi, 'in_file') workflow.connect(resample_functional_to_roi, 'out_file', ndmg_ts, 'func_file') workflow.connect(roi_dataflow_for_ndmg, 'outputspec.out_file', ndmg_ts, 'label_file') ndmg_graph_imports = ['import os', 'from CPAC.utils.ndmg_utils import graph'] ndmg_graph = pe.MapNode(util.Function(input_names=['ts', 'labels'], output_names=[ 'out_file'], function=ndmg_create_graphs, imports=ndmg_graph_imports), name='ndmg_graphs_%d' % num_strat, iterfield=['labels']) workflow.connect(ndmg_ts, 'roi_ts', ndmg_graph, 'ts') workflow.connect(roi_dataflow_for_ndmg, 'outputspec.out_file', ndmg_graph, 'labels') strat.update_resource_pool({ 'ndmg_ts': (ndmg_ts, 'roits_file'), 'ndmg_graph': (ndmg_graph, 'out_file') }) rp = strat.get_resource_pool() if c.write_debugging_outputs: import pickle workdir = os.path.join(c.workingDirectory, workflow_name) rp_pkl = os.path.join(workdir, 'resource_pool.pkl') with open(rp_pkl, 'wt') as f: pickle.dump(rp, f) output_sink_nodes = [] for resource_i, resource in enumerate(sorted(rp.keys())): if not resource.startswith('qc___') and resource not in Outputs.any: continue if resource not in Outputs.override_optional and not ndmg_out: if 1 not in c.write_func_outputs: if resource in Outputs.extra_functional: continue if 1 not in c.write_debugging_outputs: if resource in Outputs.debugging: continue if 0 not in c.runRegisterFuncToMNI: if resource in Outputs.native_nonsmooth or \ resource in Outputs.native_nonsmooth_mult or \ resource in Outputs.native_smooth: continue if 0 not in c.runZScoring: # write out only the z-scored outputs if resource in Outputs.template_raw or \ resource in Outputs.template_raw_mult: continue if 0 not in c.run_smoothing: # write out only the smoothed outputs if resource in Outputs.native_nonsmooth or \ resource in Outputs.template_nonsmooth or \ resource in Outputs.native_nonsmooth_mult or \ resource in Outputs.template_nonsmooth_mult: continue if ndmg_out: ds = pe.Node(nio.DataSink(), name='sinker_{}_{}'.format(num_strat, resource_i)) ds.inputs.base_directory = c.outputDirectory ds.inputs.creds_path = creds_path ds.inputs.encrypt_bucket_keys = encrypt_data ds.inputs.parameterization = True ds.inputs.regexp_substitutions = [ (r'_rename_(.)*/', ''), (r'_scan_', 'scan-'), (r'/_mask_', '/roi-'), (r'file_s3(.)*/', ''), (r'ndmg_atlases', ''), (r'func_atlases', ''), (r'label', ''), (r'res-.+\/', ''), (r'_mask_', 'roi-'), (r'mask_sub-', 'sub-'), (r'/_selector_', '_nuis-'), (r'_selector_pc', ''), (r'.linear', ''), (r'.wm', ''), (r'.global', ''), (r'.motion', ''), (r'.quadratic', ''), (r'.gm', ''), (r'.compcor', ''), (r'.csf', ''), (r'_sub-', '/sub-'), (r'(\.\.)', '') ] container = 'pipeline_{0}'.format(pipeline_id) sub_ses_id = subject_id.split('_') if 'sub-' not in sub_ses_id[0]: sub_tag = 'sub-{0}'.format(sub_ses_id[0]) else: sub_tag = sub_ses_id[0] ses_tag = 'ses-1' if len(sub_ses_id) > 1: if 'ses-' not in sub_ses_id[1]: ses_tag = 'ses-{0}'.format(sub_ses_id[1]) else: ses_tag = sub_ses_id[1] id_tag = '_'.join([sub_tag, ses_tag]) anat_template_tag = 'standard' func_template_tag = 'standard' try: if 'FSL' in c.regOption and 'ANTS' not in c.regOption: if 'MNI152' in c.fnirtConfig: anat_template_tag = 'MNI152' func_template_tag = 'MNI152' except: pass anat_res_tag = c.resolution_for_anat anat_res_tag = anat_res_tag.replace('mm', '') func_res_tag = c.resolution_for_func_preproc func_res_tag = func_res_tag.replace('mm', '') ndmg_key_dct = {'anatomical_brain': ('anat', 'preproc', '{0}_T1w_preproc_brain'.format(id_tag)), 'anatomical_to_standard': ('anat', 'registered', '{0}_T1w_space-{1}_res-{2}x{2}x{2}_registered'.format(id_tag, anat_template_tag, anat_res_tag)), 'functional_preprocessed': ('func', 'preproc', '{0}_bold_preproc'.format(id_tag)), 'functional_nuisance_residuals': ('func', 'clean', '{0}_bold_space-{1}_res-{2}x{2}x{2}_clean'.format(id_tag, func_template_tag, func_res_tag)), 'functional_to_standard': ('func', 'registered', '{0}_bold_space-{1}_res-{2}x{2}x{2}_registered'.format( id_tag, func_template_tag, func_res_tag)), 'functional_mask_to_standard': ('func', 'registered', '{0}_bold_space-{1}_res-{2}x{2}x{2}_registered_mask'.format( id_tag, func_template_tag, func_res_tag)), 'ndmg_ts': ('func', 'roi-timeseries', '{0}_bold_res-{1}x{1}x{1}_variant-mean_timeseries'.format( id_tag, func_res_tag)), 'ndmg_graph': ('func', 'roi-connectomes', '{0}_bold_res-{1}x{1}x{1}_measure-correlation'.format( id_tag, func_res_tag)) } if resource not in ndmg_key_dct.keys(): continue ds.inputs.container = '{0}/{1}'.format(container, ndmg_key_dct[resource][0]) node, out_file = rp[resource] # rename the file if 'roi_' in resource or 'ndmg_graph' in resource: rename_file = pe.MapNode( interface=util.Rename(), name='rename__{}_{}'.format(num_strat, resource_i), iterfield=['in_file']) else: rename_file = pe.Node( interface=util.Rename(), name='rename_{}_{}'.format(num_strat, resource_i) ) rename_file.inputs.keep_ext = True rename_file.inputs.format_string = ndmg_key_dct[resource][2] workflow.connect(node, out_file, rename_file, 'in_file') workflow.connect(rename_file, 'out_file', ds, ndmg_key_dct[resource][1]) else: # regular datasink ds = pe.Node( nio.DataSink(), name='sinker_{}_{}'.format(num_strat, resource_i) ) ds.inputs.base_directory = c.outputDirectory ds.inputs.creds_path = creds_path ds.inputs.encrypt_bucket_keys = encrypt_data ds.inputs.container = os.path.join( 'pipeline_%s' % pipeline_id, subject_id ) ds.inputs.regexp_substitutions = [ (r"/_sca_roi(.)*[/]", '/'), (r"/_smooth_centrality_(\d)+[/]", '/'), (r"/_z_score(\d)+[/]", "/"), (r"/_dr_tempreg_maps_zstat_files_smooth_(\d)+[/]", "/"), (r"/_sca_tempreg_maps_zstat_files_smooth_(\d)+[/]", "/"), (r"/qc___", '/qc/') ] node, out_file = rp[resource] workflow.connect(node, out_file, ds, resource) output_sink_nodes += [(ds, 'out_file')] if 1 in c.runSymbolicLinks and not ndmg_out and \ not c.outputDirectory.lower().startswith('s3://'): merge_link_node = pe.Node( interface=Merge(len(output_sink_nodes)), name='create_symlinks_paths_{}'.format(num_strat) ) merge_link_node.inputs.ravel_inputs = True link_node = pe.Node( interface=function.Function( input_names=[ 'output_dir', 'symlink_dir', 'pipeline_id', 'subject_id', 'paths', ], output_names=[], function=create_symlinks, as_module=True ), name='create_symlinks_{}'.format(num_strat) ) link_node.inputs.output_dir = c.outputDirectory link_node.inputs.subject_id = subject_id link_node.inputs.pipeline_id = 'pipeline_%s' % pipeline_id for i, (node, node_input) in enumerate(output_sink_nodes): workflow.connect(node, node_input, merge_link_node, 'in{}'.format(i)) workflow.connect(merge_link_node, 'out', link_node, 'paths') try: G = nx.DiGraph() strat_name = strat.get_name() G.add_edges_from([ (strat_name[s], strat_name[s + 1]) for s in range(len(strat_name) - 1) ]) dotfilename = os.path.join(log_dir, 'strategy.dot') nx.drawing.nx_pydot.write_dot(G, dotfilename) format_dot(dotfilename, 'png') except: logger.warn('Cannot Create the strategy and pipeline ' 'graph, dot or/and pygraphviz is not installed') forks = "\n\nStrategy forks:\n" + \ "\n".join(["- " + pipe for pipe in sorted(set(pipeline_ids))]) + \ "\n\n" logger.info(forks) pipeline_start_datetime = strftime("%Y-%m-%d %H:%M:%S") subject_info['resource_pool'] = [] for strat_no, strat in enumerate(strat_list): strat_label = 'strat_%d' % strat_no subject_info[strat_label] = strat.get_name() subject_info['resource_pool'].append(strat.get_resource_pool()) subject_info['status'] = 'Running' # TODO:set memory and num_threads of critical nodes if running # MultiProcPlugin # Create callback logger cb_log_filename = os.path.join(log_dir, 'callback.log') try: if not os.path.exists(os.path.dirname(cb_log_filename)): os.makedirs(os.path.dirname(cb_log_filename)) except IOError: pass # Add handler to callback log file cb_logger = cb_logging.getLogger('callback') cb_logger.setLevel(cb_logging.DEBUG) handler = cb_logging.FileHandler(cb_log_filename) cb_logger.addHandler(handler) # Log initial information from all the nodes for node_name in workflow.list_node_names(): node = workflow.get_node(node_name) cb_logger.debug(json.dumps({ "id": str(node), "hash": node.inputs.get_hashval()[1], })) # Add status callback function that writes in callback log if nipype.__version__ not in ('1.1.2'): err_msg = "This version of Nipype may not be compatible with " \ "CPAC v%s, please install Nipype version 1.1.2\n" \ % (CPAC.__version__) logger.error(err_msg) else: from CPAC.utils.monitoring import log_nodes_cb plugin_args['status_callback'] = log_nodes_cb # Actually run the pipeline now, for the current subject workflow.run(plugin=plugin, plugin_args=plugin_args) # Dump subject info pickle file to subject log dir subject_info['status'] = 'Completed' subject_info_file = os.path.join( log_dir, 'subject_info_%s.pkl' % subject_id ) with open(subject_info_file, 'wb') as info: pickle.dump(subject_info, info) for i, _ in enumerate(pipeline_ids): for scan in scan_ids: create_log_node(workflow, None, None, i, scan).run() if 1 in c.generateQualityControlImages and not ndmg_out: for pip_id in pipeline_ids: pipeline_base = os.path.join(c.outputDirectory, 'pipeline_%s' % pip_id) qc_output_folder = os.path.join(pipeline_base, subject_id, 'qc_html') sub_output_dir = os.path.join(c.outputDirectory, 'pipeline_{0}'.format(pip_id), subject_id) generate_qc_pages(qc_output_folder, sub_output_dir, qc_montage_id_a, qc_montage_id_s, qc_plot_id, qc_hist_id) # have this check in case the user runs cpac_runner from terminal and # the timing parameter list is not supplied as usual by the GUI if pipeline_timing_info != None: # pipeline_timing_info list: # [0] - unique pipeline ID # [1] - pipeline start time stamp (first click of 'run' from GUI) # [2] - number of subjects in subject list unique_pipeline_id = pipeline_timing_info[0] pipeline_start_stamp = pipeline_timing_info[1] num_subjects = pipeline_timing_info[2] # elapsed time data list: # [0] - elapsed time in minutes elapsed_time_data = [] elapsed_time_data.append( int(((time.time() - pipeline_start_time) / 60))) # elapsedTimeBin list: # [0] - cumulative elapsed time (minutes) across all subjects # [1] - number of times the elapsed time has been appended # (effectively a measure of how many subjects have run) # TODO # write more doc for all this # warning in .csv that some runs may be partial # code to delete .tmp file timing_temp_file_path = os.path.join(c.logDirectory, '%s_pipeline_timing.tmp' % unique_pipeline_id) if not os.path.isfile(timing_temp_file_path): elapsedTimeBin = [] elapsedTimeBin.append(0) elapsedTimeBin.append(0) with open(timing_temp_file_path, 'wb') as handle: pickle.dump(elapsedTimeBin, handle) with open(timing_temp_file_path, 'rb') as handle: elapsedTimeBin = pickle.loads(handle.read()) elapsedTimeBin[0] = elapsedTimeBin[0] + elapsed_time_data[0] elapsedTimeBin[1] = elapsedTimeBin[1] + 1 with open(timing_temp_file_path, 'wb') as handle: pickle.dump(elapsedTimeBin, handle) # this happens once the last subject has finished running! if elapsedTimeBin[1] == num_subjects: pipelineTimeDict = {} pipelineTimeDict['Pipeline'] = c.pipelineName pipelineTimeDict['Cores_Per_Subject'] = c.maxCoresPerParticipant pipelineTimeDict['Simultaneous_Subjects'] = c.numParticipantsAtOnce pipelineTimeDict['Number_of_Subjects'] = num_subjects pipelineTimeDict['Start_Time'] = pipeline_start_stamp pipelineTimeDict['End_Time'] = strftime("%Y-%m-%d_%H:%M:%S") pipelineTimeDict['Elapsed_Time_(minutes)'] = elapsedTimeBin[0] pipelineTimeDict['Status'] = 'Complete' gpaTimeFields = ['Pipeline', 'Cores_Per_Subject', 'Simultaneous_Subjects', 'Number_of_Subjects', 'Start_Time', 'End_Time', 'Elapsed_Time_(minutes)', 'Status'] timeHeader = dict((n, n) for n in gpaTimeFields) with open(os.path.join( c.logDirectory, 'cpac_individual_timing_%s.csv' % c.pipelineName ), 'a') as timeCSV, open(os.path.join( c.logDirectory, 'cpac_individual_timing_%s.csv' % c.pipelineName ), 'rb') as readTimeCSV: timeWriter = csv.DictWriter(timeCSV, fieldnames=gpaTimeFields) timeReader = csv.DictReader(readTimeCSV) headerExists = False for line in timeReader: if 'Start_Time' in line: headerExists = True if headerExists == False: timeWriter.writerow(timeHeader) timeWriter.writerow(pipelineTimeDict) # remove the temp timing file now that it is no longer needed os.remove(timing_temp_file_path) # Upload logs to s3 if s3_str in output directory if c.outputDirectory.lower().startswith('s3://'): try: # Store logs in s3 output director/logs/... s3_log_dir = c.outputDirectory + '/logs/' + \ os.path.basename(log_dir) bucket_name = c.outputDirectory.split('/')[2] bucket = fetch_creds.return_bucket(creds_path, bucket_name) # Collect local log files local_log_files = [] for root, _, files in os.walk(log_dir): local_log_files.extend([os.path.join(root, fil) for fil in files]) # Form destination keys s3_log_files = [loc.replace(log_dir, s3_log_dir) for loc in local_log_files] # Upload logs aws_utils.s3_upload(bucket, (local_log_files, s3_log_files), encrypt=encrypt_data) # Delete local log files for log_f in local_log_files: os.remove(log_f) except Exception as exc: err_msg = 'Unable to upload CPAC log files in: %s.\nError: %s' logger.error(err_msg, log_dir, exc) # Remove working directory when done if c.removeWorkingDir: try: subject_wd = os.path.join(c.workingDirectory, workflow_name) if os.path.exists(subject_wd): logger.info("Removing working dir: %s" % subject_wd) shutil.rmtree(subject_wd) except: logger.warn('Could not remove subjects %s working directory', workflow_name) execution_info = """ End of subject workflow {workflow} CPAC run complete: Pipeline configuration: {pipeline} Subject workflow: {workflow} Elapsed run time (minutes): {elapsed} Timing information saved in {log_dir}/cpac_individual_timing_{pipeline}.csv System time of start: {run_start} System time of completion: {run_finish} """ logger.info(execution_info.format( workflow=workflow_name, pipeline=c.pipelineName, log_dir=c.logDirectory, elapsed=(time.time() - pipeline_start_time) / 60, run_start=pipeline_start_datetime, run_finish=strftime("%Y-%m-%d %H:%M:%S") )) return workflow
43.185834
140
0.508654
f59b462e83ed414b199b14ae9b304e7700dd0fa8
4,061
py
Python
pmath/poset.py
thorwhalen/ut
353a4629c35a2cca76ef91a4d5209afe766433b4
[ "MIT" ]
4
2016-12-17T20:06:10.000Z
2021-11-19T04:45:29.000Z
pmath/poset.py
thorwhalen/ut
353a4629c35a2cca76ef91a4d5209afe766433b4
[ "MIT" ]
11
2021-01-06T05:35:11.000Z
2022-03-11T23:28:31.000Z
pmath/poset.py
thorwhalen/ut
353a4629c35a2cca76ef91a4d5209afe766433b4
[ "MIT" ]
3
2015-06-12T10:44:16.000Z
2021-07-26T18:39:47.000Z
__author__ = 'thor' from numpy import * import pandas as pd def set_containment_matrix(family_of_sets, family_of_sets_2=None): """ Computes the containment incidence matrix of two families of sets A and B, where A and B are specified by incidence matrices where rows index sets and columns index elements (so they must have the same number of cols). The function returns a boolean matrix M of dimensions nrows(A) x nrows(B) where M(i,j)==True if and only if ith set of A contains (or is equal to) jth set of B. If the second family of sets is not given, the function computes the containment matrix of the first input on itself. See Also: family_of_sets_to_bitmap and bitmap_to_family_of_sets to transform family of sets specification (useful to transform) input and output Example: >> import itertools >> t = array([x for x in itertools.product(*([[0, 1]] * 3))]).astype(int32) >> t = array([[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]], dtype=int32) >> bitmap_to_family_of_sets(set_containment_matrix(t), range(len(t))) = [array([0]), array([0, 1]), array([0, 2]), array([0, 1, 2, 3]), array([0, 4]), array([0, 1, 4, 5]), array([0, 2, 4, 6]), array([0, 1, 2, 3, 4, 5, 6, 7])] """ if family_of_sets_2 is None: family_of_sets_2 = family_of_sets x = matrix((~family_of_sets.astype(bool)).astype(int)) xx = matrix((family_of_sets_2.astype(bool)).astype(int)).T return squeeze(asarray(~(((x * xx)).astype(bool)))) def family_of_sets_to_bitmap(family_of_sets, output='df'): """ Takes set_list, a family of sets, and returns a dataframe of bitmaps (if output=='df') or a bitmap matrix and array of element names, whose columns index set elements and rows index sets. See Also: bitmap_to_family_of_sets(bitmap, set_labels) (reverse operation) """ df = pd.DataFrame([{element: 1 for element in s} for s in family_of_sets], index=family_of_sets).fillna(0) if output == 'df': return df else: return df.as_matrix(), array(df.columns) def bitmap_to_family_of_sets(bitmap, set_labels=None): """ Takes a bitmap specification of a family of sets and returns an list of arrays specification. Input: bitmap: a dataframe whose rows index sets and columns index set labels bitmap, set_labels: here bitmap is a (sets x set_element_idx) matrix and set_labels are the set elements See Also: family_of_sets_to_bitmap(family_of_sets) (reverse operation) """ if isinstance(bitmap, pd.DataFrame): if set_labels is None: set_labels = array(bitmap.columns) bitmap = bitmap.as_matrix() else: if set_labels is None: set_labels = arange(shape(bitmap)[1]) assert shape(bitmap)[1] == len(set_labels), "number of set labels must equal the number of elements (num of cols)" return [set_labels[lidx] for lidx in bitmap] class SetFamily(object): def __init__(self, set_family, element_labels=None): if isinstance(set_family, pd.DataFrame): element_labels = array(set_family.columns) self.set_family = set_family.as_matrix() == 1 elif isinstance(set_family, ndarray) and len(shape(set_family)) == 2: self.set_family = set_family else: self.set_family, element_labels = family_of_sets_to_bitmap() self.n_sets = shape(self.set_family)[0] self.n_set_elements = shape(self.set_family)[1] self.set_cardinalities = sum(self.set_family, 1).reshape((self.n_sets, 1)) if element_labels is None: self.element_labels = arange(self.n_set_elements) else: self.element_labels = element_labels
39.813725
118
0.623246
e037b59c60bd785ae4466056b36a229119a55063
11,824
py
Python
ssvep_utils.py
DayBright-David/Leave-one-sub-out-CNN_SSVEP
7e24126b3b7db2b9331e5051be9fc34d3868f9ad
[ "MIT" ]
null
null
null
ssvep_utils.py
DayBright-David/Leave-one-sub-out-CNN_SSVEP
7e24126b3b7db2b9331e5051be9fc34d3868f9ad
[ "MIT" ]
null
null
null
ssvep_utils.py
DayBright-David/Leave-one-sub-out-CNN_SSVEP
7e24126b3b7db2b9331e5051be9fc34d3868f9ad
[ "MIT" ]
null
null
null
""" Utilities for CNN based SSVEP Classification """ import math import warnings warnings.filterwarnings('ignore') import numpy as np from scipy.signal import butter, filtfilt from keras.models import Sequential from keras.layers import Dense, Activation, Flatten, Dropout, Conv2D, BatchNormalization from keras.utils.np_utils import to_categorical from keras import initializers, regularizers def butter_bandpass_filter(data, lowcut, highcut, sample_rate, order): ''' Returns bandpass filtered data between the frequency ranges specified in the input. Args: data (numpy.ndarray): array of samples. lowcut (float): lower cutoff frequency (Hz). highcut (float): lower cutoff frequency (Hz). sample_rate (float): sampling rate (Hz). order (int): order of the bandpass filter. Returns: (numpy.ndarray): bandpass filtered data. ''' nyq = 0.5 * sample_rate low = lowcut / nyq high = highcut / nyq b, a = butter(order, [low, high], btype='band') y = filtfilt(b, a, data) return y def get_filtered_eeg(eeg, lowcut, highcut, order, sample_rate): ''' Returns bandpass filtered eeg for all channels and trials. Args: eeg (numpy.ndarray): raw eeg data of shape (num_classes, num_channels, num_samples, num_trials). lowcut (float): lower cutoff frequency (Hz). highcut (float): lower cutoff frequency (Hz). order (int): order of the bandpass filter. sample_rate (float): sampling rate (Hz). Returns: (numpy.ndarray): bandpass filtered eeg of shape (num_classes, num_channels, num_samples, num_trials). ''' num_classes = eeg.shape[0] num_chan = eeg.shape[1] total_trial_len = eeg.shape[2] num_trials = eeg.shape[3] trial_len = int(38+0.135*sample_rate+4*sample_rate-1) - int(38+0.135*sample_rate) filtered_data = np.zeros((eeg.shape[0], eeg.shape[1], trial_len, eeg.shape[3])) for target in range(0, num_classes): for channel in range(0, num_chan): for trial in range(0, num_trials): signal_to_filter = np.squeeze(eeg[target, channel, int(38+0.135*sample_rate): int(38+0.135*sample_rate+4*sample_rate-1), trial]) filtered_data[target, channel, :, trial] = butter_bandpass_filter(signal_to_filter, lowcut, highcut, sample_rate, order) return filtered_data def buffer(data, duration, data_overlap): ''' Returns segmented data based on the provided input window duration and overlap. Args: data (numpy.ndarray): array of samples. duration (int): window length (number of samples). data_overlap (int): number of samples of overlap. Returns: (numpy.ndarray): segmented data of shape (number_of_segments, duration). ''' number_segments = int(math.ceil((len(data) - data_overlap)/(duration - data_overlap))) temp_buf = [data[i:i+duration] for i in range(0, len(data), (duration - int(data_overlap)))] temp_buf[number_segments-1] = np.pad(temp_buf[number_segments-1], (0, duration-temp_buf[number_segments-1].shape[0]), 'constant') segmented_data = np.vstack(temp_buf[0:number_segments]) return segmented_data def get_segmented_epochs(data, window_len, shift_len, sample_rate): ''' Returns epoched eeg data based on the window duration and step size. Args: data (numpy.ndarray): array of samples. window_len (int): window length (seconds). shift_len (int): step size (seconds). sample_rate (float): sampling rate (Hz). Returns: (numpy.ndarray): epoched eeg data of shape. (num_classes, num_channels, num_trials, number_of_segments, duration). ''' num_classes = data.shape[0] num_chan = data.shape[1] num_trials = data.shape[3] duration = int(window_len*sample_rate) data_overlap = (window_len - shift_len)*sample_rate number_of_segments = int(math.ceil((data.shape[2] - data_overlap)/ (duration - data_overlap))) segmented_data = np.zeros((data.shape[0], data.shape[1], data.shape[3], number_of_segments, duration)) for target in range(0, num_classes): for channel in range(0, num_chan): for trial in range(0, num_trials): segmented_data[target, channel, trial, :, :] = buffer(data[target, channel, :, trial], duration, data_overlap) return segmented_data def magnitude_spectrum_features(segmented_data, FFT_PARAMS): ''' Returns magnitude spectrum features. Fast Fourier Transform computed based on the FFT parameters provided as input. Args: segmented_data (numpy.ndarray): epoched eeg data of shape (num_classes, num_channels, num_trials, number_of_segments, num_samples). FFT_PARAMS (dict): dictionary of parameters used for feature extraction. FFT_PARAMS['resolution'] (float): frequency resolution per bin (Hz). FFT_PARAMS['start_frequency'] (float): start frequency component to pick from (Hz). FFT_PARAMS['end_frequency'] (float): end frequency component to pick upto (Hz). FFT_PARAMS['sampling_rate'] (float): sampling rate (Hz). Returns: (numpy.ndarray): magnitude spectrum features of the input EEG. (n_fc, num_channels, num_classes, num_trials, number_of_segments). ''' num_classes = segmented_data.shape[0] num_chan = segmented_data.shape[1] num_trials = segmented_data.shape[2] number_of_segments = segmented_data.shape[3] fft_len = segmented_data[0, 0, 0, 0, :].shape[0] NFFT = round(FFT_PARAMS['sampling_rate']/FFT_PARAMS['resolution']) fft_index_start = int(round(FFT_PARAMS['start_frequency']/FFT_PARAMS['resolution'])) fft_index_end = int(round(FFT_PARAMS['end_frequency']/FFT_PARAMS['resolution']))+1 features_data = np.zeros(((fft_index_end - fft_index_start), segmented_data.shape[1], segmented_data.shape[0], segmented_data.shape[2], segmented_data.shape[3])) for target in range(0, num_classes): for channel in range(0, num_chan): for trial in range(0, num_trials): for segment in range(0, number_of_segments): temp_FFT = np.fft.fft(segmented_data[target, channel, trial, segment, :], NFFT)/fft_len magnitude_spectrum = 2*np.abs(temp_FFT) features_data[:, channel, target, trial, segment] = magnitude_spectrum[fft_index_start:fft_index_end,] return features_data def complex_spectrum_features(segmented_data, FFT_PARAMS): ''' Returns complex spectrum features. Fast Fourier Transform computed based on the FFT parameters provided as input. The real and imaginary parts of the input signal are concatenated into a single feature vector. Args: segmented_data (numpy.ndarray): epoched eeg data of shape (num_classes, num_channels, num_trials, number_of_segments, num_samples). FFT_PARAMS (dict): dictionary of parameters used for feature extraction. FFT_PARAMS['resolution'] (float): frequency resolution per bin (Hz). FFT_PARAMS['start_frequency'] (float): start frequency component to pick from (Hz). FFT_PARAMS['end_frequency'] (float): end frequency component to pick upto (Hz). FFT_PARAMS['sampling_rate'] (float): sampling rate (Hz). Returns: (numpy.ndarray): complex spectrum features of the input EEG. (2*n_fc, num_channels, num_classes, num_trials, number_of_segments) ''' num_classes = segmented_data.shape[0] num_chan = segmented_data.shape[1] num_trials = segmented_data.shape[2] number_of_segments = segmented_data.shape[3] fft_len = segmented_data[0, 0, 0, 0, :].shape[0] NFFT = round(FFT_PARAMS['sampling_rate']/FFT_PARAMS['resolution']) fft_index_start = int(round(FFT_PARAMS['start_frequency']/FFT_PARAMS['resolution'])) fft_index_end = int(round(FFT_PARAMS['end_frequency']/FFT_PARAMS['resolution']))+1 features_data = np.zeros((2*(fft_index_end - fft_index_start), segmented_data.shape[1], segmented_data.shape[0], segmented_data.shape[2], segmented_data.shape[3])) for target in range(0, num_classes): for channel in range(0, num_chan): for trial in range(0, num_trials): for segment in range(0, number_of_segments): temp_FFT = np.fft.fft(segmented_data[target, channel, trial, segment, :], NFFT)/fft_len real_part = np.real(temp_FFT) imag_part = np.imag(temp_FFT) features_data[:, channel, target, trial, segment] = np.concatenate(( real_part[fft_index_start:fft_index_end,], imag_part[fft_index_start:fft_index_end,]), axis=0) return features_data def CNN_model(input_shape, CNN_PARAMS): ''' Returns the Concolutional Neural Network model for SSVEP classification. Args: input_shape (numpy.ndarray): shape of input training data e.g. [num_training_examples, num_channels, n_fc] or [num_training_examples, num_channels, 2*n_fc]. CNN_PARAMS (dict): dictionary of parameters used for feature extraction. CNN_PARAMS['batch_size'] (int): training mini batch size. CNN_PARAMS['epochs'] (int): total number of training epochs/iterations. CNN_PARAMS['droprate'] (float): dropout ratio. CNN_PARAMS['learning_rate'] (float): model learning rate. CNN_PARAMS['lr_decay'] (float): learning rate decay ratio. CNN_PARAMS['l2_lambda'] (float): l2 regularization parameter. CNN_PARAMS['momentum'] (float): momentum term for stochastic gradient descent optimization. CNN_PARAMS['kernel_f'] (int): 1D kernel to operate on conv_1 layer for the SSVEP CNN. CNN_PARAMS['n_ch'] (int): number of eeg channels CNN_PARAMS['num_classes'] (int): number of SSVEP targets/classes Returns: (keras.Sequential): CNN model. ''' model = Sequential() model.add(Conv2D(2*CNN_PARAMS['n_ch'], kernel_size=(CNN_PARAMS['n_ch'], 1), input_shape=(input_shape[0], input_shape[1], input_shape[2]), padding="valid", kernel_regularizer=regularizers.l2(CNN_PARAMS['l2_lambda']), kernel_initializer=initializers.RandomNormal(mean=0.0, stddev=0.01, seed=None))) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(CNN_PARAMS['droprate'])) model.add(Conv2D(2*CNN_PARAMS['n_ch'], kernel_size=(1, CNN_PARAMS['kernel_f']), kernel_regularizer=regularizers.l2(CNN_PARAMS['l2_lambda']), padding="valid", kernel_initializer=initializers.RandomNormal(mean=0.0, stddev=0.01, seed=None))) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(CNN_PARAMS['droprate'])) model.add(Flatten()) model.add(Dense(CNN_PARAMS['num_classes'], activation='softmax', kernel_regularizer=regularizers.l2(CNN_PARAMS['l2_lambda']), kernel_initializer=initializers.RandomNormal(mean=0.0, stddev=0.01, seed=None))) return model
45.302682
122
0.646059
9ab2fe0309c7a4013b14876c816c249e51d5359a
3,355
py
Python
tests/builtin_support.py
pterjan/fastnumbers
c2511e7c51dd131e05d6c434dc0bd59d8e6b8919
[ "MIT" ]
null
null
null
tests/builtin_support.py
pterjan/fastnumbers
c2511e7c51dd131e05d6c434dc0bd59d8e6b8919
[ "MIT" ]
null
null
null
tests/builtin_support.py
pterjan/fastnumbers
c2511e7c51dd131e05d6c434dc0bd59d8e6b8919
[ "MIT" ]
null
null
null
"""Supporting definitions for the Python regression tests.""" import platform import unittest from typing import Any, Callable, Dict, Optional, Tuple __all__ = [ "run_with_locale", "cpython_only", ] # ======================================================================= # Decorator for running a function in a different locale, correctly resetting # it afterwards. def run_with_locale(catstr: str, *locales: str) -> Callable[..., Any]: def decorator(func: Callable[..., Any]) -> Callable[..., Any]: def inner(*args: Any, **kwds: Any) -> Any: try: import locale category = getattr(locale, catstr) orig_locale = locale.setlocale(category) except AttributeError: # if the test author gives us an invalid category string raise except: # noqa # cannot retrieve original locale, so do nothing locale = orig_locale = None # type: ignore else: for loc in locales: try: locale.setlocale(category, loc) break except: # noqa pass # now run the function, resetting the locale on exceptions try: return func(*args, **kwds) finally: if locale and orig_locale: locale.setlocale(category, orig_locale) inner.__name__ = func.__name__ inner.__doc__ = func.__doc__ return inner return decorator # ======================================================================= # unittest integration. def _id(obj: Any) -> Any: return obj def cpython_only(test: Any) -> Any: """ Decorator for tests only applicable on CPython. """ return impl_detail(cpython=True)(test) def impl_detail(msg: Optional[str] = None, **guards: bool) -> Callable[[Any], Any]: if check_impl_detail(**guards): return _id if msg is None: guardnames, default = _parse_guards(guards) if default: msg = "implementation detail not available on {0}" else: msg = "implementation detail specific to {0}" msg = msg.format(" or ".join(sorted(guardnames.keys()))) return unittest.skip(msg) def _parse_guards(guards: Dict[str, bool]) -> Tuple[Dict[str, bool], bool]: # Returns a tuple ({platform_name: run_me}, default_value) if not guards: return ({"cpython": True}, False) is_true = list(guards.values())[0] assert list(guards.values()) == [is_true] * len(guards) # all True or all False return (guards, not is_true) # Use the following check to guard CPython's implementation-specific tests -- # or to run them only on the implementation(s) guarded by the arguments. def check_impl_detail(**guards: bool) -> bool: """This function returns True or False depending on the host platform. Examples: if check_impl_detail(): # only on CPython (default) if check_impl_detail(jython=True): # only on Jython if check_impl_detail(cpython=False): # everywhere except on CPython """ guards, default = _parse_guards(guards) return guards.get(platform.python_implementation().lower(), default)
32.892157
84
0.575857
04e1c105308f9ac78a38e7e7b8462d434a75e6d1
144,335
py
Python
core/controllers/acl_decorators_test.py
kaylahardie/oppia
e93ed02dfc7f654ef4fb62268c1a9b9d9ded30ec
[ "Apache-2.0" ]
null
null
null
core/controllers/acl_decorators_test.py
kaylahardie/oppia
e93ed02dfc7f654ef4fb62268c1a9b9d9ded30ec
[ "Apache-2.0" ]
1
2020-03-02T21:05:42.000Z
2020-03-03T07:09:51.000Z
core/controllers/acl_decorators_test.py
kaylahardie/oppia
e93ed02dfc7f654ef4fb62268c1a9b9d9ded30ec
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # # Copyright 2017 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for core.domain.acl_decorators.""" from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules from core.controllers import acl_decorators from core.controllers import base from core.domain import question_services from core.domain import rights_manager from core.domain import skill_services from core.domain import story_services from core.domain import subtopic_page_domain from core.domain import subtopic_page_services from core.domain import suggestion_services from core.domain import topic_domain from core.domain import topic_services from core.domain import user_services from core.tests import test_utils import feconf import webapp2 import webtest # TODO(#10110): Add tests to verify the learner role has correct permissions. class PlayExplorationDecoratorTests(test_utils.GenericTestBase): """Tests for play exploration decorator.""" user_email = 'user@example.com' username = 'user' published_exp_id = 'exp_id_1' private_exp_id = 'exp_id_2' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_play_exploration def get(self, exploration_id): return self.render_json({'exploration_id': exploration_id}) def setUp(self): super(PlayExplorationDecoratorTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.user_email, self.username) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.set_admins([self.ADMIN_USERNAME]) self.owner = user_services.UserActionsInfo(self.owner_id) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route( '/mock_play_exploration/<exploration_id>', self.MockHandler)], debug=feconf.DEBUG, )) self.save_new_valid_exploration( self.published_exp_id, self.owner_id) self.save_new_valid_exploration( self.private_exp_id, self.owner_id) rights_manager.publish_exploration(self.owner, self.published_exp_id) def test_can_not_access_exploration_with_disabled_exploration_ids(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_play_exploration/%s' % (feconf.DISABLED_EXPLORATION_IDS[0]), expected_status_int=404) def test_guest_can_access_published_exploration(self): with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_play_exploration/%s' % self.published_exp_id) self.assertEqual(response['exploration_id'], self.published_exp_id) def test_guest_cannot_access_private_exploration(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_play_exploration/%s' % self.private_exp_id, expected_status_int=404) def test_admin_can_access_private_exploration(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_play_exploration/%s' % self.private_exp_id) self.assertEqual(response['exploration_id'], self.private_exp_id) self.logout() def test_owner_can_access_private_exploration(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_play_exploration/%s' % self.private_exp_id) self.assertEqual(response['exploration_id'], self.private_exp_id) self.logout() def test_logged_in_user_cannot_access_not_owned_exploration(self): self.login(self.user_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_play_exploration/%s' % self.private_exp_id, expected_status_int=404) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class PlayCollectionDecoratorTests(test_utils.GenericTestBase): """Tests for play collection decorator.""" user_email = 'user@example.com' username = 'user' published_exp_id = 'exp_id_1' private_exp_id = 'exp_id_2' published_col_id = 'col_id_1' private_col_id = 'col_id_2' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_play_collection def get(self, collection_id): return self.render_json({'collection_id': collection_id}) def setUp(self): super(PlayCollectionDecoratorTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.user_email, self.username) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.set_admins([self.ADMIN_USERNAME]) self.owner = user_services.UserActionsInfo(self.owner_id) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route( '/mock_play_collection/<collection_id>', self.MockHandler)], debug=feconf.DEBUG, )) self.save_new_valid_exploration( self.published_exp_id, self.owner_id) self.save_new_valid_exploration( self.private_exp_id, self.owner_id) self.save_new_valid_collection( self.published_col_id, self.owner_id, exploration_id=self.published_col_id) self.save_new_valid_collection( self.private_col_id, self.owner_id, exploration_id=self.private_col_id) rights_manager.publish_exploration(self.owner, self.published_exp_id) rights_manager.publish_collection(self.owner, self.published_col_id) def test_guest_can_access_published_collection(self): with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_play_collection/%s' % self.published_col_id) self.assertEqual(response['collection_id'], self.published_col_id) def test_guest_cannot_access_private_collection(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_play_collection/%s' % self.private_col_id, expected_status_int=404) def test_admin_can_access_private_collection(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_play_collection/%s' % self.private_col_id) self.assertEqual(response['collection_id'], self.private_col_id) self.logout() def test_owner_can_access_private_collection(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_play_collection/%s' % self.private_col_id) self.assertEqual(response['collection_id'], self.private_col_id) self.logout() def test_logged_in_user_cannot_access_not_owned_private_collection(self): self.login(self.user_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_play_collection/%s' % self.private_col_id, expected_status_int=404) self.logout() def test_cannot_access_collection_with_invalid_collection_id(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_play_collection/invalid_collection_id', expected_status_int=404) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class EditCollectionDecoratorTests(test_utils.GenericTestBase): """Tests for can_edit_collection decorator.""" user_email = 'user@example.com' username = 'user' published_exp_id = 'exp_id_1' private_exp_id = 'exp_id_2' published_col_id = 'col_id_1' private_col_id = 'col_id_2' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_edit_collection def get(self, collection_id): return self.render_json({'collection_id': collection_id}) def setUp(self): super(EditCollectionDecoratorTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.MODERATOR_EMAIL, self.MODERATOR_USERNAME) self.signup(self.user_email, self.username) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.set_admins([self.ADMIN_USERNAME]) self.set_moderators([self.MODERATOR_USERNAME]) self.set_collection_editors([self.OWNER_USERNAME]) self.owner = user_services.UserActionsInfo(self.owner_id) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route( '/mock_edit_collection/<collection_id>', self.MockHandler)], debug=feconf.DEBUG, )) self.save_new_valid_exploration( self.published_exp_id, self.owner_id) self.save_new_valid_exploration( self.private_exp_id, self.owner_id) self.save_new_valid_collection( self.published_col_id, self.owner_id, exploration_id=self.published_col_id) self.save_new_valid_collection( self.private_col_id, self.owner_id, exploration_id=self.private_col_id) rights_manager.publish_exploration(self.owner, self.published_exp_id) rights_manager.publish_collection(self.owner, self.published_col_id) def test_can_not_edit_collection_with_invalid_collection_id(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_edit_collection/invalid_col_id', expected_status_int=404) self.logout() def test_guest_cannot_edit_collection_via_json_handler(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_edit_collection/%s' % self.published_col_id, expected_status_int=401) def test_guest_is_redirected_when_using_html_handler(self): with self.swap( self.MockHandler, 'GET_HANDLER_ERROR_RETURN_TYPE', feconf.HANDLER_TYPE_HTML): response = self.mock_testapp.get( '/mock_edit_collection/%s' % self.published_col_id, expect_errors=True) self.assertEqual(response.status_int, 302) def test_normal_user_cannot_edit_collection(self): self.login(self.user_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_edit_collection/%s' % self.private_col_id, expected_status_int=401) self.logout() def test_owner_can_edit_owned_collection(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_edit_collection/%s' % self.private_col_id) self.assertEqual(response['collection_id'], self.private_col_id) self.logout() def test_moderator_cannot_edit_private_collection(self): self.login(self.MODERATOR_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_edit_collection/%s' % self.private_col_id, expected_status_int=401) self.logout() def test_moderator_can_edit_public_collection(self): self.login(self.MODERATOR_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_edit_collection/%s' % self.published_col_id) self.assertEqual(response['collection_id'], self.published_col_id) self.logout() def test_admin_can_edit_any_private_collection(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_edit_collection/%s' % self.private_col_id) self.assertEqual(response['collection_id'], self.private_col_id) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class CreateExplorationDecoratorTests(test_utils.GenericTestBase): """Tests for can_create_exploration decorator.""" username = 'banneduser' user_email = 'user@example.com' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_create_exploration def get(self): self.render_json({'success': True}) def setUp(self): super(CreateExplorationDecoratorTests, self).setUp() self.signup(self.EDITOR_EMAIL, self.EDITOR_USERNAME) self.signup(self.user_email, self.username) self.set_banned_users([self.username]) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock/create', self.MockHandler)], debug=feconf.DEBUG, )) def test_banned_user_cannot_create_exploration(self): self.login(self.user_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock/create', expected_status_int=401) self.logout() def test_normal_user_can_create_exploration(self): self.login(self.EDITOR_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/create') self.assertEqual(response['success'], True) self.logout() def test_guest_cannot_create_exploration_via_json_handler(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock/create', expected_status_int=401) def test_guest_is_redirected_when_using_html_handler(self): with self.swap( self.MockHandler, 'GET_HANDLER_ERROR_RETURN_TYPE', feconf.HANDLER_TYPE_HTML): response = self.mock_testapp.get('/mock/create', expect_errors=True) self.assertEqual(response.status_int, 302) # TODO(#10110): Add tests to verify the learner role has correct permissions. class CreateCollectionDecoratorTests(test_utils.GenericTestBase): """Tests for can_create_collection decorator.""" username = 'collectioneditor' user_email = 'user@example.com' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_create_collection def get(self): self.render_json({'success': True}) def setUp(self): super(CreateCollectionDecoratorTests, self).setUp() self.signup(self.EDITOR_EMAIL, self.EDITOR_USERNAME) self.signup(self.user_email, self.username) self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.set_collection_editors([self.username]) self.set_admins([self.ADMIN_USERNAME]) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock/create', self.MockHandler)], debug=feconf.DEBUG, )) def test_guest_cannot_create_collection_via_json_handler(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock/create', expected_status_int=401) def test_guest_is_redirected_when_using_html_handler(self): with self.swap( self.MockHandler, 'GET_HANDLER_ERROR_RETURN_TYPE', feconf.HANDLER_TYPE_HTML): response = self.mock_testapp.get('/mock/create', expect_errors=True) self.assertEqual(response.status_int, 302) def test_normal_user_cannot_create_collection(self): self.login(self.EDITOR_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock/create', expected_status_int=401) self.logout() def test_collection_editor_can_create_collection(self): self.login(self.user_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/create') self.assertEqual(response['success'], True) self.logout() def test_admins_can_create_collection(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/create') self.assertEqual(response['success'], True) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class AccessCreatorDashboardTests(test_utils.GenericTestBase): """Tests for can_access_creator_dashboard decorator.""" username = 'banneduser' user_email = 'user@example.com' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_access_creator_dashboard def get(self): self.render_json({'success': True}) def setUp(self): super(AccessCreatorDashboardTests, self).setUp() self.signup(self.EDITOR_EMAIL, self.EDITOR_USERNAME) self.signup(self.user_email, self.username) self.set_banned_users([self.username]) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock/access', self.MockHandler)], debug=feconf.DEBUG, )) def test_banned_user_cannot_access_editor_dashboard(self): self.login(self.user_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock/access', expected_status_int=401) self.logout() def test_normal_user_can_access_editor_dashboard(self): self.login(self.EDITOR_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/access') self.assertEqual(response['success'], True) # TODO(#10110): Add tests to verify the learner role has correct permissions. class CommentOnFeedbackThreadTests(test_utils.GenericTestBase): """Tests for can_comment_on_feedback_thread decorator.""" published_exp_id = 'exp_0' private_exp_id = 'exp_1' viewer_username = 'viewer' viewer_email = 'viewer@example.com' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_comment_on_feedback_thread def get(self, thread_id): self.render_json({'thread_id': thread_id}) def setUp(self): super(CommentOnFeedbackThreadTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.signup(self.MODERATOR_EMAIL, self.MODERATOR_USERNAME) self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.viewer_email, self.viewer_username) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.set_moderators([self.MODERATOR_USERNAME]) self.set_admins([self.ADMIN_USERNAME]) self.owner = user_services.UserActionsInfo(self.owner_id) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route( '/mock_comment_on_feedback_thread/<thread_id>', self.MockHandler)], debug=feconf.DEBUG, )) self.save_new_valid_exploration( self.published_exp_id, self.owner_id) self.save_new_valid_exploration( self.private_exp_id, self.owner_id) rights_manager.publish_exploration(self.owner, self.published_exp_id) def test_can_not_comment_on_feedback_threads_with_disabled_exp_id(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_comment_on_feedback_thread/exploration.%s.thread1' % feconf.DISABLED_EXPLORATION_IDS[0], expected_status_int=404) self.logout() def test_viewer_cannot_comment_on_feedback_for_private_exploration(self): self.login(self.viewer_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_comment_on_feedback_thread/exploration.%s.thread1' % self.private_exp_id, expected_status_int=401) self.assertEqual( response['error'], 'You do not have credentials to comment on ' 'exploration feedback.') self.logout() def test_can_not_comment_on_feedback_threads_with_invalid_thread_id(self): self.login(self.viewer_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_comment_on_feedback_thread/invalid_thread_id', expected_status_int=400) self.assertEqual(response['error'], 'Thread ID must contain a .') self.logout() def test_guest_cannot_comment_on_feedback_threads_via_json_handler(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_comment_on_feedback_thread/exploration.%s.thread1' % (self.private_exp_id), expected_status_int=401) self.get_json( '/mock_comment_on_feedback_thread/exploration.%s.thread1' % (self.published_exp_id), expected_status_int=401) def test_guest_is_redirected_when_using_html_handler(self): with self.swap( self.MockHandler, 'GET_HANDLER_ERROR_RETURN_TYPE', feconf.HANDLER_TYPE_HTML): response = self.mock_testapp.get( '/mock_comment_on_feedback_thread/exploration.%s.thread1' % (self.private_exp_id), expect_errors=True) self.assertEqual(response.status_int, 302) response = self.mock_testapp.get( '/mock_comment_on_feedback_thread/exploration.%s.thread1' % (self.published_exp_id), expect_errors=True) self.assertEqual(response.status_int, 302) def test_owner_can_comment_on_feedback_for_private_exploration(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_comment_on_feedback_thread/exploration.%s.thread1' % (self.private_exp_id)) self.logout() def test_moderator_can_comment_on_feeback_for_public_exploration(self): self.login(self.MODERATOR_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_comment_on_feedback_thread/exploration.%s.thread1' % (self.published_exp_id)) self.logout() def test_admin_can_comment_on_feeback_for_private_exploration(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_comment_on_feedback_thread/exploration.%s.thread1' % (self.private_exp_id)) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class CreateFeedbackThreadTests(test_utils.GenericTestBase): """Tests for can_create_feedback_thread decorator.""" published_exp_id = 'exp_0' private_exp_id = 'exp_1' viewer_username = 'viewer' viewer_email = 'viewer@example.com' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_create_feedback_thread def get(self, exploration_id): self.render_json({'exploration_id': exploration_id}) def setUp(self): super(CreateFeedbackThreadTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.signup(self.MODERATOR_EMAIL, self.MODERATOR_USERNAME) self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.viewer_email, self.viewer_username) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.set_moderators([self.MODERATOR_USERNAME]) self.set_admins([self.ADMIN_USERNAME]) self.owner = user_services.UserActionsInfo(self.owner_id) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route( '/mock_create_feedback_thread/<exploration_id>', self.MockHandler)], debug=feconf.DEBUG, )) self.save_new_valid_exploration( self.published_exp_id, self.owner_id) self.save_new_valid_exploration( self.private_exp_id, self.owner_id) rights_manager.publish_exploration(self.owner, self.published_exp_id) def test_can_not_create_feedback_threads_with_disabled_exp_id(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_create_feedback_thread/%s' % (feconf.DISABLED_EXPLORATION_IDS[0]), expected_status_int=404) def test_viewer_cannot_create_feedback_for_private_exploration(self): self.login(self.viewer_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_create_feedback_thread/%s' % self.private_exp_id, expected_status_int=401) self.assertEqual( response['error'], 'You do not have credentials to create ' 'exploration feedback.') self.logout() def test_guest_can_create_feedback_threads_for_public_exploration(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_create_feedback_thread/%s' % self.published_exp_id) def test_owner_cannot_create_feedback_for_private_exploration(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_create_feedback_thread/%s' % self.private_exp_id) self.logout() def test_moderator_can_create_feeback_for_public_exploration(self): self.login(self.MODERATOR_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_create_feedback_thread/%s' % self.published_exp_id) self.logout() def test_admin_can_create_feeback_for_private_exploration(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_create_feedback_thread/%s' % self.private_exp_id) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class ViewFeedbackThreadTests(test_utils.GenericTestBase): """Tests for can_view_feedback_thread decorator.""" published_exp_id = 'exp_0' private_exp_id = 'exp_1' viewer_username = 'viewer' viewer_email = 'viewer@example.com' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_view_feedback_thread def get(self, thread_id): self.render_json({'thread_id': thread_id}) def setUp(self): super(ViewFeedbackThreadTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.signup(self.MODERATOR_EMAIL, self.MODERATOR_USERNAME) self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.viewer_email, self.viewer_username) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.set_moderators([self.MODERATOR_USERNAME]) self.set_admins([self.ADMIN_USERNAME]) self.owner = user_services.UserActionsInfo(self.owner_id) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route( '/mock_view_feedback_thread/<thread_id>', self.MockHandler)], debug=feconf.DEBUG, )) self.save_new_valid_exploration( self.published_exp_id, self.owner_id) self.save_new_valid_exploration( self.private_exp_id, self.owner_id) rights_manager.publish_exploration(self.owner, self.published_exp_id) def test_can_not_view_feedback_threads_with_disabled_exp_id(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_view_feedback_thread/exploration.%s.thread1' % feconf.DISABLED_EXPLORATION_IDS[0], expected_status_int=404) def test_viewer_cannot_view_feedback_for_private_exploration(self): self.login(self.viewer_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_view_feedback_thread/exploration.%s.thread1' % self.private_exp_id, expected_status_int=401) self.assertEqual( response['error'], 'You do not have credentials to view ' 'exploration feedback.') self.logout() def test_guest_can_view_feedback_threads_for_public_exploration(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_view_feedback_thread/exploration.%s.thread1' % (self.published_exp_id)) def test_owner_cannot_view_feedback_for_private_exploration(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_view_feedback_thread/exploration.%s.thread1' % (self.private_exp_id)) self.logout() def test_moderator_can_view_feeback_for_public_exploration(self): self.login(self.MODERATOR_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_view_feedback_thread/exploration.%s.thread1' % (self.published_exp_id)) self.logout() def test_admin_can_view_feeback_for_private_exploration(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_view_feedback_thread/exploration.%s.thread1' % (self.private_exp_id)) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class ManageEmailDashboardTests(test_utils.GenericTestBase): """Tests for can_manage_email_dashboard decorator.""" query_id = 'query_id' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_manage_email_dashboard def get(self): return self.render_json({'success': 1}) @acl_decorators.can_manage_email_dashboard def put(self, query_id): return self.render_json({'query_id': query_id}) def setUp(self): super(ManageEmailDashboardTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.MODERATOR_EMAIL, self.MODERATOR_USERNAME) self.set_admins([self.ADMIN_USERNAME]) self.set_moderators([self.MODERATOR_USERNAME]) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [ webapp2.Route('/mock/', self.MockHandler), webapp2.Route('/mock/<query_id>', self.MockHandler) ], debug=feconf.DEBUG, )) def test_moderator_cannot_access_email_dashboard(self): self.login(self.MODERATOR_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock/', expected_status_int=401) self.logout() def test_admin_can_access_email_dashboard(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/') self.assertEqual(response['success'], 1) with self.swap(self, 'testapp', self.mock_testapp): response = self.mock_testapp.put('/mock/%s' % self.query_id) self.assertEqual(response.status_int, 200) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class RateExplorationTests(test_utils.GenericTestBase): """Tests for can_rate_exploration decorator.""" username = 'user' user_email = 'user@example.com' exp_id = 'exp_id' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_rate_exploration def get(self, exploration_id): self.render_json({'exploration_id': exploration_id}) def setUp(self): super(RateExplorationTests, self).setUp() self.signup(self.user_email, self.username) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock/<exploration_id>', self.MockHandler)], debug=feconf.DEBUG, )) def test_guest_cannot_give_rating(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock/%s' % self.exp_id, expected_status_int=401) def test_normal_user_can_give_rating(self): self.login(self.user_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/%s' % self.exp_id) self.assertEqual(response['exploration_id'], self.exp_id) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class AccessModeratorPageTests(test_utils.GenericTestBase): username = 'user' user_email = 'user@example.com' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_access_moderator_page def get(self): return self.render_json({'success': 1}) def setUp(self): super(AccessModeratorPageTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.user_email, self.username) self.set_admins([self.ADMIN_USERNAME]) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock/', self.MockHandler)], debug=feconf.DEBUG, )) def test_normal_user_cannot_access_moderator_page(self): self.login(self.user_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock/', expected_status_int=401) self.logout() def test_admin_can_access_moderator_page(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/') self.assertEqual(response['success'], 1) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class FlagExplorationTests(test_utils.GenericTestBase): """Tests for can_flag_exploration decorator.""" username = 'user' user_email = 'user@example.com' exp_id = 'exp_id' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_flag_exploration def get(self, exploration_id): self.render_json({'exploration_id': exploration_id}) def setUp(self): super(FlagExplorationTests, self).setUp() self.signup(self.user_email, self.username) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock/<exploration_id>', self.MockHandler)], debug=feconf.DEBUG, )) def test_guest_cannot_flag_exploration(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock/%s' % self.exp_id, expected_status_int=401) def test_normal_user_can_flag_exploration(self): self.login(self.user_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/%s' % self.exp_id) self.assertEqual(response['exploration_id'], self.exp_id) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class SubscriptionToUsersTests(test_utils.GenericTestBase): """Tests for can_subscribe_to_users decorator.""" username = 'user' user_email = 'user@example.com' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_subscribe_to_users def get(self): self.render_json({'success': True}) def setUp(self): super(SubscriptionToUsersTests, self).setUp() self.signup(self.user_email, self.username) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock/', self.MockHandler)], debug=feconf.DEBUG, )) def test_guest_cannot_subscribe_to_users(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock/', expected_status_int=401) def test_normal_user_can_subscribe_to_users(self): self.login(self.user_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/') self.assertEqual(response['success'], True) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class SendModeratorEmailsTests(test_utils.GenericTestBase): username = 'user' user_email = 'user@example.com' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_send_moderator_emails def get(self): return self.render_json({'success': 1}) def setUp(self): super(SendModeratorEmailsTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.user_email, self.username) self.set_admins([self.ADMIN_USERNAME]) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock/', self.MockHandler)], debug=feconf.DEBUG, )) def test_normal_user_cannot_send_moderator_emails(self): self.login(self.user_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock/', expected_status_int=401) self.logout() def test_admin_can_send_moderator_emails(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/') self.assertEqual(response['success'], 1) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class VoiceoverExplorationTests(test_utils.GenericTestBase): """Tests for can_voiceover_exploration decorator.""" role = rights_manager.ROLE_VOICE_ARTIST username = 'user' user_email = 'user@example.com' banned_username = 'banneduser' banned_user_email = 'banneduser@example.com' published_exp_id_1 = 'exp_1' published_exp_id_2 = 'exp_2' private_exp_id_1 = 'exp_3' private_exp_id_2 = 'exp_4' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_voiceover_exploration def get(self, exploration_id): self.render_json({'exploration_id': exploration_id}) def setUp(self): super(VoiceoverExplorationTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.signup(self.MODERATOR_EMAIL, self.MODERATOR_USERNAME) self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.user_email, self.username) self.signup(self.banned_user_email, self.banned_username) self.signup(self.VOICE_ARTIST_EMAIL, self.VOICE_ARTIST_USERNAME) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.voice_artist_id = self.get_user_id_from_email( self.VOICE_ARTIST_EMAIL) self.set_moderators([self.MODERATOR_USERNAME]) self.set_admins([self.ADMIN_USERNAME]) self.set_banned_users([self.banned_username]) self.owner = user_services.UserActionsInfo(self.owner_id) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock/<exploration_id>', self.MockHandler)], debug=feconf.DEBUG, )) self.save_new_valid_exploration( self.published_exp_id_1, self.owner_id) self.save_new_valid_exploration( self.published_exp_id_2, self.owner_id) self.save_new_valid_exploration( self.private_exp_id_1, self.owner_id) self.save_new_valid_exploration( self.private_exp_id_2, self.owner_id) rights_manager.publish_exploration(self.owner, self.published_exp_id_1) rights_manager.publish_exploration(self.owner, self.published_exp_id_2) rights_manager.assign_role_for_exploration( self.owner, self.published_exp_id_1, self.voice_artist_id, self.role) rights_manager.assign_role_for_exploration( self.owner, self.private_exp_id_1, self.voice_artist_id, self.role) def test_banned_user_cannot_voiceover_exploration(self): self.login(self.banned_user_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock/%s' % self.private_exp_id_1, expected_status_int=401) self.logout() def test_owner_can_voiceover_exploration(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/%s' % self.private_exp_id_1) self.assertEqual(response['exploration_id'], self.private_exp_id_1) self.logout() def test_moderator_can_voiceover_public_exploration(self): self.login(self.MODERATOR_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/%s' % self.published_exp_id_1) self.assertEqual(response['exploration_id'], self.published_exp_id_1) self.logout() def test_moderator_cannot_voiceover_private_exploration(self): self.login(self.MODERATOR_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock/%s' % self.private_exp_id_1, expected_status_int=401) self.logout() def test_admin_can_voiceover_private_exploration(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/%s' % self.private_exp_id_1) self.assertEqual(response['exploration_id'], self.private_exp_id_1) self.logout() def test_voice_artist_can_only_voiceover_assigned_public_exploration(self): self.login(self.VOICE_ARTIST_EMAIL) # Checking voice artist can voiceover assigned public exploration. with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/%s' % self.published_exp_id_1) self.assertEqual(response['exploration_id'], self.published_exp_id_1) # Checking voice artist cannot voiceover public exploration which he/she # is not assigned for. with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock/%s' % self.published_exp_id_2, expected_status_int=401) self.logout() def test_voice_artist_can_only_voiceover_assigned_private_exploration(self): self.login(self.VOICE_ARTIST_EMAIL) # Checking voice artist can voiceover assigned private exploration. with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/%s' % self.private_exp_id_1) self.assertEqual(response['exploration_id'], self.private_exp_id_1) # Checking voice artist cannot voiceover private exploration which # he/she is not assigned for. with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock/%s' % self.private_exp_id_2, expected_status_int=401) self.logout() def test_user_without_voice_artist_role_of_exploration_cannot_voiceover_public_exploration(self): # pylint: disable=line-too-long self.login(self.user_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock/%s' % self.published_exp_id_1, expected_status_int=401) self.logout() def test_user_without_voice_artist_role_of_exploration_cannot_voiceover_private_exploration(self): # pylint: disable=line-too-long self.login(self.user_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock/%s' % self.private_exp_id_1, expected_status_int=401) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class EditExplorationTests(test_utils.GenericTestBase): """Tests for can_edit_exploration decorator.""" username = 'banneduser' user_email = 'user@example.com' published_exp_id = 'exp_0' private_exp_id = 'exp_1' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_edit_exploration def get(self, exploration_id): self.render_json({'exploration_id': exploration_id}) def setUp(self): super(EditExplorationTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.signup(self.MODERATOR_EMAIL, self.MODERATOR_USERNAME) self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.user_email, self.username) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.set_moderators([self.MODERATOR_USERNAME]) self.set_admins([self.ADMIN_USERNAME]) self.set_banned_users([self.username]) self.owner = user_services.UserActionsInfo(self.owner_id) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route( '/mock_edit_exploration/<exploration_id>', self.MockHandler)], debug=feconf.DEBUG, )) self.save_new_valid_exploration( self.published_exp_id, self.owner_id) self.save_new_valid_exploration( self.private_exp_id, self.owner_id) rights_manager.publish_exploration(self.owner, self.published_exp_id) def test_can_not_edit_exploration_with_invalid_exp_id(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_edit_exploration/invalid_exp_id', expected_status_int=404) self.logout() def test_banned_user_cannot_edit_exploration(self): self.login(self.user_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_edit_exploration/%s' % self.private_exp_id, expected_status_int=401) self.logout() def test_owner_can_edit_exploration(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_edit_exploration/%s' % self.private_exp_id) self.assertEqual(response['exploration_id'], self.private_exp_id) self.logout() def test_moderator_can_edit_public_exploration(self): self.login(self.MODERATOR_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_edit_exploration/%s' % self.published_exp_id) self.assertEqual(response['exploration_id'], self.published_exp_id) self.logout() def test_moderator_cannot_edit_private_exploration(self): self.login(self.MODERATOR_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_edit_exploration/%s' % self.private_exp_id, expected_status_int=401) self.logout() def test_admin_can_edit_private_exploration(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_edit_exploration/%s' % self.private_exp_id) self.assertEqual(response['exploration_id'], self.private_exp_id) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class ManageOwnAccountTests(test_utils.GenericTestBase): """Tests for decorator can_manage_own_account.""" banned_user = 'banneduser' banned_user_email = 'banned@example.com' username = 'user' user_email = 'user@example.com' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_manage_own_account def get(self): return self.render_json({'success': 1}) def setUp(self): super(ManageOwnAccountTests, self).setUp() self.signup(self.banned_user_email, self.banned_user) self.signup(self.user_email, self.username) self.set_banned_users([self.banned_user]) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock/', self.MockHandler)], debug=feconf.DEBUG, )) def test_banned_user_cannot_update_preferences(self): self.login(self.banned_user_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock/', expected_status_int=401) self.logout() def test_normal_user_can_manage_preferences(self): self.login(self.user_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/') self.assertEqual(response['success'], 1) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class UploadExplorationTests(test_utils.GenericTestBase): """Tests for can_upload_exploration decorator.""" class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_upload_exploration def get(self): return self.render_json({}) def setUp(self): super(UploadExplorationTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.EDITOR_EMAIL, self.EDITOR_USERNAME) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock_upload_exploration/', self.MockHandler)], debug=feconf.DEBUG, )) def test_super_admin_can_upload_explorations(self): self.login(self.ADMIN_EMAIL, is_super_admin=True) with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock_upload_exploration/') self.logout() def test_normal_user_cannot_upload_explorations(self): self.login(self.EDITOR_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_upload_exploration/', expected_status_int=401) self.assertEqual( response['error'], 'You do not have credentials to upload exploration.') self.logout() def test_guest_cannot_upload_explorations(self): with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_upload_exploration/', expected_status_int=401) self.assertEqual( response['error'], 'You must be logged in to access this resource.') # TODO(#10110): Add tests to verify the learner role has correct permissions. class DeleteExplorationTests(test_utils.GenericTestBase): """Tests for can_delete_exploration decorator.""" private_exp_id = 'exp_0' published_exp_id = 'exp_1' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_delete_exploration def get(self, exploration_id): self.render_json({'exploration_id': exploration_id}) def setUp(self): super(DeleteExplorationTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.signup(self.MODERATOR_EMAIL, self.MODERATOR_USERNAME) self.set_moderators([self.MODERATOR_USERNAME]) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.owner = user_services.UserActionsInfo(self.owner_id) self.moderator_id = self.get_user_id_from_email(self.MODERATOR_EMAIL) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route( '/mock_delete_exploration/<exploration_id>', self.MockHandler)], debug=feconf.DEBUG, )) self.save_new_valid_exploration( self.published_exp_id, self.owner_id) self.save_new_valid_exploration( self.private_exp_id, self.owner_id) rights_manager.publish_exploration(self.owner, self.published_exp_id) def test_guest_can_not_delete_exploration(self): with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_delete_exploration/%s' % self.private_exp_id, expected_status_int=401) self.assertEqual( response['error'], 'You must be logged in to access this resource.') def test_owner_can_delete_owned_private_exploration(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_delete_exploration/%s' % self.private_exp_id) self.assertEqual(response['exploration_id'], self.private_exp_id) self.logout() def test_moderator_can_delete_published_exploration(self): self.login(self.MODERATOR_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_delete_exploration/%s' % self.published_exp_id) self.assertEqual(response['exploration_id'], self.published_exp_id) self.logout() def test_owner_cannot_delete_published_exploration(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_delete_exploration/%s' % self.published_exp_id, expected_status_int=401) self.assertEqual( response['error'], 'User %s does not have permissions to delete exploration %s' % (self.owner_id, self.published_exp_id)) self.logout() def test_moderator_cannot_delete_private_exploration(self): self.login(self.MODERATOR_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_delete_exploration/%s' % self.private_exp_id, expected_status_int=401) self.assertEqual( response['error'], 'User %s does not have permissions to delete exploration %s' % (self.moderator_id, self.private_exp_id)) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class SuggestChangesToExplorationTests(test_utils.GenericTestBase): """Tests for can_suggest_changes_to_exploration decorator.""" username = 'user' user_email = 'user@example.com' banned_username = 'banneduser' banned_user_email = 'banned@example.com' exploration_id = 'exp_id' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_suggest_changes_to_exploration def get(self, exploration_id): self.render_json({'exploration_id': exploration_id}) def setUp(self): super(SuggestChangesToExplorationTests, self).setUp() self.signup(self.user_email, self.username) self.signup(self.banned_user_email, self.banned_username) self.set_banned_users([self.banned_username]) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock/<exploration_id>', self.MockHandler)], debug=feconf.DEBUG, )) def test_banned_user_cannot_suggest_changes(self): self.login(self.banned_user_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock/%s' % self.exploration_id, expected_status_int=401) self.logout() def test_normal_user_can_suggest_changes(self): self.login(self.user_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/%s' % self.exploration_id) self.assertEqual(response['exploration_id'], self.exploration_id) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class SuggestChangesDecoratorsTests(test_utils.GenericTestBase): """Tests for can_suggest_changes decorator.""" username = 'user' user_email = 'user@example.com' banned_username = 'banneduser' banned_user_email = 'banned@example.com' exploration_id = 'exp_id' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_suggest_changes def get(self): self.render_json({}) def setUp(self): super(SuggestChangesDecoratorsTests, self).setUp() self.signup(self.user_email, self.username) self.signup(self.banned_user_email, self.banned_username) self.set_banned_users([self.banned_username]) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock', self.MockHandler)], debug=feconf.DEBUG, )) def test_banned_user_cannot_suggest_changes(self): self.login(self.banned_user_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock', expected_status_int=401) self.logout() def test_normal_user_can_suggest_changes(self): self.login(self.user_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock') self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class ResubmitSuggestionDecoratorsTests(test_utils.GenericTestBase): """Tests for can_resubmit_suggestion decorator.""" owner_username = 'owner' owner_email = 'owner@example.com' author_username = 'author' author_email = 'author@example.com' username = 'user' user_email = 'user@example.com' TARGET_TYPE = 'exploration' SUGGESTION_TYPE = 'edit_exploration_state_content' exploration_id = 'exp_id' target_version_id = 1 change_dict = { 'cmd': 'edit_state_property', 'property_name': 'content', 'state_name': 'Introduction', 'new_value': '' } class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_resubmit_suggestion def get(self, suggestion_id): self.render_json({'suggestion_id': suggestion_id}) def setUp(self): super(ResubmitSuggestionDecoratorsTests, self).setUp() self.signup(self.author_email, self.author_username) self.signup(self.user_email, self.username) self.signup(self.owner_email, self.owner_username) self.author_id = self.get_user_id_from_email(self.author_email) self.owner_id = self.get_user_id_from_email(self.owner_email) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock/<suggestion_id>', self.MockHandler)], debug=feconf.DEBUG, )) self.save_new_default_exploration(self.exploration_id, self.owner_id) suggestion_services.create_suggestion( self.SUGGESTION_TYPE, self.TARGET_TYPE, self.exploration_id, self.target_version_id, self.author_id, self.change_dict, '') suggestion = suggestion_services.query_suggestions( [('author_id', self.author_id), ('target_id', self.exploration_id)])[0] self.suggestion_id = suggestion.suggestion_id def test_author_can_resubmit_suggestion(self): self.login(self.author_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/%s' % self.suggestion_id) self.assertEqual(response['suggestion_id'], self.suggestion_id) self.logout() def test_non_author_cannot_resubmit_suggestion(self): self.login(self.user_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock/%s' % self.suggestion_id, expected_status_int=401) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class DecoratorForAcceptingSuggestionTests(test_utils.GenericTestBase): """Tests for get_decorator_for_accepting_suggestion decorator.""" AUTHOR_USERNAME = 'author' AUTHOR_EMAIL = 'author@example.com' VIEWER_USERNAME = 'user' VIEWER_EMAIL = 'user@example.com' TARGET_TYPE = 'exploration' SUGGESTION_TYPE = 'edit_exploration_state_content' EXPLORATION_ID = 'exp_id' TARGET_VERSION_ID = 1 CHANGE_DICT = { 'cmd': 'edit_state_property', 'property_name': 'content', 'state_name': 'Introduction', 'new_value': '' } class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.get_decorator_for_accepting_suggestion( acl_decorators.can_edit_exploration) def get(self, target_id, suggestion_id): self.render_json({ 'target_id': target_id, 'suggestion_id': suggestion_id }) def setUp(self): super(DecoratorForAcceptingSuggestionTests, self).setUp() self.signup(self.AUTHOR_EMAIL, self.AUTHOR_USERNAME) self.signup(self.VIEWER_EMAIL, self.VIEWER_USERNAME) self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.author_id = self.get_user_id_from_email(self.AUTHOR_EMAIL) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.owner = user_services.UserActionsInfo(self.owner_id) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route( '/mock_accept_suggestion/<target_id>/<suggestion_id>', self.MockHandler)], debug=feconf.DEBUG, )) self.save_new_default_exploration(self.EXPLORATION_ID, self.owner_id) rights_manager.publish_exploration(self.owner, self.EXPLORATION_ID) suggestion_services.create_suggestion( self.SUGGESTION_TYPE, self.TARGET_TYPE, self.EXPLORATION_ID, self.TARGET_VERSION_ID, self.author_id, self.CHANGE_DICT, '') suggestion = suggestion_services.query_suggestions( [('author_id', self.author_id), ('target_id', self.EXPLORATION_ID)])[0] self.suggestion_id = suggestion.suggestion_id def test_guest_cannot_accept_suggestion(self): with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_accept_suggestion/%s/%s' % (self.EXPLORATION_ID, self.suggestion_id), expected_status_int=401) self.assertEqual( response['error'], 'You must be logged in to access this resource.') def test_owner_can_accept_suggestion(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_accept_suggestion/%s/%s' % (self.EXPLORATION_ID, self.suggestion_id)) self.assertEqual(response['suggestion_id'], self.suggestion_id) self.assertEqual(response['target_id'], self.EXPLORATION_ID) self.logout() def test_viewer_cannot_accept_suggestion(self): self.login(self.VIEWER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_accept_suggestion/%s/%s' % (self.EXPLORATION_ID, self.suggestion_id), expected_status_int=401) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class PublishExplorationTests(test_utils.GenericTestBase): """Tests for can_publish_exploration decorator.""" private_exp_id = 'exp_0' public_exp_id = 'exp_1' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_publish_exploration def get(self, exploration_id): self.render_json({'exploration_id': exploration_id}) def setUp(self): super(PublishExplorationTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.signup(self.MODERATOR_EMAIL, self.MODERATOR_USERNAME) self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.set_moderators([self.MODERATOR_USERNAME]) self.set_admins([self.ADMIN_USERNAME]) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.owner = user_services.UserActionsInfo(self.owner_id) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route( '/mock_publish_exploration/<exploration_id>', self.MockHandler)], debug=feconf.DEBUG, )) self.save_new_valid_exploration( self.public_exp_id, self.owner_id) self.save_new_valid_exploration( self.private_exp_id, self.owner_id) rights_manager.publish_exploration(self.owner, self.public_exp_id) def test_cannot_publish_exploration_with_invalid_exp_id(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_publish_exploration/invalid_exp_id', expected_status_int=404) self.logout() def test_owner_can_publish_owned_exploration(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_publish_exploration/%s' % self.private_exp_id) self.assertEqual(response['exploration_id'], self.private_exp_id) self.logout() def test_already_published_exploration_cannot_be_published(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_publish_exploration/%s' % self.public_exp_id, expected_status_int=401) self.logout() def test_moderator_cannot_publish_private_exploration(self): self.login(self.MODERATOR_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_publish_exploration/%s' % self.private_exp_id, expected_status_int=401) self.logout() def test_admin_can_publish_any_exploration(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_publish_exploration/%s' % self.private_exp_id) self.assertEqual(response['exploration_id'], self.private_exp_id) # TODO(#10110): Add tests to verify the learner role has correct permissions. class ModifyExplorationRolesTests(test_utils.GenericTestBase): """Tests for can_modify_exploration_roles decorator.""" private_exp_id = 'exp_0' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_modify_exploration_roles def get(self, exploration_id): self.render_json({'exploration_id': exploration_id}) def setUp(self): super(ModifyExplorationRolesTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.signup(self.MODERATOR_EMAIL, self.MODERATOR_USERNAME) self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.set_moderators([self.MODERATOR_USERNAME]) self.set_admins([self.ADMIN_USERNAME]) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock/<exploration_id>', self.MockHandler)], debug=feconf.DEBUG, )) self.save_new_valid_exploration( self.private_exp_id, self.owner_id) def test_owner_can_modify_exploration_roles(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/%s' % self.private_exp_id) self.assertEqual(response['exploration_id'], self.private_exp_id) self.logout() def test_moderator_cannot_modify_roles_of_unowned_exploration(self): self.login(self.MODERATOR_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock/%s' % self.private_exp_id, expected_status_int=401) self.logout() def test_admin_can_modify_roles_of_any_exploration(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/%s' % self.private_exp_id) self.assertEqual(response['exploration_id'], self.private_exp_id) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class CollectionPublishStatusTests(test_utils.GenericTestBase): """Tests can_publish_collection and can_unpublish_collection decorators.""" user_email = 'user@example.com' username = 'user' published_exp_id = 'exp_id_1' private_exp_id = 'exp_id_2' published_col_id = 'col_id_1' private_col_id = 'col_id_2' class MockPublishHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_publish_collection def get(self, collection_id): return self.render_json({'collection_id': collection_id}) class MockUnpublishHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_unpublish_collection def get(self, collection_id): return self.render_json({'collection_id': collection_id}) def setUp(self): super(CollectionPublishStatusTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.MODERATOR_EMAIL, self.MODERATOR_USERNAME) self.signup(self.user_email, self.username) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.set_admins([self.ADMIN_USERNAME]) self.set_moderators([self.MODERATOR_USERNAME]) self.set_collection_editors([self.OWNER_USERNAME]) self.owner = user_services.UserActionsInfo(self.owner_id) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [ webapp2.Route( '/mock_publish_collection/<collection_id>', self.MockPublishHandler), webapp2.Route( '/mock_unpublish_collection/<collection_id>', self.MockUnpublishHandler) ], debug=feconf.DEBUG, )) self.save_new_valid_exploration( self.published_exp_id, self.owner_id) self.save_new_valid_exploration( self.private_exp_id, self.owner_id) self.save_new_valid_collection( self.published_col_id, self.owner_id, exploration_id=self.published_col_id) self.save_new_valid_collection( self.private_col_id, self.owner_id, exploration_id=self.private_col_id) rights_manager.publish_exploration(self.owner, self.published_exp_id) rights_manager.publish_collection(self.owner, self.published_col_id) def test_cannot_publish_collection_with_invalid_exp_id(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_publish_collection/invalid_col_id', expected_status_int=404) self.logout() def test_cannot_unpublish_collection_with_invalid_exp_id(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_unpublish_collection/invalid_col_id', expected_status_int=404) self.logout() def test_owner_can_publish_collection(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_publish_collection/%s' % self.private_col_id) self.assertEqual(response['collection_id'], self.private_col_id) self.logout() def test_owner_cannot_unpublish_public_collection(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_unpublish_collection/%s' % self.published_col_id, expected_status_int=401) self.logout() def test_moderator_can_unpublish_public_collection(self): self.login(self.MODERATOR_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_unpublish_collection/%s' % self.published_col_id) self.assertEqual(response['collection_id'], self.published_col_id) self.logout() def test_admin_can_publish_any_collection(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_publish_collection/%s' % self.private_col_id) self.assertEqual(response['collection_id'], self.private_col_id) self.logout() def test_admin_cannot_publish_already_published_collection(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_publish_collection/%s' % self.published_col_id, expected_status_int=401) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class AccessLearnerDashboardDecoratorTests(test_utils.GenericTestBase): """Tests the decorator can_access_learner_dashboard.""" user = 'user' user_email = 'user@example.com' banned_user = 'banneduser' banned_user_email = 'banned@example.com' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_access_learner_dashboard def get(self): return self.render_json({}) def setUp(self): super(AccessLearnerDashboardDecoratorTests, self).setUp() self.signup(self.user_email, self.user) self.signup(self.banned_user_email, self.banned_user) self.set_banned_users([self.banned_user]) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock/', self.MockHandler)], debug=feconf.DEBUG, )) def test_banned_user_is_redirected(self): self.login(self.banned_user_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock/', expected_status_int=401) self.logout() def test_exploration_editor_can_access_learner_dashboard(self): self.login(self.user_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock/') self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class EditTopicDecoratorTests(test_utils.GenericTestBase): """Tests the decorator can_edit_topic.""" manager_username = 'topicmanager' manager_email = 'topicmanager@example.com' viewer_username = 'viewer' viewer_email = 'viewer@example.com' topic_id = 'topic_1' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_edit_topic def get(self, topic_id): self.render_json({'topic_id': topic_id}) def setUp(self): super(EditTopicDecoratorTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.manager_email, self.manager_username) self.signup(self.viewer_email, self.viewer_username) self.set_admins([self.ADMIN_USERNAME]) self.set_topic_managers([self.manager_username]) self.admin_id = self.get_user_id_from_email(self.ADMIN_EMAIL) self.manager_id = self.get_user_id_from_email(self.manager_email) self.viewer_id = self.get_user_id_from_email(self.viewer_email) self.admin = user_services.UserActionsInfo(self.admin_id) self.manager = user_services.UserActionsInfo(self.manager_id) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock_edit_topic/<topic_id>', self.MockHandler)], debug=feconf.DEBUG, )) self.topic_id = topic_services.get_new_topic_id() self.save_new_topic( self.topic_id, self.viewer_id, name='Name', description='Description', canonical_story_ids=[], additional_story_ids=[], uncategorized_skill_ids=[], subtopics=[], next_subtopic_id=1) topic_services.create_new_topic_rights(self.topic_id, self.admin_id) topic_services.assign_role( self.admin, self.manager, topic_domain.ROLE_MANAGER, self.topic_id) def test_can_not_edit_topic_with_invalid_topic_id(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_edit_topic/invalid_topic_id', expected_status_int=404) self.logout() def test_admin_can_edit_topic(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock_edit_topic/%s' % self.topic_id) self.assertEqual(response['topic_id'], self.topic_id) self.logout() def test_topic_manager_can_edit_topic(self): self.login(self.manager_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock_edit_topic/%s' % self.topic_id) self.assertEqual(response['topic_id'], self.topic_id) self.logout() def test_normal_user_cannot_edit_topic(self): self.login(self.viewer_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_edit_topic/%s' % self.topic_id, expected_status_int=401) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class EditStoryDecoratorTests(test_utils.GenericTestBase): """Tests the decorator can_edit_story.""" manager_username = 'topicmanager' manager_email = 'topicmanager@example.com' viewer_username = 'viewer' viewer_email = 'viewer@example.com' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_edit_story def get(self, story_id): self.render_json({'story_id': story_id}) def setUp(self): super(EditStoryDecoratorTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.set_admins([self.ADMIN_USERNAME]) self.admin_id = self.get_user_id_from_email(self.ADMIN_EMAIL) self.admin = user_services.UserActionsInfo(self.admin_id) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock_edit_story/<story_id>', self.MockHandler)], debug=feconf.DEBUG, )) self.story_id = story_services.get_new_story_id() self.topic_id = topic_services.get_new_topic_id() self.save_new_story(self.story_id, self.admin_id, self.topic_id) self.save_new_topic( self.topic_id, self.admin_id, name='Name', description='Description', canonical_story_ids=[self.story_id], additional_story_ids=[], uncategorized_skill_ids=[], subtopics=[], next_subtopic_id=1) topic_services.create_new_topic_rights(self.topic_id, self.admin_id) def test_can_not_edit_story_with_invalid_story_id(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_edit_story/story_id_new', expected_status_int=404) self.logout() def test_can_not_edit_story_with_invalid_topic_id(self): self.login(self.ADMIN_EMAIL) story_id = story_services.get_new_story_id() topic_id = topic_services.get_new_topic_id() self.save_new_story(story_id, self.admin_id, topic_id) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_edit_story/%s' % story_id, expected_status_int=404) self.logout() def test_admin_can_edit_story(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock_edit_story/%s' % self.story_id) self.assertEqual(response['story_id'], self.story_id) self.logout() def test_topic_manager_can_edit_story(self): self.signup(self.manager_email, self.manager_username) self.set_topic_managers([self.manager_username]) manager_id = self.get_user_id_from_email(self.manager_email) manager = user_services.UserActionsInfo(manager_id) topic_services.assign_role( self.admin, manager, topic_domain.ROLE_MANAGER, self.topic_id) self.login(self.manager_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock_edit_story/%s' % self.story_id) self.assertEqual(response['story_id'], self.story_id) self.logout() def test_normal_user_cannot_edit_story(self): self.signup(self.viewer_email, self.viewer_username) self.login(self.viewer_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_edit_story/%s' % self.story_id, expected_status_int=401) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class AddStoryToTopicTests(test_utils.GenericTestBase): """Tests for decorator can_add_new_story_to_topic.""" manager_username = 'topicmanager' manager_email = 'topicmanager@example.com' viewer_username = 'viewer' viewer_email = 'viewer@example.com' topic_id = 'topic_1' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_add_new_story_to_topic def get(self, topic_id): self.render_json({'topic_id': topic_id}) def setUp(self): super(AddStoryToTopicTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.manager_email, self.manager_username) self.signup(self.viewer_email, self.viewer_username) self.set_admins([self.ADMIN_USERNAME]) self.set_topic_managers([self.manager_username]) self.admin_id = self.get_user_id_from_email(self.ADMIN_EMAIL) self.manager_id = self.get_user_id_from_email(self.manager_email) self.admin = user_services.UserActionsInfo(self.admin_id) self.manager = user_services.UserActionsInfo(self.manager_id) self.viewer_id = self.get_user_id_from_email(self.viewer_email) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route( '/mock_add_story_to_topic/<topic_id>', self.MockHandler)], debug=feconf.DEBUG, )) self.topic_id = topic_services.get_new_topic_id() self.save_new_topic( self.topic_id, self.viewer_id, name='Name', description='Description', canonical_story_ids=[], additional_story_ids=[], uncategorized_skill_ids=[], subtopics=[], next_subtopic_id=1) topic_services.create_new_topic_rights(self.topic_id, self.admin_id) topic_services.assign_role( self.admin, self.manager, topic_domain.ROLE_MANAGER, self.topic_id) def test_can_not_add_story_to_topic_with_invalid_topic_id(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_add_story_to_topic/invalid_topic_id', expected_status_int=404) self.logout() def test_admin_can_add_story_to_topic(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_add_story_to_topic/%s' % self.topic_id) self.assertEqual(response['topic_id'], self.topic_id) self.logout() def test_topic_manager_cannot_add_story_to_topic_with_invalid_topic_id( self): self.login(self.manager_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_add_story_to_topic/incorrect_id', expected_status_int=404) self.logout() def test_topic_manager_can_add_story_to_topic(self): self.login(self.manager_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_add_story_to_topic/%s' % self.topic_id) self.assertEqual(response['topic_id'], self.topic_id) self.logout() def test_normal_user_cannot_add_story_to_topic(self): self.login(self.viewer_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_add_story_to_topic/%s' % self.topic_id, expected_status_int=401) self.assertEqual( response['error'], 'You do not have credentials to add a story to this topic.') self.logout() def test_guest_cannot_add_story_to_topic(self): with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_add_story_to_topic/%s' % self.topic_id, expected_status_int=401) self.assertEqual( response['error'], 'You must be logged in to access this resource.') # TODO(#10110): Add tests to verify the learner role has correct permissions. class StoryViewerTests(test_utils.GenericTestBase): """Tests for decorator can_access_story_viewer_page.""" banned_user = 'banneduser' banned_user_email = 'banned@example.com' class MockDataHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_access_story_viewer_page def get(self, story_url_fragment): self.render_json({'story_url_fragment': story_url_fragment}) class MockPageHandler(base.BaseHandler): @acl_decorators.can_access_story_viewer_page def get(self, _): self.render_template('story-viewer-page.mainpage.html') def setUp(self): super(StoryViewerTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.set_admins([self.ADMIN_USERNAME]) self.admin_id = self.get_user_id_from_email(self.ADMIN_EMAIL) self.admin = user_services.UserActionsInfo(self.admin_id) self.signup(self.banned_user_email, self.banned_user) self.set_banned_users([self.banned_user]) story_data_url = ( '/mock_story_data/<classroom_url_fragment>/' '<topic_url_fragment>/<story_url_fragment>') story_page_url = ( '/mock_story_page/<classroom_url_fragment>/' '<topic_url_fragment>/story/<story_url_fragment>') self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [ webapp2.Route(story_data_url, self.MockDataHandler), webapp2.Route(story_page_url, self.MockPageHandler) ], debug=feconf.DEBUG, )) self.topic_id = topic_services.get_new_topic_id() self.story_id = story_services.get_new_story_id() self.story_url_fragment = 'story-frag' self.save_new_story( self.story_id, self.admin_id, self.topic_id, url_fragment=self.story_url_fragment) subtopic_1 = topic_domain.Subtopic.create_default_subtopic( 1, 'Subtopic Title 1') subtopic_1.skill_ids = ['skill_id_1'] subtopic_1.url_fragment = 'sub-one-frag' self.save_new_topic( self.topic_id, self.admin_id, name='Name', description='Description', canonical_story_ids=[self.story_id], additional_story_ids=[], uncategorized_skill_ids=[], subtopics=[subtopic_1], next_subtopic_id=2) def test_cannot_access_non_existent_story(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_story_data/staging/topic/non-existent-frag', expected_status_int=404) def test_cannot_access_story_when_topic_is_not_published(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_story_data/staging/topic/%s' % self.story_url_fragment, expected_status_int=404) def test_cannot_access_story_when_story_is_not_published(self): topic_services.publish_topic(self.topic_id, self.admin_id) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_story_data/staging/topic/%s' % self.story_url_fragment, expected_status_int=404) def test_can_access_story_when_story_and_topic_are_published(self): topic_services.publish_topic(self.topic_id, self.admin_id) topic_services.publish_story( self.topic_id, self.story_id, self.admin_id) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_story_data/staging/topic/%s' % self.story_url_fragment, expected_status_int=200) def test_can_access_story_when_all_url_fragments_are_valid(self): topic_services.publish_topic(self.topic_id, self.admin_id) topic_services.publish_story( self.topic_id, self.story_id, self.admin_id) with self.swap(self, 'testapp', self.mock_testapp): self.get_html_response( '/mock_story_page/staging/topic/story/%s' % self.story_url_fragment, expected_status_int=200) def test_redirect_to_story_page_if_story_url_fragment_is_invalid(self): topic_services.publish_topic(self.topic_id, self.admin_id) topic_services.publish_story( self.topic_id, self.story_id, self.admin_id) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_html_response( '/mock_story_page/staging/topic/story/000', expected_status_int=302) self.assertEqual( 'http://localhost/learn/staging/topic/story', response.headers['location']) def test_redirect_to_correct_url_if_abbreviated_topic_is_invalid(self): topic_services.publish_topic(self.topic_id, self.admin_id) topic_services.publish_story( self.topic_id, self.story_id, self.admin_id) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_html_response( '/mock_story_page/staging/invalid-topic/story/%s' % self.story_url_fragment, expected_status_int=302) self.assertEqual( 'http://localhost/learn/staging/topic/story/%s' % self.story_url_fragment, response.headers['location']) def test_redirect_with_correct_classroom_name_in_url(self): topic_services.publish_topic(self.topic_id, self.admin_id) topic_services.publish_story( self.topic_id, self.story_id, self.admin_id) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_html_response( '/mock_story_page/math/topic/story/%s' % self.story_url_fragment, expected_status_int=302) self.assertEqual( 'http://localhost/learn/staging/topic/story/%s' % self.story_url_fragment, response.headers['location']) def test_redirect_lowercase_story_url_fragment(self): topic_services.publish_topic(self.topic_id, self.admin_id) topic_services.publish_story( self.topic_id, self.story_id, self.admin_id) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_html_response( '/mock_story_page/staging/topic/story/Story-frag', expected_status_int=302) self.assertEqual( 'http://localhost/learn/staging/topic/story/story-frag', response.headers['location']) class SubtopicViewerTests(test_utils.GenericTestBase): """Tests for decorator can_access_subtopic_viewer_page.""" banned_user = 'banneduser' banned_user_email = 'banned@example.com' class MockDataHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_access_subtopic_viewer_page def get(self, unused_topic_url_fragment, subtopic_url_fragment): self.render_json({'subtopic_url_fragment': subtopic_url_fragment}) class MockPageHandler(base.BaseHandler): @acl_decorators.can_access_subtopic_viewer_page def get(self, unused_topic_url_fragment, unused_subtopic_url_fragment): self.render_template('subtopic-viewer-page.mainpage.html') def setUp(self): super(SubtopicViewerTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.set_admins([self.ADMIN_USERNAME]) self.admin_id = self.get_user_id_from_email(self.ADMIN_EMAIL) self.admin = user_services.UserActionsInfo(self.admin_id) self.signup(self.banned_user_email, self.banned_user) self.set_banned_users([self.banned_user]) subtopic_data_url = ( '/mock_subtopic_data/<classroom_url_fragment>/' '<topic_url_fragment>/<subtopic_url_fragment>') subtopic_page_url = ( '/mock_subtopic_page/<classroom_url_fragment>/' '<topic_url_fragment>/revision/<subtopic_url_fragment>') self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [ webapp2.Route(subtopic_data_url, self.MockDataHandler), webapp2.Route(subtopic_page_url, self.MockPageHandler) ], debug=feconf.DEBUG, )) self.topic_id = topic_services.get_new_topic_id() subtopic_1 = topic_domain.Subtopic.create_default_subtopic( 1, 'Subtopic Title 1') subtopic_1.skill_ids = ['skill_id_1'] subtopic_1.url_fragment = 'sub-one-frag' subtopic_2 = topic_domain.Subtopic.create_default_subtopic( 2, 'Subtopic Title 2') subtopic_2.skill_ids = ['skill_id_2'] subtopic_2.url_fragment = 'sub-two-frag' self.subtopic_page_1 = ( subtopic_page_domain.SubtopicPage.create_default_subtopic_page( 1, self.topic_id)) subtopic_page_services.save_subtopic_page( self.admin_id, self.subtopic_page_1, 'Added subtopic', [topic_domain.TopicChange({ 'cmd': topic_domain.CMD_ADD_SUBTOPIC, 'subtopic_id': 1, 'title': 'Sample' })] ) self.save_new_topic( self.topic_id, self.admin_id, name='topic name', description='Description', canonical_story_ids=[], additional_story_ids=[], uncategorized_skill_ids=[], subtopics=[subtopic_1, subtopic_2], next_subtopic_id=3, url_fragment='topic-frag') def test_cannot_access_non_existent_subtopic(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_subtopic_data/staging/topic-frag/non-existent-frag', expected_status_int=404) def test_cannot_access_subtopic_when_topic_is_not_published(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_subtopic_data/staging/topic-frag/sub-one-frag', expected_status_int=404) def test_can_access_subtopic_when_topic_is_published(self): topic_services.publish_topic(self.topic_id, self.admin_id) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_subtopic_data/staging/topic-frag/sub-one-frag', expected_status_int=200) def test_can_access_subtopic_when_all_url_fragments_are_valid(self): topic_services.publish_topic(self.topic_id, self.admin_id) with self.swap(self, 'testapp', self.mock_testapp): self.get_html_response( '/mock_subtopic_page/staging/topic-frag/revision/sub-one-frag', expected_status_int=200) def test_fall_back_to_revision_page_if_subtopic_url_frag_is_invalid(self): topic_services.publish_topic(self.topic_id, self.admin_id) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_html_response( '/mock_subtopic_page/staging/topic-frag/revision/000', expected_status_int=302) self.assertEqual( 'http://localhost/learn/staging/topic-frag/revision', response.headers['location']) def test_redirect_to_classroom_if_abbreviated_topic_is_invalid(self): topic_services.publish_topic(self.topic_id, self.admin_id) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_html_response( '/mock_subtopic_page/math/invalid-topic/revision/sub-one-frag', expected_status_int=302) self.assertEqual( 'http://localhost/learn/math', response.headers['location']) def test_redirect_with_correct_classroom_name_in_url(self): topic_services.publish_topic(self.topic_id, self.admin_id) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_html_response( '/mock_subtopic_page/math/topic-frag/revision/sub-one-frag', expected_status_int=302) self.assertEqual( 'http://localhost/learn/staging/topic-frag/revision' '/sub-one-frag', response.headers['location']) def test_redirect_with_lowercase_subtopic_url_fragment(self): topic_services.publish_topic(self.topic_id, self.admin_id) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_html_response( '/mock_subtopic_page/staging/topic-frag/revision/Sub-One-Frag', expected_status_int=302) self.assertEqual( 'http://localhost/learn/staging/topic-frag/revision' '/sub-one-frag', response.headers['location']) class TopicViewerTests(test_utils.GenericTestBase): """Tests for decorator can_access_topic_viewer_page.""" banned_user = 'banneduser' banned_user_email = 'banned@example.com' class MockDataHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_access_topic_viewer_page def get(self, topic_name): self.render_json({'topic_name': topic_name}) class MockPageHandler(base.BaseHandler): @acl_decorators.can_access_topic_viewer_page def get(self, unused_topic_name): self.render_template('topic-viewer-page.mainpage.html') def setUp(self): super(TopicViewerTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.set_admins([self.ADMIN_USERNAME]) self.admin_id = self.get_user_id_from_email(self.ADMIN_EMAIL) self.admin = user_services.UserActionsInfo(self.admin_id) self.signup(self.banned_user_email, self.banned_user) self.set_banned_users([self.banned_user]) topic_data_url = ( '/mock_topic_data/<classroom_url_fragment>/<topic_url_fragment>') topic_page_url = ( '/mock_topic_page/<classroom_url_fragment>/<topic_url_fragment>') self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [ webapp2.Route(topic_data_url, self.MockDataHandler), webapp2.Route(topic_page_url, self.MockPageHandler) ], debug=feconf.DEBUG, )) self.topic_id = topic_services.get_new_topic_id() subtopic_1 = topic_domain.Subtopic.create_default_subtopic( 1, 'Subtopic Title 1') subtopic_1.skill_ids = ['skill_id_1'] subtopic_1.url_fragment = 'sub-one-frag' self.save_new_topic( self.topic_id, self.admin_id, name='Name', description='Description', canonical_story_ids=[], additional_story_ids=[], uncategorized_skill_ids=[], subtopics=[subtopic_1], next_subtopic_id=2) def test_cannot_access_non_existent_topic(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_topic_data/staging/invalid-topic', expected_status_int=404) def test_cannot_access_unpublished_topic(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_topic_data/staging/topic', expected_status_int=404) def test_can_access_published_topic(self): topic_services.publish_topic(self.topic_id, self.admin_id) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_topic_data/staging/topic', expected_status_int=200) def test_can_access_topic_when_all_url_fragments_are_valid(self): topic_services.publish_topic(self.topic_id, self.admin_id) with self.swap(self, 'testapp', self.mock_testapp): self.get_html_response( '/mock_topic_page/staging/topic', expected_status_int=200) def test_redirect_to_classroom_if_abbreviated_topic_is_invalid(self): topic_services.publish_topic(self.topic_id, self.admin_id) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_html_response( '/mock_topic_page/math/invalid-topic', expected_status_int=302) self.assertEqual( 'http://localhost/learn/math', response.headers['location']) def test_redirect_with_correct_classroom_name_in_url(self): topic_services.publish_topic(self.topic_id, self.admin_id) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_html_response( '/mock_topic_page/math/topic', expected_status_int=302) self.assertEqual( 'http://localhost/learn/staging/topic', response.headers['location']) def test_redirect_with_lowercase_topic_url_fragment(self): topic_services.publish_topic(self.topic_id, self.admin_id) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_html_response( '/mock_topic_page/staging/TOPIC', expected_status_int=302) self.assertEqual( 'http://localhost/learn/staging/topic', response.headers['location']) # TODO(#10110): Add tests to verify the learner role has correct permissions. class CreateSkillTests(test_utils.GenericTestBase): """Tests for decorator can_create_skill.""" banned_user = 'banneduser' banned_user_email = 'banned@example.com' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_create_skill def get(self): self.render_json({}) def setUp(self): super(CreateSkillTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.set_admins([self.ADMIN_USERNAME]) self.admin_id = self.get_user_id_from_email(self.ADMIN_EMAIL) self.admin = user_services.UserActionsInfo(self.admin_id) self.signup(self.banned_user_email, self.banned_user) self.set_banned_users([self.banned_user]) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock_create_skill', self.MockHandler)], debug=feconf.DEBUG, )) def test_admin_can_create_skill(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock_create_skill') self.logout() def test_banned_user_cannot_create_skill(self): self.login(self.banned_user_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_create_skill', expected_status_int=401) self.assertEqual( response['error'], 'You do not have credentials to create a skill.') self.logout() def test_guest_cannot_add_create_skill(self): with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_create_skill', expected_status_int=401) self.assertEqual( response['error'], 'You must be logged in to access this resource.') # TODO(#10110): Add tests to verify the learner role has correct permissions. class ManageQuestionSkillStatusTests(test_utils.GenericTestBase): """Tests for decorator can_manage_question_skill_status.""" viewer_username = 'viewer' viewer_email = 'viewer@example.com' skill_id = '1' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_manage_question_skill_status def get(self, skill_id): self.render_json({'skill_id': skill_id}) def setUp(self): super(ManageQuestionSkillStatusTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.set_admins([self.ADMIN_USERNAME]) self.admin_id = self.get_user_id_from_email(self.ADMIN_EMAIL) self.admin = user_services.UserActionsInfo(self.admin_id) self.signup(self.viewer_email, self.viewer_username) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route( '/mock_manage_question_skill_status/<skill_id>', self.MockHandler)], debug=feconf.DEBUG, )) self.question_id = question_services.get_new_question_id() self.question = self.save_new_question( self.question_id, self.admin_id, self._create_valid_question_data('ABC'), [self.skill_id]) question_services.create_new_question_skill_link( self.admin_id, self.question_id, self.skill_id, 0.5) def test_admin_can_manage_question_skill_status(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_manage_question_skill_status/%s' % self.skill_id) self.assertEqual(response['skill_id'], self.skill_id) self.logout() def test_viewer_cannot_manage_question_skill_status(self): self.login(self.viewer_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_manage_question_skill_status/%s' % self.skill_id, expected_status_int=401) self.assertEqual( response['error'], 'You do not have credentials to publish a question.') self.logout() def test_guest_cannot_manage_question_skill_status(self): with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_manage_question_skill_status/%s' % self.skill_id, expected_status_int=401) self.assertEqual( response['error'], 'You must be logged in to access this resource.') # TODO(#10110): Add tests to verify the learner role has correct permissions. class CreateTopicTests(test_utils.GenericTestBase): """Tests for decorator can_create_topic.""" banned_user = 'banneduser' banned_user_email = 'banned@example.com' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_create_topic def get(self): self.render_json({}) def setUp(self): super(CreateTopicTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.set_admins([self.ADMIN_USERNAME]) self.admin_id = self.get_user_id_from_email(self.ADMIN_EMAIL) self.admin = user_services.UserActionsInfo(self.admin_id) self.signup(self.banned_user_email, self.banned_user) self.set_banned_users([self.banned_user]) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock_create_topic', self.MockHandler)], debug=feconf.DEBUG, )) def test_admin_can_create_topic(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock_create_topic') self.logout() def test_banned_user_cannot_create_topic(self): self.login(self.banned_user_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_create_topic', expected_status_int=401) self.assertIn( 'does not have enough rights to create a topic.', response['error']) self.logout() def test_guest_cannot_create_topic(self): with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_create_topic', expected_status_int=401) self.assertEqual( response['error'], 'You must be logged in to access this resource.') # TODO(#10110): Add tests to verify the learner role has correct permissions. class ManageRightsForTopicTests(test_utils.GenericTestBase): """Tests for decorator can_manage_rights_for_topic.""" banned_user = 'banneduser' banned_user_email = 'banned@example.com' topic_id = 'topic_1' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_manage_rights_for_topic def get(self, topic_id): self.render_json({'topic_id': topic_id}) def setUp(self): super(ManageRightsForTopicTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.set_admins([self.ADMIN_USERNAME]) self.admin_id = self.get_user_id_from_email(self.ADMIN_EMAIL) self.admin = user_services.UserActionsInfo(self.admin_id) self.signup(self.banned_user_email, self.banned_user) self.set_banned_users([self.banned_user]) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route( '/mock_manage_rights_for_topic/<topic_id>', self.MockHandler)], debug=feconf.DEBUG, )) topic_services.create_new_topic_rights(self.topic_id, self.admin_id) def test_admin_can_manage_rights(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock_manage_rights_for_topic/%s' % self.topic_id) self.logout() def test_banned_user_cannot_manage_rights(self): self.login(self.banned_user_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_manage_rights_for_topic/%s' % self.topic_id, expected_status_int=401) self.assertIn( 'does not have enough rights to assign roles for the topic.', response['error']) self.logout() def test_guest_cannot_manage_rights(self): with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_manage_rights_for_topic/%s' % self.topic_id, expected_status_int=401) self.assertEqual( response['error'], 'You must be logged in to access this resource.') # TODO(#10110): Add tests to verify the learner role has correct permissions. class ChangeTopicPublicationStatusTests(test_utils.GenericTestBase): """Tests for decorator can_change_topic_publication_status.""" banned_user = 'banneduser' banned_user_email = 'banned@example.com' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_change_topic_publication_status def get(self, topic_id): self.render_json({ topic_id: topic_id }) def setUp(self): super(ChangeTopicPublicationStatusTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.set_admins([self.ADMIN_USERNAME]) self.admin_id = self.get_user_id_from_email(self.ADMIN_EMAIL) self.admin = user_services.UserActionsInfo(self.admin_id) self.signup(self.banned_user_email, self.banned_user) self.set_banned_users([self.banned_user]) self.topic_id = topic_services.get_new_topic_id() self.save_new_topic( self.topic_id, self.admin_id, name='Name1', description='Description', canonical_story_ids=[], additional_story_ids=[], uncategorized_skill_ids=[], subtopics=[], next_subtopic_id=1) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route( '/mock_change_publication_status/<topic_id>', self.MockHandler)], debug=feconf.DEBUG, )) def test_admin_can_change_topic_publication_status(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock_change_publication_status/%s' % self.topic_id) self.logout() def test_can_not_change_topic_publication_status_with_invalid_topic_id( self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_change_publication_status/invalid_topic_id', expected_status_int=404) self.logout() def test_banned_user_cannot_change_topic_publication_status(self): self.login(self.banned_user_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_change_publication_status/%s' % self.topic_id, expected_status_int=401) self.assertIn( 'does not have enough rights to publish or unpublish the ' 'topic.', response['error']) self.logout() def test_guest_cannot_change_topic_publication_status(self): with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_change_publication_status/%s' % self.topic_id, expected_status_int=401) self.assertEqual( response['error'], 'You must be logged in to access this resource.') # TODO(#10110): Add tests to verify the learner role has correct permissions. class PerformCronTaskTests(test_utils.GenericTestBase): """Tests for decorator can_perform_cron_tasks.""" viewer_username = 'viewer' viewer_email = 'viewer@example.com' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_perform_cron_tasks def get(self): self.render_json({}) def setUp(self): super(PerformCronTaskTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.set_admins([self.ADMIN_USERNAME]) self.admin_id = self.get_user_id_from_email(self.ADMIN_EMAIL) self.admin = user_services.UserActionsInfo(self.admin_id) self.signup(self.viewer_email, self.viewer_username) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock_perform_cron_task', self.MockHandler)], debug=feconf.DEBUG, )) def test_super_admin_can_perform_cron_tasks(self): self.login(self.ADMIN_EMAIL, is_super_admin=True) with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock_perform_cron_task') self.logout() def test_normal_user_cannot_perform_cron_tasks(self): self.login(self.viewer_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_perform_cron_task', expected_status_int=401) self.assertEqual( response['error'], 'You do not have the credentials to access this page.') self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class EditSkillDecoratorTests(test_utils.GenericTestBase): """Tests permissions for accessing the skill editor.""" second_admin_username = 'adm2' second_admin_email = 'adm2@example.com' manager_username = 'topicmanager' manager_email = 'topicmanager@example.com' viewer_username = 'viewer' viewer_email = 'viewer@example.com' skill_id = '1' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_edit_skill def get(self, skill_id): self.render_json({'skill_id': skill_id}) def setUp(self): super(EditSkillDecoratorTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.second_admin_email, self.second_admin_username) self.signup(self.manager_email, self.manager_username) self.signup(self.viewer_email, self.viewer_username) self.set_admins([self.ADMIN_USERNAME, self.second_admin_username]) self.set_topic_managers([self.manager_username]) self.admin_id = self.get_user_id_from_email(self.ADMIN_EMAIL) self.second_admin_id = self.get_user_id_from_email( self.second_admin_email) self.manager_id = self.get_user_id_from_email(self.manager_email) self.admin = user_services.UserActionsInfo(self.admin_id) self.manager = user_services.UserActionsInfo(self.manager_id) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock_edit_skill/<skill_id>', self.MockHandler)], debug=feconf.DEBUG, )) def test_cannot_edit_skill_with_invalid_skill_id(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_custom_response( '/mock_edit_skill/', 'text/plain', expected_status_int=404) self.logout() def test_admin_can_edit_skill(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock_edit_skill/%s' % self.skill_id) self.assertEqual(response['skill_id'], self.skill_id) self.logout() def test_admin_can_edit_other_public_skill(self): self.login(self.second_admin_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock_edit_skill/%s' % self.skill_id) self.assertEqual(response['skill_id'], self.skill_id) self.logout() def test_topic_manager_can_edit_public_skill(self): self.login(self.manager_email) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock_edit_skill/%s' % self.skill_id) self.assertEqual(response['skill_id'], self.skill_id) self.logout() def test_normal_user_can_not_edit_public_skill(self): self.login(self.viewer_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_edit_skill/%s' % self.skill_id, expected_status_int=401) # TODO(#10110): Add tests to verify the learner role has correct permissions. class EditQuestionDecoratorTests(test_utils.GenericTestBase): """Tests the decorator can_edit_question.""" question_id = 'question_id' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_edit_question def get(self, question_id): self.render_json({'question_id': question_id}) def setUp(self): super(EditQuestionDecoratorTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.signup('a@example.com', 'A') self.signup('b@example.com', 'B') self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.user_id_admin = self.get_user_id_from_email(self.ADMIN_EMAIL) self.user_id_a = self.get_user_id_from_email('a@example.com') self.user_id_b = self.get_user_id_from_email('b@example.com') self.set_admins([self.ADMIN_USERNAME]) self.set_topic_managers([user_services.get_username(self.user_id_a)]) self.admin_id = self.get_user_id_from_email(self.ADMIN_EMAIL) self.manager_id = self.get_user_id_from_email('a@example.com') self.question_id = 'question_id' self.save_new_question( self.question_id, self.owner_id, self._create_valid_question_data('ABC'), ['skill_1']) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route( '/mock_edit_question/<question_id>', self.MockHandler)], debug=feconf.DEBUG, )) def test_guest_cannot_edit_question(self): with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_edit_question/%s' % self.question_id, expected_status_int=401) self.assertEqual( response['error'], 'You must be logged in to access this resource.') def test_cannot_edit_question_with_invalid_question_id(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_edit_question/invalid_question_id', expected_status_int=404) self.logout() def test_admin_can_edit_question(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_edit_question/%s' % self.question_id) self.assertEqual(response['question_id'], self.question_id) self.logout() def test_topic_manager_can_edit_question(self): self.login('a@example.com') with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_edit_question/%s' % self.question_id) self.assertEqual(response['question_id'], self.question_id) self.logout() def test_any_user_cannot_edit_question(self): self.login('b@example.com') with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_edit_question/%s' % self.question_id, expected_status_int=401) self.logout() # TODO(#10110): Add tests to verify the learner role has correct permissions. class PlayQuestionDecoratorTests(test_utils.GenericTestBase): """Tests the decorator can_play_question.""" question_id = 'question_id' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_play_question def get(self, question_id): self.render_json({'question_id': question_id}) def setUp(self): super(PlayQuestionDecoratorTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route( '/mock_play_question/<question_id>', self.MockHandler)], debug=feconf.DEBUG, )) self.save_new_question( self.question_id, self.owner_id, self._create_valid_question_data('ABC'), ['skill_1']) def test_can_play_question_with_valid_question_id(self): with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock_play_question/%s' % ( self.question_id)) self.assertEqual(response['question_id'], self.question_id) # TODO(#10110): Add tests to verify the learner role has correct permissions. class PlayEntityDecoratorTests(test_utils.GenericTestBase): """Test the decorator can_play_entity.""" user_email = 'user@example.com' username = 'user' published_exp_id = 'exp_id_1' private_exp_id = 'exp_id_2' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_play_entity def get(self, entity_type, entity_id): self.render_json( {'entity_type': entity_type, 'entity_id': entity_id}) def setUp(self): super(PlayEntityDecoratorTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.user_email, self.username) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.set_admins([self.ADMIN_USERNAME]) self.owner = user_services.UserActionsInfo(self.owner_id) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route( '/mock_play_entity/<entity_type>/<entity_id>', self.MockHandler)], debug=feconf.DEBUG, )) self.question_id = question_services.get_new_question_id() self.save_new_question( self.question_id, self.owner_id, self._create_valid_question_data('ABC'), ['skill_1']) self.save_new_valid_exploration( self.published_exp_id, self.owner_id) self.save_new_valid_exploration( self.private_exp_id, self.owner_id) rights_manager.publish_exploration(self.owner, self.published_exp_id) def test_cannot_play_exploration_on_disabled_exploration_ids(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock_play_entity/%s/%s' % ( feconf.ENTITY_TYPE_EXPLORATION, feconf.DISABLED_EXPLORATION_IDS[0]), expected_status_int=404) def test_guest_can_play_exploration_on_published_exploration(self): with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock_play_entity/%s/%s' % ( feconf.ENTITY_TYPE_EXPLORATION, self.published_exp_id)) self.assertEqual( response['entity_type'], feconf.ENTITY_TYPE_EXPLORATION) self.assertEqual( response['entity_id'], self.published_exp_id) def test_guest_cannot_play_exploration_on_private_exploration(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock_play_entity/%s/%s' % ( feconf.ENTITY_TYPE_EXPLORATION, self.private_exp_id), expected_status_int=404) def test_cannot_play_exploration_with_none_exploration_rights(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_play_entity/%s/%s' % (feconf.ENTITY_TYPE_EXPLORATION, 'fake_exp_id'), expected_status_int=404) def test_can_play_question_for_valid_question_id(self): with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock_play_entity/%s/%s' % ( feconf.ENTITY_TYPE_QUESTION, self.question_id)) self.assertEqual( response['entity_type'], feconf.ENTITY_TYPE_QUESTION) self.assertEqual(response['entity_id'], self.question_id) self.assertEqual(response['entity_type'], 'question') def test_cannot_play_question_invalid_question_id(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock_play_entity/%s/%s' % ( feconf.ENTITY_TYPE_QUESTION, 'question_id'), expected_status_int=404) def test_cannot_play_entity_for_invalid_entity(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock_play_entity/%s/%s' % ( 'fake_entity_type', 'fake_entity_id'), expected_status_int=404) # TODO(#10110): Add tests to verify the learner role has correct permissions. class EditEntityDecoratorTests(test_utils.GenericTestBase): username = 'banneduser' user_email = 'user@example.com' published_exp_id = 'exp_0' private_exp_id = 'exp_1' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_edit_entity def get(self, entity_type, entity_id): return self.render_json( {'entity_type': entity_type, 'entity_id': entity_id}) def setUp(self): super(EditEntityDecoratorTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.signup(self.MODERATOR_EMAIL, self.MODERATOR_USERNAME) self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.user_email, self.username) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.admin_id = self.get_user_id_from_email(self.ADMIN_EMAIL) self.set_moderators([self.MODERATOR_USERNAME]) self.set_admins([self.ADMIN_USERNAME]) self.set_banned_users([self.username]) self.owner = user_services.UserActionsInfo(self.owner_id) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route( '/mock_edit_entity/<entity_type>/<entity_id>', self.MockHandler)], debug=feconf.DEBUG, )) self.question_id = question_services.get_new_question_id() self.save_new_question( self.question_id, self.owner_id, self._create_valid_question_data('ABC'), ['skill_1']) self.save_new_valid_exploration( self.published_exp_id, self.owner_id) self.save_new_valid_exploration( self.private_exp_id, self.owner_id) rights_manager.publish_exploration(self.owner, self.published_exp_id) def test_can_edit_exploration_with_valid_exp_id(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json( '/mock_edit_entity/exploration/%s' % ( self.published_exp_id)) self.assertEqual( response['entity_type'], feconf.ENTITY_TYPE_EXPLORATION) self.assertEqual( response['entity_id'], self.published_exp_id) self.logout() def test_cannot_edit_exploration_with_invalid_exp_id(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_edit_entity/exploration/invalid_exp_id', expected_status_int=404) self.logout() def test_banned_user_cannot_edit_exploration(self): self.login(self.user_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_edit_entity/%s/%s' % ( feconf.ENTITY_TYPE_EXPLORATION, self.private_exp_id), expected_status_int=401) self.logout() def test_can_edit_question_with_valid_question_id(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock_edit_entity/%s/%s' % ( feconf.ENTITY_TYPE_QUESTION, self.question_id)) self.assertEqual(response['entity_id'], self.question_id) self.assertEqual(response['entity_type'], 'question') self.logout() def test_can_edit_topic(self): self.login(self.ADMIN_EMAIL) topic_id = topic_services.get_new_topic_id() self.save_new_topic( topic_id, self.admin_id, name='Name', description='Description', canonical_story_ids=[], additional_story_ids=[], uncategorized_skill_ids=[], subtopics=[], next_subtopic_id=1) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock_edit_entity/%s/%s' % ( feconf.ENTITY_TYPE_TOPIC, topic_id)) self.assertEqual(response['entity_id'], topic_id) self.assertEqual(response['entity_type'], 'topic') self.logout() def test_cannot_edit_topic_with_invalid_topic_id(self): self.login(self.ADMIN_EMAIL) topic_id = 'incorrect_id' with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock_edit_entity/%s/%s' % ( feconf.ENTITY_TYPE_TOPIC, topic_id), expected_status_int=404) self.logout() def test_can_edit_skill(self): self.login(self.ADMIN_EMAIL) skill_id = skill_services.get_new_skill_id() self.save_new_skill(skill_id, self.admin_id, description='Description') with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock_edit_entity/%s/%s' % ( feconf.ENTITY_TYPE_SKILL, skill_id)) self.assertEqual(response['entity_id'], skill_id) self.assertEqual(response['entity_type'], 'skill') self.logout() def test_can_edit_story(self): self.login(self.ADMIN_EMAIL) story_id = story_services.get_new_story_id() topic_id = topic_services.get_new_topic_id() self.save_new_story(story_id, self.admin_id, topic_id) self.save_new_topic( topic_id, self.admin_id, name='Name', description='Description', canonical_story_ids=[story_id], additional_story_ids=[], uncategorized_skill_ids=[], subtopics=[], next_subtopic_id=1) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock_edit_entity/%s/%s' % ( feconf.ENTITY_TYPE_STORY, story_id)) self.assertEqual(response['entity_id'], story_id) self.assertEqual(response['entity_type'], 'story') self.logout() def test_cannot_edit_entity_invalid_entity(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json('/mock_edit_entity/%s/%s' % ( 'invalid_entity_type', 'q_id'), expected_status_int=404) # TODO(#10110): Add tests to verify the learner role has correct permissions. class SaveExplorationTests(test_utils.GenericTestBase): """Tests for can_save_exploration decorator.""" role = rights_manager.ROLE_VOICE_ARTIST username = 'user' user_email = 'user@example.com' banned_username = 'banneduser' banned_user_email = 'banneduser@example.com' published_exp_id_1 = 'exp_1' published_exp_id_2 = 'exp_2' private_exp_id_1 = 'exp_3' private_exp_id_2 = 'exp_4' class MockHandler(base.BaseHandler): GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON @acl_decorators.can_save_exploration def get(self, exploration_id): self.render_json({'exploration_id': exploration_id}) def setUp(self): super(SaveExplorationTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.signup(self.MODERATOR_EMAIL, self.MODERATOR_USERNAME) self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.user_email, self.username) self.signup(self.banned_user_email, self.banned_username) self.signup(self.VOICE_ARTIST_EMAIL, self.VOICE_ARTIST_USERNAME) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.voice_artist_id = self.get_user_id_from_email( self.VOICE_ARTIST_EMAIL) self.set_moderators([self.MODERATOR_USERNAME]) self.set_admins([self.ADMIN_USERNAME]) self.set_banned_users([self.banned_username]) self.owner = user_services.UserActionsInfo(self.owner_id) self.mock_testapp = webtest.TestApp(webapp2.WSGIApplication( [webapp2.Route('/mock/<exploration_id>', self.MockHandler)], debug=feconf.DEBUG, )) self.save_new_valid_exploration( self.published_exp_id_1, self.owner_id) self.save_new_valid_exploration( self.published_exp_id_2, self.owner_id) self.save_new_valid_exploration( self.private_exp_id_1, self.owner_id) self.save_new_valid_exploration( self.private_exp_id_2, self.owner_id) rights_manager.publish_exploration(self.owner, self.published_exp_id_1) rights_manager.publish_exploration(self.owner, self.published_exp_id_2) rights_manager.assign_role_for_exploration( self.owner, self.published_exp_id_1, self.voice_artist_id, self.role) rights_manager.assign_role_for_exploration( self.owner, self.private_exp_id_1, self.voice_artist_id, self.role) def test_unautheticated_user_cannot_save_exploration(self): with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock/%s' % self.private_exp_id_1, expected_status_int=401) def test_can_not_save_exploration_with_invalid_exp_id(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock/invalid_exp_id', expected_status_int=404) self.logout() def test_banned_user_cannot_save_exploration(self): self.login(self.banned_user_email) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock/%s' % self.private_exp_id_1, expected_status_int=401) self.logout() def test_owner_can_save_exploration(self): self.login(self.OWNER_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/%s' % self.private_exp_id_1) self.assertEqual(response['exploration_id'], self.private_exp_id_1) self.logout() def test_moderator_can_save_public_exploration(self): self.login(self.MODERATOR_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/%s' % self.published_exp_id_1) self.assertEqual(response['exploration_id'], self.published_exp_id_1) self.logout() def test_moderator_cannot_save_private_exploration(self): self.login(self.MODERATOR_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock/%s' % self.private_exp_id_1, expected_status_int=401) self.logout() def test_admin_can_save_private_exploration(self): self.login(self.ADMIN_EMAIL) with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/%s' % self.private_exp_id_1) self.assertEqual(response['exploration_id'], self.private_exp_id_1) self.logout() def test_voice_artist_can_only_save_assigned_exploration(self): self.login(self.VOICE_ARTIST_EMAIL) # Checking voice artist can only save assigned public exploration. with self.swap(self, 'testapp', self.mock_testapp): response = self.get_json('/mock/%s' % self.published_exp_id_1) self.assertEqual(response['exploration_id'], self.published_exp_id_1) # Checking voice artist cannot save public exploration which he/she # is not assigned for. with self.swap(self, 'testapp', self.mock_testapp): self.get_json( '/mock/%s' % self.published_exp_id_2, expected_status_int=401) self.logout()
42.06791
134
0.672567
6d2a059fff98e53f620ecbcc00e7b28b91ae46cb
3,076
py
Python
3_kmeans_linting.py
wbkdef/hettinger_mypy_linting_presentation
aa4729648bcb0291dc0e6f0a17bf663356746876
[ "MIT" ]
null
null
null
3_kmeans_linting.py
wbkdef/hettinger_mypy_linting_presentation
aa4729648bcb0291dc0e6f0a17bf663356746876
[ "MIT" ]
null
null
null
3_kmeans_linting.py
wbkdef/hettinger_mypy_linting_presentation
aa4729648bcb0291dc0e6f0a17bf663356746876
[ "MIT" ]
null
null
null
from typing import Tuple, Iterable, Sequence, List, Dict, DefaultDict from random import sample from math import fsum, sqrt from collections import defaultdict def partial(func, *args): "Rewrite functools.partial() in a way that doesn't confuse mypy" def inner(*moreargs): return func(*args, *moreargs) return inner def mean(data: Iterable[float]) -> float: data = list(data) return fsum(data) / len(data) def transpose(matrix: Iterable[Iterable]) -> Iterable[tuple]: 'Swap rows with columns for a 2-D array' return zip(*matrix) Point = Tuple[float, ...] Centroid = Point # pylint: disable=redefined-outer-name, redefined-builtin def dist(p: Point, q: Point, sqrt=sqrt, fsum=fsum, zip=zip) -> float: 'Multi-dimensional euclidean distance' return sqrt(fsum((x1 - x2) ** 2.0 for x1, x2 in zip(p, q))) def assign_data(centroids: Sequence[Centroid], data: Iterable[Point]) -> Dict[Centroid, Sequence[Point]]: 'Assign data the closest centroid' d : DefaultDict[Centroid, List[Point]] = defaultdict(list) for point in data: centroid: Point = min(centroids, key=partial(dist, point)) # type: ignore d[centroid].append(point) return dict(d) def compute_centroids(groups: Iterable[Sequence[Point]]) -> List[Centroid]: 'Compute the centroid of each group' return [tuple(map(mean, transpose(group))) for group in groups] def k_means(data: Iterable[Point], k:int=2, iterations:int=10) -> List[Point]: 'Return k-centroids for the data' data = list(data) centroids = sample(data, k) for i in range(iterations): labeled = assign_data(centroids, data) centroids = compute_centroids(labeled.values()) return centroids def quality(labeled: Dict[Centroid, Sequence[Point]]) -> float: 'Mean value of squared distances from data to its assigned centroid' return mean(dist(c, p) ** 2 for c, pts in labeled.items() for p in pts) def main(): from pprint import pprint print('Simple example with six 3-D points clustered into two groups') points = [ (10, 41, 23), (22, 30, 29), (11, 42, 5), (20, 32, 4), (12, 40, 12), (21, 36, 23), ] centroids = k_means(points, k=2) pprint(assign_data(centroids, points)) print('\nExample with a richer dataset.') print('See: https://www.datascience.com/blog/introduction-to-k-means-clustering-algorithm-learn-data-science-tutorials') data = [ (10, 30), (12, 50), (14, 70), (9, 150), (20, 175), (8, 200), (14, 240), (50, 35), (40, 50), (45, 60), (55, 45), (60, 130), (60, 220), (70, 150), (60, 190), (90, 160), ] print('k quality') print('- -------') for k in range(1, 8): centroids = k_means(data, k, iterations=20) d = assign_data(centroids, data) print(f'{k} {quality(d) :8,.1f}') if __name__ == '__main__': main() # type: ignore
29.295238
124
0.608583
7139fd713cd686ff55ece5575cc43baf40b84b80
262
py
Python
chillchamber/apps/youtube.py
vesche/chillchamber
b6adc04958203b833a08b09f8c467b80f7d62a45
[ "MIT" ]
3
2020-11-19T15:56:28.000Z
2020-12-19T10:47:25.000Z
chillchamber/apps/youtube.py
vesche/chillchamber
b6adc04958203b833a08b09f8c467b80f7d62a45
[ "MIT" ]
1
2020-11-19T15:56:25.000Z
2020-11-28T03:02:53.000Z
chillchamber/apps/youtube.py
vesche/chillchamber
b6adc04958203b833a08b09f8c467b80f7d62a45
[ "MIT" ]
null
null
null
""" chillchamber.apps.youtube """ from chillchamber.common import App, run_command class YouTube(App): def __init__(self): super().__init__('YouTube') def run(self): run_command('/usr/bin/firefox -new-window https://www.youtube.com')
18.714286
75
0.671756
da08812e198e05e399f8373ac1ef3fe7389de318
2,629
py
Python
ninestargram_server/images/migrations/0001_initial.py
apJammanbo/ninestargram-server
6aaf5e49a4189da6df9af8afec921d97455d6841
[ "MIT" ]
null
null
null
ninestargram_server/images/migrations/0001_initial.py
apJammanbo/ninestargram-server
6aaf5e49a4189da6df9af8afec921d97455d6841
[ "MIT" ]
11
2020-09-05T20:04:21.000Z
2022-03-03T22:38:32.000Z
ninestargram_server/images/migrations/0001_initial.py
apJammanbo/ninestargram-server
6aaf5e49a4189da6df9af8afec921d97455d6841
[ "MIT" ]
null
null
null
# Generated by Django 2.0.8 on 2018-08-19 06:59 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('message', models.TextField()), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Image', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('file', models.ImageField(upload_to='')), ('location', models.CharField(max_length=140)), ('caption', models.TextField()), ('creator', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Like', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('creator', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ('image', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='images.Image')), ], options={ 'abstract': False, }, ), migrations.AddField( model_name='comment', name='image', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='images.Image'), ), migrations.AddField( model_name='comment', name='reator', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), ]
38.661765
121
0.569038
789afce1a10546de99c09df5f9cbc0b9bdd9a244
1,133
py
Python
TA-linode/bin/ta_linode/aob_py3/cloudconnectlib/splunktacollectorlib/splunk_ta_import_declare.py
jriddle-linode/splunk-addon-linode
5954acd12ef88ab991365ef51072db68aed46aa1
[ "Apache-2.0" ]
11
2020-01-23T11:32:26.000Z
2021-09-23T09:24:02.000Z
TA-linode/bin/ta_linode/aob_py3/cloudconnectlib/splunktacollectorlib/splunk_ta_import_declare.py
jriddle-linode/splunk-addon-linode
5954acd12ef88ab991365ef51072db68aed46aa1
[ "Apache-2.0" ]
26
2019-07-15T02:38:22.000Z
2021-12-01T04:14:17.000Z
TA-linode/bin/ta_linode/aob_py3/cloudconnectlib/splunktacollectorlib/splunk_ta_import_declare.py
jriddle-linode/splunk-addon-linode
5954acd12ef88ab991365ef51072db68aed46aa1
[ "Apache-2.0" ]
6
2019-07-14T17:44:06.000Z
2020-11-17T17:33:23.000Z
# # Copyright 2021 Splunk Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This module is used to filter and reload PATH. """ import os import sys import re ta_name = os.path.basename(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) ta_lib_name = re.sub("[^\w]+", "_", ta_name.lower()) assert ta_name or ta_name == "package", "TA name is None or package" pattern = re.compile(r"[\\/]etc[\\/]apps[\\/][^\\/]+[\\/]bin[\\/]?$") new_paths = [path for path in sys.path if not pattern.search(path) or ta_name in path] new_paths.insert(0, os.path.sep.join([os.path.dirname(__file__), ta_lib_name])) sys.path = new_paths
34.333333
87
0.721977
6dcf94eecb7d892d8857dd6ff9c36c2e4fa0e304
66,068
py
Python
nltk/tree.py
PhanatosZou/nltk
750e488569b6f80c72ae6ca74eff90eae55e6c4e
[ "Apache-2.0" ]
null
null
null
nltk/tree.py
PhanatosZou/nltk
750e488569b6f80c72ae6ca74eff90eae55e6c4e
[ "Apache-2.0" ]
null
null
null
nltk/tree.py
PhanatosZou/nltk
750e488569b6f80c72ae6ca74eff90eae55e6c4e
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Natural Language Toolkit: Text Trees # # Copyright (C) 2001-2019 NLTK Project # Author: Edward Loper <edloper@gmail.com> # Steven Bird <stevenbird1@gmail.com> # Peter Ljunglöf <peter.ljunglof@gu.se> # Nathan Bodenstab <bodenstab@cslu.ogi.edu> (tree transforms) # URL: <http://nltk.org/> # For license information, see LICENSE.TXT """ Class for representing hierarchical language structures, such as syntax trees and morphological trees. """ import re import sys from abc import ABCMeta, abstractmethod from nltk.grammar import Production, Nonterminal from nltk.probability import ProbabilisticMixIn from nltk.util import slice_bounds from nltk.internals import raise_unorderable_types # TODO: add LabelledTree (can be used for dependency trees) ###################################################################### ## Trees ###################################################################### class Tree(list): """ A Tree represents a hierarchical grouping of leaves and subtrees. For example, each constituent in a syntax tree is represented by a single Tree. A tree's children are encoded as a list of leaves and subtrees, where a leaf is a basic (non-tree) value; and a subtree is a nested Tree. >>> from nltk.tree import Tree >>> print(Tree(1, [2, Tree(3, [4]), 5])) (1 2 (3 4) 5) >>> vp = Tree('VP', [Tree('V', ['saw']), ... Tree('NP', ['him'])]) >>> s = Tree('S', [Tree('NP', ['I']), vp]) >>> print(s) (S (NP I) (VP (V saw) (NP him))) >>> print(s[1]) (VP (V saw) (NP him)) >>> print(s[1,1]) (NP him) >>> t = Tree.fromstring("(S (NP I) (VP (V saw) (NP him)))") >>> s == t True >>> t[1][1].set_label('X') >>> t[1][1].label() 'X' >>> print(t) (S (NP I) (VP (V saw) (X him))) >>> t[0], t[1,1] = t[1,1], t[0] >>> print(t) (S (X him) (VP (V saw) (NP I))) The length of a tree is the number of children it has. >>> len(t) 2 The set_label() and label() methods allow individual constituents to be labeled. For example, syntax trees use this label to specify phrase tags, such as "NP" and "VP". Several Tree methods use "tree positions" to specify children or descendants of a tree. Tree positions are defined as follows: - The tree position *i* specifies a Tree's *i*\ th child. - The tree position ``()`` specifies the Tree itself. - If *p* is the tree position of descendant *d*, then *p+i* specifies the *i*\ th child of *d*. I.e., every tree position is either a single index *i*, specifying ``tree[i]``; or a sequence *i1, i2, ..., iN*, specifying ``tree[i1][i2]...[iN]``. Construct a new tree. This constructor can be called in one of two ways: - ``Tree(label, children)`` constructs a new tree with the specified label and list of children. - ``Tree.fromstring(s)`` constructs a new tree by parsing the string ``s``. """ def __init__(self, node, children=None): if children is None: raise TypeError( "%s: Expected a node value and child list " % type(self).__name__ ) elif isinstance(children, str): raise TypeError( "%s() argument 2 should be a list, not a " "string" % type(self).__name__ ) else: list.__init__(self, children) self._label = node # //////////////////////////////////////////////////////////// # Comparison operators # //////////////////////////////////////////////////////////// def __eq__(self, other): return self.__class__ is other.__class__ and (self._label, list(self)) == ( other._label, list(other), ) def __lt__(self, other): if not isinstance(other, Tree): # raise_unorderable_types("<", self, other) # Sometimes children can be pure strings, # so we need to be able to compare with non-trees: return self.__class__.__name__ < other.__class__.__name__ elif self.__class__ is other.__class__: return (self._label, list(self)) < (other._label, list(other)) else: return self.__class__.__name__ < other.__class__.__name__ # @total_ordering doesn't work here, since the class inherits from a builtin class __ne__ = lambda self, other: not self == other __gt__ = lambda self, other: not (self < other or self == other) __le__ = lambda self, other: self < other or self == other __ge__ = lambda self, other: not self < other # //////////////////////////////////////////////////////////// # Disabled list operations # //////////////////////////////////////////////////////////// def __mul__(self, v): raise TypeError("Tree does not support multiplication") def __rmul__(self, v): raise TypeError("Tree does not support multiplication") def __add__(self, v): raise TypeError("Tree does not support addition") def __radd__(self, v): raise TypeError("Tree does not support addition") # //////////////////////////////////////////////////////////// # Indexing (with support for tree positions) # //////////////////////////////////////////////////////////// def __getitem__(self, index): if isinstance(index, (int, slice)): return list.__getitem__(self, index) elif isinstance(index, (list, tuple)): if len(index) == 0: return self elif len(index) == 1: return self[index[0]] else: return self[index[0]][index[1:]] else: raise TypeError( "%s indices must be integers, not %s" % (type(self).__name__, type(index).__name__) ) def __setitem__(self, index, value): if isinstance(index, (int, slice)): return list.__setitem__(self, index, value) elif isinstance(index, (list, tuple)): if len(index) == 0: raise IndexError("The tree position () may not be " "assigned to.") elif len(index) == 1: self[index[0]] = value else: self[index[0]][index[1:]] = value else: raise TypeError( "%s indices must be integers, not %s" % (type(self).__name__, type(index).__name__) ) def __delitem__(self, index): if isinstance(index, (int, slice)): return list.__delitem__(self, index) elif isinstance(index, (list, tuple)): if len(index) == 0: raise IndexError("The tree position () may not be deleted.") elif len(index) == 1: del self[index[0]] else: del self[index[0]][index[1:]] else: raise TypeError( "%s indices must be integers, not %s" % (type(self).__name__, type(index).__name__) ) # //////////////////////////////////////////////////////////// # Basic tree operations # //////////////////////////////////////////////////////////// def _get_node(self): """Outdated method to access the node value; use the label() method instead.""" raise NotImplementedError("Use label() to access a node label.") def _set_node(self, value): """Outdated method to set the node value; use the set_label() method instead.""" raise NotImplementedError("Use set_label() method to set a node label.") node = property(_get_node, _set_node) def label(self): """ Return the node label of the tree. >>> t = Tree.fromstring('(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))') >>> t.label() 'S' :return: the node label (typically a string) :rtype: any """ return self._label def set_label(self, label): """ Set the node label of the tree. >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))") >>> t.set_label("T") >>> print(t) (T (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat)))) :param label: the node label (typically a string) :type label: any """ self._label = label def leaves(self): """ Return the leaves of the tree. >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))") >>> t.leaves() ['the', 'dog', 'chased', 'the', 'cat'] :return: a list containing this tree's leaves. The order reflects the order of the leaves in the tree's hierarchical structure. :rtype: list """ leaves = [] for child in self: if isinstance(child, Tree): leaves.extend(child.leaves()) else: leaves.append(child) return leaves def flatten(self): """ Return a flat version of the tree, with all non-root non-terminals removed. >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))") >>> print(t.flatten()) (S the dog chased the cat) :return: a tree consisting of this tree's root connected directly to its leaves, omitting all intervening non-terminal nodes. :rtype: Tree """ return Tree(self.label(), self.leaves()) def height(self): """ Return the height of the tree. >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))") >>> t.height() 5 >>> print(t[0,0]) (D the) >>> t[0,0].height() 2 :return: The height of this tree. The height of a tree containing no children is 1; the height of a tree containing only leaves is 2; and the height of any other tree is one plus the maximum of its children's heights. :rtype: int """ max_child_height = 0 for child in self: if isinstance(child, Tree): max_child_height = max(max_child_height, child.height()) else: max_child_height = max(max_child_height, 1) return 1 + max_child_height def treepositions(self, order="preorder"): """ >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))") >>> t.treepositions() # doctest: +ELLIPSIS [(), (0,), (0, 0), (0, 0, 0), (0, 1), (0, 1, 0), (1,), (1, 0), (1, 0, 0), ...] >>> for pos in t.treepositions('leaves'): ... t[pos] = t[pos][::-1].upper() >>> print(t) (S (NP (D EHT) (N GOD)) (VP (V DESAHC) (NP (D EHT) (N TAC)))) :param order: One of: ``preorder``, ``postorder``, ``bothorder``, ``leaves``. """ positions = [] if order in ("preorder", "bothorder"): positions.append(()) for i, child in enumerate(self): if isinstance(child, Tree): childpos = child.treepositions(order) positions.extend((i,) + p for p in childpos) else: positions.append((i,)) if order in ("postorder", "bothorder"): positions.append(()) return positions def subtrees(self, filter=None): """ Generate all the subtrees of this tree, optionally restricted to trees matching the filter function. >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))") >>> for s in t.subtrees(lambda t: t.height() == 2): ... print(s) (D the) (N dog) (V chased) (D the) (N cat) :type filter: function :param filter: the function to filter all local trees """ if not filter or filter(self): yield self for child in self: if isinstance(child, Tree): for subtree in child.subtrees(filter): yield subtree def productions(self): """ Generate the productions that correspond to the non-terminal nodes of the tree. For each subtree of the form (P: C1 C2 ... Cn) this produces a production of the form P -> C1 C2 ... Cn. >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))") >>> t.productions() [S -> NP VP, NP -> D N, D -> 'the', N -> 'dog', VP -> V NP, V -> 'chased', NP -> D N, D -> 'the', N -> 'cat'] :rtype: list(Production) """ if not isinstance(self._label, str): raise TypeError( "Productions can only be generated from trees having node labels that are strings" ) prods = [Production(Nonterminal(self._label), _child_names(self))] for child in self: if isinstance(child, Tree): prods += child.productions() return prods def pos(self): """ Return a sequence of pos-tagged words extracted from the tree. >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))") >>> t.pos() [('the', 'D'), ('dog', 'N'), ('chased', 'V'), ('the', 'D'), ('cat', 'N')] :return: a list of tuples containing leaves and pre-terminals (part-of-speech tags). The order reflects the order of the leaves in the tree's hierarchical structure. :rtype: list(tuple) """ pos = [] for child in self: if isinstance(child, Tree): pos.extend(child.pos()) else: pos.append((child, self._label)) return pos def leaf_treeposition(self, index): """ :return: The tree position of the ``index``-th leaf in this tree. I.e., if ``tp=self.leaf_treeposition(i)``, then ``self[tp]==self.leaves()[i]``. :raise IndexError: If this tree contains fewer than ``index+1`` leaves, or if ``index<0``. """ if index < 0: raise IndexError("index must be non-negative") stack = [(self, ())] while stack: value, treepos = stack.pop() if not isinstance(value, Tree): if index == 0: return treepos else: index -= 1 else: for i in range(len(value) - 1, -1, -1): stack.append((value[i], treepos + (i,))) raise IndexError("index must be less than or equal to len(self)") def treeposition_spanning_leaves(self, start, end): """ :return: The tree position of the lowest descendant of this tree that dominates ``self.leaves()[start:end]``. :raise ValueError: if ``end <= start`` """ if end <= start: raise ValueError("end must be greater than start") # Find the tree positions of the start & end leaves, and # take the longest common subsequence. start_treepos = self.leaf_treeposition(start) end_treepos = self.leaf_treeposition(end - 1) # Find the first index where they mismatch: for i in range(len(start_treepos)): if i == len(end_treepos) or start_treepos[i] != end_treepos[i]: return start_treepos[:i] return start_treepos # //////////////////////////////////////////////////////////// # Transforms # //////////////////////////////////////////////////////////// def chomsky_normal_form( self, factor="right", horzMarkov=None, vertMarkov=0, childChar="|", parentChar="^", ): """ This method can modify a tree in three ways: 1. Convert a tree into its Chomsky Normal Form (CNF) equivalent -- Every subtree has either two non-terminals or one terminal as its children. This process requires the creation of more"artificial" non-terminal nodes. 2. Markov (vertical) smoothing of children in new artificial nodes 3. Horizontal (parent) annotation of nodes :param factor: Right or left factoring method (default = "right") :type factor: str = [left|right] :param horzMarkov: Markov order for sibling smoothing in artificial nodes (None (default) = include all siblings) :type horzMarkov: int | None :param vertMarkov: Markov order for parent smoothing (0 (default) = no vertical annotation) :type vertMarkov: int | None :param childChar: A string used in construction of the artificial nodes, separating the head of the original subtree from the child nodes that have yet to be expanded (default = "|") :type childChar: str :param parentChar: A string used to separate the node representation from its vertical annotation :type parentChar: str """ from nltk.treetransforms import chomsky_normal_form chomsky_normal_form(self, factor, horzMarkov, vertMarkov, childChar, parentChar) def un_chomsky_normal_form( self, expandUnary=True, childChar="|", parentChar="^", unaryChar="+" ): """ This method modifies the tree in three ways: 1. Transforms a tree in Chomsky Normal Form back to its original structure (branching greater than two) 2. Removes any parent annotation (if it exists) 3. (optional) expands unary subtrees (if previously collapsed with collapseUnary(...) ) :param expandUnary: Flag to expand unary or not (default = True) :type expandUnary: bool :param childChar: A string separating the head node from its children in an artificial node (default = "|") :type childChar: str :param parentChar: A sting separating the node label from its parent annotation (default = "^") :type parentChar: str :param unaryChar: A string joining two non-terminals in a unary production (default = "+") :type unaryChar: str """ from nltk.treetransforms import un_chomsky_normal_form un_chomsky_normal_form(self, expandUnary, childChar, parentChar, unaryChar) def collapse_unary(self, collapsePOS=False, collapseRoot=False, joinChar="+"): """ Collapse subtrees with a single child (ie. unary productions) into a new non-terminal (Tree node) joined by 'joinChar'. This is useful when working with algorithms that do not allow unary productions, and completely removing the unary productions would require loss of useful information. The Tree is modified directly (since it is passed by reference) and no value is returned. :param collapsePOS: 'False' (default) will not collapse the parent of leaf nodes (ie. Part-of-Speech tags) since they are always unary productions :type collapsePOS: bool :param collapseRoot: 'False' (default) will not modify the root production if it is unary. For the Penn WSJ treebank corpus, this corresponds to the TOP -> productions. :type collapseRoot: bool :param joinChar: A string used to connect collapsed node values (default = "+") :type joinChar: str """ from nltk.treetransforms import collapse_unary collapse_unary(self, collapsePOS, collapseRoot, joinChar) # //////////////////////////////////////////////////////////// # Convert, copy # //////////////////////////////////////////////////////////// @classmethod def convert(cls, tree): """ Convert a tree between different subtypes of Tree. ``cls`` determines which class will be used to encode the new tree. :type tree: Tree :param tree: The tree that should be converted. :return: The new Tree. """ if isinstance(tree, Tree): children = [cls.convert(child) for child in tree] return cls(tree._label, children) else: return tree def __copy__(self): return self.copy() def __deepcopy__(self, memo): return self.copy(deep=True) def copy(self, deep=False): if not deep: return type(self)(self._label, self) else: return type(self).convert(self) def _frozen_class(self): return ImmutableTree def freeze(self, leaf_freezer=None): frozen_class = self._frozen_class() if leaf_freezer is None: newcopy = frozen_class.convert(self) else: newcopy = self.copy(deep=True) for pos in newcopy.treepositions("leaves"): newcopy[pos] = leaf_freezer(newcopy[pos]) newcopy = frozen_class.convert(newcopy) hash(newcopy) # Make sure the leaves are hashable. return newcopy # //////////////////////////////////////////////////////////// # Parsing # //////////////////////////////////////////////////////////// @classmethod def fromstring( cls, s, brackets="()", read_node=None, read_leaf=None, node_pattern=None, leaf_pattern=None, remove_empty_top_bracketing=False, ): """ Read a bracketed tree string and return the resulting tree. Trees are represented as nested brackettings, such as:: (S (NP (NNP John)) (VP (V runs))) :type s: str :param s: The string to read :type brackets: str (length=2) :param brackets: The bracket characters used to mark the beginning and end of trees and subtrees. :type read_node: function :type read_leaf: function :param read_node, read_leaf: If specified, these functions are applied to the substrings of ``s`` corresponding to nodes and leaves (respectively) to obtain the values for those nodes and leaves. They should have the following signature: read_node(str) -> value For example, these functions could be used to process nodes and leaves whose values should be some type other than string (such as ``FeatStruct``). Note that by default, node strings and leaf strings are delimited by whitespace and brackets; to override this default, use the ``node_pattern`` and ``leaf_pattern`` arguments. :type node_pattern: str :type leaf_pattern: str :param node_pattern, leaf_pattern: Regular expression patterns used to find node and leaf substrings in ``s``. By default, both nodes patterns are defined to match any sequence of non-whitespace non-bracket characters. :type remove_empty_top_bracketing: bool :param remove_empty_top_bracketing: If the resulting tree has an empty node label, and is length one, then return its single child instead. This is useful for treebank trees, which sometimes contain an extra level of bracketing. :return: A tree corresponding to the string representation ``s``. If this class method is called using a subclass of Tree, then it will return a tree of that type. :rtype: Tree """ if not isinstance(brackets, str) or len(brackets) != 2: raise TypeError("brackets must be a length-2 string") if re.search("\s", brackets): raise TypeError("whitespace brackets not allowed") # Construct a regexp that will tokenize the string. open_b, close_b = brackets open_pattern, close_pattern = (re.escape(open_b), re.escape(close_b)) if node_pattern is None: node_pattern = "[^\s%s%s]+" % (open_pattern, close_pattern) if leaf_pattern is None: leaf_pattern = "[^\s%s%s]+" % (open_pattern, close_pattern) token_re = re.compile( "%s\s*(%s)?|%s|(%s)" % (open_pattern, node_pattern, close_pattern, leaf_pattern) ) # Walk through each token, updating a stack of trees. stack = [(None, [])] # list of (node, children) tuples for match in token_re.finditer(s): token = match.group() # Beginning of a tree/subtree if token[0] == open_b: if len(stack) == 1 and len(stack[0][1]) > 0: cls._parse_error(s, match, "end-of-string") label = token[1:].lstrip() if read_node is not None: label = read_node(label) stack.append((label, [])) # End of a tree/subtree elif token == close_b: if len(stack) == 1: if len(stack[0][1]) == 0: cls._parse_error(s, match, open_b) else: cls._parse_error(s, match, "end-of-string") label, children = stack.pop() stack[-1][1].append(cls(label, children)) # Leaf node else: if len(stack) == 1: cls._parse_error(s, match, open_b) if read_leaf is not None: token = read_leaf(token) stack[-1][1].append(token) # check that we got exactly one complete tree. if len(stack) > 1: cls._parse_error(s, "end-of-string", close_b) elif len(stack[0][1]) == 0: cls._parse_error(s, "end-of-string", open_b) else: assert stack[0][0] is None assert len(stack[0][1]) == 1 tree = stack[0][1][0] # If the tree has an extra level with node='', then get rid of # it. E.g.: "((S (NP ...) (VP ...)))" if remove_empty_top_bracketing and tree._label == "" and len(tree) == 1: tree = tree[0] # return the tree. return tree @classmethod def _parse_error(cls, s, match, expecting): """ Display a friendly error message when parsing a tree string fails. :param s: The string we're parsing. :param match: regexp match of the problem token. :param expecting: what we expected to see instead. """ # Construct a basic error message if match == "end-of-string": pos, token = len(s), "end-of-string" else: pos, token = match.start(), match.group() msg = "%s.read(): expected %r but got %r\n%sat index %d." % ( cls.__name__, expecting, token, " " * 12, pos, ) # Add a display showing the error token itsels: s = s.replace("\n", " ").replace("\t", " ") offset = pos if len(s) > pos + 10: s = s[: pos + 10] + "..." if pos > 10: s = "..." + s[pos - 10 :] offset = 13 msg += '\n%s"%s"\n%s^' % (" " * 16, s, " " * (17 + offset)) raise ValueError(msg) # //////////////////////////////////////////////////////////// # Visualization & String Representation # //////////////////////////////////////////////////////////// def draw(self): """ Open a new window containing a graphical diagram of this tree. """ from nltk.draw.tree import draw_trees draw_trees(self) def pretty_print(self, sentence=None, highlight=(), stream=None, **kwargs): """ Pretty-print this tree as ASCII or Unicode art. For explanation of the arguments, see the documentation for `nltk.treeprettyprinter.TreePrettyPrinter`. """ from nltk.treeprettyprinter import TreePrettyPrinter print(TreePrettyPrinter(self, sentence, highlight).text(**kwargs), file=stream) def __repr__(self): childstr = ", ".join(repr(c) for c in self) return "%s(%s, [%s])" % ( type(self).__name__, repr(self._label), childstr, ) def _repr_png_(self): """ Draws and outputs in PNG for ipython. PNG is used instead of PDF, since it can be displayed in the qt console and has wider browser support. """ import os import base64 import subprocess import tempfile from nltk.draw.tree import tree_to_treesegment from nltk.draw.util import CanvasFrame from nltk.internals import find_binary _canvas_frame = CanvasFrame() widget = tree_to_treesegment(_canvas_frame.canvas(), self) _canvas_frame.add_widget(widget) x, y, w, h = widget.bbox() # print_to_file uses scrollregion to set the width and height of the pdf. _canvas_frame.canvas()["scrollregion"] = (0, 0, w, h) with tempfile.NamedTemporaryFile() as file: in_path = "{0:}.ps".format(file.name) out_path = "{0:}.png".format(file.name) _canvas_frame.print_to_file(in_path) _canvas_frame.destroy_widget(widget) try: subprocess.call( [ find_binary( "gs", binary_names=["gswin32c.exe", "gswin64c.exe"], env_vars=["PATH"], verbose=False, ) ] + "-q -dEPSCrop -sDEVICE=png16m -r90 -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -dSAFER -dBATCH -dNOPAUSE -sOutputFile={0:} {1:}".format( out_path, in_path ).split() ) except LookupError: pre_error_message = str( "The Ghostscript executable isn't found.\n" "See http://web.mit.edu/ghostscript/www/Install.htm\n" "If you're using a Mac, you can try installing\n" "https://docs.brew.sh/Installation then `brew install ghostscript`" ) print(pre_error_message, file=sys.stderr) raise LookupError with open(out_path, "rb") as sr: res = sr.read() os.remove(in_path) os.remove(out_path) return base64.b64encode(res).decode() def __str__(self): return self.pformat() def pprint(self, **kwargs): """ Print a string representation of this Tree to 'stream' """ if "stream" in kwargs: stream = kwargs["stream"] del kwargs["stream"] else: stream = None print(self.pformat(**kwargs), file=stream) def pformat(self, margin=70, indent=0, nodesep="", parens="()", quotes=False): """ :return: A pretty-printed string representation of this tree. :rtype: str :param margin: The right margin at which to do line-wrapping. :type margin: int :param indent: The indentation level at which printing begins. This number is used to decide how far to indent subsequent lines. :type indent: int :param nodesep: A string that is used to separate the node from the children. E.g., the default value ``':'`` gives trees like ``(S: (NP: I) (VP: (V: saw) (NP: it)))``. """ # Try writing it on one line. s = self._pformat_flat(nodesep, parens, quotes) if len(s) + indent < margin: return s # If it doesn't fit on one line, then write it on multi-lines. if isinstance(self._label, str): s = "%s%s%s" % (parens[0], self._label, nodesep) else: s = "%s%s%s" % (parens[0], repr(self._label), nodesep) for child in self: if isinstance(child, Tree): s += ( "\n" + " " * (indent + 2) + child.pformat(margin, indent + 2, nodesep, parens, quotes) ) elif isinstance(child, tuple): s += "\n" + " " * (indent + 2) + "/".join(child) elif isinstance(child, str) and not quotes: s += "\n" + " " * (indent + 2) + "%s" % child else: s += "\n" + " " * (indent + 2) + repr(child) return s + parens[1] def pformat_latex_qtree(self): r""" Returns a representation of the tree compatible with the LaTeX qtree package. This consists of the string ``\Tree`` followed by the tree represented in bracketed notation. For example, the following result was generated from a parse tree of the sentence ``The announcement astounded us``:: \Tree [.I'' [.N'' [.D The ] [.N' [.N announcement ] ] ] [.I' [.V'' [.V' [.V astounded ] [.N'' [.N' [.N us ] ] ] ] ] ] ] See http://www.ling.upenn.edu/advice/latex.html for the LaTeX style file for the qtree package. :return: A latex qtree representation of this tree. :rtype: str """ reserved_chars = re.compile("([#\$%&~_\{\}])") pformat = self.pformat(indent=6, nodesep="", parens=("[.", " ]")) return r"\Tree " + re.sub(reserved_chars, r"\\\1", pformat) def _pformat_flat(self, nodesep, parens, quotes): childstrs = [] for child in self: if isinstance(child, Tree): childstrs.append(child._pformat_flat(nodesep, parens, quotes)) elif isinstance(child, tuple): childstrs.append("/".join(child)) elif isinstance(child, str) and not quotes: childstrs.append("%s" % child) else: childstrs.append(repr(child)) if isinstance(self._label, str): return "%s%s%s %s%s" % ( parens[0], self._label, nodesep, " ".join(childstrs), parens[1], ) else: return "%s%s%s %s%s" % ( parens[0], repr(self._label), nodesep, " ".join(childstrs), parens[1], ) class ImmutableTree(Tree): def __init__(self, node, children=None): super(ImmutableTree, self).__init__(node, children) # Precompute our hash value. This ensures that we're really # immutable. It also means we only have to calculate it once. try: self._hash = hash((self._label, tuple(self))) except (TypeError, ValueError): raise ValueError( "%s: node value and children " "must be immutable" % type(self).__name__ ) def __setitem__(self, index, value): raise ValueError("%s may not be modified" % type(self).__name__) def __setslice__(self, i, j, value): raise ValueError("%s may not be modified" % type(self).__name__) def __delitem__(self, index): raise ValueError("%s may not be modified" % type(self).__name__) def __delslice__(self, i, j): raise ValueError("%s may not be modified" % type(self).__name__) def __iadd__(self, other): raise ValueError("%s may not be modified" % type(self).__name__) def __imul__(self, other): raise ValueError("%s may not be modified" % type(self).__name__) def append(self, v): raise ValueError("%s may not be modified" % type(self).__name__) def extend(self, v): raise ValueError("%s may not be modified" % type(self).__name__) def pop(self, v=None): raise ValueError("%s may not be modified" % type(self).__name__) def remove(self, v): raise ValueError("%s may not be modified" % type(self).__name__) def reverse(self): raise ValueError("%s may not be modified" % type(self).__name__) def sort(self): raise ValueError("%s may not be modified" % type(self).__name__) def __hash__(self): return self._hash def set_label(self, value): """ Set the node label. This will only succeed the first time the node label is set, which should occur in ImmutableTree.__init__(). """ if hasattr(self, "_label"): raise ValueError("%s may not be modified" % type(self).__name__) self._label = value ###################################################################### ## Parented trees ###################################################################### class AbstractParentedTree(Tree, metaclass=ABCMeta): """ An abstract base class for a ``Tree`` that automatically maintains pointers to parent nodes. These parent pointers are updated whenever any change is made to a tree's structure. Two subclasses are currently defined: - ``ParentedTree`` is used for tree structures where each subtree has at most one parent. This class should be used in cases where there is no"sharing" of subtrees. - ``MultiParentedTree`` is used for tree structures where a subtree may have zero or more parents. This class should be used in cases where subtrees may be shared. Subclassing =========== The ``AbstractParentedTree`` class redefines all operations that modify a tree's structure to call two methods, which are used by subclasses to update parent information: - ``_setparent()`` is called whenever a new child is added. - ``_delparent()`` is called whenever a child is removed. """ def __init__(self, node, children=None): super(AbstractParentedTree, self).__init__(node, children) # If children is None, the tree is read from node, and # all parents will be set during parsing. if children is not None: # Otherwise we have to set the parent of the children. # Iterate over self, and *not* children, because children # might be an iterator. for i, child in enumerate(self): if isinstance(child, Tree): self._setparent(child, i, dry_run=True) for i, child in enumerate(self): if isinstance(child, Tree): self._setparent(child, i) # //////////////////////////////////////////////////////////// # Parent management # //////////////////////////////////////////////////////////// @abstractmethod def _setparent(self, child, index, dry_run=False): """ Update the parent pointer of ``child`` to point to ``self``. This method is only called if the type of ``child`` is ``Tree``; i.e., it is not called when adding a leaf to a tree. This method is always called before the child is actually added to the child list of ``self``. :type child: Tree :type index: int :param index: The index of ``child`` in ``self``. :raise TypeError: If ``child`` is a tree with an impropriate type. Typically, if ``child`` is a tree, then its type needs to match the type of ``self``. This prevents mixing of different tree types (single-parented, multi-parented, and non-parented). :param dry_run: If true, the don't actually set the child's parent pointer; just check for any error conditions, and raise an exception if one is found. """ @abstractmethod def _delparent(self, child, index): """ Update the parent pointer of ``child`` to not point to self. This method is only called if the type of ``child`` is ``Tree``; i.e., it is not called when removing a leaf from a tree. This method is always called before the child is actually removed from the child list of ``self``. :type child: Tree :type index: int :param index: The index of ``child`` in ``self``. """ # //////////////////////////////////////////////////////////// # Methods that add/remove children # //////////////////////////////////////////////////////////// # Every method that adds or removes a child must make # appropriate calls to _setparent() and _delparent(). def __delitem__(self, index): # del ptree[start:stop] if isinstance(index, slice): start, stop, step = slice_bounds(self, index, allow_step=True) # Clear all the children pointers. for i in range(start, stop, step): if isinstance(self[i], Tree): self._delparent(self[i], i) # Delete the children from our child list. super(AbstractParentedTree, self).__delitem__(index) # del ptree[i] elif isinstance(index, int): if index < 0: index += len(self) if index < 0: raise IndexError("index out of range") # Clear the child's parent pointer. if isinstance(self[index], Tree): self._delparent(self[index], index) # Remove the child from our child list. super(AbstractParentedTree, self).__delitem__(index) elif isinstance(index, (list, tuple)): # del ptree[()] if len(index) == 0: raise IndexError("The tree position () may not be deleted.") # del ptree[(i,)] elif len(index) == 1: del self[index[0]] # del ptree[i1, i2, i3] else: del self[index[0]][index[1:]] else: raise TypeError( "%s indices must be integers, not %s" % (type(self).__name__, type(index).__name__) ) def __setitem__(self, index, value): # ptree[start:stop] = value if isinstance(index, slice): start, stop, step = slice_bounds(self, index, allow_step=True) # make a copy of value, in case it's an iterator if not isinstance(value, (list, tuple)): value = list(value) # Check for any error conditions, so we can avoid ending # up in an inconsistent state if an error does occur. for i, child in enumerate(value): if isinstance(child, Tree): self._setparent(child, start + i * step, dry_run=True) # clear the child pointers of all parents we're removing for i in range(start, stop, step): if isinstance(self[i], Tree): self._delparent(self[i], i) # set the child pointers of the new children. We do this # after clearing *all* child pointers, in case we're e.g. # reversing the elements in a tree. for i, child in enumerate(value): if isinstance(child, Tree): self._setparent(child, start + i * step) # finally, update the content of the child list itself. super(AbstractParentedTree, self).__setitem__(index, value) # ptree[i] = value elif isinstance(index, int): if index < 0: index += len(self) if index < 0: raise IndexError("index out of range") # if the value is not changing, do nothing. if value is self[index]: return # Set the new child's parent pointer. if isinstance(value, Tree): self._setparent(value, index) # Remove the old child's parent pointer if isinstance(self[index], Tree): self._delparent(self[index], index) # Update our child list. super(AbstractParentedTree, self).__setitem__(index, value) elif isinstance(index, (list, tuple)): # ptree[()] = value if len(index) == 0: raise IndexError("The tree position () may not be assigned to.") # ptree[(i,)] = value elif len(index) == 1: self[index[0]] = value # ptree[i1, i2, i3] = value else: self[index[0]][index[1:]] = value else: raise TypeError( "%s indices must be integers, not %s" % (type(self).__name__, type(index).__name__) ) def append(self, child): if isinstance(child, Tree): self._setparent(child, len(self)) super(AbstractParentedTree, self).append(child) def extend(self, children): for child in children: if isinstance(child, Tree): self._setparent(child, len(self)) super(AbstractParentedTree, self).append(child) def insert(self, index, child): # Handle negative indexes. Note that if index < -len(self), # we do *not* raise an IndexError, unlike __getitem__. This # is done for consistency with list.__getitem__ and list.index. if index < 0: index += len(self) if index < 0: index = 0 # Set the child's parent, and update our child list. if isinstance(child, Tree): self._setparent(child, index) super(AbstractParentedTree, self).insert(index, child) def pop(self, index=-1): if index < 0: index += len(self) if index < 0: raise IndexError("index out of range") if isinstance(self[index], Tree): self._delparent(self[index], index) return super(AbstractParentedTree, self).pop(index) # n.b.: like `list`, this is done by equality, not identity! # To remove a specific child, use del ptree[i]. def remove(self, child): index = self.index(child) if isinstance(self[index], Tree): self._delparent(self[index], index) super(AbstractParentedTree, self).remove(child) # We need to implement __getslice__ and friends, even though # they're deprecated, because otherwise list.__getslice__ will get # called (since we're subclassing from list). Just delegate to # __getitem__ etc., but use max(0, start) and max(0, stop) because # because negative indices are already handled *before* # __getslice__ is called; and we don't want to double-count them. if hasattr(list, "__getslice__"): def __getslice__(self, start, stop): return self.__getitem__(slice(max(0, start), max(0, stop))) def __delslice__(self, start, stop): return self.__delitem__(slice(max(0, start), max(0, stop))) def __setslice__(self, start, stop, value): return self.__setitem__(slice(max(0, start), max(0, stop)), value) class ParentedTree(AbstractParentedTree): """ A ``Tree`` that automatically maintains parent pointers for single-parented trees. The following are methods for querying the structure of a parented tree: ``parent``, ``parent_index``, ``left_sibling``, ``right_sibling``, ``root``, ``treeposition``. Each ``ParentedTree`` may have at most one parent. In particular, subtrees may not be shared. Any attempt to reuse a single ``ParentedTree`` as a child of more than one parent (or as multiple children of the same parent) will cause a ``ValueError`` exception to be raised. ``ParentedTrees`` should never be used in the same tree as ``Trees`` or ``MultiParentedTrees``. Mixing tree implementations may result in incorrect parent pointers and in ``TypeError`` exceptions. """ def __init__(self, node, children=None): self._parent = None """The parent of this Tree, or None if it has no parent.""" super(ParentedTree, self).__init__(node, children) if children is None: # If children is None, the tree is read from node. # After parsing, the parent of the immediate children # will point to an intermediate tree, not self. # We fix this by brute force: for i, child in enumerate(self): if isinstance(child, Tree): child._parent = None self._setparent(child, i) def _frozen_class(self): return ImmutableParentedTree # ///////////////////////////////////////////////////////////////// # Methods # ///////////////////////////////////////////////////////////////// def parent(self): """The parent of this tree, or None if it has no parent.""" return self._parent def parent_index(self): """ The index of this tree in its parent. I.e., ``ptree.parent()[ptree.parent_index()] is ptree``. Note that ``ptree.parent_index()`` is not necessarily equal to ``ptree.parent.index(ptree)``, since the ``index()`` method returns the first child that is equal to its argument. """ if self._parent is None: return None for i, child in enumerate(self._parent): if child is self: return i assert False, "expected to find self in self._parent!" def left_sibling(self): """The left sibling of this tree, or None if it has none.""" parent_index = self.parent_index() if self._parent and parent_index > 0: return self._parent[parent_index - 1] return None # no left sibling def right_sibling(self): """The right sibling of this tree, or None if it has none.""" parent_index = self.parent_index() if self._parent and parent_index < (len(self._parent) - 1): return self._parent[parent_index + 1] return None # no right sibling def root(self): """ The root of this tree. I.e., the unique ancestor of this tree whose parent is None. If ``ptree.parent()`` is None, then ``ptree`` is its own root. """ root = self while root.parent() is not None: root = root.parent() return root def treeposition(self): """ The tree position of this tree, relative to the root of the tree. I.e., ``ptree.root[ptree.treeposition] is ptree``. """ if self.parent() is None: return () else: return self.parent().treeposition() + (self.parent_index(),) # ///////////////////////////////////////////////////////////////// # Parent Management # ///////////////////////////////////////////////////////////////// def _delparent(self, child, index): # Sanity checks assert isinstance(child, ParentedTree) assert self[index] is child assert child._parent is self # Delete child's parent pointer. child._parent = None def _setparent(self, child, index, dry_run=False): # If the child's type is incorrect, then complain. if not isinstance(child, ParentedTree): raise TypeError( "Can not insert a non-ParentedTree " + "into a ParentedTree" ) # If child already has a parent, then complain. if child._parent is not None: raise ValueError("Can not insert a subtree that already " "has a parent.") # Set child's parent pointer & index. if not dry_run: child._parent = self class MultiParentedTree(AbstractParentedTree): """ A ``Tree`` that automatically maintains parent pointers for multi-parented trees. The following are methods for querying the structure of a multi-parented tree: ``parents()``, ``parent_indices()``, ``left_siblings()``, ``right_siblings()``, ``roots``, ``treepositions``. Each ``MultiParentedTree`` may have zero or more parents. In particular, subtrees may be shared. If a single ``MultiParentedTree`` is used as multiple children of the same parent, then that parent will appear multiple times in its ``parents()`` method. ``MultiParentedTrees`` should never be used in the same tree as ``Trees`` or ``ParentedTrees``. Mixing tree implementations may result in incorrect parent pointers and in ``TypeError`` exceptions. """ def __init__(self, node, children=None): self._parents = [] """A list of this tree's parents. This list should not contain duplicates, even if a parent contains this tree multiple times.""" super(MultiParentedTree, self).__init__(node, children) if children is None: # If children is None, the tree is read from node. # After parsing, the parent(s) of the immediate children # will point to an intermediate tree, not self. # We fix this by brute force: for i, child in enumerate(self): if isinstance(child, Tree): child._parents = [] self._setparent(child, i) def _frozen_class(self): return ImmutableMultiParentedTree # ///////////////////////////////////////////////////////////////// # Methods # ///////////////////////////////////////////////////////////////// def parents(self): """ The set of parents of this tree. If this tree has no parents, then ``parents`` is the empty set. To check if a tree is used as multiple children of the same parent, use the ``parent_indices()`` method. :type: list(MultiParentedTree) """ return list(self._parents) def left_siblings(self): """ A list of all left siblings of this tree, in any of its parent trees. A tree may be its own left sibling if it is used as multiple contiguous children of the same parent. A tree may appear multiple times in this list if it is the left sibling of this tree with respect to multiple parents. :type: list(MultiParentedTree) """ return [ parent[index - 1] for (parent, index) in self._get_parent_indices() if index > 0 ] def right_siblings(self): """ A list of all right siblings of this tree, in any of its parent trees. A tree may be its own right sibling if it is used as multiple contiguous children of the same parent. A tree may appear multiple times in this list if it is the right sibling of this tree with respect to multiple parents. :type: list(MultiParentedTree) """ return [ parent[index + 1] for (parent, index) in self._get_parent_indices() if index < (len(parent) - 1) ] def _get_parent_indices(self): return [ (parent, index) for parent in self._parents for index, child in enumerate(parent) if child is self ] def roots(self): """ The set of all roots of this tree. This set is formed by tracing all possible parent paths until trees with no parents are found. :type: list(MultiParentedTree) """ return list(self._get_roots_helper({}).values()) def _get_roots_helper(self, result): if self._parents: for parent in self._parents: parent._get_roots_helper(result) else: result[id(self)] = self return result def parent_indices(self, parent): """ Return a list of the indices where this tree occurs as a child of ``parent``. If this child does not occur as a child of ``parent``, then the empty list is returned. The following is always true:: for parent_index in ptree.parent_indices(parent): parent[parent_index] is ptree """ if parent not in self._parents: return [] else: return [index for (index, child) in enumerate(parent) if child is self] def treepositions(self, root): """ Return a list of all tree positions that can be used to reach this multi-parented tree starting from ``root``. I.e., the following is always true:: for treepos in ptree.treepositions(root): root[treepos] is ptree """ if self is root: return [()] else: return [ treepos + (index,) for parent in self._parents for treepos in parent.treepositions(root) for (index, child) in enumerate(parent) if child is self ] # ///////////////////////////////////////////////////////////////// # Parent Management # ///////////////////////////////////////////////////////////////// def _delparent(self, child, index): # Sanity checks assert isinstance(child, MultiParentedTree) assert self[index] is child assert len([p for p in child._parents if p is self]) == 1 # If the only copy of child in self is at index, then delete # self from child's parent list. for i, c in enumerate(self): if c is child and i != index: break else: child._parents.remove(self) def _setparent(self, child, index, dry_run=False): # If the child's type is incorrect, then complain. if not isinstance(child, MultiParentedTree): raise TypeError( "Can not insert a non-MultiParentedTree " + "into a MultiParentedTree" ) # Add self as a parent pointer if it's not already listed. if not dry_run: for parent in child._parents: if parent is self: break else: child._parents.append(self) class ImmutableParentedTree(ImmutableTree, ParentedTree): pass class ImmutableMultiParentedTree(ImmutableTree, MultiParentedTree): pass ###################################################################### ## Probabilistic trees ###################################################################### class ProbabilisticTree(Tree, ProbabilisticMixIn): def __init__(self, node, children=None, **prob_kwargs): Tree.__init__(self, node, children) ProbabilisticMixIn.__init__(self, **prob_kwargs) # We have to patch up these methods to make them work right: def _frozen_class(self): return ImmutableProbabilisticTree def __repr__(self): return "%s (p=%r)" % (Tree.__repr__(self), self.prob()) def __str__(self): return "%s (p=%.6g)" % (self.pformat(margin=60), self.prob()) def copy(self, deep=False): if not deep: return type(self)(self._label, self, prob=self.prob()) else: return type(self).convert(self) @classmethod def convert(cls, val): if isinstance(val, Tree): children = [cls.convert(child) for child in val] if isinstance(val, ProbabilisticMixIn): return cls(val._label, children, prob=val.prob()) else: return cls(val._label, children, prob=1.0) else: return val def __eq__(self, other): return self.__class__ is other.__class__ and ( self._label, list(self), self.prob(), ) == (other._label, list(other), other.prob()) def __lt__(self, other): if not isinstance(other, Tree): raise_unorderable_types("<", self, other) if self.__class__ is other.__class__: return (self._label, list(self), self.prob()) < ( other._label, list(other), other.prob(), ) else: return self.__class__.__name__ < other.__class__.__name__ class ImmutableProbabilisticTree(ImmutableTree, ProbabilisticMixIn): def __init__(self, node, children=None, **prob_kwargs): ImmutableTree.__init__(self, node, children) ProbabilisticMixIn.__init__(self, **prob_kwargs) self._hash = hash((self._label, tuple(self), self.prob())) # We have to patch up these methods to make them work right: def _frozen_class(self): return ImmutableProbabilisticTree def __repr__(self): return "%s [%s]" % (Tree.__repr__(self), self.prob()) def __str__(self): return "%s [%s]" % (self.pformat(margin=60), self.prob()) def copy(self, deep=False): if not deep: return type(self)(self._label, self, prob=self.prob()) else: return type(self).convert(self) @classmethod def convert(cls, val): if isinstance(val, Tree): children = [cls.convert(child) for child in val] if isinstance(val, ProbabilisticMixIn): return cls(val._label, children, prob=val.prob()) else: return cls(val._label, children, prob=1.0) else: return val def _child_names(tree): names = [] for child in tree: if isinstance(child, Tree): names.append(Nonterminal(child._label)) else: names.append(child) return names ###################################################################### ## Parsing ###################################################################### def bracket_parse(s): """ Use Tree.read(s, remove_empty_top_bracketing=True) instead. """ raise NameError("Use Tree.read(s, remove_empty_top_bracketing=True) instead.") def sinica_parse(s): """ Parse a Sinica Treebank string and return a tree. Trees are represented as nested brackettings, as shown in the following example (X represents a Chinese character): S(goal:NP(Head:Nep:XX)|theme:NP(Head:Nhaa:X)|quantity:Dab:X|Head:VL2:X)#0(PERIODCATEGORY) :return: A tree corresponding to the string representation. :rtype: Tree :param s: The string to be converted :type s: str """ tokens = re.split(r"([()| ])", s) for i in range(len(tokens)): if tokens[i] == "(": tokens[i - 1], tokens[i] = ( tokens[i], tokens[i - 1], ) # pull nonterminal inside parens elif ":" in tokens[i]: fields = tokens[i].split(":") if len(fields) == 2: # non-terminal tokens[i] = fields[1] else: tokens[i] = "(" + fields[-2] + " " + fields[-1] + ")" elif tokens[i] == "|": tokens[i] = "" treebank_string = " ".join(tokens) return Tree.fromstring(treebank_string, remove_empty_top_bracketing=True) # s = re.sub(r'^#[^\s]*\s', '', s) # remove leading identifier # s = re.sub(r'\w+:', '', s) # remove role tags # return s ###################################################################### ## Demonstration ###################################################################### def demo(): """ A demonstration showing how Trees and Trees can be used. This demonstration creates a Tree, and loads a Tree from the Treebank corpus, and shows the results of calling several of their methods. """ from nltk import Tree, ProbabilisticTree # Demonstrate tree parsing. s = "(S (NP (DT the) (NN cat)) (VP (VBD ate) (NP (DT a) (NN cookie))))" t = Tree.fromstring(s) print("Convert bracketed string into tree:") print(t) print(t.__repr__()) print("Display tree properties:") print(t.label()) # tree's constituent type print(t[0]) # tree's first child print(t[1]) # tree's second child print(t.height()) print(t.leaves()) print(t[1]) print(t[1, 1]) print(t[1, 1, 0]) # Demonstrate tree modification. the_cat = t[0] the_cat.insert(1, Tree.fromstring("(JJ big)")) print("Tree modification:") print(t) t[1, 1, 1] = Tree.fromstring("(NN cake)") print(t) print() # Tree transforms print("Collapse unary:") t.collapse_unary() print(t) print("Chomsky normal form:") t.chomsky_normal_form() print(t) print() # Demonstrate probabilistic trees. pt = ProbabilisticTree("x", ["y", "z"], prob=0.5) print("Probabilistic Tree:") print(pt) print() # Demonstrate parsing of treebank output format. t = Tree.fromstring(t.pformat()) print("Convert tree to bracketed string and back again:") print(t) print() # Demonstrate LaTeX output print("LaTeX output:") print(t.pformat_latex_qtree()) print() # Demonstrate Productions print("Production output:") print(t.productions()) print() # Demonstrate tree nodes containing objects other than strings t.set_label(("test", 3)) print(t) __all__ = [ "ImmutableProbabilisticTree", "ImmutableTree", "ProbabilisticMixIn", "ProbabilisticTree", "Tree", "bracket_parse", "sinica_parse", "ParentedTree", "MultiParentedTree", "ImmutableParentedTree", "ImmutableMultiParentedTree", ]
36.909497
154
0.545741
fbd29548145504691706a2864fe3cc63a2cbbe04
6,428
py
Python
tests/test_utils.py
dkrm0/python-shaarli-client
3b5b2431b40a52bbf2b97f5a542e9ae9743c4723
[ "MIT" ]
30
2017-01-17T14:41:42.000Z
2022-03-18T12:27:52.000Z
tests/test_utils.py
dkrm0/python-shaarli-client
3b5b2431b40a52bbf2b97f5a542e9ae9743c4723
[ "MIT" ]
40
2017-01-15T00:00:24.000Z
2022-03-29T04:54:33.000Z
tests/test_utils.py
dkrm0/python-shaarli-client
3b5b2431b40a52bbf2b97f5a542e9ae9743c4723
[ "MIT" ]
9
2017-01-14T23:33:39.000Z
2022-03-26T23:41:28.000Z
"""Tests for Shaarli client utilities""" # pylint: disable=invalid-name import json from argparse import ArgumentParser from unittest import mock import pytest from requests import Response from shaarli_client.utils import format_response, generate_endpoint_parser @mock.patch('argparse.ArgumentParser.add_argument') def test_generate_endpoint_parser_noparam(addargument): """Generate a parser from endpoint metadata - no params""" name = 'put-stuff' metadata = { 'path': 'stuff', 'method': 'PUT', 'help': "Changes stuff", 'params': {}, } parser = ArgumentParser() subparsers = parser.add_subparsers() generate_endpoint_parser(subparsers, name, metadata) addargument.assert_has_calls([ # first helper for the main parser mock.call('-h', '--help', action='help', default=mock.ANY, help=mock.ANY), # second helper for the 'put-stuff' subparser mock.call('-h', '--help', action='help', default=mock.ANY, help=mock.ANY) ]) @mock.patch('argparse.ArgumentParser.add_argument') def test_generate_endpoint_parser_single_param(addargument): """Generate a parser from endpoint metadata - single param""" name = 'get-stuff' metadata = { 'path': 'stuff', 'method': 'GET', 'help': "Gets stuff", 'params': { 'param1': { 'help': "First param", }, }, } parser = ArgumentParser() subparsers = parser.add_subparsers() generate_endpoint_parser(subparsers, name, metadata) addargument.assert_has_calls([ # first helper for the main parser mock.call('-h', '--help', action='help', default=mock.ANY, help=mock.ANY), # second helper for the 'put-stuff' subparser mock.call('-h', '--help', action='help', default=mock.ANY, help=mock.ANY), # param1 mock.call('--param1', help="First param") ]) @mock.patch('argparse.ArgumentParser.add_argument') def test_generate_endpoint_parser_multi_param(addargument): """Generate a parser from endpoint metadata - multiple params""" name = 'get-stuff' metadata = { 'path': 'stuff', 'method': 'GET', 'help': "Gets stuff", 'params': { 'param1': { 'help': "First param", 'type': int, }, 'param2': { 'choices': ['a', 'b', 'c'], 'help': "Second param", 'nargs': '+', }, }, } parser = ArgumentParser() subparsers = parser.add_subparsers() generate_endpoint_parser(subparsers, name, metadata) addargument.assert_has_calls([ # first helper for the main parser mock.call('-h', '--help', action='help', default=mock.ANY, help=mock.ANY), # second helper for the 'put-stuff' subparser mock.call('-h', '--help', action='help', default=mock.ANY, help=mock.ANY), # param1 mock.call('--param1', help="First param", type=int), # param2 mock.call('--param2', choices=['a', 'b', 'c'], help="Second param", nargs='+') ]) @mock.patch('argparse.ArgumentParser.add_argument') def test_generate_endpoint_parser_resource(addargument): """Generate a parser from endpoint metadata - API resource""" name = 'get-stuff' metadata = { 'path': 'stuff', 'method': 'GET', 'help': "Gets stuff", 'resource': { 'help': "API resource", 'type': int, }, 'params': {}, } parser = ArgumentParser() subparsers = parser.add_subparsers() generate_endpoint_parser(subparsers, name, metadata) addargument.assert_has_calls([ # first helper for the main parser mock.call('-h', '--help', action='help', default=mock.ANY, help=mock.ANY), # second helper for the 'put-stuff' subparser mock.call('-h', '--help', action='help', default=mock.ANY, help=mock.ANY), # resource mock.call('resource', help="API resource", type=int) ]) def test_format_response_unsupported_format(): """Attempt to use an unsupported formatting flag""" response = Response() response.__setstate__({'_content': b'{"field":"value"}'}) with pytest.raises(ValueError) as err: format_response('xml', response) assert "not a supported format" in str(err.value) @pytest.mark.parametrize('output_format', ['json', 'pprint', 'text']) def test_format_response_empty_body(output_format): """Format a Requests Response object with no body""" response = Response() assert format_response(output_format, response) == '' def test_format_response_text(): """Format a Requests Response object to plain text""" response = Response() response.__setstate__({ '_content': b'{"global_counter":3251,' b'"private_counter":1,' b'"settings":{"title":"Yay!","header_link":"?",' b'"timezone":"UTC",' b'"enabled_plugins":["qrcode","token"],' b'"default_private_links":false}}', }) assert isinstance(response.text, str) assert response.text == '{"global_counter":3251,' \ '"private_counter":1,' \ '"settings":{"title":"Yay!","header_link":"?",' \ '"timezone":"UTC",' \ '"enabled_plugins":["qrcode","token"],' \ '"default_private_links":false}}' def test_format_response_json(): """Format a Requests Response object to JSON""" response = Response() response.__setstate__({ '_content': b'{"global_counter":3251,' b'"private_counter":1,' b'"settings":{"title":"Yay!","header_link":"?",' b'"timezone":"UTC",' b'"enabled_plugins":["qrcode","token"],' b'"default_private_links":false}}', }) assert isinstance(response.json(), dict) # Ensure valid JSON is returned after formatting assert json.loads(format_response('json', response)) assert json.loads(format_response('pprint', response))
31.509804
77
0.570317
4bc6e05dad4312f6fe21d3ca1352d6605b796ff6
451
py
Python
leetcode/subsets.py
huynonstop/solving-everything
21c7c32f9e482e1e88d5ec8a03f8815d28f7ef39
[ "MIT" ]
null
null
null
leetcode/subsets.py
huynonstop/solving-everything
21c7c32f9e482e1e88d5ec8a03f8815d28f7ef39
[ "MIT" ]
null
null
null
leetcode/subsets.py
huynonstop/solving-everything
21c7c32f9e482e1e88d5ec8a03f8815d28f7ef39
[ "MIT" ]
null
null
null
class Solution: def subsets(self, nums: List[int]) -> List[List[int]]: return subsets(nums) def subsets(nums): n = len(nums) rs = [] temp = [] def backtrack(start): rs.append(temp[:]) for i in range(start, n): if i > start and nums[i] == nums[i - 1]: continue temp.append(nums[i]) backtrack(i + 1) temp.pop() backtrack(0) return rs
21.47619
58
0.490022
ee230cb4b7eaebcc8c2080a9cc91e88a22d8120f
1,201
py
Python
src/plugins/PlatPyGame/code/ui.py
StryQ1/Project-Acturus-X
e1d928eb751befcfd2ad9f1cf50a32749f97b23c
[ "Apache-2.0" ]
3
2022-03-21T07:40:24.000Z
2022-03-21T11:16:43.000Z
src/plugins/PlatPyGame/code/ui.py
StryQ1/Project-Acturus-X
e1d928eb751befcfd2ad9f1cf50a32749f97b23c
[ "Apache-2.0" ]
null
null
null
src/plugins/PlatPyGame/code/ui.py
StryQ1/Project-Acturus-X
e1d928eb751befcfd2ad9f1cf50a32749f97b23c
[ "Apache-2.0" ]
null
null
null
import pygame class UI: def __init__(self,surface): # setup self.display_surface = surface # health self.health_bar = pygame.image.load('../graphics/ui/health_bar.png').convert_alpha() self.health_bar_topleft = (54,39) self.bar_max_width = 152 self.bar_height = 4 # coins self.coin = pygame.image.load('../graphics/ui/coin.png').convert_alpha() self.coin_rect = self.coin.get_rect(topleft = (50,61)) self.font = pygame.font.Font('../graphics/ui/ARCADEPI.ttf',30) def show_health(self,current,full): self.display_surface.blit(self.health_bar,(20,10)) current_health_ratio = current / full current_bar_width = self.bar_max_width * current_health_ratio health_bar_rect = pygame.Rect(self.health_bar_topleft,(current_bar_width,self.bar_height)) pygame.draw.rect(self.display_surface,'#dc4949',health_bar_rect) def show_coins(self,amount): self.display_surface.blit(self.coin,self.coin_rect) coin_amount_surf = self.font.render(str(amount),False,'#33323d') coin_amount_rect = coin_amount_surf.get_rect(midleft = (self.coin_rect.right + 4,self.coin_rect.centery)) self.display_surface.blit(coin_amount_surf,coin_amount_rect)
38.741935
108
0.742714
8a40a761e95492843f3b96d1eb85305ac5c82e99
740
py
Python
hitomi/commands/accounts.py
cleanunicorn/hitomi
3bc403fb445da0c8d4702aaf133a59b34d7ffb89
[ "Apache-2.0" ]
3
2020-08-26T17:02:57.000Z
2022-02-09T03:56:50.000Z
hitomi/commands/accounts.py
cleanunicorn/hitomi
3bc403fb445da0c8d4702aaf133a59b34d7ffb89
[ "Apache-2.0" ]
4
2020-01-16T19:33:50.000Z
2021-05-08T10:02:27.000Z
hitomi/commands/accounts.py
cleanunicorn/hitomi
3bc403fb445da0c8d4702aaf133a59b34d7ffb89
[ "Apache-2.0" ]
2
2020-01-16T19:22:02.000Z
2021-09-06T03:12:30.000Z
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union from hitomi.network.web3 import Web3 class Accounts(list): def __init__(self, web3) -> None: self.web3 = web3 self.refresh() def refresh(self): self._cache = dict({"accounts": self.web3.eth.accounts}) def _accounts(self) -> list: return self._cache["accounts"] def __iter__(self) -> Iterator: return iter(self._accounts()) def __getitem__(self, key: int) -> Any: accounts = self._accounts() return accounts[key] def __delitem__(self, key: int) -> None: accounts = self._accounts() del accounts[key] def __len__(self) -> int: return len(self._accounts())
24.666667
68
0.62027
c50bb6042bd26e0e4037c48f09db6adb50df3bc7
1,606
py
Python
pkgbuild/archlinux/python2/which.py
GameMaker2k/Neo-Hockey-Test
5737bfedf0d83f69964e85ac1dbf7e6a93c13f44
[ "BSD-3-Clause" ]
1
2020-04-04T10:25:42.000Z
2020-04-04T10:25:42.000Z
pkgbuild/archlinux/python2/which.py
GameMaker2k/Neo-Hockey-Test
5737bfedf0d83f69964e85ac1dbf7e6a93c13f44
[ "BSD-3-Clause" ]
null
null
null
pkgbuild/archlinux/python2/which.py
GameMaker2k/Neo-Hockey-Test
5737bfedf0d83f69964e85ac1dbf7e6a93c13f44
[ "BSD-3-Clause" ]
3
2021-09-07T08:44:33.000Z
2021-12-07T23:49:39.000Z
#!/usr/bin/env python2 ''' This program is free software; you can redistribute it and/or modify it under the terms of the Revised BSD License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Revised BSD License for more details. Copyright 2011-2016 Game Maker 2k - https://github.com/GameMaker2k Copyright 2011-2016 Kazuki Przyborowski - https://github.com/KazukiPrzyborowski $FileInfo: which.py - Last Update: 2/15/2016 Ver. 0.0.5 RC 3 - Author: cooldude2k $ ''' from __future__ import absolute_import, division, print_function, unicode_literals; import os, sys, argparse; __version_info__ = (0, 0, 5, "rc3"); if(__version_info__[3]!=None): __version__ = str(__version_info__[0])+"."+str(__version_info__[1])+"."+str(__version_info__[2])+"+"+str(__version_info__[3]); if(__version_info__[3]==None): __version__ = str(__version_info__[0])+"."+str(__version_info__[1])+"."+str(__version_info__[2]); proname = "which"; prover = __version__; profullname = proname+" "+prover; def which_exec(execfile): for path in os.environ["PATH"].split(":"): if os.path.exists(path + "/" + execfile): return path + "/" + execfile; parser = argparse.ArgumentParser(conflict_handler = "resolve", add_help = True); parser.add_argument("-v", "--version", action = "version", version = profullname); parser.add_argument("filename", help = "enter a file name/path"); getargs = parser.parse_args(); print(which_exec(getargs.filename));
39.170732
127
0.721669
d3286bf2dc2b2ff70dfcc347f6c6f675b2eff616
17,652
py
Python
test/DeepVolume_test.py
ZerojumpLine/DeepVolume
177c3a8283234e40573b9f9b68280f0d0dedff87
[ "MIT" ]
8
2019-11-09T00:56:11.000Z
2021-11-08T06:40:22.000Z
test/DeepVolume_test.py
ZerojumpLine/DeepVolume
177c3a8283234e40573b9f9b68280f0d0dedff87
[ "MIT" ]
null
null
null
test/DeepVolume_test.py
ZerojumpLine/DeepVolume
177c3a8283234e40573b9f9b68280f0d0dedff87
[ "MIT" ]
2
2019-11-09T00:56:13.000Z
2019-12-16T10:41:58.000Z
import argparse import os import scipy.io as sio import numpy as np import nibabel as nib import time import tensorflow as tf from BrainStructureAwareNetwork_arch import BrainStructureAwareNetwork from SpatialConnectionAwareNetwork_arch import SpatialConnectionAwareNetwork from getimgtest import getimgtest import math batch_size = 1 # to recover the origin distribution Intensity_max = 255 Intensity_mean = 0.1616 Intensity_std = 0.2197 parser = argparse.ArgumentParser(description='Tensorflow DeepVolume Test') parser.add_argument('--gpu', type=int, default=0, help='gpu device id') parser.add_argument('--datafile', default='../datafile/', type=str, help='path to datafile folder') parser.add_argument('--savepath', default='../output/', type=str, help='path to output folder') parser.add_argument('--modelpath', default='../models/', type=str, help='path to model save folder') parser.add_argument('-s', '--stage', type=int, default=1, help='load the network one by one...') args = parser.parse_args() def test_BrainStructureNetwork(): filespath = args.datafile axialThickpath = filespath + 'axialThick-test.txt' sagittalThickpath = filespath + 'sagittalThick-test.txt' savepath = args.savepath + 'test' modelpath = args.modelpath + 'BrainStructureAwareNetwork/Model100.ckpt' val_axialfile = open(axialThickpath) val_axialread = val_axialfile.read().splitlines() ntest = len(val_axialread) testsavepath = savepath + str(1) if (os.path.isdir(testsavepath) == False) : for k in range(0, ntest): os.mkdir(savepath + str(k + 1)) print("Folder created") with tf.name_scope('input'): LR = tf.placeholder(tf.float32, shape=[batch_size, 200, 200, 200, 2]) keep_prob = tf.placeholder(tf.float32, name='dropout_ratio') probs, logits = BrainStructureAwareNetwork(LR, keep_prob) config = tf.ConfigProto() config.gpu_options.visible_device_list = str(args.gpu) sess = tf.Session(config=config) saver = tf.train.Saver() saver.restore(sess, modelpath) print("Model loaded") def feed_dict(xstart, ystart, zstart, LRimg): xs = np.zeros((1, 200, 200, 200, 2)) xs[:, :, :, :, :] = LRimg[:,xstart:xstart + 200, ystart:ystart + 200, zstart:zstart + 200, :] return {LR: xs, keep_prob: 1} # sample patches with tumor for kv in range(0, ntest): time_start = time.time() print('Loading from test case ' + str(kv + 1) + ' for test for stage 1') LRimg = getimgtest(axialThickpath, sagittalThickpath, kv) x_range = LRimg.shape[1] y_range = LRimg.shape[2] z_range = LRimg.shape[3] if z_range < 200: LRimgpad = np.zeros((1, x_range, y_range, 200, 2)) LRimgpad[:,:,:,0:z_range,:] = LRimg LRimg = LRimgpad # The receptive field of 3D U-net is 68 # We should retrive the center 40^3 pixel of 200^3 to reconstruct if z_range < 200: hp = np.zeros((x_range, y_range, 200, 1)) else: hp = np.zeros((x_range, y_range, z_range, 1)) x_sample = np.floor((x_range -160) / 40) + 1 x_sample = x_sample.astype(np.int16) y_sample = np.floor((y_range -160) / 40) + 1 y_sample = y_sample.astype(np.int16) z_sample = np.maximum(np.floor((z_range -160) / 40) + 1, 1) z_sample = z_sample.astype(np.int16) for jx in range(0, x_sample): for jy in range(0, y_sample): for jz in range(0, z_sample): # deal with the boundaries if jx < x_sample - 1: # not the last xstart = jx * 40 else: xstart = x_range - 200 if jy < y_sample - 1: # not the last ystart = jy * 40 else: ystart = y_range - 200 if jz < z_sample - 1: # not the last zstart = jz * 40 else: zstart = LRimg.shape[3] - 200 ht = sess.run(probs, feed_dict=feed_dict(xstart, ystart, zstart, LRimg)) # setting the middle content hp[xstart + 80:xstart + 120, ystart + 80:ystart + 120, zstart + 80:zstart + 120, :] = ht[0, 80:120, 80:120, 80:120, :] # care about the boundies! the patch near the boundies should have half-full padding if jx == 0: hp[xstart:xstart + 120, ystart + 80:ystart + 120, zstart + 80:zstart + 120, :] = ht[0, 0:120, 80:120, 80:120, :] if jx == x_sample - 1: hp[xstart + 80:xstart + 200, ystart + 80:ystart + 120, zstart + 80:zstart + 120, :] = ht[0, 80:200, 80:120, 80:120, :] if jy == 0: hp[xstart + 80:xstart + 120, ystart:ystart + 120, zstart + 80:zstart + 120, :] = ht[0, 80:120, 0:120, 80:120, :] if jy == y_sample - 1: hp[xstart + 80:xstart + 120, ystart + 80:ystart + 200, zstart + 80:zstart + 120, :] = ht[0, 80:120, 80:200, 80:120, :] if jz == 0: hp[xstart + 80:xstart + 120, ystart + 80:ystart + 120, zstart:zstart + 120, :] = ht[0, 80:120, 80:120, 0:120, :] if jz == z_sample - 1: hp[xstart + 80:xstart + 120, ystart + 80:ystart + 120, zstart + 80:zstart + 200, :] = ht[0, 80:120, 80:120, 80:200, :] # then the 4 corner...xy if jx == 0 and jy == 0: hp[xstart:xstart + 120, ystart:ystart + 120, zstart + 80:zstart + 120, :] = ht[0, 0:120, 0:120, 80:120, :] if jx == 0 and jy == y_sample - 1: hp[xstart:xstart + 120, ystart + 80:ystart + 200, zstart + 80:zstart + 120, :] = ht[0, 0:120, 80:200, 80:120, :] if jx == x_sample - 1 and jy == 0: hp[xstart + 80:xstart + 200, ystart:ystart + 120, zstart + 80:zstart + 120, :] = ht[0, 80:200, 0:120, 80:120, :] if jx == x_sample - 1 and jy == y_sample - 1: hp[xstart + 80:xstart + 200, ystart + 80:ystart + 200, zstart + 80:zstart + 120, :] = ht[0, 80:200, 80:200, 80:120, :] # then the 4 corner...xz if jx == 0 and jz == 0: hp[xstart:xstart + 120, ystart+80:ystart + 120, zstart:zstart + 120, :] = ht[0, 0:120, 80:120, 0:120, :] if jx == 0 and jz == z_sample - 1: hp[xstart:xstart + 120, ystart + 80:ystart + 120, zstart + 80:zstart + 200, :] = ht[0, 0:120, 80:120, 80:200, :] if jx == x_sample - 1 and jz == 0: hp[xstart + 80:xstart + 200, ystart+80:ystart + 120, zstart:zstart + 120, :] = ht[0, 80:200, 80:120, 0:120, :] if jx == x_sample - 1 and jz == z_sample - 1: hp[xstart + 80:xstart + 200, ystart + 80:ystart + 120, zstart + 80:zstart + 200, :] = ht[0, 80:200, 80:120, 80:200, :] # then the 4 corner...yz if jy == 0 and jz == 0: hp[xstart+80:xstart + 120, ystart:ystart + 120, zstart:zstart + 120, :] = ht[0, 80:120, 0:120, 0:120, :] if jy == 0 and jz == z_sample - 1: hp[xstart+80:xstart + 120, ystart:ystart + 120, zstart + 80:zstart + 200, :] = ht[0, 80:120, 0:120, 80:200, :] if jy == y_sample - 1 and jz == 0: hp[xstart + 80:xstart + 120, ystart+80:ystart + 200, zstart:zstart + 120, :] = ht[0, 80:120, 80:200, 0:120, :] if jy == y_sample - 1 and jz == z_sample - 1: hp[xstart + 80:xstart + 120, ystart + 80:ystart + 200, zstart + 80:zstart + 200, :] = ht[0, 80:120, 80:200, 80:200, :] # the last 8 small corners.. if jx == 0 and jy == 0 and jz == 0: hp[xstart:xstart + 120, ystart:ystart + 120, zstart:zstart + 120, :] = ht[0, 0:120, 0:120, 0:120, :] if jx == 0 and jy == 0 and jz == z_sample - 1: hp[xstart:xstart + 120, ystart:ystart + 120, zstart + 80:zstart + 200, :] = ht[0, 0:120, 0:120, 80:200, :] if jx == 0 and jy == y_sample - 1 and jz == 0: hp[xstart:xstart + 120, ystart + 80:ystart + 200, zstart:zstart + 120, :] = ht[0, 0:120, 80:200, 0:120, :] if jx == 0 and jy == y_sample - 1 and jz == z_sample - 1: hp[xstart:xstart + 120, ystart + 80:ystart + 200, zstart + 80:zstart + 200, :] = ht[0, 0:120, 80:200, 80:200, :] if jx == x_sample - 1 and jy == 0 and jz == 0: hp[xstart + 80:xstart + 200, ystart:ystart + 120, zstart:zstart + 120, :] = ht[0, 80:200, 0:120, 0:120, :] if jx == x_sample - 1 and jy == 0 and jz == z_sample - 1: hp[xstart + 80:xstart + 200, ystart:ystart + 120, zstart + 80:zstart + 200, :] = ht[0, 80:200, 0:120, 80:200, :] if jx == x_sample - 1 and jy == y_sample - 1 and jz == 0: hp[xstart + 80:xstart + 200, ystart + 80:ystart + 200, zstart:zstart + 120, :] = ht[0, 80:200, 80:200, 0:120, :] if jx == x_sample - 1 and jy == y_sample - 1 and jz == z_sample - 1: hp[xstart + 80:xstart + 200, ystart + 80:ystart + 200, zstart + 80:zstart + 200, :] = ht[0, 80:200, 80:200, 80:200, :] print('processing Brain Structure Aware Model.. ' + str(jx/x_sample*100) + '%') if z_range < 200: hp = hp[:,:,0:z_range] print('processing Brain Structure Aware Model.. ' + '100%') time_end = time.time() print('Time cost of test at case ' + str(kv + 1) + ' for stage 1 has been ' + str(time_end - time_start) + ' s') savename = '%s%s%s' % (savepath, str(kv + 1), '/Reconstruction_BrainStructureAwareModel.mat') sio.savemat(savename, {'Reconstruction': hp}) print('################ case ' + str(kv + 1) + ' has been done for Brain Structure Aware Model ################') sess.close() def test_SpatialConnectionAwareNetwork(): seq_length = 2 network_template = tf.make_template('network', SpatialConnectionAwareNetwork) filespath = args.datafile axialThickpath = filespath + 'axialThick-test.txt' sagittalThickspath = filespath + 'sagittalThicks-test.txt' savepath = args.savepath + 'test' modelpath = args.modelpath + 'SpatialConnectionAwareNetwork/Model40.ckpt' val_axialfile = open(axialThickpath) val_axialread = val_axialfile.read().splitlines() val_sagittalfile = open(sagittalThickspath) val_sagittalread = val_sagittalfile.read().splitlines() ntest = len(val_axialread) axialThinpath = filespath + 'axialThin-test.txt' val_GTfile = open(axialThinpath) val_GTread = val_GTfile.read().splitlines() with tf.name_scope('input'): LR = tf.placeholder(tf.float32, shape=[batch_size, seq_length, 360, 432, 3], name='Lowresolute_image') # conv network hidden = None x_1, hidden = network_template(LR[:, 0, :, :, :], hidden) x_2, hidden = network_template(LR[:, 1, :, :, :], hidden) config = tf.ConfigProto() config.gpu_options.visible_device_list = str(args.gpu) sess = tf.Session(config=config) saver = tf.train.Saver() saver.restore(sess, modelpath) print("Model loaded") for kv in range(0, ntest): time_start = time.time() print('Loading from test case ' + str(kv + 1) + ' for stage 2 for test') matinput0 = val_axialread[kv] load_data_input0 = sio.loadmat(matinput0) datainput0 = load_data_input0['T1_image'] Input_full0cut = datainput0[int(datainput0.shape[0] / 2 - 180):int(datainput0.shape[0] / 2 + 180), int(datainput0.shape[1] / 2 - 216):int(datainput0.shape[1] / 2 + 216), :] datainput0 = np.transpose(Input_full0cut, [2, 0, 1]) matinput1 = savepath + str(kv + 1) + '/Reconstruction_BrainStructureAwareModel.mat' load_data_input1 = sio.loadmat(matinput1) datainput1 = load_data_input1['Reconstruction'] datainput1m = datainput1[:, :, :, 0] Input_fullrcut = datainput1m[int(datainput1m.shape[0] / 2 - 180):int(datainput1m.shape[0] / 2 + 180), int(datainput1m.shape[1] / 2 - 216):int(datainput1m.shape[1] / 2 + 216), :] datainput1 = np.transpose(Input_fullrcut, [2, 0, 1]) test_sagittalname = val_sagittalread[kv] load_data_input2 = sio.loadmat(test_sagittalname) datainput2m = load_data_input2['T2s2_image'] Input_full2cut = datainput2m[int(datainput1m.shape[0] / 2 - 180):int(datainput1m.shape[0] / 2 + 180), int(datainput1m.shape[1] / 2 - 216):int(datainput1m.shape[1] / 2 + 216), :] if Input_full2cut.shape[2] < 2 * datainput1m.shape[2]: Input_full2cut = np.dstack((Input_full2cut, Input_full2cut[:, :, Input_full2cut.shape[2] - 1])) datainputsag = np.transpose(Input_full2cut, [2, 0, 1]) totalnum = datainput1.shape[0] def feed_dict(j): pointer = j xs = np.zeros((batch_size, seq_length, 360, 432, 3)) xs[:, 0, :, :, 0] = datainput1[pointer, 0:360, 0:432] xs[:, 0, :, :, 1] = datainput0[pointer, 0:360, 0:432] xs[:, 0, :, :, 2] = datainputsag[2 * pointer, 0:360, 0:432] xs[:, 1, :, :, 0] = datainput1[pointer, 0:360, 0:432] xs[:, 1, :, :, 1] = datainput0[pointer, 0:360, 0:432] xs[:, 1, :, :, 2] = datainputsag[2 * pointer + 1, 0:360, 0:432] return {LR: xs} hp = datainput1m for j in range(0, np.int16(totalnum)): ht = sess.run(x_2, feed_dict=feed_dict(j)) hp[int(datainput1m.shape[0] / 2 - 180):int(datainput1m.shape[0] / 2 + 180), int(datainput1m.shape[1] / 2 - 216):int(datainput1m.shape[1] / 2 + 216), j] = ht[0, :, :, 0] time_end = time.time() print('Time cost of test at case ' + str(kv + 1) + ' for stage 2 has been ' + str(time_end - time_start) + ' s') savename = '%s%s%s' % (savepath, str(kv + 1), '//Reconstruction_DeepVolume.mat') sio.savemat(savename, {'Reconstruction': hp}) # load the brain mask, which was generated based on the axial thin MRI c1map = val_GTread[kv][0:-4] + 'c1.nii' c1load = nib.load(c1map) c1im = c1load.get_fdata() c2map = val_GTread[kv][0:-4] + 'c2.nii' c2load = nib.load(c2map) c2im = c2load.get_fdata() c3map = val_GTread[kv][0:-4] + 'c3.nii' c3load = nib.load(c3map) c3im = c3load.get_fdata() cim = c1im + c2im + c3im RecIntensity = np.abs((hp * Intensity_std + Intensity_mean) * Intensity_max) imgToSave = np.int16(RecIntensity * cim) npDtype = np.dtype(np.int16) proxy_origin = nib.load(c1map) affine_origin = proxy_origin.affine proxy_origin.uncache() newImg = nib.Nifti1Image(imgToSave, affine_origin) newImg.set_data_dtype(npDtype) nib.save(newImg, savepath + str(kv + 1) + '//pred.nii.gz') print('################ case ' + str(kv + 1) + ' has been done for Spatial Connection Aware Model ################') sess.close() def evaluation(): filespath = args.datafile savepath = args.savepath + 'test' axialThinpath = filespath + 'axialThin-test.txt' val_GTfile = open(axialThinpath) val_GTread = val_GTfile.read().splitlines() ntest = len(val_GTread) PSNRall = [] print('################################ Doing evaluation ################################') for kv in range(0, ntest): predmap = savepath + str(kv + 1) + '//pred.nii.gz' predload = nib.load(predmap) predim = np.uint8(predload.get_fdata()) matGT = val_GTread[kv] load_data_input0 = sio.loadmat(matGT) dataGT = load_data_input0['T3_image'] GTIntensity = (dataGT * Intensity_std + Intensity_mean) * Intensity_max c1map = val_GTread[kv][0:-4] + 'c1.nii' c1load = nib.load(c1map) c1im = c1load.get_fdata() c2map = val_GTread[kv][0:-4] + 'c2.nii' c2load = nib.load(c2map) c2im = c2load.get_fdata() c3map = val_GTread[kv][0:-4] + 'c3.nii' c3load = nib.load(c3map) c3im = c3load.get_fdata() cim = c1im + c2im + c3im GTim = np.uint8(GTIntensity * cim) Resultpsnr = psnr(predim, GTim) PSNRall.append(Resultpsnr) print('PSNR of case ' + str(kv+1) + ' is ' + str(Resultpsnr)) print('average PSNR is ' + str(np.mean(PSNRall))) def psnr(img1, img2): mse = np.mean((np.double(img1) - np.double(img2)) ** 2) if mse == 0: return 100 PIXEL_MAX = 255.0 return 20 * math.log10(PIXEL_MAX / math.sqrt(mse)) if __name__ == '__main__': if args.stage == 1: test_BrainStructureNetwork() else: test_SpatialConnectionAwareNetwork() evaluation()
48.098093
186
0.545491
5f124ed4699aaa1ce508705663e09e437138f35c
142
py
Python
tests/general/test_model_wrapper_ensemble.py
davidwilby/multimodal_keras_wrapper
8151a52d9728d669f0b517515c869beb0211c7db
[ "MIT" ]
31
2017-02-22T09:38:15.000Z
2021-04-19T10:13:34.000Z
tests/general/test_model_wrapper_ensemble.py
davidwilby/multimodal_keras_wrapper
8151a52d9728d669f0b517515c869beb0211c7db
[ "MIT" ]
5
2017-12-05T07:08:44.000Z
2020-04-15T17:49:00.000Z
tests/general/test_model_wrapper_ensemble.py
davidwilby/multimodal_keras_wrapper
8151a52d9728d669f0b517515c869beb0211c7db
[ "MIT" ]
15
2017-02-22T09:38:14.000Z
2021-04-19T10:13:37.000Z
import pytest from six import iteritems def test_model_wrapper_ensemble(): pass if __name__ == '__main__': pytest.main([__file__])
14.2
34
0.732394
3385dca8bd18bdbe8f4e9d72f562993d06e56efb
16,563
py
Python
steamcommunity/steamcommunity.py
the-krak3n/Fixator10-Cogs
38af6499634a4f4ea200fa9173ccfc9a6bbd14d4
[ "MIT" ]
null
null
null
steamcommunity/steamcommunity.py
the-krak3n/Fixator10-Cogs
38af6499634a4f4ea200fa9173ccfc9a6bbd14d4
[ "MIT" ]
null
null
null
steamcommunity/steamcommunity.py
the-krak3n/Fixator10-Cogs
38af6499634a4f4ea200fa9173ccfc9a6bbd14d4
[ "MIT" ]
null
null
null
from collections import namedtuple from contextlib import suppress from datetime import datetime from functools import partial from io import BytesIO from os import path from socket import gethostbyname_ex from time import time from warnings import filterwarnings import aiohttp import discord import valve.source.a2s from redbot.core import checks, commands from redbot.core.data_manager import bundled_data_path from redbot.core.i18n import Translator, cog_i18n from redbot.core.utils import chat_formatting as chat from valve.steam.api import interface with suppress(Exception): from matplotlib import pyplot, units as munits, dates as mdates, use as mpluse import numpy as np from .steamuser import SteamUser try: from redbot import json # support of Draper's branch except ImportError: import json USERAGENT = ( "Mozilla/5.0 (Windows NT 10.0; Win64; x64) " "AppleWebKit/537.36 (KHTML, like Gecko) " "Chrome/88.0.4324.104 " "Safari/537.36" ) LOAD_INDICATORS = ["\N{GREEN HEART}", "\N{YELLOW HEART}", "\N{BROKEN HEART}"] def bool_emojify(bool_var: bool) -> str: return "✅" if bool_var else "❌" def check_api(ctx): """Is API ready?""" return "ISteamUser" in list(ctx.cog.steam._interfaces.keys()) async def validate_ip(s): """Is IP address valid""" a = s.split(".") if len(a) != 4: return False for x in a: if not x.isdigit(): return False i = int(x) if i < 0 or i > 255: return False return True async def find_service(services: dict, service: str): """Find service from steamstat.us' service list""" Service = namedtuple("Service", ["id", "load", "text", "text_with_indicator"]) for s in services: if s[0] == service: return Service(s[0], s[1], s[2], f"{LOAD_INDICATORS[s[1]]} {s[2]}") return Service("", "", "", "") _ = Translator("SteamCommunity", __file__) filterwarnings("ignore", category=FutureWarning, module=r"valve.") @cog_i18n(_) class SteamCommunity(commands.Cog): """SteamCommunity commands""" __version__ = "2.1.15" # noinspection PyMissingConstructor def __init__(self, bot): self.bot = bot self.steam = None self.session = aiohttp.ClientSession(json_serialize=json.dumps) self.status_data = {"last_update": 0.0, "data": {}} def cog_unload(self): self.bot.loop.create_task(self.session.close()) async def red_delete_data_for_user(self, **kwargs): return async def initialize(self): """Should be called straight after cog instantiation.""" apikeys = await self.bot.get_shared_api_tokens("steam") self.steam = await self.asyncify(interface.API, key=apikeys.get("web")) async def asyncify(self, func, *args, **kwargs): """Run func in executor""" return await self.bot.loop.run_in_executor(None, partial(func, *args, **kwargs)) @commands.group(aliases=["sc"]) async def steamcommunity(self, ctx): """SteamCommunity commands""" pass @steamcommunity.command() @checks.is_owner() async def apikey(self, ctx): """Set API key for Steam Web API""" message = _( "To get Steam Web API key:\n" "1. Login to your Steam account\n" "2. Visit [Register Steam Web API Key](https://steamcommunity.com/dev/apikey) page\n" "3. Enter any domain name (e.g. `localhost`)\n" '4. You will now see "Key" field\n' "5. Use `{}set api steam web <your_apikey>`\n" "Note: These tokens are sensitive and should only be used in a private channel\n" "or in DM with the bot." ).format(ctx.clean_prefix) await ctx.maybe_send_embed(message) @steamcommunity.command(name="profile", aliases=["p"]) @commands.bot_has_permissions(embed_links=True) @commands.cooldown(1, 15, commands.BucketType.user) @commands.check(check_api) async def steamprofile(self, ctx, profile: SteamUser): """Get steam user's steamcommunity profile""" em = discord.Embed( title=profile.personaname, description=profile.personastate(), url=profile.profileurl, timestamp=datetime.utcfromtimestamp(profile.lastlogoff) if profile.lastlogoff else discord.Embed.Empty, color=profile.personastatecolor, ) if profile.gameid: em.description = _("In game: [{}](http://store.steampowered.com/app/{})").format( profile.gameextrainfo or "Unknown", profile.gameid ) if profile.gameserver: em.description += _(" on server {}").format(profile.gameserver) if profile.shared_by: em.description += _("\nFamily Shared by [{}]({})").format( profile.shared_by.personaname, profile.shared_by.profileurl ) if profile.realname: em.add_field(name=_("Real name"), value=profile.realname, inline=False) em.add_field(name=_("Level"), value=profile.level or "0") if profile.country: em.add_field(name=_("Country"), value=":flag_{}:".format(profile.country.lower())) em.add_field(name=_("Visibility"), value=profile.visibility) if profile.createdat: em.add_field( name=_("Created at"), value=datetime.utcfromtimestamp(profile.createdat).strftime( _("%d.%m.%Y %H:%M:%S") ), ) em.add_field(name="SteamID", value="{}\n{}".format(profile.steamid, profile.sid3)) em.add_field(name="SteamID64", value=profile.steamid64) if any([profile.VACbanned, profile.gamebans]): bansdescription = _("Days since last ban: {}").format(profile.sincelastban) elif any([profile.communitybanned, profile.economyban]): bansdescription = _("Has one or more bans:") else: bansdescription = _("No bans on record") em.add_field(name=_("🛡 Bans"), value=bansdescription, inline=False) em.add_field(name=_("Community ban"), value=bool_emojify(profile.communitybanned)) em.add_field( name=_("Economy ban"), value=profile.economyban.capitalize() if profile.economyban else "❌", ) em.add_field( name=_("VAC bans"), value=_("{} VAC bans").format(profile.VACbans) if profile.VACbans else "❌", ) em.add_field( name=_("Game bans"), value=_("{} game bans").format(profile.gamebans) if profile.gamebans else "❌", ) em.set_thumbnail(url=profile.avatar184) footer = [_("Powered by Steam")] if profile.lastlogoff: footer.append(_("Last seen on")) em.set_footer( text=" • ".join(footer), icon_url="https://steamstore-a.akamaihd.net/public/shared/images/responsive/share_steam_logo.png", ) await ctx.send(embed=em) @steamcommunity.command(name="status") @commands.cooldown(1, 45, commands.BucketType.guild) @commands.bot_has_permissions(embed_links=True) @commands.max_concurrency(1, commands.BucketType.user) async def steamstatus(self, ctx): """Get status of steam services""" async with ctx.typing(): if time() - self.status_data["last_update"] >= 45: try: async with self.session.get( "https://vortigaunt.steamstat.us/not_an_api.json", headers={"referer": "https://steamstat.us/", "User-Agent": USERAGENT}, raise_for_status=True, ) as gravity: data = await gravity.json(loads=json.loads) self.status_data["data"] = data self.status_data["last_update"] = time() except aiohttp.ClientResponseError as e: await ctx.send( chat.error( _("Unable to get data from steamstat.us: {} ({})").format( e.status, e.message ) ) ) return except aiohttp.ClientError as e: await ctx.send( chat.error(_("Unable to get data from steamstat.us: {}").format(e)) ) return else: data = self.status_data["data"] services = data.get("services", {}) graph = data.get("graph") em = discord.Embed( title=_("Steam Status"), url="https://steamstat.us", color=await ctx.embed_color(), timestamp=datetime.utcfromtimestamp(data.get("time", 0)), ) em.description = _( "**Online**: {}\n" "**In-game**: {}\n" "**Store**: {}\n" "**Community**: {}\n" "**Web API**: {}\n" "**Steam Connection Managers**: {}\n" "**SteamDB.info database**: {}" ).format( (await find_service(services, "online")).text_with_indicator, (await find_service(services, "ingame")).text_with_indicator, (await find_service(services, "store")).text_with_indicator, (await find_service(services, "community")).text_with_indicator, (await find_service(services, "webapi")).text_with_indicator, (await find_service(services, "cms")).text_with_indicator, (await find_service(services, "database")).text_with_indicator, ) em.add_field( name=_("Games"), value=_( "**TF2 Game Coordinator**: {}\n" "**Dota 2 Game Coordinator**: {}\n" "**Underlords Game Coordinator**: {}\n" "**Artifact Game Coordinator**: {}\n" "**CS:GO Game Coordinator**: {}\n" "**CS:GO Sessions Logon**: {}\n" "**CS:GO Player Inventories**: {}\n" "**CS:GO Matchmaking Scheduler**: {}\n" ).format( (await find_service(services, "tf2")).text_with_indicator, (await find_service(services, "dota2")).text_with_indicator, (await find_service(services, "underlords")).text_with_indicator, (await find_service(services, "artifact")).text_with_indicator, (await find_service(services, "csgo")).text_with_indicator, (await find_service(services, "csgo_sessions")).text_with_indicator, (await find_service(services, "csgo_community")).text_with_indicator, (await find_service(services, "csgo_mm_scheduler")).text_with_indicator, ), ) graph_file = None if all(lib in globals().keys() for lib in ["pyplot", "np"]): graph_file = await self.asyncify(self.gen_steam_cm_graph, graph) graph_file = discord.File(graph_file, filename="CMgraph.png") em.set_image(url="attachment://CMgraph.png") # TODO: Regions? await ctx.send(embed=em, file=graph_file) if graph_file: graph_file.close() @commands.command(aliases=["gameserver"]) async def getserver(self, ctx, serverip: str): """Get info about a gameserver""" if ":" not in serverip: serverip += ":27015" serverc = serverip.split(":") if not serverc[0][0].isdigit(): try: ip = gethostbyname_ex(serverc[0])[2][0] except Exception as e: await ctx.send(_("The specified domain is not valid: {}").format(e)) return servercheck = ip serverc = [str(ip), int(serverc[1])] else: servercheck = serverc[0] serverc = [str(serverc[0]), int(serverc[1])] serverc = tuple(serverc) if not await validate_ip(str(servercheck)): await ctx.send_help() return async with ctx.typing(): try: server = await self.asyncify(valve.source.a2s.ServerQuerier, serverc) info = server.info() server.close() except valve.source.a2s.NoResponseError: await ctx.send( chat.error( _("Could not fetch Server or the Server is not on the Steam masterlist") ) ) return except Exception as e: await ctx.send(chat.error(_("An Error has been occurred: {}").format(e))) return _map = info.values["map"] if _map.lower().startswith("workshop"): link = "https://steamcommunity.com/sharedfiles/filedetails/?id={}".format( _map.split("/")[1] ) _map = "{} [(Workshop map)]({})".format(_map.split("/")[2], link) game = info.values["folder"] gameid = info.values["app_id"] gamemode = info.values["game"] servername = info.values["server_name"].strip() servertype = str(info.values["server_type"]) playernumber = str(info.values["player_count"] - info.values["bot_count"]) botnumber = int(info.values["bot_count"]) maxplayers = str(info.values["max_players"]) os = str(info.values["platform"]) version = info.values["version"] em = discord.Embed(colour=await ctx.embed_color()) em.add_field( name=_("Game"), value=f"[{game}](http://store.steampowered.com/app/{gameid})", ) em.add_field(name=_("Gamemode"), value=gamemode) em.add_field(name=_("Server name"), value=servername, inline=False) em.add_field(name=_("Map"), value=_map, inline=False) em.add_field(name="IP", value=serverc[0]) em.add_field(name=_("Operating System"), value=os) em.add_field(name=_("Server type"), value=servertype) em.add_field(name=_("Version"), value=version) em.add_field(name="VAC", value=bool_emojify(bool(info.values["vac_enabled"]))) em.add_field( name=_("Password"), value=bool_emojify(bool(info.values["password_protected"])), ) if botnumber: em.add_field( name=_("Players"), value=_("{}/{}\nBots: {}").format(playernumber, maxplayers, botnumber), ) else: em.add_field(name=_("Players"), value="{}/{}\n".format(playernumber, maxplayers)) await ctx.send(embed=em) @commands.Cog.listener() async def on_red_api_tokens_update(self, service_name, api_tokens): if service_name == "steam": self.steam = await self.asyncify(interface.API, key=api_tokens.get("web")) def gen_steam_cm_graph(self, graphdata: dict): """Make an graph for connection managers""" mpluse("Agg") formats = [ "%y", # ticks are mostly years "%b", # ticks are mostly months "%d", # ticks are mostly days "%H:%M", # hrs "%H:%M", # min "%S.%f", # secs ] zero_formats = [""] + formats[:-1] zero_formats[3] = "%d-%b" offset_formats = [ "", "%Y", "%b %Y", "%d %b %Y", "%d %b %Y", "%d %b %Y %H:%M", ] munits.registry[datetime] = mdates.ConciseDateConverter( formats=formats, zero_formats=zero_formats, offset_formats=offset_formats ) cur = graphdata["start"] x = [] for _ in range(len(graphdata["data"])): cur += graphdata["step"] x.append(cur) x = [datetime.utcfromtimestamp(_x / 1000) for _x in x] y = graphdata["data"] graphfile = BytesIO() with pyplot.style.context(path.join(bundled_data_path(self), "discord.mplstyle")): fig, ax = pyplot.subplots() ax.plot(x, y) ax.set_ylim(bottom=0) ax.grid() ax.set(xlabel="Date", ylabel="%", title="Steam Connection Managers") ax.set_yticks(np.arange(0, 100, 5)) fig.savefig(graphfile) pyplot.close(fig) graphfile.seek(0) return graphfile
38.880282
110
0.565055
572ce924c7d63448692e627384605a4f78ae9c5c
1,326
py
Python
whatsapp_web_driver/custom_errors.py
AadamLok/wwd
d26dbd1bb65b990fe00d95ea9d8e58d38564fd07
[ "Apache-2.0" ]
1
2021-06-27T09:31:33.000Z
2021-06-27T09:31:33.000Z
whatsapp_web_driver/custom_errors.py
MurtazaCyclewala/whatsapp_web_driver
d26dbd1bb65b990fe00d95ea9d8e58d38564fd07
[ "Apache-2.0" ]
null
null
null
whatsapp_web_driver/custom_errors.py
MurtazaCyclewala/whatsapp_web_driver
d26dbd1bb65b990fe00d95ea9d8e58d38564fd07
[ "Apache-2.0" ]
null
null
null
class ChromeDriverNotWorking(Exception): """ Exception raised when driver passed in doesn't work and selimium throws error. """ def __init__(self, place, message="Something is wrong with chrome driver."): self.message = message self.place = place super().__init__(self.message) def __str__(self): return f'Chrome driver passed in the {self.place} is not working.\nTry checking the path of chrome driver, or check in if your instaaled chrome version matches with driver version.' class WhatsappNotLoggedIn(Exception): """ Exception raised when web whatsapp is not logged in. """ def __init__(self, message="Web Whatsapp not logged in."): self.message = message super().__init__(self.message) def __str__(self): return f'{self.message}\nLog in to web whatsapp by scaning the barcode and then try again.' class MaxTimeOut(Exception): """ Exception raised when some element or page takes more time than max_time to load in. Indecating something is wrong with the Internet. """ def __init__(self, message="Page took too much time to load."): self.message = message super().__init__(self.message) def __str__(self): return f'{self.message}\nTry checking your Internet connection.'
35.837838
189
0.687029
bd6c08c38c14b4bbb9ef087a4082b260f2cc08b3
3,019
py
Python
nautobot/users/filters.py
MatthewGP/nautobot
93b9d9c33a49e69b8ee86da8af4ef1265873014b
[ "Apache-2.0" ]
null
null
null
nautobot/users/filters.py
MatthewGP/nautobot
93b9d9c33a49e69b8ee86da8af4ef1265873014b
[ "Apache-2.0" ]
null
null
null
nautobot/users/filters.py
MatthewGP/nautobot
93b9d9c33a49e69b8ee86da8af4ef1265873014b
[ "Apache-2.0" ]
null
null
null
import django_filters from django.contrib.auth import get_user_model from django.contrib.auth.models import Group from django.db.models import Q from nautobot.users.models import ObjectPermission, Token from nautobot.utilities.filters import BaseFilterSet __all__ = ( "GroupFilterSet", "ObjectPermissionFilterSet", "UserFilterSet", ) class GroupFilterSet(BaseFilterSet): q = django_filters.CharFilter( method="search", label="Search", ) class Meta: model = Group fields = ["id", "name"] def search(self, queryset, name, value): if not value.strip(): return queryset return queryset.filter(name__icontains=value) class UserFilterSet(BaseFilterSet): q = django_filters.CharFilter( method="search", label="Search", ) group_id = django_filters.ModelMultipleChoiceFilter( field_name="groups", queryset=Group.objects.all(), label="Group", ) group = django_filters.ModelMultipleChoiceFilter( field_name="groups__name", queryset=Group.objects.all(), to_field_name="name", label="Group (name)", ) class Meta: model = get_user_model() fields = [ "id", "username", "first_name", "last_name", "email", "is_staff", "is_active", ] def search(self, queryset, name, value): if not value.strip(): return queryset return queryset.filter( Q(username__icontains=value) | Q(first_name__icontains=value) | Q(last_name__icontains=value) | Q(email__icontains=value) ) class TokenFilterSet(BaseFilterSet): q = django_filters.CharFilter( method="search", label="Search", ) class Meta: model = Token fields = ["id", "key", "write_enabled", "created", "expires"] def search(self, queryset, name, value): if not value.strip(): return queryset return queryset.filter(Q(description__icontains=value)) class ObjectPermissionFilterSet(BaseFilterSet): user_id = django_filters.ModelMultipleChoiceFilter( field_name="users", queryset=get_user_model().objects.all(), label="User", ) user = django_filters.ModelMultipleChoiceFilter( field_name="users__username", queryset=get_user_model().objects.all(), to_field_name="username", label="User (name)", ) group_id = django_filters.ModelMultipleChoiceFilter( field_name="groups", queryset=Group.objects.all(), label="Group", ) group = django_filters.ModelMultipleChoiceFilter( field_name="groups__name", queryset=Group.objects.all(), to_field_name="name", label="Group (name)", ) class Meta: model = ObjectPermission fields = ["id", "name", "enabled", "object_types"]
26.252174
69
0.612454
52b93e149a5a1637bd07a108c5bb4301e6daa22f
6,577
py
Python
large_cohort/processes/q_ffl.py
isabella232/federated-1
834608ecad7be6772ecb753a4be72e89beec4b18
[ "Apache-2.0" ]
null
null
null
large_cohort/processes/q_ffl.py
isabella232/federated-1
834608ecad7be6772ecb753a4be72e89beec4b18
[ "Apache-2.0" ]
1
2022-01-29T11:44:07.000Z
2022-01-29T11:44:07.000Z
large_cohort/processes/q_ffl.py
isabella232/federated-1
834608ecad7be6772ecb753a4be72e89beec4b18
[ "Apache-2.0" ]
null
null
null
# Copyright 2021, Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An implementation of the q-Fair Federated Learning (q-FFL) algorithm. Based on the paper: Fair Resource Allocation in Federated Learning. Tian Li, Maziar Sanjabi, Ahmad Beirami, Virginia Smith. ICLR 2020. https://arxiv.org/abs/1602.05629 Note that the primary distinction between this implementation and the algorithm described in the paper above is that the paper weights each client by their loss after training. This requires an extra pass over each client's dataset. In order to reduce training time on clients, we use the loss computed as the client trains to do the weighting in q-FFL. """ from typing import Any, Callable, Optional import tensorflow as tf import tensorflow_federated as tff DEFAULT_SERVER_OPTIMIZER_FN = lambda: tf.keras.optimizers.SGD(learning_rate=1.0) def build_keras_output_to_loss_fn( metric_builder=Callable[[], tf.keras.metrics.Metric]): """Creates a function that computes the result of a `tf.keras` metric.""" def output_to_loss_fn(output): loss_variables = output['loss'] metric = metric_builder() tf.nest.map_structure(lambda a, b: a.assign(b), metric.variables, loss_variables) return metric.result() return output_to_loss_fn def build_q_ffl_process( model_fn: Callable[[], tff.learning.Model], fairness_parameter: tf.Tensor, client_optimizer_fn: Callable[[], tf.keras.optimizers.Optimizer], server_optimizer_fn: Callable[ [], tf.keras.optimizers.Optimizer] = DEFAULT_SERVER_OPTIMIZER_FN, broadcast_process: Optional[tff.templates.MeasuredProcess] = None, model_update_aggregation_factory: Optional[ tff.aggregators.WeightedAggregationFactory] = None, use_experimental_simulation_loop: bool = False, output_to_loss_fn: Optional[Callable[[Any], tf.Tensor]] = None, ) -> tff.templates.IterativeProcess: """Builds an iterative process that performs q-FFL. This function creates a `tff.templates.IterativeProcess` that performs a variant of federated averaging on client models, where client updates are weighted according by their loss raised to the power `fairness_parameter`. The iterative process has the following methods inherited from `tff.templates.IterativeProcess`: * `initialize`: A `tff.Computation` with the functional type signature `( -> S@SERVER)`, where `S` is a `tff.learning.framework.ServerState` representing the initial state of the server. * `next`: A `tff.Computation` with the functional type signature `(<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>)` where `S` is a `tff.learning.framework.ServerState` whose type matches that of the output of `initialize`, and `{B*}@CLIENTS` represents the client datasets, where `B` is the type of a single batch. This computation returns a `tff.learning.framework.ServerState` representing the updated server state and metrics computed during training. The iterative process also has the following method not inherited from `tff.templates.IterativeProcess`: * `get_model_weights`: A `tff.Computation` that takes as input the a `tff.learning.framework.ServerState`, and returns a `tff.learning.ModelWeights` containing the state's model weights. The internal logic of the resulting iterative process is the same as `tff.learning.build_federated_averaging_process`, but with a custom weighting function. Args: model_fn: A no-arg function that returns a `tff.learning.Model`. This method must *not* capture TensorFlow tensors or variables and use them. The model must be constructed entirely from scratch on each invocation, returning the same pre-constructed model each call will result in an error. fairness_parameter: A scalar tensor governing the exponent in the client weights. Must be convertible to a scalar `tf.float32`. client_optimizer_fn: A no-arg callable that returns a `tf.keras.Optimizer`. server_optimizer_fn: A no-arg callable that returns a `tf.keras.Optimizer`. By default, this uses `tf.keras.optimizers.SGD` with a learning rate of 1.0. broadcast_process: a `tff.templates.MeasuredProcess` that broadcasts the model weights on the server to the clients. It must support the signature `(input_values@SERVER -> output_values@CLIENT)`. If set to default None, the server model is broadcast to the clients using the default tff.federated_broadcast. model_update_aggregation_factory: An optional `tff.aggregators.WeightedAggregationFactory` that constructs `tff.templates.AggregationProcess` for aggregating the client model updates on the server. If `None`, uses `tff.aggregators.MeanFactory`. use_experimental_simulation_loop: Controls the reduce loop function for input dataset. An experimental reduce loop is used for simulation. It is currently necessary to set this flag to True for performant GPU simulations. output_to_loss_fn: An optional callable that takes the result of `model_fn().report_local_unfinalized_metrics()` and returns a scalar tensor representing the loss of the model. If set to `None`, this method will assume that the loss will attempt to be extracted `model_fn().report_local_unfinalized_metrics()['loss']`. Returns: A `tff.templates.IterativeProcess`. """ if output_to_loss_fn is None: output_to_loss_fn = lambda x: x['loss'] def client_weighting(client_output): loss = output_to_loss_fn(client_output) return tf.math.pow(loss, fairness_parameter) return tff.learning.build_federated_averaging_process( model_fn=model_fn, client_optimizer_fn=client_optimizer_fn, server_optimizer_fn=server_optimizer_fn, client_weighting=client_weighting, broadcast_process=broadcast_process, model_update_aggregation_factory=model_update_aggregation_factory, use_experimental_simulation_loop=use_experimental_simulation_loop)
46.316901
80
0.753535
c49a2670308148737e276772541d42d2ebb4fe11
8,115
py
Python
tests/dates/test_ToDatetimeTransformer.py
binti59/LV
20994adfb3f311645bd513ab81dad761d3e3ab98
[ "BSD-3-Clause" ]
32
2021-04-26T13:04:26.000Z
2022-03-18T16:22:13.000Z
tests/dates/test_ToDatetimeTransformer.py
binti59/LV
20994adfb3f311645bd513ab81dad761d3e3ab98
[ "BSD-3-Clause" ]
15
2021-05-08T09:46:48.000Z
2021-11-23T11:40:15.000Z
tests/dates/test_ToDatetimeTransformer.py
binti59/LV
20994adfb3f311645bd513ab81dad761d3e3ab98
[ "BSD-3-Clause" ]
6
2021-05-05T08:48:00.000Z
2021-08-17T12:31:32.000Z
import pytest import test_aide as ta import tests.test_data as d import datetime import pandas import pandas as pd import numpy as np import tubular from tubular.dates import ToDatetimeTransformer class TestInit(object): """Tests for ToDatetimeTransformer.init().""" def test_arguments(self): """Test that init has expected arguments.""" ta.functions.test_function_arguments( func=ToDatetimeTransformer.__init__, expected_arguments=[ "self", "column", "new_column_name", "to_datetime_kwargs", ], expected_default_values=({},), ) def test_class_methods(self): """Test that ToDatetimeTransformer has fit and transform methods.""" to_dt = ToDatetimeTransformer(column="a", new_column_name="b") ta.classes.test_object_method( obj=to_dt, expected_method="transform", msg="transform" ) def test_inheritance(self): """Test that ToDatetimeTransformer inherits from BaseTransformer.""" to_dt = ToDatetimeTransformer(column="a", new_column_name="b") ta.classes.assert_inheritance(to_dt, tubular.base.BaseTransformer) def test_super_init_called(self, mocker): """Test that init calls BaseTransformer.init.""" expected_call_args = { 0: { "args": (), "kwargs": { "columns": ["a"], "copy": True, "verbose": False, }, } } with ta.functions.assert_function_call( mocker, tubular.base.BaseTransformer, "__init__", expected_call_args ): ToDatetimeTransformer( column="a", new_column_name="b", verbose=False, copy=True ) def test_column_type_error(self): """Test that an exception is raised if column is not a str.""" with pytest.raises( TypeError, match="column should be a single str giving the column to transform to datetime", ): ToDatetimeTransformer( column=["a"], new_column_name="a", ) def test_new_column_name_type_error(self): """Test that an exception is raised if new_column_name is not a str.""" with pytest.raises(TypeError, match="new_column_name must be a str"): ToDatetimeTransformer(column="b", new_column_name=1) def test_to_datetime_kwargs_type_error(self): """Test that an exception is raised if to_datetime_kwargs is not a dict.""" with pytest.raises( TypeError, match=r"""to_datetime_kwargs should be a dict but got type \<class 'int'\>""", ): ToDatetimeTransformer(column="b", new_column_name="a", to_datetime_kwargs=1) def test_to_datetime_kwargs_key_type_error(self): """Test that an exception is raised if to_datetime_kwargs has keys which are not str.""" with pytest.raises( TypeError, match=r"""unexpected type \(\<class 'int'\>\) for to_datetime_kwargs key in position 1, must be str""", ): ToDatetimeTransformer( new_column_name="a", column="b", to_datetime_kwargs={"a": 1, 2: "b"}, ) def test_inputs_set_to_attribute(self): """Test that the values passed in init are set to attributes.""" to_dt = ToDatetimeTransformer( column="b", new_column_name="a", to_datetime_kwargs={"a": 1, "b": 2}, ) ta.classes.test_object_attributes( obj=to_dt, expected_attributes={ "column": "b", "columns": ["b"], "new_column_name": "a", "to_datetime_kwargs": {"a": 1, "b": 2}, }, msg="Attributes for ToDatetimeTransformer set in init", ) class TestTransform(object): """Tests for ToDatetimeTransformer.transform().""" def expected_df_1(): """Expected output for test_expected_output.""" df = pd.DataFrame( { "a": [1950, 1960, 2000, 2001, np.NaN, 2010], "b": [1, 2, 3, 4, 5, np.NaN], "a_Y": [ datetime.datetime(1950, 1, 1), datetime.datetime(1960, 1, 1), datetime.datetime(2000, 1, 1), datetime.datetime(2001, 1, 1), pd.NaT, datetime.datetime(2010, 1, 1), ], "b_m": [ datetime.datetime(1900, 1, 1), datetime.datetime(1900, 2, 1), datetime.datetime(1900, 3, 1), datetime.datetime(1900, 4, 1), datetime.datetime(1900, 5, 1), pd.NaT, ], } ) return df def test_arguments(self): """Test that transform has expected arguments.""" ta.functions.test_function_arguments( func=ToDatetimeTransformer.transform, expected_arguments=["self", "X"] ) def test_super_transform_call(self, mocker): """Test the call to BaseTransformer.transform is as expected.""" df = d.create_datediff_test_df() to_dt = ToDatetimeTransformer(column="a", new_column_name="Y") expected_call_args = {0: {"args": (d.create_datediff_test_df(),), "kwargs": {}}} with ta.functions.assert_function_call( mocker, tubular.base.BaseTransformer, "transform", expected_call_args, return_value=d.create_datediff_test_df(), ): to_dt.transform(df) def test_to_datetime_call(self, mocker): """Test the call to pandas.to_datetime is as expected.""" df = d.create_to_datetime_test_df() to_dt = ToDatetimeTransformer( column="a", new_column_name="a_Y", to_datetime_kwargs={"format": "%Y"} ) expected_call_args = { 0: { "args": (d.create_to_datetime_test_df()["a"],), "kwargs": {"format": "%Y"}, } } with ta.functions.assert_function_call( mocker, pandas, "to_datetime", expected_call_args, return_value=pd.to_datetime(d.create_to_datetime_test_df()["a"]), ): to_dt.transform(df) def test_output_from_to_datetime_assigned_to_column(self, mocker): """Test that the output from pd.to_datetime is assigned to column with name new_column_name.""" df = d.create_to_datetime_test_df() to_dt = ToDatetimeTransformer( column="a", new_column_name="a_new", to_datetime_kwargs={"format": "%Y"} ) to_datetime_output = [1, 2, 3, 4, 5, 6] mocker.patch("pandas.to_datetime", return_value=to_datetime_output) df_transformed = to_dt.transform(df) assert ( df_transformed["a_new"].tolist() == to_datetime_output ), "unexpected values assigned to a_new column" @pytest.mark.parametrize( "df, expected", ta.pandas.adjusted_dataframe_params( d.create_to_datetime_test_df(), expected_df_1() ), ) def test_expected_output(self, df, expected): """Test input data is transformed as expected.""" to_dt_1 = ToDatetimeTransformer( column="a", new_column_name="a_Y", to_datetime_kwargs={"format": "%Y"} ) to_dt_2 = ToDatetimeTransformer( column="b", new_column_name="b_m", to_datetime_kwargs={"format": "%m"} ) df_transformed = to_dt_1.transform(df) df_transformed = to_dt_2.transform(df_transformed) ta.equality.assert_equal_dispatch( expected=expected, actual=df_transformed, msg="ToDatetimeTransformer.transform output", )
31.211538
115
0.56451
615fe6493105766a0f65f2a10c70c6dbb988c4f2
3,474
py
Python
lte/gateway/python/integ_tests/s1aptests/test_enb_partial_reset.py
pedroamfarias-cpqd/magma
56ff0559d74ff39056f1102486a667a87e65960d
[ "BSD-3-Clause" ]
1
2020-10-20T18:59:38.000Z
2020-10-20T18:59:38.000Z
lte/gateway/python/integ_tests/s1aptests/test_enb_partial_reset.py
pedroamfarias-cpqd/magma
56ff0559d74ff39056f1102486a667a87e65960d
[ "BSD-3-Clause" ]
104
2020-09-23T12:28:22.000Z
2022-03-21T05:24:42.000Z
lte/gateway/python/integ_tests/s1aptests/test_enb_partial_reset.py
pedroamfarias-cpqd/magma
56ff0559d74ff39056f1102486a667a87e65960d
[ "BSD-3-Clause" ]
null
null
null
""" Copyright 2020 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest import time import ctypes from builtins import range import s1ap_types import s1ap_wrapper class TestEnbPartialReset(unittest.TestCase): def setUp(self): self._s1ap_wrapper = s1ap_wrapper.TestWrapper() def tearDown(self): self._s1ap_wrapper.cleanup() def test_enb_partial_reset(self): """ attach 32 UEs """ ue_ids = [] num_ues = 1 self._s1ap_wrapper.configUEDevice(num_ues) for _ in range(num_ues): req = self._s1ap_wrapper.ue_req print("************************* Calling attach for UE id ", req.ue_id) self._s1ap_wrapper.s1_util.attach( req.ue_id, s1ap_types.tfwCmd.UE_END_TO_END_ATTACH_REQUEST, s1ap_types.tfwCmd.UE_ATTACH_ACCEPT_IND, s1ap_types.ueAttachAccept_t, ) ue_ids.append(req.ue_id) # Wait on EMM Information from MME self._s1ap_wrapper._s1_util.receive_emm_info() # Trigger eNB Reset # Add delay to ensure S1APTester sends attach partial before sending # eNB Reset Request time.sleep(0.5) print("************************* Sending eNB Partial Reset Request") reset_req = s1ap_types.ResetReq() reset_req.rstType = s1ap_types.resetType.PARTIAL_RESET.value reset_req.cause = s1ap_types.ResetCause() reset_req.cause.causeType = s1ap_types.NasNonDelCauseType.TFW_CAUSE_MISC.value # Set the cause to MISC.hardware-failure reset_req.cause.causeVal = 3 reset_req.r = s1ap_types.R() reset_req.r.partialRst = s1ap_types.PartialReset() reset_req.r.partialRst.numOfConn = num_ues reset_req.r.partialRst.ueS1apIdPairList = ( (s1ap_types.UeS1apIdPair) * reset_req.r.partialRst.numOfConn )() for indx in range(reset_req.r.partialRst.numOfConn): reset_req.r.partialRst.ueS1apIdPairList[indx].ueId = ue_ids[indx] print( "Reset_req.r.partialRst.ueS1apIdPairList[indx].ueId", reset_req.r.partialRst.ueS1apIdPairList[indx].ueId, indx, ) print("ue_ids", ue_ids) self._s1ap_wrapper.s1_util.issue_cmd(s1ap_types.tfwCmd.RESET_REQ, reset_req) response = self._s1ap_wrapper.s1_util.get_response() self.assertEqual(response.msg_type, s1ap_types.tfwCmd.RESET_ACK.value) # Sleep for 3 seconds to ensure that MME has cleaned up all S1 state # before proceeding time.sleep(3) # Trigger detach request for ue in ue_ids: print("************************* Calling detach for UE id ", ue) # self._s1ap_wrapper.s1_util.detach( # ue, detach_type, wait_for_s1) self._s1ap_wrapper.s1_util.detach( ue, s1ap_types.ueDetachType_t.UE_NORMAL_DETACH.value, True ) if __name__ == "__main__": unittest.main()
38.6
86
0.647956
e7d02c67b7ddbbee5fec0608308e90327ab91074
1,956
py
Python
storage/cloud-client/storage_upload_encrypted_file.py
yshalabi/python-docs-samples
591787c01d94102ba9205f998d95a05b39ccad2f
[ "Apache-2.0" ]
5,938
2015-05-18T05:04:37.000Z
2022-03-31T20:16:39.000Z
storage/cloud-client/storage_upload_encrypted_file.py
yshalabi/python-docs-samples
591787c01d94102ba9205f998d95a05b39ccad2f
[ "Apache-2.0" ]
4,730
2015-05-07T19:00:38.000Z
2022-03-31T21:59:41.000Z
storage/cloud-client/storage_upload_encrypted_file.py
yshalabi/python-docs-samples
591787c01d94102ba9205f998d95a05b39ccad2f
[ "Apache-2.0" ]
6,734
2015-05-05T17:06:20.000Z
2022-03-31T12:02:51.000Z
#!/usr/bin/env python # Copyright 2019 Google, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # [START storage_upload_encrypted_file] import base64 # [END storage_upload_encrypted_file] import sys # [START storage_upload_encrypted_file] from google.cloud import storage def upload_encrypted_blob( bucket_name, source_file_name, destination_blob_name, base64_encryption_key, ): """Uploads a file to a Google Cloud Storage bucket using a custom encryption key. The file will be encrypted by Google Cloud Storage and only retrievable using the provided encryption key. """ storage_client = storage.Client() bucket = storage_client.bucket(bucket_name) # Encryption key must be an AES256 key represented as a bytestring with # 32 bytes. Since it's passed in as a base64 encoded string, it needs # to be decoded. encryption_key = base64.b64decode(base64_encryption_key) blob = bucket.blob( destination_blob_name, encryption_key=encryption_key ) blob.upload_from_filename(source_file_name) print( "File {} uploaded to {}.".format( source_file_name, destination_blob_name ) ) # [END storage_upload_encrypted_file] if __name__ == "__main__": upload_encrypted_blob( bucket_name=sys.argv[1], source_file_name=sys.argv[2], destination_blob_name=sys.argv[3], base64_encryption_key=sys.argv[4], )
28.347826
75
0.725971
055265ee55a31b4e1884c5332e5a5aa333c6735b
2,857
py
Python
meraki/models/update_network_static_route_model.py
bossypants22/python-sdk-test
37701d62dc18c2abb910eb790ab978913adcaf7b
[ "MIT" ]
37
2019-04-24T14:01:33.000Z
2022-01-28T01:37:21.000Z
meraki/models/update_network_static_route_model.py
ankita66666666/meraki-python-sdk
9894089eb013318243ae48869cc5130eb37f80c0
[ "MIT" ]
10
2019-07-09T16:35:11.000Z
2021-12-07T03:47:53.000Z
meraki/models/update_network_static_route_model.py
ankita66666666/meraki-python-sdk
9894089eb013318243ae48869cc5130eb37f80c0
[ "MIT" ]
17
2019-04-30T23:53:21.000Z
2022-02-07T22:57:44.000Z
# -*- coding: utf-8 -*- """ meraki This file was automatically generated for meraki by APIMATIC v2.0 ( https://apimatic.io ). """ class UpdateNetworkStaticRouteModel(object): """Implementation of the 'updateNetworkStaticRoute' model. TODO: type model description here. Attributes: name (string): The name of the static route subnet (string): The subnet of the static route gateway_ip (string): The gateway IP (next hop) of the static route enabled (string): The enabled state of the static route fixed_ip_assignments (string): The DHCP fixed IP assignments on the static route reserved_ip_ranges (string): The DHCP reserved IP ranges on the static route """ # Create a mapping from Model property names to API property names _names = { "name":'name', "subnet":'subnet', "gateway_ip":'gatewayIp', "enabled":'enabled', "fixed_ip_assignments":'fixedIpAssignments', "reserved_ip_ranges":'reservedIpRanges' } def __init__(self, name=None, subnet=None, gateway_ip=None, enabled=None, fixed_ip_assignments=None, reserved_ip_ranges=None): """Constructor for the UpdateNetworkStaticRouteModel class""" # Initialize members of the class self.name = name self.subnet = subnet self.gateway_ip = gateway_ip self.enabled = enabled self.fixed_ip_assignments = fixed_ip_assignments self.reserved_ip_ranges = reserved_ip_ranges @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary name = dictionary.get('name') subnet = dictionary.get('subnet') gateway_ip = dictionary.get('gatewayIp') enabled = dictionary.get('enabled') fixed_ip_assignments = dictionary.get('fixedIpAssignments') reserved_ip_ranges = dictionary.get('reservedIpRanges') # Return an object of this model return cls(name, subnet, gateway_ip, enabled, fixed_ip_assignments, reserved_ip_ranges)
31.744444
95
0.587679
139045be25ec9a5e2f1b6dc5f1677f9cabfd9a42
1,095
py
Python
AP1/Sorteio.py
GiovannaPazello/Projetos-em-Python
3cf7edbdf2a2350605a775389f7fe2cc7fe8032e
[ "MIT" ]
null
null
null
AP1/Sorteio.py
GiovannaPazello/Projetos-em-Python
3cf7edbdf2a2350605a775389f7fe2cc7fe8032e
[ "MIT" ]
null
null
null
AP1/Sorteio.py
GiovannaPazello/Projetos-em-Python
3cf7edbdf2a2350605a775389f7fe2cc7fe8032e
[ "MIT" ]
null
null
null
'''Faça um programa para o usuário adivinhar o número sorteado: O programa deve perguntar o valor limite para o sorteio (ex: se o usuário informar o número 10, o programa irá sortear um número entre 0 e 10, inclusive o 10). O programa deve sortear o número e pedir ao usuário que tente adivinhar o número. Caso o usuário não acerte o palpite o programa deve dizer se o número sorteado é maior ou menor que o informado pelo usuário. O programa deve continuar pedindo palpites até que o usuário acerte. No final o programa deve informar quantos palpites foram necessários até que o palpite fosse o correto''' import random nLimite = int(input('Digite o número limite para o sorteio:')) x = random.randint(0,nLimite) cont = 0 while cont <= nLimite: n = int(input('Digite o número que você acha que foi sorteado:')) cont+=1 if n == x: print('Parabéns, você acertou o número.') break elif n > x: print('Seu número é maior que o sorteado.') else: print('Seu número é menor que o sorteado.') print('A quantidade de tentativas foi {}'.format(cont))
45.625
117
0.722374
a3825d30b5173a4546ecbb4e093f6de0cf22a69c
12,668
py
Python
Arcpy Methods/first_arcpy_methodology.py
KSnyderCode/MunicipalMergerProject
2c5cc4879562fcb87b0e379731e83906802159f7
[ "MIT" ]
3
2015-10-20T18:15:21.000Z
2017-06-20T15:51:04.000Z
Arcpy Methods/first_arcpy_methodology.py
KSnyderCode/MunicipalMergerProject
2c5cc4879562fcb87b0e379731e83906802159f7
[ "MIT" ]
1
2017-04-10T20:50:25.000Z
2017-04-10T20:50:25.000Z
Arcpy Methods/first_arcpy_methodology.py
cfh294/GISTools
2c5cc4879562fcb87b0e379731e83906802159f7
[ "MIT" ]
1
2021-04-11T13:19:14.000Z
2021-04-11T13:19:14.000Z
import arcpy from arcpy import env import sets arcpy.env.overwriteOutput = True muniParam = arcpy.GetParameterAsText(0) muniList = muniParam.split(';') popMin = arcpy.GetParameterAsText(1) outputWorkspace = arcpy.GetParameterAsText(2) arcpy.env.workspace = outputWorkspace # Dictionary used in the raw() method escape_dict={'\a':r'\a', '\b':r'\b', '\c':r'\c', '\f':r'\f', '\n':r'\n', '\r':r'\r', '\t':r'\t', '\v':r'\v', '\'':r'\'', '\"':r'\"'} # Credit to Brett Cannon on code.ActiveState.com, slight modifications by myself. def raw(text): # Returns a raw string representation of text and eliminates all special backslash characters new_string='' for char in text: try: new_string += escape_dict[char] except KeyError: new_string += char return new_string # Function that returns an array of border lengths for the given municipality. Parameter # is a municipal code String. def getAllBorders(munCode): cursor = arcpy.SearchCursor(polyAnalysis) lengths = [] for r in cursor: if(r.getValue('src_MUN_CODE') == munCode): border = r.getValue('LENGTH') lengths.append(border) del cursor del r return lengths # Returns the merger partner, based on the source municipality's municipal code and the # length of the border that the two municipality's share. Returns the merger partner's # municipal code String. def getFellowMerger(length, srcMunCode): cursor = arcpy.SearchCursor(polyAnalysis) mergerMunCode = '' for r in cursor: # Towns with longest borders are both merger candidates if(r.getValue('src_MUN_CODE') == srcMunCode and r.getValue('LENGTH') == length and r.getValue('src_isCand') == 1 and r.getValue('nbr_isCand') == 1): mergerMunCode = r.getValue('nbr_MUN_CODE') # Doughnut hole: small municipality merger candidate entirely within a non candidate. Merge them. elif(r.getValue('src_MUN_CODE') == srcMunCode and r.getValue('src_isCand') == 1 and r.getValue('nbr_isCand') == 0 and r.getValue('LENGTH') == length): mergerMunCode = r.getValue('nbr_MUN_CODE') return mergerMunCode del cursor, r # Renames the name of field in a feature class. Needed due to the 'Alter Field' tool not being available prior to 10.2. Credit to Josh Werts for # this elegant solution at joshwerts.com def rename_fields(table, out_table, new_name_by_old_name): """ Renames specified fields in input feature class/table :table: input table (fc, table, layer, etc) :out_table: output table (fc, table, layer, etc) :new_name_by_old_name: {'old_field_name':'new_field_name',...} -> out_table """ existing_field_names = [field.name for field in arcpy.ListFields(table)] field_mappings = arcpy.FieldMappings() field_mappings.addTable(table) for old_field_name, new_field_name in new_name_by_old_name.iteritems(): if(old_field_name not in existing_field_names): message = "Field: {0} not in {1}".format(old_field_name, table) else: mapping_index = field_mappings.findFieldMapIndex(old_field_name) field_map = field_mappings.fieldMappings[mapping_index] output_field = field_map.outputField output_field.name = new_field_name output_field.aliasName = new_field_name field_map.outputField = output_field field_mappings.replaceFieldMap(mapping_index, field_map) # use merge with single input just to use new field_mappings arcpy.Merge_management(table, out_table, field_mappings) return out_table for muni in muniList: # Removing the file path from the name splitPath = raw(muni).split('\\') muniName = splitPath[len(splitPath) - 1] arcpy.AddMessage(muniName) cursor = arcpy.SearchCursor(muni) countyName = '' for row in cursor: countyName = row.getValue('COUNTY') break del row, cursor iteration = 1 mergeCount = 1 iterMergeCount = 1 lastJoinMerge = 0 popReqMet = False while popReqMet == False: thisIterationsMerges = 0 # Getting the source municipality feature class. Checking to see if the isCand field exists. if(mergeCount > 1): arcpy.Rename_management('merge%s'%(mergeCount - 1), 'tempmerge%s'%(mergeCount - 1)) newNameByOldName = {'%s_isCand'%(muniName) : 'isCand', '%s_MUN_CODE'%(muniName) : r'MUN_CODE', '%s_MUN'%(muniName) : 'MUN', '%s_POP2010'%(muniName) : 'POP2010', 'merge%s_MUN_CODE'%(lastJoinMerge) : 'MUN_CODE', 'merge%s_MUN'%(lastJoinMerge) : 'MUN', 'merge%s_POP2010'%(lastJoinMerge) : 'POP2010', 'merge%s_isCand'%(lastJoinMerge) : 'isCand'} if(iteration <= 2): arcpy.DeleteField_management('tempmerge%s'%(iterMergeCount - 1), ['%s_isCand'%(muniName), 'mergeKey_OBJECTID', 'mergeKey_MUN', 'mergeKey_BESTMERGE']) else: arcpy.DeleteField_management('tempmerge%s'%(mergeCount - 1), ['merge%s_isCand'%(lastJoinMerge), 'mergeKey_OBJECTID', 'mergeKey_MUN', 'mergeKey_BESTMERGE']) rename_fields('tempmerge%s'%(mergeCount - 1), 'merge%s'%(mergeCount - 1), newNameByOldName) NJmunis = 'merge%s'%(mergeCount - 1) arcpy.Delete_management('tempmerge%s'%(mergeCount - 1)) else: NJmunis = muni checkCursor = arcpy.SearchCursor(NJmunis) indPops = set() for checkRow in checkCursor: muniPop = checkRow.getValue('POP2010') indPops.add(muniPop) del checkRow, checkCursor popCounter = 0 for pop in indPops: if(pop < int(popMin)): popCounter += 1 if(popCounter == 0): popReqMet = True if(iteration == 1): arcpy.AddMessage('%s Merge(s) Needed'%(str(popCounter))) else: arcpy.AddMessage('%s More Merge(s) Needed'%(str(popCounter))) NJmunis_fields = arcpy.ListFields(NJmunis) fieldName = [f.name for f in NJmunis_fields] if('isCand' not in fieldName): arcpy.AddField_management(NJmunis, 'isCand', 'LONG') code = """def isCand(pop): if(pop < %s): return 1 else: return 0"""%(popMin) exp = 'isCand(!POP2010!)' arcpy.CalculateField_management(NJmunis, 'isCand', exp, 'PYTHON_9.3', code) # Executing the Polygon Neighbors tool and writing a new table to disk. in_fields = [r'MUN_CODE', r'MUN', r'isCand'] polyAnalysis = arcpy.PolygonNeighbors_analysis(NJmunis, 'poly_analysis', in_fields) # Adding all needed fields to the Polygon Neighbors table. if('CANDBORDERS' not in fieldName): arcpy.AddField_management(polyAnalysis, 'CANDBORDERS', 'LONG') if('BESTMERGE' not in fieldName): arcpy.AddField_management(polyAnalysis, 'BESTMERGE', 'TEXT') # Updating the new fields in the Polygon Neighbors table. cursor = arcpy.UpdateCursor(polyAnalysis) row = cursor.next() arcpy.AddMessage('Finding merge partners...') while row: srcMunCode = row.getValue('src_MUN_CODE') borders = getAllBorders(srcMunCode) longestBorder = 0 if(len(borders) > 1): longestBorder = max(borders) else: longestBorder = borders[0] row.setValue('BESTMERGE', getFellowMerger(longestBorder, srcMunCode)) cursor.updateRow(row) row = cursor.next() del cursor del row # Creating a table that will contain merge candidates and their best partners. arcpy.AddMessage('Making key...') if(mergeCount > 1): arcpy.Delete_management('mergeKey') path = outputWorkspace name = 'mergeKey' mergeKey = arcpy.CreateTable_management(path, name) arcpy.AddField_management(mergeKey, 'MUN', 'TEXT') arcpy.AddField_management(mergeKey, 'BESTMERGE', 'TEXT') # Getting values for the key, eliminates extraneous information from the Polygon # Neighbors table. Stores the pairs as tuples within a set. This prevents any duplicate # scenarios. mergerList = set() cursor = arcpy.SearchCursor(polyAnalysis) arcpy.AddMessage('Tuple-ing...') for row in cursor: srcMun = row.getValue('src_MUN_CODE') mergeMun = row.getValue('BESTMERGE') tup = (srcMun, mergeMun) mergerList.add(tup) del cursor del row totalMergers = len(mergerList) # Populates the key table using the set of tuples constructed in the previous lines. arcpy.AddMessage('Updating Key...') cursor = arcpy.InsertCursor(mergeKey) for row in range(len(mergerList)): newRow = cursor.newRow() pair = mergerList.pop() mun = pair[0] bestMerge = pair[1] newRow.setValue('MUN', mun) newRow.setValue('BESTMERGE', bestMerge) cursor.insertRow(newRow) del cursor # Joining the municipalities feature class with the merger key, and exporting it as its # own feature class. if(mergeCount == 1): baseMunis = muni else: baseMunis = 'merge%s'%(mergeCount - 1) layer = arcpy.MakeFeatureLayer_management(baseMunis, 'lyr') view = arcpy.MakeTableView_management(mergeKey, 'tbl') arcpy.AddJoin_management(layer, 'MUN_CODE', view, 'MUN') arcpy.Select_analysis(layer, 'join') arcpy.AddMessage('Merging Munis...') cursor = arcpy.SearchCursor('join') for row in cursor: if(iteration == 1): if(mergeCount > 1): layer = arcpy.MakeFeatureLayer_management('merge%s'%(mergeCount - 1), 'lyr') else: layer = arcpy.MakeFeatureLayer_management('join', 'lyr') else: if(mergeCount > iterMergeCount): layer = arcpy.MakeFeatureLayer_management('merge%s'%(mergeCount - 1), 'lyr') else: layer = arcpy.MakeFeatureLayer_management('join', 'lyr') # Get this rows best merge municipality. Select this row, all other rows that share # the same best merge, and the best merge municipality using a SQL statement. if(row.getValue('mergeKey_BESTMERGE') != '' and row.getValue('mergeKey_BESTMERGE') != None and row.getValue('mergeKey_BESTMERGE') != ' '): munCode = row.getValue('mergeKey_BESTMERGE') sql = '"mergeKey_BESTMERGE" =' + " '" + munCode + "'" arcpy.SelectLayerByAttribute_management(layer, 'NEW_SELECTION', sql) sql = '"mergeKey_MUN" =' + " '" + munCode + "'" arcpy.SelectLayerByAttribute_management(layer, 'ADD_TO_SELECTION', sql) #Getting the population total for the new municipality. arcpy.Select_analysis(layer, 'selected') if(int(arcpy.GetCount_management('selected').getOutput(0)) != 0): popCursor = arcpy.SearchCursor('selected') totalPop = 0 if(iteration < 2): field = '%s_POP2010'%(muniName) else: field = 'merge%s_POP2010'%(iterMergeCount - 1) for popRow in popCursor: totalPop += popRow.getValue(field) del popRow, popCursor # Dissolve the selection to simulate a merging of the selected municipalities. arcpy.Dissolve_management(layer, 'dissolve') arcpy.Delete_management('selected') # With the pre-merger municipalities still selected, run the Delete Features tool # in order to delete them. arcpy.DeleteFeatures_management(layer) # Merge the "chopped up" base layer with the new municipality to fill the void that # the previous ones left when they were deleted. Add the new population figure to the POP2010 field. arcpy.Merge_management([layer, 'dissolve'], 'merge%s'%(mergeCount)) nullCursor = arcpy.UpdateCursor('merge%s'%(mergeCount)) if(iteration == 1): popVal = '%s_POP2010'%(muniName) mcVal = '%s_MUN_CODE'%(muniName) else: popVal = 'merge%s_POP2010'%(iterMergeCount - 1) mcVal = 'merge%s_MUN_CODE'%(iterMergeCount - 1) for nullRow in nullCursor: if(nullRow.isNull(popVal)): nullRow.setValue(popVal, totalPop) nullRow.setValue(mcVal, '%s'%(mergeCount)) nullCursor.updateRow(nullRow) del nullRow, nullCursor #Clean up the temp files. if(mergeCount > 1): arcpy.Delete_management('merge%s'%(mergeCount - 1)) arcpy.Delete_management('dissolve') mergeCount += 1 thisIterationsMerges += 1 else: arcpy.Delete_management('selected') arcpy.AddMessage('%s Merges Complete'%(str(mergeCount - 1))) iteration += 1 lastJoinMerge = iterMergeCount - 1 iterMergeCount += thisIterationsMerges del cursor, row # if(len(muniName) > 8): # muniName = muniName[:8] newFileName = '%s_merged'%(muniName) + '_' + str(popMin) if(mergeCount >= 2): arcpy.Rename_management('merge%s'%(mergeCount - 1), newFileName) # Populating the County field fields = [f.name for f in arcpy.ListFields(newFileName)] fieldName = '' for field in fields: if('COUNTY' in field): fieldName = field break cursor = arcpy.UpdateCursor(newFileName) for row in cursor: row.setValue(fieldName, countyName) cursor.updateRow(row) del row, cursor # Cleaning up workspace arcpy.Delete_management('join') arcpy.Delete_management('mergeKey') arcpy.Delete_management('poly_analysis')
35.188889
343
0.693874
e9f64b34d6210d0495fe806b05ceb2f47e93d560
16,201
py
Python
lib/streamlit/elements/slider.py
akrolsmir/streaml
968e7f5f720080c22e76912aff0861cf917bfeb4
[ "Apache-2.0" ]
null
null
null
lib/streamlit/elements/slider.py
akrolsmir/streaml
968e7f5f720080c22e76912aff0861cf917bfeb4
[ "Apache-2.0" ]
221
2020-10-16T08:15:02.000Z
2022-03-29T10:25:00.000Z
lib/streamlit/elements/slider.py
akrolsmir/streamlit
968e7f5f720080c22e76912aff0861cf917bfeb4
[ "Apache-2.0" ]
null
null
null
# Copyright 2018-2021 Streamlit Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datetime import date, time, datetime, timedelta, timezone from typing import cast import streamlit from streamlit.errors import StreamlitAPIException from streamlit.js_number import JSNumber from streamlit.js_number import JSNumberBoundsException from streamlit.proto.Slider_pb2 import Slider as SliderProto from .utils import register_widget class SliderMixin: def slider( self, label, min_value=None, max_value=None, value=None, step=None, format=None, key=None, ): """Display a slider widget. This supports int, float, date, time, and datetime types. This also allows you to render a range slider by passing a two-element tuple or list as the `value`. The difference between `st.slider` and `st.select_slider` is that `slider` only accepts numerical or date/time data and takes a range as input, while `select_slider` accepts any datatype and takes an iterable set of options. Parameters ---------- label : str or None A short label explaining to the user what this slider is for. min_value : a supported type or None The minimum permitted value. Defaults to 0 if the value is an int, 0.0 if a float, value - timedelta(days=14) if a date/datetime, time.min if a time max_value : a supported type or None The maximum permitted value. Defaults to 100 if the value is an int, 1.0 if a float, value + timedelta(days=14) if a date/datetime, time.max if a time value : a supported type or a tuple/list of supported types or None The value of the slider when it first renders. If a tuple/list of two values is passed here, then a range slider with those lower and upper bounds is rendered. For example, if set to `(1, 10)` the slider will have a selectable range between 1 and 10. Defaults to min_value. step : int/float/timedelta or None The stepping interval. Defaults to 1 if the value is an int, 0.01 if a float, timedelta(days=1) if a date/datetime, timedelta(minutes=15) if a time (or if max_value - min_value < 1 day) format : str or None A printf-style format string controlling how the interface should display numbers. This does not impact the return value. Formatter for int/float supports: %d %e %f %g %i Formatter for date/time/datetime uses Moment.js notation: https://momentjs.com/docs/#/displaying/format/ key : str An optional string to use as the unique key for the widget. If this is omitted, a key will be generated for the widget based on its content. Multiple widgets of the same type may not share the same key. Returns ------- int/float/date/time/datetime or tuple of int/float/date/time/datetime The current value of the slider widget. The return type will match the data type of the value parameter. Examples -------- >>> age = st.slider('How old are you?', 0, 130, 25) >>> st.write("I'm ", age, 'years old') And here's an example of a range slider: >>> values = st.slider( ... 'Select a range of values', ... 0.0, 100.0, (25.0, 75.0)) >>> st.write('Values:', values) This is a range time slider: >>> from datetime import time >>> appointment = st.slider( ... "Schedule your appointment:", ... value=(time(11, 30), time(12, 45))) >>> st.write("You're scheduled for:", appointment) Finally, a datetime slider: >>> from datetime import datetime >>> start_time = st.slider( ... "When do you start?", ... value=datetime(2020, 1, 1, 9, 30), ... format="MM/DD/YY - hh:mm") >>> st.write("Start time:", start_time) """ # Set value default. if value is None: value = min_value if min_value is not None else 0 SUPPORTED_TYPES = { int: SliderProto.INT, float: SliderProto.FLOAT, datetime: SliderProto.DATETIME, date: SliderProto.DATE, time: SliderProto.TIME, } TIMELIKE_TYPES = (SliderProto.DATETIME, SliderProto.TIME, SliderProto.DATE) # Ensure that the value is either a single value or a range of values. single_value = isinstance(value, tuple(SUPPORTED_TYPES.keys())) range_value = isinstance(value, (list, tuple)) and len(value) in (0, 1, 2) if not single_value and not range_value: raise StreamlitAPIException( "Slider value should either be an int/float/datetime or a list/tuple of " "0 to 2 ints/floats/datetimes" ) # Simplify future logic by always making value a list if single_value: value = [value] def all_same_type(items): return len(set(map(type, items))) < 2 if not all_same_type(value): raise StreamlitAPIException( "Slider tuple/list components must be of the same type.\n" f"But were: {list(map(type, value))}" ) if len(value) == 0: data_type = SliderProto.INT else: data_type = SUPPORTED_TYPES[type(value[0])] datetime_min = time.min datetime_max = time.max if data_type == SliderProto.TIME: datetime_min = time.min.replace(tzinfo=value[0].tzinfo) datetime_max = time.max.replace(tzinfo=value[0].tzinfo) if data_type in (SliderProto.DATETIME, SliderProto.DATE): datetime_min = value[0] - timedelta(days=14) datetime_max = value[0] + timedelta(days=14) DEFAULTS = { SliderProto.INT: { "min_value": 0, "max_value": 100, "step": 1, "format": "%d", }, SliderProto.FLOAT: { "min_value": 0.0, "max_value": 1.0, "step": 0.01, "format": "%0.2f", }, SliderProto.DATETIME: { "min_value": datetime_min, "max_value": datetime_max, "step": timedelta(days=1), "format": "YYYY-MM-DD", }, SliderProto.DATE: { "min_value": datetime_min, "max_value": datetime_max, "step": timedelta(days=1), "format": "YYYY-MM-DD", }, SliderProto.TIME: { "min_value": datetime_min, "max_value": datetime_max, "step": timedelta(minutes=15), "format": "HH:mm", }, } if min_value is None: min_value = DEFAULTS[data_type]["min_value"] if max_value is None: max_value = DEFAULTS[data_type]["max_value"] if step is None: step = DEFAULTS[data_type]["step"] if ( data_type in ( SliderProto.DATETIME, SliderProto.DATE, ) and max_value - min_value < timedelta(days=1) ): step = timedelta(minutes=15) if format is None: format = DEFAULTS[data_type]["format"] if step == 0: raise StreamlitAPIException( "Slider components cannot be passed a `step` of 0." ) # Ensure that all arguments are of the same type. args = [min_value, max_value, step] int_args = all(map(lambda a: isinstance(a, int), args)) float_args = all(map(lambda a: isinstance(a, float), args)) # When min and max_value are the same timelike, step should be a timedelta timelike_args = ( data_type in TIMELIKE_TYPES and isinstance(step, timedelta) and type(min_value) == type(max_value) ) if not int_args and not float_args and not timelike_args: raise StreamlitAPIException( "Slider value arguments must be of matching types." "\n`min_value` has %(min_type)s type." "\n`max_value` has %(max_type)s type." "\n`step` has %(step)s type." % { "min_type": type(min_value).__name__, "max_type": type(max_value).__name__, "step": type(step).__name__, } ) # Ensure that the value matches arguments' types. all_ints = data_type == SliderProto.INT and int_args all_floats = data_type == SliderProto.FLOAT and float_args all_timelikes = data_type in TIMELIKE_TYPES and timelike_args if not all_ints and not all_floats and not all_timelikes: raise StreamlitAPIException( "Both value and arguments must be of the same type." "\n`value` has %(value_type)s type." "\n`min_value` has %(min_type)s type." "\n`max_value` has %(max_type)s type." % { "value_type": type(value).__name__, "min_type": type(min_value).__name__, "max_type": type(max_value).__name__, } ) # Ensure that min <= value(s) <= max, adjusting the bounds as necessary. min_value = min(min_value, max_value) max_value = max(min_value, max_value) if len(value) == 1: min_value = min(value[0], min_value) max_value = max(value[0], max_value) elif len(value) == 2: start, end = value if start > end: # Swap start and end, since they seem reversed start, end = end, start value = start, end min_value = min(start, min_value) max_value = max(end, max_value) else: # Empty list, so let's just use the outer bounds value = [min_value, max_value] # Bounds checks. JSNumber produces human-readable exceptions that # we simply re-package as StreamlitAPIExceptions. # (We check `min_value` and `max_value` here; `value` and `step` are # already known to be in the [min_value, max_value] range.) try: if all_ints: JSNumber.validate_int_bounds(min_value, "`min_value`") JSNumber.validate_int_bounds(max_value, "`max_value`") elif all_floats: JSNumber.validate_float_bounds(min_value, "`min_value`") JSNumber.validate_float_bounds(max_value, "`max_value`") elif all_timelikes: # No validation yet. TODO: check between 0001-01-01 to 9999-12-31 pass except JSNumberBoundsException as e: raise StreamlitAPIException(str(e)) # Convert dates or times into datetimes if data_type == SliderProto.TIME: def _time_to_datetime(time): # Note, here we pick an arbitrary date well after Unix epoch. # This prevents pre-epoch timezone issues (https://bugs.python.org/issue36759) # We're dropping the date from datetime laters, anyways. return datetime.combine(date(2000, 1, 1), time) value = list(map(_time_to_datetime, value)) min_value = _time_to_datetime(min_value) max_value = _time_to_datetime(max_value) if data_type == SliderProto.DATE: def _date_to_datetime(date): return datetime.combine(date, time()) value = list(map(_date_to_datetime, value)) min_value = _date_to_datetime(min_value) max_value = _date_to_datetime(max_value) # Now, convert to microseconds (so we can serialize datetime to a long) if data_type in TIMELIKE_TYPES: SECONDS_TO_MICROS = 1000 * 1000 DAYS_TO_MICROS = 24 * 60 * 60 * SECONDS_TO_MICROS def _delta_to_micros(delta): return ( delta.microseconds + delta.seconds * SECONDS_TO_MICROS + delta.days * DAYS_TO_MICROS ) UTC_EPOCH = datetime(1970, 1, 1, tzinfo=timezone.utc) def _datetime_to_micros(dt): # If dt is naive, Python converts from local time utc_dt = dt.astimezone(timezone.utc) return _delta_to_micros(utc_dt - UTC_EPOCH) # Restore times/datetimes to original timezone (dates are always naive) orig_tz = ( value[0].tzinfo if data_type in (SliderProto.TIME, SliderProto.DATETIME) else None ) def _micros_to_datetime(micros): utc_dt = UTC_EPOCH + timedelta(microseconds=micros) # Convert from utc back to original time (local time if naive) return utc_dt.astimezone(orig_tz).replace(tzinfo=orig_tz) value = list(map(_datetime_to_micros, value)) min_value = _datetime_to_micros(min_value) max_value = _datetime_to_micros(max_value) step = _delta_to_micros(step) # It would be great if we could guess the number of decimal places from # the `step` argument, but this would only be meaningful if step were a # decimal. As a possible improvement we could make this function accept # decimals and/or use some heuristics for floats. slider_proto = SliderProto() slider_proto.label = label slider_proto.format = format slider_proto.default[:] = value slider_proto.min = min_value slider_proto.max = max_value slider_proto.step = step slider_proto.data_type = data_type slider_proto.options[:] = [] ui_value = register_widget("slider", slider_proto, user_key=key) if ui_value: current_value = getattr(ui_value, "data") else: # Widget has not been used; fallback to the original value, current_value = value # The widget always returns a float array, so fix the return type if necessary if data_type == SliderProto.INT: current_value = list(map(int, current_value)) if data_type == SliderProto.DATETIME: current_value = [_micros_to_datetime(int(v)) for v in current_value] if data_type == SliderProto.DATE: current_value = [_micros_to_datetime(int(v)).date() for v in current_value] if data_type == SliderProto.TIME: current_value = [ _micros_to_datetime(int(v)).time().replace(tzinfo=orig_tz) for v in current_value ] # If the original value was a list/tuple, so will be the output (and vice versa) return_value = current_value[0] if single_value else tuple(current_value) return self.dg._enqueue("slider", slider_proto, return_value) @property def dg(self) -> "streamlit.delta_generator.DeltaGenerator": """Get our DeltaGenerator.""" return cast("streamlit.delta_generator.DeltaGenerator", self)
40.300995
94
0.580088
0050b1e349a313169627f4d688b2f73fee927aef
2,122
py
Python
neutron_lbaas/tests/unit/common/cert_manager/test_cert_manager.py
kayrus/neutron-lbaas
d582fc52c725584e83b01e33f617f11d49a165a8
[ "Apache-2.0" ]
1
2017-11-13T13:24:12.000Z
2017-11-13T13:24:12.000Z
neutron_lbaas/tests/unit/common/cert_manager/test_cert_manager.py
kayrus/neutron-lbaas
d582fc52c725584e83b01e33f617f11d49a165a8
[ "Apache-2.0" ]
2
2018-10-30T11:37:42.000Z
2020-09-01T12:08:36.000Z
neutron_lbaas/tests/unit/common/cert_manager/test_cert_manager.py
kayrus/neutron-lbaas
d582fc52c725584e83b01e33f617f11d49a165a8
[ "Apache-2.0" ]
5
2018-09-21T07:56:14.000Z
2020-10-13T09:52:15.000Z
# Copyright 2015 NEC Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from neutron_lbaas.common import cert_manager from neutron_lbaas.common.cert_manager import barbican_cert_manager as bcm from neutron_lbaas.common.cert_manager import cert_manager as cmi from neutron_lbaas.common.cert_manager import local_cert_manager as lcm from neutron_lbaas.tests import base class TestCertManager(base.BaseTestCase): def setUp(self): cert_manager._CERT_MANAGER_PLUGIN = None super(TestCertManager, self).setUp() def test_get_service_url(self): # Format: <servicename>://<region>/<resource>/<object_id> cfg.CONF.set_override('service_name', 'lbaas', 'service_auth') cfg.CONF.set_override('region', 'RegionOne', 'service_auth') self.assertEqual( 'lbaas://RegionOne/loadbalancer/LB-ID', cmi.CertManager.get_service_url('LB-ID')) def test_barbican_cert_manager(self): cfg.CONF.set_override( 'cert_manager_type', 'barbican', group='certificates') self.assertEqual(cert_manager.get_backend().CertManager, bcm.CertManager) def test_local_cert_manager(self): cfg.CONF.set_override( 'cert_manager_type', 'local', group='certificates') self.assertEqual(cert_manager.get_backend().CertManager, lcm.CertManager)
37.22807
75
0.662582
cdd8f1cd6370177b70042d02f6a271376003e5cf
476
py
Python
data/scripts/templates/object/tangible/medicine/crafted/shared_medpack_cure_disease_c.py
obi-two/GameServer
7d37024e2291a97d49522610cd8f1dbe5666afc2
[ "MIT" ]
20
2015-02-23T15:11:56.000Z
2022-03-18T20:56:48.000Z
data/scripts/templates/object/tangible/medicine/crafted/shared_medpack_cure_disease_c.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
null
null
null
data/scripts/templates/object/tangible/medicine/crafted/shared_medpack_cure_disease_c.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
20
2015-04-04T16:35:59.000Z
2022-03-24T14:54:37.000Z
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Tangible() result.template = "object/tangible/medicine/crafted/shared_medpack_cure_disease_c.iff" result.attribute_template_id = 7 result.stfName("medicine_name","medic_cure_disease_c") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
28
87
0.743697
931dc61adcf2f07b5c05db01f88a0774d368b115
2,741
py
Python
utilities.py
janosg/derivatives
ee4640baa273093a04ef6bd7a482ba485b753bd2
[ "MIT" ]
null
null
null
utilities.py
janosg/derivatives
ee4640baa273093a04ef6bd7a482ba485b753bd2
[ "MIT" ]
null
null
null
utilities.py
janosg/derivatives
ee4640baa273093a04ef6bd7a482ba485b753bd2
[ "MIT" ]
null
null
null
import numpy as np def chol_params_to_lower_triangular_matrix(params): dim = number_of_triangular_elements_to_dimension(len(params)) mat = np.zeros((dim, dim)) mat[np.tril_indices(dim)] = params return mat def cov_params_to_matrix(cov_params): """Build covariance matrix from 1d array with its lower triangular elements. Args: cov_params (np.array): 1d array with the lower triangular elements of a covariance matrix (in C-order) Returns: cov (np.array): a covariance matrix """ lower = chol_params_to_lower_triangular_matrix(cov_params) cov = lower + np.tril(lower, k=-1).T return cov def cov_matrix_to_params(cov): return cov[np.tril_indices(len(cov))] def sdcorr_params_to_sds_and_corr(sdcorr_params): dim = number_of_triangular_elements_to_dimension(len(sdcorr_params)) sds = np.array(sdcorr_params[:dim]) corr = np.eye(dim) corr[np.tril_indices(dim, k=-1)] = sdcorr_params[dim:] corr += np.tril(corr, k=-1).T return sds, corr def sds_and_corr_to_cov(sds, corr): diag = np.diag(sds) return diag @ corr @ diag def cov_to_sds_and_corr(cov): sds = np.sqrt(np.diagonal(cov)) diag = np.diag(1 / sds) corr = diag @ cov @ diag return sds, corr def sdcorr_params_to_matrix(sdcorr_params): """Build covariance matrix out of variances and correlations. Args: sdcorr_params (np.array): 1d array with parameters. The dimensions of the covariance matrix are inferred automatically. The first dim parameters are assumed to be the variances. The remainder are the lower triangular elements (excluding the diagonal) of a correlation matrix. Returns: cov (np.array): a covariance matrix """ return sds_and_corr_to_cov(*sdcorr_params_to_sds_and_corr(sdcorr_params)) def cov_matrix_to_sdcorr_params(cov): dim = len(cov) sds, corr = cov_to_sds_and_corr(cov) correlations = corr[np.tril_indices(dim, k=-1)] return np.hstack([sds, correlations]) def number_of_triangular_elements_to_dimension(num): """Calculate the dimension of a square matrix from number of triangular elements. Args: num (int): The number of upper or lower triangular elements in the matrix. Examples: >>> number_of_triangular_elements_to_dimension(6) 3 >>> number_of_triangular_elements_to_dimension(10) 4 """ return int(np.sqrt(8 * num + 1) / 2 - 0.5) def dimension_to_number_of_triangular_elements(dim): """Calculate number of triangular elements from the dimension of a square matrix. Args: dim (int): Dimension of a square matrix. """ return int(dim * (dim + 1) / 2)
30.797753
85
0.692813
4389c9c54fe252e12cb1d0dce083e334ab54fc75
12,397
py
Python
twitter_ads_v2/resources.py
smaeda-ks/twitter-python-ads-sdk-v2
2e9578c6f2e3ff431405677cf00d98b5f617d88c
[ "MIT" ]
null
null
null
twitter_ads_v2/resources.py
smaeda-ks/twitter-python-ads-sdk-v2
2e9578c6f2e3ff431405677cf00d98b5f617d88c
[ "MIT" ]
null
null
null
twitter_ads_v2/resources.py
smaeda-ks/twitter-python-ads-sdk-v2
2e9578c6f2e3ff431405677cf00d98b5f617d88c
[ "MIT" ]
null
null
null
"""List of the supported API endpoints' resource path.""" RESOURCE_TABLE = { 'accounts': { 'endpoint_types': ['all', 'load'], 'RESOURCE': 'accounts/{id}', 'RESOURCE_COLLECTION': 'accounts' }, 'authenticated_user_access': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'accounts/{account_id}/authenticated_user_access' }, 'bidding_rules': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'bidding_rules' }, 'campaigns': { 'endpoint_types': ['all', 'load', 'create', 'update', 'delete', 'batch'], 'BATCH': 'batch/accounts/{account_id}/campaigns', 'RESOURCE': 'accounts/{account_id}/campaigns/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/campaigns' }, 'content_categories': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'content_categories' }, 'funding_instruments': { 'endpoint_types': ['all', 'load', 'create', 'update', 'delete'], 'RESOURCE': 'accounts/{account_id}/funding_instruments/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/funding_instruments' }, 'iab_categories': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'iab_categories' }, 'line_items': { 'endpoint_types': ['all', 'load', 'create', 'update', 'delete', 'batch'], 'BATCH': 'batch/accounts/{account_id}/line_items', 'RESOURCE': 'accounts/{account_id}/line_items/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/line_items' }, 'line_item_placements': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'line_items/placements' }, 'line_item_apps': { 'endpoint_types': ['all', 'load', 'create', 'delete'], 'RESOURCE': 'accounts/{account_id}/line_item_apps/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/line_item_apps' }, 'media_creatives': { 'endpoint_types': ['all', 'load', 'create', 'delete'], 'RESOURCE': 'accounts/{account_id}/media_creatives/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/media_creatives' }, 'promoted_accounts': { 'endpoint_types': ['all', 'load', 'create', 'delete'], 'RESOURCE': 'accounts/{account_id}/promoted_accounts/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/promoted_accounts' }, 'promoted_tweets': { 'endpoint_types': ['all', 'load', 'create', 'delete'], 'RESOURCE': 'accounts/{account_id}/promoted_tweets/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/promoted_tweets' }, 'promotable_users': { 'endpoint_types': ['all', 'load'], 'RESOURCE': 'accounts/{account_id}/promotable_users/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/promotable_users' }, 'scheduled_promoted_tweets': { 'endpoint_types': ['all', 'load', 'create', 'delete'], 'RESOURCE': 'accounts/{account_id}/scheduled_promoted_tweets/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/scheduled_promoted_tweets' }, 'targeting_criteria': { 'endpoint_types': ['all', 'load', 'create', 'delete'], 'RESOURCE': 'accounts/{account_id}/targeting_criteria/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/targeting_criteria' }, 'targeting_suggestions': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'accounts/{account_id}/targeting_suggestions' }, 'targeting_criteria_app_store_categories': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'targeting_criteria/app_store_categories' }, 'targeting_criteria_behavior_taxonomies': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'targeting_criteria/behavior_taxonomies' }, 'targeting_criteria_behaviors': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'targeting_criteria/behaviors' }, 'targeting_criteria_conversations': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'targeting_criteria/conversations' }, 'targeting_criteria_devices': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'targeting_criteria/devices' }, 'targeting_criteria_events': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'targeting_criteria/events' }, 'targeting_criteria_interests': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'targeting_criteria/interests' }, 'targeting_criteria_languages': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'targeting_criteria/languages' }, 'targeting_criteria_locations': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'targeting_criteria/locations' }, 'targeting_criteria_network_operators': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'targeting_criteria/network_operators' }, 'targeting_criteria_platform_versions': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'targeting_criteria/platform_versions' }, 'targeting_criteria_platforms': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'targeting_criteria/platforms' }, 'targeting_criteria_tv_markets': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'targeting_criteria/tv_markets' }, 'targeting_criteria_tv_shows': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'targeting_criteria/tv_shows' }, 'reach_estimate': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'accounts/{account_id}/reach_estimate' }, 'tax_settings': { 'endpoint_types': ['all', 'update'], 'RESOURCE': 'accounts/{account_id}/tax_settings', 'RESOURCE_COLLECTION': 'accounts/{account_id}/tax_settings' }, 'user_settings': { 'endpoint_types': ['load', 'update'], 'RESOURCE': 'accounts/{account_id}/user_settings/{id}' }, 'account_media': { 'endpoint_types': ['all', 'load', 'delete'], 'RESOURCE': 'accounts/{account_id}/account_media/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/account_media' }, 'scheduled_tweets': { 'endpoint_types': ['all', 'load', 'create', 'update', 'delete'], 'RESOURCE': 'accounts/{account_id}/scheduled_tweets/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/scheduled_tweets' }, 'draft_tweets': { 'endpoint_types': ['all', 'load', 'create', 'update', 'delete'], 'RESOURCE': 'accounts/{account_id}/draft_tweets/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/draft_tweets' }, 'draft_tweets_preview': { 'endpoint_types': ['create'], 'RESOURCE': 'accounts/{account_id}/draft_tweets/preview/{id}', }, 'tweets': { 'endpoint_types': ['all', 'create'], 'RESOURCE_GET': 'accounts/{account_id}/tweets', 'RESOURCE_POST': 'accounts/{account_id}/tweet', }, 'tweet_previews': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'accounts/{account_id}/tweet_previews' }, 'image_app_download_cards': { 'endpoint_types': ['all', 'load', 'create', 'update', 'delete'], 'RESOURCE': 'accounts/{account_id}/cards/image_app_download/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/cards/image_app_download' }, 'image_conversation_cards': { 'endpoint_types': ['all', 'load', 'create', 'update', 'delete'], 'RESOURCE': 'accounts/{account_id}/cards/image_conversation/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/cards/image_conversation' }, 'video_app_download_cards': { 'endpoint_types': ['all', 'load', 'create', 'update', 'delete'], 'RESOURCE': 'accounts/{account_id}/cards/video_app_download/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/cards/video_app_download' }, 'video_conversation_cards': { 'endpoint_types': ['all', 'load', 'create', 'update', 'delete'], 'RESOURCE': 'accounts/{account_id}/cards/video_conversation/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/cards/video_conversation' }, 'video_website_cards': { 'endpoint_types': ['all', 'load', 'create', 'update', 'delete'], 'RESOURCE': 'accounts/{account_id}/cards/video_website/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/cards/video_website' }, 'website_cards': { 'endpoint_types': ['all', 'load', 'create', 'update', 'delete'], 'RESOURCE': 'accounts/{account_id}/cards/website/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/cards/website' }, 'image_direct_message_cards': { 'endpoint_types': ['all', 'load', 'create', 'update', 'delete'], 'RESOURCE': 'accounts/{account_id}/cards/image_direct_message/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/cards/image_direct_message' }, 'video_direct_message_cards': { 'endpoint_types': ['all', 'load', 'create', 'update', 'delete'], 'RESOURCE': 'accounts/{account_id}/cards/video_direct_message/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/cards/video_direct_message' }, 'poll_cards': { 'endpoint_types': ['all', 'load', 'create', 'delete'], 'RESOURCE': 'accounts/{account_id}/cards/poll/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/cards/poll' }, 'cards_fetch': { 'endpoint_types': ['all', 'load'], 'RESOURCE': 'accounts/{account_id}/cards/all/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/cards/all' }, 'media_library': { 'endpoint_types': ['all', 'load', 'create', 'update', 'delete'], 'RESOURCE': 'accounts/{account_id}/media_library/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/media_library' }, 'preroll_call_to_actions': { 'endpoint_types': ['all', 'load', 'create', 'update', 'delete'], 'RESOURCE': 'accounts/{account_id}/preroll_call_to_actions/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/preroll_call_to_actions' }, 'active_entities': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'stats/accounts/{account_id}/active_entities' }, 'analytics_sync_stats': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'stats/accounts/{account_id}' }, 'analytics_async_jobs': { 'endpoint_types': ['all', 'delete'], 'RESOURCE': 'stats/jobs/accounts/{account_id}/{id}', 'RESOURCE_COLLECTION': 'stats/jobs/accounts/{account_id}' }, 'analytics_async_create_job': { 'endpoint_types': ['create'], 'RESOURCE_COLLECTION': 'stats/jobs/accounts/{account_id}' }, 'reach_frequency_campaigns': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'stats/accounts/{account_id}/reach/campaigns' }, 'reach_frequency_funding_instruments': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'stats/accounts/{account_id}/reach/funding_instruments' }, 'tailored_audiences': { 'endpoint_types': ['all', 'load', 'create', 'delete'], 'RESOURCE': 'accounts/{account_id}/tailored_audiences/{id}', 'RESOURCE_COLLECTION': 'accounts/{account_id}/tailored_audiences' }, 'tailored_audiences_users': { 'endpoint_types': ['create'], 'RESOURCE': 'accounts/{account_id}/tailored_audiences/{id}/users' }, 'tailored_audience_permissions': { 'endpoint_types': ['all', 'create', 'delete'], 'RESOURCE': ('accounts/{account_id}/tailored_audiences/{tailored_audience_id}/' 'permissions/{tailored_audience_permission_id}'), 'RESOURCE_COLLECTION': ('accounts/{account_id}/tailored_audiences/{tailored_audience_id}/' 'permissions') }, 'insights': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'insights/accounts/{account_id}' }, 'insights_available_audiences': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'insights/accounts/{account_id}/available_audiences' }, 'keyword_insights': { 'endpoint_types': ['all'], 'RESOURCE_COLLECTION': 'insights/keywords/search' }, }
41.740741
98
0.62378
4abd5370bdd6b4a0f0c60c0e9ca356e45a325105
4,936
py
Python
jarvis.py
uwmadison-chm/factuator
649b1b4e42f97b8e833f3576e7bf2cf64c38a126
[ "MIT" ]
null
null
null
jarvis.py
uwmadison-chm/factuator
649b1b4e42f97b8e833f3576e7bf2cf64c38a126
[ "MIT" ]
8
2019-04-24T17:58:30.000Z
2021-11-29T20:47:31.000Z
jarvis.py
uwmadison-chm/factuator
649b1b4e42f97b8e833f3576e7bf2cf64c38a126
[ "MIT" ]
1
2019-04-24T16:30:59.000Z
2019-04-24T16:30:59.000Z
import psycopg2 import psycopg2.extras # NOTE: You will need to `kinit` a kerberos token to make this db connection work class Jarvis: def __init__(self): self.db = psycopg2.connect("postgresql://togarashi.keck.waisman.wisc.edu/bi?krbsrvname=postgres") def select(self, x): cursor = self.db.cursor(cursor_factory=psycopg2.extras.DictCursor) cursor.execute(x) return cursor.fetchall() def select_list(self, x): cursor = self.db.cursor() cursor.execute(x) return cursor.fetchall() def columns(self, table): return self.select_list("select COLUMN_NAME from information_schema.COLUMNS where TABLE_NAME = '%s'" % table) def tables(self): return self.select("select relname from pg_class where relkind='r' and relname !~ '^(pg_|sql_)';") def study(self, study_id): return self.select("SELECT folder, name, current_subjects, total_subjects FROM studies WHERE id = %s" % study_id) def quotas(self, study_id): return self.select("SELECT * FROM quotas where startdate < current_date AND enddate > current_date AND study_id = %s" % study_id) def total_active_quota(self, study_id): return "{}gb".format(sum([quota['quotagb'] for quota in self.quotas(study_id)])) def protocols(self, study_id): return self.select("SELECT protocol, expiration FROM irb_protocols p JOIN irb_studies s ON p.id = s.irb_protocol_id WHERE s.study_id = %s" % study_id) def irb_expirations(self, study_id): irbs = self.protocols(study_id) if len(irbs) == 1: return str(irbs[0][1]) else: return ", ".join(["{} expires {}".format(p[0], p[1]) for p in irbs]) def people(self, study_id): return self.select("""SELECT p.id, p.first, p.last, ip.pi, ip.admin, ip.irb_alerts FROM irb_studies s JOIN irb_people ip ON ip.irb_protocol_id = s.irb_protocol_id JOIN people p on p.id = ip.person_id WHERE s.study_id = %s ORDER BY ip.pi DESC, ip.admin DESC, ip.irb_alerts DESC, ip.created_at ASC""" % study_id) def personnel(self, study_id): # We want a table of people and whether they are a PI, admin, and/or irb_alert_thinger # And now we also want groups group_info = self.select("""SELECT concat(p.first, ' ', p.last), ag.name, ag.id FROM irb_studies s JOIN irb_protocols irb ON s.irb_protocol_id = irb.id JOIN irb_protocol_acgroups ipa ON irb.id = ipa.irb_protocol_id JOIN account_groups ag on ipa.acgroup_id = ag.id JOIN account_group_members gm on gm.group_id = ag.id JOIN account_groups ag2 on ag2.id = gm.member_id JOIN people p on ag2.person_id = p.id WHERE NOT ag2.isgroup AND p.first IS NOT NULL AND p.first != '' AND study_id = %s ORDER BY ag.id ASC, p.last ASC, p.first ASC""" % study_id) group_map = {} group_ids = {} all_groups = [] people_map = {} all_people = [] for p in self.people(study_id): name = "{first} {last}".format(**p) if not name in all_people: all_people.append(name) people_map[name] = p for x in group_info: name = x[0] group = x[1] group_ids[group] = x[2] if not name in all_people: all_people.append(name) if not group in all_groups: all_groups.append(group) if name in group_map: group_map[name].append(group) else: group_map[name] = [group] table = """{| class="wikitable" style="text-align:left;"\n!Name\n!PI\n!Admin""" for g in all_groups: table += "\n![https://brainimaging.waisman.wisc.edu/members/jarvis/account_groups/{} {}]".format(group_ids[g], g) for name in all_people: table += "\n|-\n" table += "\n|" if name in people_map: p = people_map[name] table += "'''" + name + "'''" table += "\n|" if p['pi']: table += "✓" table += "\n|" if p['admin']: table += "✓" else: table += name table += "\n|" table += "\n|" for g in all_groups: table += "\n|" if name in group_map: if g in group_map[name]: table += "✓" table += "\n|}" title = "=== JARVIS Personnel ===" link = """This information is auto-populated from [https://brainimaging.waisman.wisc.edu/members/jarvis/studies/{} JARVIS].""".format(study_id) return title + "\n\n" + link + "\n\n" + table + "\n\n"
37.393939
158
0.561386
00dc2b87c78cf5db93ac8816cd06470ce14adf46
11,391
py
Python
app/recipe/tests/test_recipe_api.py
CrownKira/recipe-app-api
b948a66f09a5aa420483f6df806ea57315f966da
[ "MIT" ]
null
null
null
app/recipe/tests/test_recipe_api.py
CrownKira/recipe-app-api
b948a66f09a5aa420483f6df806ea57315f966da
[ "MIT" ]
null
null
null
app/recipe/tests/test_recipe_api.py
CrownKira/recipe-app-api
b948a66f09a5aa420483f6df806ea57315f966da
[ "MIT" ]
null
null
null
# comes with python, allows you to generate temporary file import tempfile # create file name, check if file exists, etc import os # PIL: pillow requirement from PIL import Image from django.contrib.auth import get_user_model from django.test import TestCase from django.urls import reverse from rest_framework import status from rest_framework.test import APIClient from core.models import Recipe, Tag, Ingredient from recipe.serializers import RecipeSerializer, RecipeDetailSerializer RECIPES_URL = reverse("recipe:recipe-list") def image_upload_url(recipe_id): """Return URL for recipe image upload""" return reverse("recipe:recipe-upload-image", args=[recipe_id]) def detail_url(recipe_id): """Return recipe detail URL""" # recipe-detail: name of the endpoint defaultrouter creates for # our viewset # specify args with reverse function # args is a list, since there might be multiple # args for a single url return reverse("recipe:recipe-detail", args=[recipe_id]) def sample_tag(user, name="Main course"): """Create and return a sample tag""" return Tag.objects.create(user=user, name=name) def sample_ingredient(user, name="Cinnamon"): """Create and return a sample ingredient""" return Ingredient.objects.create(user=user, name=name) def sample_recipe(user, **params): """Create and return a sample recipe""" defaults = {"title": "Sample recipe", "time_minutes": 10, "price": 5.00} # use update() method of dictionary defaults.update(params) # asterisk converts dict to param-arg pairs return Recipe.objects.create(user=user, **defaults) class PublicRecipeApiTests(TestCase): """Test unauthorized recipe API access""" def setUp(self): self.client = APIClient() def test_auth_required(self): """Test that authentication is required""" res = self.client.get(RECIPES_URL) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateRecipeApiTests(TestCase): """Test unauthenticated recipe API access""" def setUp(self): self.client = APIClient() self.user = get_user_model().objects.create_user( "test@londonappdev.com", "testpass" ) self.client.force_authenticate(self.user) def test_retrieve_recipes(self): """Test retrieving a list of recipes""" sample_recipe(user=self.user) sample_recipe(user=self.user) res = self.client.get(RECIPES_URL) recipes = Recipe.objects.all().order_by("-id") # use serializer to convert from queryset to raw data serializer = RecipeSerializer(recipes, many=True) self.assertEqual(res.status_code, status.HTTP_200_OK) # what he sees == what's in the db self.assertEqual(res.data, serializer.data) def test_recipes_limited_to_user(self): user2 = get_user_model().objects.create_user( "other@londonappdev.com", "password123" ) sample_recipe(user=user2) sample_recipe(user=self.user) res = self.client.get(RECIPES_URL) recipes = Recipe.objects.filter(user=self.user) serializer = RecipeSerializer(recipes, many=True) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(len(res.data), 1) self.assertEqual(res.data, serializer.data) def test_view_recipe_detail(self): """Test viewing a recipe detail""" recipe = sample_recipe(user=self.user) recipe.tags.add(sample_tag(user=self.user)) recipe.ingredients.add(sample_ingredient(user=self.user)) url = detail_url(recipe.id) res = self.client.get(url) serializer = RecipeDetailSerializer(recipe) # response.data must be == serializer.data # serializer.data is the data exposed to the client self.assertEqual(res.data, serializer.data) def test_create_basic_recipe(self): """Test creating recipe""" payload = { "title": "Chocolate cheesecake", "time_minutes": 30, "price": 5.00, } res = self.client.post(RECIPES_URL, payload) self.assertEqual(res.status_code, status.HTTP_201_CREATED) recipe = Recipe.objects.get(id=res.data["id"]) for key in payload.keys(): # getattr(recipe, key): get the value based on the key self.assertEqual(payload[key], getattr(recipe, key)) def test_create_recipe_with_tags(self): """Test creating a recipe with tags""" tag1 = sample_tag(user=self.user, name="Vegan") tag2 = sample_tag(user=self.user, name="Dessert") payload = { "title": "Avocado lime cheesecake", "tags": [tag1.id, tag2.id], "time_minutes": 60, "price": 20.00, } res = self.client.post(RECIPES_URL, payload) self.assertEqual(res.status_code, status.HTTP_201_CREATED) recipe = Recipe.objects.get(id=res.data["id"]) tags = recipe.tags.all() self.assertEqual(tags.count(), 2) self.assertIn(tag1, tags) self.assertIn(tag2, tags) def test_create_recipe_with_ingredients(self): """Test creating recipe with ingredients""" ingredient1 = sample_ingredient(user=self.user, name="Prawns") ingredient2 = sample_ingredient(user=self.user, name="Ginger") payload = { "title": "Thai prawn red curry", "ingredients": [ingredient1.id, ingredient2.id], "time_minutes": 20, "price": 7.00, } res = self.client.post(RECIPES_URL, payload) self.assertEqual(res.status_code, status.HTTP_201_CREATED) recipe = Recipe.objects.get(id=res.data["id"]) ingredients = recipe.ingredients.all() self.assertEqual(ingredients.count(), 2) self.assertIn(ingredient1, ingredients) self.assertIn(ingredient2, ingredients) def test_partial_update_recipe(self): """Test updating a recipe with patch""" recipe = sample_recipe(user=self.user) recipe.tags.add(sample_tag(user=self.user)) new_tag = sample_tag(user=self.user, name="Curry") payload = {"title": "Chicken tikka", "tags": [new_tag.id]} url = detail_url(recipe.id) self.client.patch(url, payload) # refresh after update the db recipe.refresh_from_db() self.assertEqual(recipe.title, payload["title"]) tags = recipe.tags.all() # len & count() both ok self.assertEqual(len(tags), 1) self.assertIn(new_tag, tags) def test_full_update_recipe(self): """Test updating a recipe with put""" recipe = sample_recipe(user=self.user) recipe.tags.add(sample_tag(user=self.user)) # if exclude the tags, # then the final updated recipe will not have tags payload = { "title": "Spaghetti carbonara", "time_minutes": 25, "price": 5.00, } url = detail_url(recipe.id) self.client.put(url, payload) recipe.refresh_from_db() self.assertEqual(recipe.title, payload["title"]) self.assertEqual(recipe.time_minutes, payload["time_minutes"]) self.assertEqual(recipe.price, payload["price"]) tags = recipe.tags.all() self.assertEqual(len(tags), 0) # add a new test class # there is some common functionalities in the class # that we need to repeat class RecipeImageUploadTests(TestCase): def setUp(self): self.client = APIClient() self.user = get_user_model().objects.create_user( "user@londonappdev.com", "testpass" ) self.client.force_authenticate(self.user) self.recipe = sample_recipe(user=self.user) def tearDown(self): # will delete the image that exists in the recipe self.recipe.image.delete() def test_upload_image_to_recipe(self): """Test uploading an email to recipe""" url = image_upload_url(self.recipe.id) # create a temp file in the system that we can write to # file removed after exist the block with tempfile.NamedTemporaryFile(suffix=".jpg") as ntf: # creates a black square img = Image.new("RGB", (10, 10)) # save to ntf temp file # save as JPEG (format) img.save(ntf, format="JPEG") # the way that python reads file # after save, seeking will be done to the end of the file # when try to access it, it will be blank cos alr read up # til the end of the file # seek(0) sets to the beginning of the file ntf.seek(0) # pass in post data as dict # multipart: form that consists of json object res = self.client.post(url, {"image": ntf}, format="multipart") self.recipe.refresh_from_db() self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertIn("image", res.data) self.assertTrue(os.path.exists(self.recipe.image.path)) def test_upload_image_bad_request(self): """Test uploading an invalid image""" # http://localhost:8000/api/recipe/recipes/1/upload-image url = image_upload_url(self.recipe.id) res = self.client.post(url, {"image": "notimage"}, format="multipart") self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_filter_recipes_by_tags(self): """Test returning recipes with specific tags""" recipe1 = sample_recipe(user=self.user, title="Thai vegatable curry") recipe2 = sample_recipe(user=self.user, title="Aubergine with tahini") tag1 = sample_tag(user=self.user, name="Vegan") tag2 = sample_tag(user=self.user, name="Vegetarian") recipe1.tags.add(tag1) recipe2.tags.add(tag2) recipe3 = sample_recipe(user=self.user, title="Fish and chips") res = self.client.get(RECIPES_URL, {"tags": f"{tag1.id},{tag2.id}"}) serializer1 = RecipeSerializer(recipe1) serializer2 = RecipeSerializer(recipe2) serializer3 = RecipeSerializer(recipe3) self.assertIn(serializer1.data, res.data) self.assertIn(serializer2.data, res.data) self.assertNotIn(serializer3.data, res.data) def test_filter_recipes_by_ingredients(self): """Test returning recipes with specific ingredients""" recipe1 = sample_recipe(user=self.user, title="Posh beans on toast") recipe2 = sample_recipe(user=self.user, title="Chicken cacciatore") ingredient1 = sample_ingredient(user=self.user, name="Feta cheese") ingredient2 = sample_ingredient(user=self.user, name="Chicken") recipe1.ingredients.add(ingredient1) recipe2.ingredients.add(ingredient2) recipe3 = sample_recipe(user=self.user, title="Steak and mushrooms") res = self.client.get( RECIPES_URL, {"ingredients": f"{ingredient1.id},{ingredient2.id}"} ) serializer1 = RecipeSerializer(recipe1) serializer2 = RecipeSerializer(recipe2) serializer3 = RecipeSerializer(recipe3) self.assertIn(serializer1.data, res.data) self.assertIn(serializer2.data, res.data) self.assertNotIn(serializer3.data, res.data)
36.509615
78
0.650865
4cb944cb8c691d66b79e83439bb3b0b9628a5258
7,424
py
Python
bin/df_crossval_main.py
mrunibe/MIALab
82d3f0f4344620fd22384108b022730cde9c7215
[ "Apache-2.0" ]
2
2018-12-05T09:03:28.000Z
2019-01-02T15:31:35.000Z
bin/df_crossval_main.py
riedj1/MIALab
82d3f0f4344620fd22384108b022730cde9c7215
[ "Apache-2.0" ]
null
null
null
bin/df_crossval_main.py
riedj1/MIALab
82d3f0f4344620fd22384108b022730cde9c7215
[ "Apache-2.0" ]
1
2018-10-20T21:27:55.000Z
2018-10-20T21:27:55.000Z
"""A medical image analysis pipeline. The pipeline is used for brain tissue segmentation using a decision forest classifier. """ import argparse import datetime import os import sys import timeit import SimpleITK as sitk import numpy as np sys.path.insert(0, os.path.join(os.path.dirname(sys.argv[0]), '..')) # append the MIALab root directory to Python path # fixes the ModuleNotFoundError when executing main.py in the console after code changes (e.g. git pull) # somehow pip install does not keep track of packages import mialab.classifier.decision_forest as df import mialab.data.conversion as conversion import mialab.data.structure as structure import mialab.data.loading as load import mialab.utilities.file_access_utilities as futil import mialab.utilities.pipeline_utilities as putil import mialab.utilities.statistic_utilities as statistics FLAGS = None # the program flags IMAGE_KEYS = [structure.BrainImageTypes.T1, structure.BrainImageTypes.T2, structure.BrainImageTypes.GroundTruth] # the list of images we will load TRAIN_BATCH_SIZE = 70 # 1..70, the higher the faster but more memory usage TEST_BATCH_SIZE = 2 # 1..30, the higher the faster but more memory usage def main(FLAGS,trees,nodes): """Brain tissue segmentation using decision forests. The main routine executes the medical image analysis pipeline: - Image loading - Registration - Pre-processing - Feature extraction - Decision forest classifier model building - Segmentation using the decision forest classifier model on unseen images - Post-processing of the segmentation - Evaluation of the segmentation """ # load atlas images putil.load_atlas_images(FLAGS.data_atlas_dir) print('-' * 5, 'Training...') # generate a model directory (use datetime to ensure that the directory is empty) # we need an empty directory because TensorFlow will continue training an existing model if it is not empty t = datetime.datetime.now().strftime('%Y-%m-%d%H%M%S') t='DF_trees_'+str(trees)+'_nodes_'+str(nodes) model_dir = os.path.join(FLAGS.model_dir, t) os.makedirs(model_dir, exist_ok=True) # crawl the training image directories crawler = load.FileSystemDataCrawler(FLAGS.data_train_dir, IMAGE_KEYS, futil.BrainImageFilePathGenerator(), futil.DataDirectoryFilter()) data_items = list(crawler.data.items()) pre_process_params = {'zscore_pre': True, 'coordinates_feature': True, 'intensity_feature': True, 'gradient_intensity_feature': True} # initialize decision forest parameters df_params = df.DecisionForestParameters() df_params.num_classes = 4 df_params.num_trees = trees df_params.max_nodes = nodes df_params.model_dir = model_dir forest = None start_time_total_train = timeit.default_timer() for batch_index in range(0, len(data_items), TRAIN_BATCH_SIZE): # slicing manages out of range; no need to worry batch_data = dict(data_items[batch_index: batch_index+TRAIN_BATCH_SIZE]) # load images for training and pre-process images = putil.pre_process_batch(batch_data, pre_process_params, multi_process=True) print('pre-processing done') # generate feature matrix and label vector data_train = np.concatenate([img.feature_matrix[0] for img in images]) labels_train = np.concatenate([img.feature_matrix[1] for img in images]) if forest is None: df_params.num_features = data_train.shape[1] print(df_params) forest = df.DecisionForest(df_params) start_time = timeit.default_timer() forest.train(data_train, labels_train) print(' Time elapsed:', timeit.default_timer() - start_time, 's') time_total_train = timeit.default_timer() - start_time_total_train print('-' * 5, 'Testing...') result_dir = os.path.join(FLAGS.result_dir, t) os.makedirs(result_dir, exist_ok=True) # initialize evaluator evaluator = putil.init_evaluator(result_dir) # crawl the training image directories crawler = load.FileSystemDataCrawler(FLAGS.data_test_dir, IMAGE_KEYS, futil.BrainImageFilePathGenerator(), futil.DataDirectoryFilter()) data_items = list(crawler.data.items()) for batch_index in range(0, len(data_items), TEST_BATCH_SIZE): # slicing manages out of range; no need to worry batch_data = dict(data_items[batch_index: batch_index + TEST_BATCH_SIZE]) # load images for testing and pre-process pre_process_params['training'] = False images_test = putil.pre_process_batch(batch_data, pre_process_params, multi_process=True) images_prediction = [] images_probabilities = [] for img in images_test: print('-' * 10, 'Testing', img.id_) start_time = timeit.default_timer() probabilities, predictions = forest.predict(img.feature_matrix[0]) print(' Time elapsed:', timeit.default_timer() - start_time, 's') # convert prediction and probabilities back to SimpleITK images image_prediction = conversion.NumpySimpleITKImageBridge.convert(predictions.astype(np.uint8), img.image_properties) image_probabilities = conversion.NumpySimpleITKImageBridge.convert(probabilities, img.image_properties) # evaluate segmentation without post-processing evaluator.evaluate(image_prediction, img.images[structure.BrainImageTypes.GroundTruth], img.id_) images_prediction.append(image_prediction) images_probabilities.append(image_probabilities) # post-process segmentation and evaluate with post-processing post_process_params = {'crf_post': True} images_post_processed = putil.post_process_batch(images_test, images_prediction, images_probabilities, post_process_params, multi_process=True) for i, img in enumerate(images_test): evaluator.evaluate(images_post_processed[i], img.images[structure.BrainImageTypes.GroundTruth], img.id_ + '-PP') # save results sitk.WriteImage(images_prediction[i], os.path.join(result_dir, images_test[i].id_ + '_SEG.mha'), True) sitk.WriteImage(images_post_processed[i], os.path.join(result_dir, images_test[i].id_ + '_SEG-PP.mha'), True) # write summary of parameters to results dir with open(os.path.join(result_dir, 'summary.txt'), 'w') as summary_file: print('Training data size: {}'.format(len(data_items)), file=summary_file) print('Total training time: {:.1f}s'.format(time_total_train), file=summary_file) print('Decision forest', file=summary_file) print(df_params, file=summary_file) stats = statistics.gather_statistics(os.path.join(result_dir, 'results.csv')) print('Result statistics:', file=summary_file) print(stats, file=summary_file)
42.913295
147
0.672953
f858eabcb92a83334ed1184e5319a30f973e4512
177
py
Python
packs/consul/actions/query_node.py
userlocalhost2000/st2contrib
1a5f759e76401743ed9023d298a3d767e3885db1
[ "Apache-2.0" ]
164
2015-01-17T16:08:33.000Z
2021-08-03T02:34:07.000Z
packs/consul/actions/query_node.py
userlocalhost2000/st2contrib
1a5f759e76401743ed9023d298a3d767e3885db1
[ "Apache-2.0" ]
442
2015-01-01T11:19:01.000Z
2017-09-06T23:26:17.000Z
packs/consul/actions/query_node.py
userlocalhost2000/st2contrib
1a5f759e76401743ed9023d298a3d767e3885db1
[ "Apache-2.0" ]
202
2015-01-13T00:37:40.000Z
2020-11-07T11:30:10.000Z
from lib import action class ConsulQueryNodeAction(action.ConsulBaseAction): def run(self, node): index, node = self.consul.catalog.node(node) return node
22.125
53
0.706215
285e57c6fecfc215e3fbcb722e4fb8764dfba320
763
py
Python
frida/controller/mongodb.py
att/frida
a8cedffc5be79f7a4070f2e6324b33e91448520c
[ "MIT" ]
6
2019-04-17T20:37:53.000Z
2021-10-30T23:47:15.000Z
frida/controller/mongodb.py
att/frida
a8cedffc5be79f7a4070f2e6324b33e91448520c
[ "MIT" ]
null
null
null
frida/controller/mongodb.py
att/frida
a8cedffc5be79f7a4070f2e6324b33e91448520c
[ "MIT" ]
3
2019-04-17T20:38:57.000Z
2019-11-01T17:40:58.000Z
# Copyright (c) 2019 AT&T Intellectual Property. All rights reserved. import json import frida.database as fdb import frida.manifest.profile_mongodb as modb from frida.controller.base import BaseController from frida.adapter.factory import AdapterFactory class MongoDbController(BaseController): def __init__(self): pass def profile(self, target_db: fdb.Database): """ Profiles a database and returns its technical metadata to a JSON file """ adapter = AdapterFactory.get_bound_adapter(database=target_db) metadata = {"FRIDA.DATABASE": []} for model in adapter.execute(modb._mongo_get_db_stats): metadata["FRIDA.DATABASE"].append(model) return json.dumps(metadata)
30.52
77
0.706422
50687e3a683d8445028d8b5a78046a8ff018f89f
8,295
py
Python
test.py
peterhudec/gae_installer
c2fba0935c8a53c928099b344d1533313904ec1b
[ "MIT" ]
6
2015-07-01T04:12:16.000Z
2017-03-20T08:45:25.000Z
test.py
authomatic/gae_installer
c2fba0935c8a53c928099b344d1533313904ec1b
[ "MIT" ]
1
2016-01-07T10:13:57.000Z
2016-01-07T10:13:57.000Z
test.py
peterhudec/gae_installer
c2fba0935c8a53c928099b344d1533313904ec1b
[ "MIT" ]
7
2015-01-27T15:10:05.000Z
2016-09-23T15:34:03.000Z
""" Tests the setup.py script by running ``python setup.py install`` in a temporarily activated virtual environment. """ import os import re import shutil import subprocess import sys import unittest import urllib2 import version VENV_NAME = '_e' BASE_PATH = os.path.abspath(os.path.dirname(__file__)) VENV_PATH = os.path.join(BASE_PATH, VENV_NAME) BUILD_PATH = 'build' ACTIVATE_THIS_PATH = os.path.join(VENV_PATH, 'bin', 'activate_this.py') def _which(program): """Returns path of command executable path.""" import os def is_exe(fpath): return os.path.isfile(fpath) and os.access(fpath, os.X_OK) fpath, fname = os.path.split(program) if fpath: if is_exe(program): return program else: for path in os.environ["PATH"].split(os.pathsep): path = path.strip('"') exe_file = os.path.join(path, program) if is_exe(exe_file): return exe_file class Test(unittest.TestCase): @classmethod def setUpClass(cls): cls.tearDownClass() if _which('virtualenv'): os.system('virtualenv {0} -q -p python2.7'.format(VENV_PATH)) if not os.path.isdir(VENV_PATH): sys.exit('Failed to create virtual environment "{0}"!' .format(VENV_PATH)) cls._activate_venv() else: sys.exit('Cannot run tests because the "virtualenv" ' 'command is not installed on your system!' '\nRead installation instructions ' 'here:\nhttps://virtualenv.pypa.io/en/latest/virtualenv' '.html#installation') @classmethod def tearDownClass(cls): cls._remove_venv() cls._remove_build() @classmethod def _remove_venv(cls): """Removes virtual environment""" if os.path.isdir(VENV_PATH): shutil.rmtree(VENV_PATH) @classmethod def _remove_build(cls): """Removes virtual environment""" if os.path.isdir(BUILD_PATH): shutil.rmtree(BUILD_PATH) @classmethod def _activate_venv(cls): """ Activates virtual environment http://virtualenv.readthedocs.org/en/latest/virtualenv.html#using-virtualenv-without-bin-python """ execfile(ACTIVATE_THIS_PATH, dict(__file__=ACTIVATE_THIS_PATH)) def _install(self): os.system('python {0} -q install' .format(os.path.join(BASE_PATH, 'setup.py'))) def _import_gae(self): import google.appengine def test_import(self): # GAE import should fail first self.assertRaises(ImportError, self._import_gae) # When we install it... self._install() # (we need to activate venv again, otherwise it won't work) self._activate_venv() # (remove shadowing google modules if any) if 'google' in sys.modules: del sys.modules['google'] # Now the import should not fail import google.appengine # Ensure that the imported module lives in our venv assert VENV_PATH in google.appengine.__path__[0] # Pattern for elimination of _e/lib/python2.7 and _e/local/lib/python2.7 # differences in scripts output venv_lib_pattern = re.compile(r'(_e/).*(/python)') venv_lib_replacement = r'\1...\2' # The _get_gae_dir file should exist get_gae_dir_path = os.path.join(VENV_PATH, 'bin', '_get_gae_dir') self.assertTrue(os.path.isfile(get_gae_dir_path)) # The _get_gae_command should return the path of the # installed google_appengine SDK gae_dir = google.appengine.__file__.split('/google/')[0] output, error = subprocess.Popen(['_get_gae_dir'], stderr=subprocess.PIPE, stdout=subprocess.PIPE, shell=True).communicate() output = venv_lib_pattern.sub(venv_lib_replacement, output.strip()) gae_dir_clean = venv_lib_pattern.sub(venv_lib_replacement, gae_dir) self.assertEquals(output, gae_dir_clean) # Skip the run_tests.py file original_commands = os.listdir(gae_dir) original_commands.remove('run_tests.py') # Patter for replacing time in output time_pattern = re.compile(r'\d\d:\d\d:\d\d,\d\d\d') for command in original_commands: if command.endswith('.py') and command[0] != '_': original_file = os.path.join(gae_dir, command) name = command[:-3] self.assertTrue(os.path.isfile(original_file), "File {} doesn't exist!".format(original_file)) original_output, original_error = subprocess.Popen( ['python', original_file], stderr=subprocess.PIPE, stdout=subprocess.PIPE ).communicate() self.assertTrue(os.path.isfile( os.path.join(VENV_PATH, 'bin', name)), "File {} doesn't exist!".format(name) ) output, error = subprocess.Popen( [name], stderr=subprocess.PIPE, stdout=subprocess.PIPE, shell=True ).communicate() # Output can contain varying time so we need to eliminate it original_output = time_pattern.sub('', original_output) original_error = time_pattern.sub('', original_error) output = time_pattern.sub('', output) error = time_pattern.sub('', error) # Eliminate of _e/lib/python2.7 and _e/local/lib/python2.7 # differences original_output = venv_lib_pattern.sub(venv_lib_replacement, original_output) original_error = venv_lib_pattern.sub(venv_lib_replacement, original_error) output = venv_lib_pattern.sub(venv_lib_replacement, output) error = venv_lib_pattern.sub(venv_lib_replacement, error) assert output == original_output assert error == original_error self.assertEquals(output, original_output, "Stdouts of {} and {} don't match!" .format(name, original_file)) self.assertEquals(error, original_error, "Stderrs of {} and {} don't match!" .format(name, original_file)) ok = output == original_output and error == original_error print 'TESTING SCRIPT: {} {}'\ .format(name, 'OK' if ok else 'ERROR') class TestNewVersion(unittest.TestCase): def test_new_version(self): """ Tests whether the current version is the most recent one. """ prefix = 'google_appengine_' major, minor, micro = map(int, version.version.split('.')) bucket_list = urllib2.urlopen('https://storage.googleapis.com/' 'appengine-sdks/').read() match = re.search( pattern=r'{}({}\.\d+.\d+)'.format(prefix, major + 1), string=bucket_list ) if not match: match = re.search( pattern=r'{}({}\.{}.\d+)'.format(prefix, major, minor + 1), string=bucket_list ) if not match: match = re.search( pattern=r'{}({}\.{}.{})' .format(prefix, major, minor, micro + 1), string=bucket_list ) self.assertIsNone( obj=match, msg='New GAE version {} available!'.format(match.groups()[0]) if match else '' ) if __name__ == '__main__': if sys.version_info.major == 2 and sys.version_info.minor >= 7: unittest.main(failfast=True) else: sys.exit('GAE Installer requires Python 2.7 or higher!')
34.5625
103
0.559011
95f9eb683001c6dc7c306aeec30fef919bef5832
1,707
py
Python
runapp/lessons/6/run_clock.py
bryvogel/cgm-clock
62ace6ee312e6232282eeaaa69c01d261cfa3a52
[ "Apache-2.0" ]
null
null
null
runapp/lessons/6/run_clock.py
bryvogel/cgm-clock
62ace6ee312e6232282eeaaa69c01d261cfa3a52
[ "Apache-2.0" ]
null
null
null
runapp/lessons/6/run_clock.py
bryvogel/cgm-clock
62ace6ee312e6232282eeaaa69c01d261cfa3a52
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python import time import datetime from Libs.Clock import Clock from Libs.SevenSegment import Display from Libs.Weather import Weather from Libs.Input import Button from Libs.GStreamer import Speaker from config import configuration # The weather station station_name = configuration.get('weather_station') weather_station = Weather(station_name) # Connect to the internal machine clock clock = Clock() # Connect to the LED display display = Display() # Connect to the speaker speaker = Speaker() # Play some music def playMusic(): speaker.playList(["TestTrack.ogg", "AmicusMeus.ogg"]) # Wake us up at 8:30 in the morning clock.atTime(8, 30, playMusic) # Show the current weather def switchWeatherStations(): # Clear the display display.setColon(False) display.setEvening(False) display.setHours(0) display.setMinutes(0) # Show the current temperature current_temp = weather_station.getCurrentTemp() display.setMinutes(current_temp) # Wait for about three seconds clock.waitAbout(3) # What to do when you press a button Button(24).whenPressed(switchWeatherStations) # Show the current time def showCurrentTime(): now = datetime.datetime.now() # Set the hours is_evening = now.hour > 12 display.setHours(now.hour if not is_evening else now.hour - 12) # Set the indicator lights display.setColon(True) display.setEvening(is_evening) # Set the minutes display.setMinutes(now.minute) # What to do when the internal clock ticks clock.onTick(showCurrentTime) # Set the brightness (0 to 15, 15 is the brightest) display.setBrightness(1)
24.385714
68
0.71529
13c6e33c6c3c9cb17643facefe0c4e44d829f33f
552
py
Python
yesua1/startup.py
rishabhranawat/CrowdPlatform
1de2ad7e70fbf6cbf2e29bc9368341134b4f7e0d
[ "MIT" ]
1
2020-07-23T21:35:40.000Z
2020-07-23T21:35:40.000Z
yesua1/startup.py
rishabhranawat/CrowdPlatform
1de2ad7e70fbf6cbf2e29bc9368341134b4f7e0d
[ "MIT" ]
9
2021-02-08T20:32:35.000Z
2022-03-02T14:58:07.000Z
yesua1/startup.py
rishabhranawat/CrowdPlatform
1de2ad7e70fbf6cbf2e29bc9368341134b4f7e0d
[ "MIT" ]
null
null
null
from django.conf import settings from importlib import import_module from django.utils.module_loading import module_has_submodule from django.contrib import admin def autoload(submodules): for app in settings.INSTALLED_APPS: mod = import_module(app) for submodule in submodules: try: import_module("{0}.{1}".format(app, submodule)) except: if module_has_submodule(mod, submodule): raise def run(): autoload(["receivers"]) admin.autodiscover()
25.090909
63
0.648551
6db5fc0bc4b5b2a0fed8fe2d0fd2e9dd654184c1
1,321
py
Python
utilities/loss_function.py
Musketeer-Liu/Machine_Learning_Lab
cba2ee116011e87d4f7df525f1a1ac4c87f7b4e4
[ "MIT" ]
null
null
null
utilities/loss_function.py
Musketeer-Liu/Machine_Learning_Lab
cba2ee116011e87d4f7df525f1a1ac4c87f7b4e4
[ "MIT" ]
null
null
null
utilities/loss_function.py
Musketeer-Liu/Machine_Learning_Lab
cba2ee116011e87d4f7df525f1a1ac4c87f7b4e4
[ "MIT" ]
null
null
null
from __future__ import division import numpy as np from data_operation import accuracy_score class Loss(object): # def __init__(self): # pass def loss(self, y_true, y_pred): return NotImplementedError() def gradient(self, y_true, y_pred): return NotImplementedError() def accuracy(self, y_true, y_pred): return 0 class SquareLoss(Loss): # def __init__(self): # pass def loss(self, y_true, y_pred): return 0.5 * np.power((y_true - y_pred), 2) def gradient(self, y_true, y_pred): return -(y_true - y_pred) class SoftLoss(Loss): # def __init__(self): # pass def gradient(self, y_true, y_pred): return y_true - y_pred class CrossEntropy(Loss): # def __init__(self): # pass def loss(self, y_true, y_pred): # Avoid divission by zero y_pred = np.clip(y_pred, 1e-15, 1 - 1e-15) return - y_true*np.log(y_pred) - (1-y_true)*np.log(1-y_pred) def accuracy(self, y_true, y_pred): return accuracy_score(np.argmax(y_true, axis=1), np.argmax(y_pred, axis=1)) def gradient(self, y_true, y_pred): # Avoid divission by zero y_pred = np.clip(y_pred, 1e-15, 1 - 1e-15) return - y_true/y_pred + (1-y_true)/(1-y_pred)
22.016667
83
0.610901
cb189270b8769418ae30639c59e3aa1c694409b7
151
py
Python
tests/test_fun.py
happy-developer-fr/minio-test
16a83b79d5cfe3e703bbafcbe1ab7d57243d631e
[ "MIT" ]
null
null
null
tests/test_fun.py
happy-developer-fr/minio-test
16a83b79d5cfe3e703bbafcbe1ab7d57243d631e
[ "MIT" ]
null
null
null
tests/test_fun.py
happy-developer-fr/minio-test
16a83b79d5cfe3e703bbafcbe1ab7d57243d631e
[ "MIT" ]
null
null
null
import src.my_package.fun def test_is_it_funny(): src.my_package.fun.is_it_funny() assert src.my_package.fun.is_it_funny().__eq__("oh yeah")
21.571429
61
0.748344
ef203cd1cf109606fec4f5d057ce25290fc3db40
21,520
py
Python
pyNastran/op2/vector_utils.py
JohannesSeidel/pyNastran
91ccd2756b201a7a3e4bb81cc6dc53b947d43bbf
[ "BSD-3-Clause" ]
null
null
null
pyNastran/op2/vector_utils.py
JohannesSeidel/pyNastran
91ccd2756b201a7a3e4bb81cc6dc53b947d43bbf
[ "BSD-3-Clause" ]
1
2021-06-07T16:33:59.000Z
2021-06-07T16:33:59.000Z
pyNastran/op2/vector_utils.py
JohannesSeidel/pyNastran
91ccd2756b201a7a3e4bb81cc6dc53b947d43bbf
[ "BSD-3-Clause" ]
1
2021-12-17T10:45:08.000Z
2021-12-17T10:45:08.000Z
""" defines some methods for working with arrays: - filter1d(a, b=None, zero_tol=0.001) - where_searchsorted(a, v, side='left', x=None, y=None) - sortedsum1d(ids, values, axis=None) - iformat(format_old, precision=2) - abs_max_min_global(values) - abs_max_min_vector(values) - abs_max_min(values, global_abs_max=True) - principal_3d(o11, o22, o33, o12, o23, o13) - transform_force(force_in_local, coord_out, coords, nid_cd, i_transform) - transform_force_moment(force_in_local, moment_in_local, coord_out, coords, nid_cd, i_transform, xyz_cid0, summation_point_cid0=None, consider_rxf=True, debug=False, log=None) - transform_force_moment_sum(force_in_local, moment_in_local, coord_out, coords, nid_cd, i_transform, xyz_cid0, summation_point_cid0=None, consider_rxf=True, debug=False, log=None) """ from __future__ import annotations from struct import calcsize from itertools import count from typing import Optional, Dict, TYPE_CHECKING import numpy as np from numpy import arccos, sqrt, pi, in1d, cos, unique, cross, ndarray if TYPE_CHECKING: # pragma: no cover from pyNastran.bdf.bdf import CORDx # , CORD1R, CORD1C, CORD1S, CORD2R, CORD2C, CORD2S def filter1d(a: ndarray, b: Optional[ndarray]=None, zero_tol: float=0.001): """ Filters a 1d numpy array of values near 0. Parameters ---------- a : (n, ) float ndarray a vector to compare b : (n, ) float ndarray; default=None another vector to compare If b is defined, both a and b must be near 0 for a value to be removed. zero_tol : float; default=0.001 the zero tolerance value Returns ------- k : (m, ) int ndarray the indices of the removed values a = [1., 2., 0.1] >>> i = filter(a, zero_tol=0.5) a[i] >>> [0, 1] a = [1., 2., 0.1] b = [1., -0.1, 0.1] >>> i = filter(a, b, zero_tol=0.5) [0, 1] """ a = np.asarray(a) i = np.where(np.abs(a) > zero_tol)[0] if b is None: return i b = np.asarray(b) assert a.shape == b.shape, 'a.shape=%s b.shape=%s' % (str(a.shape), str(b.shape)) assert a.size == b.size, 'a.size=%s b.size=%s' % (str(a.size), str(b.size)) j = np.where(np.abs(b) > zero_tol)[0] k = np.unique(np.hstack([i, j])) return k def where_searchsorted(a, v, side='left', x=None, y=None): """Implements a np.where that assumes a sorted array set.""" # TODO: take advantage of searchsorted assert x is None, x assert y is None, y assert side == 'left', side i = np.where(in1d(a, v), x=x, y=y) return i def sortedsum1d(ids, values, axis=None): """ Sums the values in a sorted 1d/2d array. Parameters ---------- ids : (n, ) int ndarray the integer values in a sorted order that indicate what is to be summed values : (n, m) float ndarray the values to be summed Presumably m is 2 because this function is intended to be used for summing forces and moments axis : None or int or tuple of ints, optional Axis or axes along which a sum is performed. The default (axis=None) is perform a sum over all the dimensions of the input array. axis may be negative, in which case it counts from the last to the first axis. If this is a tuple of ints, a sum is performed on multiple axes, instead of a single axis or all the axes as before. Not actually supported... Returns ------- out : (nunique, m) float ndarray the summed values Examples -------- **1D Example** For an set of arrays, there are 5 values in sorted order. ..code-block :: python ids = [1, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5] values = 1.0 * ids We want to sum the values such that: ..code-block :: python out = [2.0, 4.0, 9.0, 4.0, 15.0] **2D Example** ..code-block :: python ids = [1, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5] values = [ [1.0, 1.0, 2.0, 2.0, 3.0, 3.0], [1.0, 1.0, 2.0, 2.0, 3.0, 3.0], ] values = 1.0 * ids For 2D .. todo:: This could probably be more efficient .. todo:: Doesn't support axis """ uids = unique(ids) i1 = np.searchsorted(ids, uids, side='left') # left is the default i2 = np.searchsorted(ids, uids, side='right') out = np.zeros(values.shape, dtype=values.dtype) for i, i1i, i2i in zip(count(), i1, i2): out[i, :] = values[i1i:i2i, :].sum(axis=axis) return out def iformat(format_old: str, precision: int=2) -> str: """ Converts binary data types to size vector arrays. Parameters ---------- format_old : str the int/float data types in single precision format precision : int; default=2 the precision to convert to 1 : single precision (no conversion) 2 : double precision Returns ------- format_new : str the int/float data types in single/double precision format Examples -------- >>> iformat('8i6f10s', precision=1) '8i6f10s' >>> iformat('8i6f10s', precision=2) '8l6d10q' """ if precision == 2: # double format_new = format_old.replace('i', 'l').replace('f', 'd') elif precision == 1: # single format_new = format_old.replace('l', 'i').replace('d', 'f') else: raise NotImplementedError(precision) ndata = calcsize(format_new) return format_new, ndata def abs_max_min_global(values): """ This is useful for figuring out absolute max or min principal stresses across single/multiple elements and finding a global max/min value. Parameters ---------- values: ndarray/listtuple an ND-array of values; common NDARRAY/list/tuple shapes: 1. [nprincipal_stresses] 2. [nelements, nprincipal_stresses] Returns ------- abs_max_mins: int/float an array of the max or min principal stress don't input mixed types nvalues >= 1 >>> element1 = [0.0, -1.0, 2.0] # 2.0 >>> element2 = [0.0, -3.0, 2.0] # -3.0 >>> values = abs_max_min_global([element1, element2]) >>> values -3.0 >>> element1 = [0.0, -1.0, 2.0] # 2.0 >>> values = abs_max_min_global([element1]) >>> values 2.0 .. note:: [3.0, 2.0, -3.0] will return 3.0, and [-3.0, 2.0, 3.0] will return 3.0 """ # support lists/tuples values = np.asarray(values) # find the [max, # min] # we organize it as [max, min], which is why the note applies # we could make both of the edge cases return -3.0, but if you're using # this function it shouldn't matter values2 = np.array([values.max(), values.min()]) # we figure out the absolute max/min abs_vals = np.abs(values2) abs_val = abs_vals.max() # find the location of the absolute max value # 1. we take the first value (the where[0]) to chop the return value # since there is no else conditional # 2. we take the first value (the where[0][0]) to only get the max # value if 2+ values are returned j = np.where(abs_val == abs_vals)[0][0] # get the raw value from the absoluted value, so: # value = npabs(raw_value) return values2[j] def abs_max_min_vector(values): """ This is useful for figuring out principal stresses across multiple elements. Parameters ---------- values: ndarray/listtuple an array of values, where the rows are interated over and the columns are going to be compressed common NDARRAY/list/tuple shapes: 1. [nprincipal_stresses] 2. [nelements, nprincipal_stresses] Returns ------- abs_max_mins: NDARRAY shape=[nelements] with dtype=values.dtype an array of the max or min principal stress don't input mixed types :: >>> element1 = [0.0, 1.0, 2.0] # 2.0 >>> element2 = [0.0, -1.0, 2.0] # 2.0 >>> element3 = [0.0, -3.0, 2.0] # -3.0 >>> values = [element1 element2, element3] >>> values0 = abs_max_min_vectorized(values) >>> values0 [2.0, 2.0, -3.0] .. note:: [3.0, 2.0, -3.0] will return 3.0, and [-3.0, 2.0, 3.0] will return 3.0 """ # support lists/tuples values = np.asarray(values) # find the [maxs, # mins] # we organize it as [maxs, mins], which is why the note applies # we could make both of the edge cases return -3.0, but if you're using # this function it shouldn't matter maxs_mins = np.array([values.max(axis=1), values.min(axis=1)]) # we figure out the absolute max/min for each row abs_vals = np.abs(maxs_mins) absolute_maxs = abs_vals.max(axis=0) outs = np.zeros(absolute_maxs.shape[0], dtype=values.dtype) for i, absolute_max in enumerate(absolute_maxs): # find the location of the absolute max value # 1. we take the first value (the where[0]) to chop the return value # since there is no else conditional # 2. we take the first value (the where[0][0]) to only get the max # value if 2+ values are returned j = np.where(absolute_max == abs_vals[:, i])[0][0] # get the raw value from the absoluted value, so: # value = npabs(raw_value) outs[i] = maxs_mins[j, i] return outs def abs_max_min(values, global_abs_max=True): """ Gets the maximum value of x and -x. This is used for getting the max/min principal stress. """ if global_abs_max: return abs_max_min_global(values) return abs_max_min_vector(values) # def principal_2d(o11, o22, o12): # oxx = 5 # return oxx, oy def principal_3d(o11, o22, o33, o12, o23, o13): """http://www.continuummechanics.org/cm/principalstrain.html""" # e = a i1 = o11 + o22 + o33 i2 = o11*o22 + o22*o33 + o11*o33 - o12**2 - o13**2 - o23**2 i3 = o11*o22*o33 - o11*o23**2 - o22*o13**2 + 2*o12*o13*o23 Q = 3 * i2 - i1**2 R = (2*i1**3 - 9*i1*i2 + 27*i3) / 54. theta = arccos(R / sqrt(-Q**3)) q2 = 2 * sqrt(-Q) i13 = 1./3. * i1 p1 = q2 * cos(theta/3) + i13 p2 = q2 * cos(theta/3 + 2*pi/3.) + i13 p3 = q2 * cos(theta/3 + 4*pi/3.) + i13 max_min_mid = np.array([p1, p2, p3]) pmax = max_min_mid.max(axis=0) pmin = max_min_mid.min(axis=0) return pmax, pmin def transform_force(force_in_local, coord_out: CORDx, coords: Dict[int, CORDx], nid_cd: int, unused_icd_transform): """ Transforms force/moment from global to local and returns all the forces. Supports cylindrical/spherical coordinate systems. Parameters ---------- force : (N, 3) ndarray forces in the local frame coord_out : CORD() the desired local frame coords : dict[int] = CORDx all the coordinate systems key : int value : CORDx nid_cd : (M, 2) int ndarray the (BDF.point_ids, cd) array icd_transform : dict[cd] = (Mi, ) int ndarray the mapping for nid_cd .. warning:: the function signature will change... .. todo:: sum of moments about a point must have an rxF term to get the same value as Patran. Fglobal = Flocal @ T Flocal = T.T @ Fglobal Flocal2 = T2.T @ (Flocal1 @ T1) """ force_out = np.zeros(force_in_local.shape, dtype=force_in_local.dtype) #nids = nid_cd[:, 0] cds = nid_cd[:, 1] ucds = unique(cds) coord_out_cid = coord_out.cid coord_out_T = coord_out.beta() for cd in ucds: i = np.where(cds == cd)[0] #nidsi = nids[i] analysis_coord = coords[cd] cd_T = analysis_coord.beta() # rxF from local_in to global to local_out force_in_locali = force_in_local[i, :] force_in_globali = force_in_locali @ cd_T force_outi = (coord_out_T @ force_in_globali.T).T force_out[i, :] = force_outi return -force_out def transform_force_moment(force_in_local, moment_in_local, coord_out: CORDx, coords: Dict[int, CORDx], nid_cd: int, icd_transform: Dict[int, ndarray], xyz_cid0: ndarray, summation_point_cid0: Optional[ndarray]=None, consider_rxf: bool=True, debug: bool=False, log=None): """ Transforms force/moment from global to local and returns all the forces. Parameters ---------- force_in_local : (N, 3) ndarray forces in the local frame moment_in_local : (N, 3) ndarray moments in the local frame coord_out : CORDx() the desired local frame coords : dict[int] = CORDx all the coordinate systems key : int value : CORDx nid_cd : (M, 2) int ndarray the (BDF.point_ids, cd) array icd_transform : dict[cd] = (Mi, ) int ndarray the mapping for nid_cd xyz_cid0 : (n, 3) ndarray the nodes in the global frame summation_point_cid0 : (3, ) ndarray the summation point in the global frame??? consider_rxf : bool; default=True considers the r x F term debug : bool; default=False debugging flag log : log; default=None a log object that gets used when debug=True Returns ------- force_out : (n, 3) float ndarray the ith float components in the coord_out coordinate frame moment_out : (n, 3) float ndarray the ith moment components about the summation point in the coord_out coordinate frame .. todo:: doesn't seem to handle cylindrical/spherical systems https://flexiblelearning.auckland.ac.nz/sportsci303/13_3/forceplate_manual.pdf xyz0 = T_1_to_0 @ xyz1 xyz1 = T_1_to_0.T @ xyz0 xyz2 = T_2_to_0.T @ xyz0 xyz2 = T_2_to_0.T @ T_1_to_0 @ xyz1 xyz_g = T_a2g @ xyz_a xyz_g = T_b2g @ xyz_b T_b2g @ xyz_b = T_a2g @ xyz_a xyz_b = T_b2g.T @ T_a2g @ xyz_a = T_g2b @ T_a2g @ xyz_a """ #print('consider_rxf =', consider_rxf) #debug = True assert log is not None assert nid_cd.shape[0] == force_in_local.shape[0] dtype = force_in_local.dtype #dtype = 'float64' force_in_local_sum = force_in_local.sum(axis=0) force_out = np.zeros(force_in_local.shape, dtype=dtype) moment_out = np.zeros(force_in_local.shape, dtype=dtype) nids = nid_cd[:, 0] cds = nid_cd[:, 1] #* 0 ucds = unique(cds) #coord_out_cid = coord_out.cid beta_out = coord_out.beta().T if debug: log.debug('beta_out =\n%s' % beta_out) log.debug(coord_out) if consider_rxf: for ii in range(xyz_cid0.shape[0]): log.debug('***i=%s xyz=%s nid=%s cd=%s' % ( ii, xyz_cid0[ii, :], nid_cd[ii, 0], nid_cd[ii, 1])) log.debug('------------') log.debug('ucds = %s' % ucds) if consider_rxf and summation_point_cid0 is None: summation_point_cid0 = np.array([0., 0., 0.]) #eye = np.eye(3, dtype=beta_cd.dtype) for cd in ucds: #log.debug('cd = %s' % cd) i = np.where(cds == cd)[0] nidsi = nids[i] analysis_coord = coords[cd] beta_cd = analysis_coord.beta() force_in_locali = -force_in_local[i, :] moment_in_locali = -moment_in_local[i, :] #if 0 and np.array_equal(beta_cd, eye): force_in_globali = force_in_locali moment_in_globali = moment_in_locali if debug: #log.debug('analysis_coord =\n%s' % analysis_coord) log.debug('beta_cd =\n%s' % beta_cd) log.debug('i = %s' % i) log.debug('force_in_local = %s' % force_in_local) log.debug('force_in_local.sum() = %s' % force_in_local_sum) #force_in_locali.astype('float64') #moment_in_locali.astype('float64') # rotate loads from an arbitrary coordinate system to local xyz if 0: log.debug(analysis_coord) log.debug(force_in_locali) force_in_locali = analysis_coord.coord_to_xyz_array(force_in_locali) moment_in_locali = analysis_coord.coord_to_xyz_array(moment_in_locali) if debug: log.debug('i = %s' % i) log.debug('nids = %s' % nidsi) log.debug('force_input = %s' % force_in_locali) # rotate the forces/moments into a coordinate system coincident # with the local frame and with the same primary directions # as the global frame force_in_globali = force_in_locali.dot(beta_cd) moment_in_globali = moment_in_locali.dot(beta_cd) # rotate the forces and moments into a coordinate system coincident # with the output frame and with the same primary directions # as the output frame #if 0 and np.array_equal(beta_out, eye): #force_outi = force_in_globali #moment_outi = moment_in_globali force_outi = force_in_globali.dot(beta_out) moment_outi = moment_in_globali.dot(beta_out) if debug: #if show_local: log.debug('force_in_locali = \n%s' % force_in_locali.T) log.debug('force_in_globali = \n%s' % force_in_globali.T) log.debug('force_in_locali.sum() = %s' % force_in_locali.sum(axis=0)) log.debug('force_in_globali.sum() = %s' % force_in_globali.sum(axis=0)) log.debug('force_outi = %s' % force_outi) #log.debug('moment_outi = %s' % moment_outi) # these are in the local XYZ coordinates # we'll do the final transform later force_out[i, :] = force_outi moment_out[i, :] = moment_outi # Now we need to consider the "r x F" term. # We calculate it in the global xyz frame about the summation # point. Then we transform it to the output XYZ frame if consider_rxf: delta = xyz_cid0[i, :] - summation_point_cid0[np.newaxis, :] rxf = cross(delta, force_in_globali) rxf_in_cid = rxf.dot(beta_out) if debug: log.debug('delta_moment = %s' % delta) #log.debug('rxf = %s' % rxf.T) #log.debug('rxf_in_cid = %s' % rxf_in_cid) moment_out[i, :] += rxf_in_cid # rotate loads from the local XYZ to an arbitrary coordinate system # flip the sign of the output to be consistent with Patran #force_out2 = -coord_out.xyz_to_coord_array(force_out) #moment_out2 = -coord_out.xyz_to_coord_array(moment_out) #return force_out2, moment_out2 return force_out, moment_out def transform_force_moment_sum(force_in_local, moment_in_local, coord_out, coords, nid_cd, icd_transform, xyz_cid0, summation_point_cid0=None, consider_rxf=True, debug=False, log=None): """ Transforms force/moment from global to local and returns a sum of forces/moments. Parameters ---------- force_in_local : (N, 3) ndarray forces in the local frame moment_in_local : (N, 3) ndarray moments in the local frame coord_out : CORDx() the desired local frame coords : dict[int] = CORDx all the coordinate systems key : int value : CORDx nid_cd : (M, 2) int ndarray the (BDF.point_ids, cd) array icd_transform : dict[cd] = (Mi, ) int ndarray the mapping for nid_cd xyz_cid0 : (nnodes + nspoints + nepoints, 3) ndarray the grid locations in coordinate system 0 summation_point_cid0 : (3, ) ndarray the summation point in the global frame consider_rxf : bool; default=True considers the r x F term debug : bool; default=False debugging flag log : log; default=None a log object that gets used when debug=True Returns ------- force_out : (n, 3) float ndarray the ith float components in the coord_out coordinate frame moment_out : (n, 3) float ndarray the ith moment components about the summation point in the coord_out coordinate frame force_out_sum : (3, ) float ndarray the sum of forces in the coord_out coordinate frame moment_out_sum : (3, ) float ndarray the sum of moments about the summation point in the coord_out coordinate frame .. todo:: doesn't seem to handle cylindrical/spherical systems """ assert log is not None out = transform_force_moment( force_in_local, moment_in_local, coord_out, coords, nid_cd, icd_transform, xyz_cid0, summation_point_cid0=summation_point_cid0, consider_rxf=consider_rxf, debug=debug, log=log) force_out, moment_out = out if debug: log.debug('force_sum = %s' % force_out.sum(axis=0)) if consider_rxf: log.debug('moment_sum = %s' % moment_out.sum(axis=0)) return force_out, moment_out, force_out.sum(axis=0), moment_out.sum(axis=0)
33.006135
93
0.595632
aaaa285ef305a12c09e817b55f7f8a65c425d1ba
1,774
py
Python
app/utils/helpers.py
bossenti/OutdoorTripFinder-Backend
6818cd19640e3826cca42fa797b5d1d7a264f856
[ "Apache-2.0" ]
null
null
null
app/utils/helpers.py
bossenti/OutdoorTripFinder-Backend
6818cd19640e3826cca42fa797b5d1d7a264f856
[ "Apache-2.0" ]
null
null
null
app/utils/helpers.py
bossenti/OutdoorTripFinder-Backend
6818cd19640e3826cca42fa797b5d1d7a264f856
[ "Apache-2.0" ]
null
null
null
import math import string import random # in km EARTH_RADIUS = 6371 def deg_to_radian(val, backwards=False): """ converts values in degree to radians and vice versa :param backwards: indicates the convertion to be in the other direction :param val: value in degrees :return: converted value as radian value """ if not backwards: return val * math.pi / 180 else: return val * 180 / math.pi def distance_between_coordinates(lat1, long1, lat2, long2): """ calculates the distance between two geo-coordinates with the Haversine formula reference: https://en.wikipedia.org/wiki/Haversine_formula :param lat1: latitude of position one :param long1: longitude of position one :param lat2: latituted of position two :param long2: longitude of position two :return: ceiled distance between both coordinates """ diff_lat = deg_to_radian(lat2 - lat1) diff_long = deg_to_radian(long2 - long1) # separate calculation into both terms of sum in the square root left_form = math.sin(diff_lat / 2) ** 2 right_form = math.cos(deg_to_radian(lat1)) * math.cos(deg_to_radian(lat2)) * math.sin(diff_long / 2) ** 2 return math.ceil(2 * EARTH_RADIUS * math.asin(math.sqrt(left_form + right_form))) def rand_alphanumeric(ln=16): return ''.join(random.choices(string.ascii_letters + string.digits, k=ln)) def sort_by_dist(dic): return dic['dist'] def intersection(ids, keys_used): lst3 = [v for v in keys_used if v not in ids] return lst3 def sort_dict(items): return {k: v for k, v in sorted(items, key=lambda item: item[1], reverse=True)} def sort_dict(items): return {k: v for k, v in sorted(items, key=lambda item: item[1], reverse=True)}
28.612903
109
0.694476
2c880ceb8f5f418b7c59a809d9f36547054607eb
2,950
py
Python
sample_setups/pcmdi_parameter_files/variability_modes/alternative_obs/myParam_NAO_cmip3.py
jasonb5/pcmdi_metrics
0c23d8d247da24d0ab9deb04d8db9619af628680
[ "BSD-3-Clause" ]
null
null
null
sample_setups/pcmdi_parameter_files/variability_modes/alternative_obs/myParam_NAO_cmip3.py
jasonb5/pcmdi_metrics
0c23d8d247da24d0ab9deb04d8db9619af628680
[ "BSD-3-Clause" ]
null
null
null
sample_setups/pcmdi_parameter_files/variability_modes/alternative_obs/myParam_NAO_cmip3.py
jasonb5/pcmdi_metrics
0c23d8d247da24d0ab9deb04d8db9619af628680
[ "BSD-3-Clause" ]
null
null
null
import datetime import os # ================================================= # Background Information # ------------------------------------------------- mip = "cmip3" exp = "20c3m" frequency = "mo" realm = "atm" # ================================================= # Analysis Options # ------------------------------------------------- variability_mode = "NAO" # Available domains: NAM, NAO, SAM, PNA, PDO seasons = [ "DJF", "MAM", "JJA", "SON", ] # Available seasons: DJF, MAM, JJA, SON, monthly, yearly RemoveDomainMean = True # Remove Domain Mean from each time step (default=True) EofScaling = False # Convert EOF pattern as unit variance (default=False) landmask = False # Maskout land region thus consider only ocean grid (default=False) ConvEOF = True # Calculate conventioanl EOF for model CBF = True # Calculate Common Basis Function (CBF) for model # ================================================= # Miscellaneous # ------------------------------------------------- update_json = True # False debug = False # False # ================================================= # Observation # ------------------------------------------------- reference_data_name = "ERA20C" reference_data_path = os.path.join( "/p/user_pub/PCMDIobs/PCMDIobs2/atmos/mon/psl/ERA-20C/gn/v20200707", "psl_mon_ERA-20C_BE_gn_v20200707_190001-201012.nc", ) varOBS = "psl" ObsUnitsAdjust = (True, "divide", 100.0) # Pa to hPa; or (False, 0, 0) osyear = 1900 oeyear = 2005 eofn_obs = 1 # ================================================= # Models # ------------------------------------------------- modpath = os.path.join( "/p/user_pub/pmp/pmp_results/pmp_v1.1.2/additional_xmls/%(mip)/%(exp)", "%(variable).%(model).%(realization).xml", ) modnames = [ "bccr_bcm2_0", "cccma_cgcm3_1", "cccma_cgcm3_1_t63", "cnrm_cm3", "gfdl_cm2_0", "gfdl_cm2_1", "giss_aom", "giss_model_e_h", "giss_model_e_r", "iap_fgoals1_0_g", "ingv_echam4", "inmcm3_0", "ipsl_cm4", "miroc3_2_hires", "miroc3_2_medres", "miub_echo_g", "mpi_echam5", "mri_cgcm2_3_2a", "ukmo_hadcm3", "ukmo_hadgem1", ] modnames = ["all"] # modnames = ['CSIRO-Mk3-6-0'] realization = "*" # realizations # realization = 'run1' varModel = "psl" ModUnitsAdjust = (True, "divide", 100.0) # Pa to hPa msyear = 1900 meyear = 2005 eofn_mod = 1 # ================================================= # Output # ------------------------------------------------- case_id = "{:v%Y%m%d}".format(datetime.datetime.now()) pmprdir = "/p/user_pub/pmp/pmp_results/pmp_v1.1.2" if debug: pmprdir = "/work/lee1043/imsi/result_test" results_dir = os.path.join( pmprdir, "%(output_type)", "variability_modes", "%(mip)", "%(exp)", "%(case_id)", "%(variability_mode)", "%(reference_data_name)", ) nc_out = True # Write output in NetCDF plot = True # Create map graphics
25
85
0.521356
a533d5cff0c6530d9f36b6a5f5db6c785cd8b252
3,868
py
Python
quantization/lsq/qnn.py
creaiter/Quantization-Implementations
8e97ae9b91dbd3f02ebeccc05d12aee241d252d4
[ "MIT" ]
2
2021-10-12T06:09:55.000Z
2022-01-28T08:17:13.000Z
quantization/lsq/qnn.py
creaiter/Quantization-Implementations
8e97ae9b91dbd3f02ebeccc05d12aee241d252d4
[ "MIT" ]
null
null
null
quantization/lsq/qnn.py
creaiter/Quantization-Implementations
8e97ae9b91dbd3f02ebeccc05d12aee241d252d4
[ "MIT" ]
null
null
null
import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter from .quantizer import LSQ class QuantConv2d(nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', nbits=32, symmetric=False, **kwargs): super(QuantConv2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, padding_mode) assert nbits > 0 and nbits < 33 self.nbits = nbits if symmetric: self.q_n = -1. * 2. ** (self.nbits - 1) + 1 self.q_p = 2. ** (self.nbits - 1) - 1 else: self.q_n = -1. * 2. ** (self.nbits - 1) self.q_p = 2. ** (self.nbits - 1) - 1 if self.nbits != 32: self.quantizer = LSQ(self.nbits, self.q_n, self.q_p) def forward(self, x): if self.nbits == 32: quantized_weight = self.weight else: quantized_weight = self.quantizer(self.weight) return self._conv_forward(x, quantized_weight) class QuantLinear(nn.Linear): def __init__(self, in_features, out_features, bias=True, nbits=32, symmetric=False, **kwargs): super(QuantLinear, self).__init__(in_features, out_features, bias) assert nbits > 0 and nbits < 33 self.nbits = nbits if symmetric: self.q_n = -1. * 2. ** (self.nbits - 1) + 1 self.q_p = 2. ** (self.nbits - 1) - 1 else: self.q_n = -1. * 2. ** (self.nbits - 1) self.q_p = 2. ** (self.nbits - 1) - 1 if self.nbits != 32: self.quantizer = LSQ(self.nbits, self.q_n, self.q_p) def forward(self, x): if self.nbits == 32: quantized_weight = self.weight else: quantized_weight = self.quantizer(self.weight) return F.linear(x, quantized_weight, self.bias) class QuantReLU(nn.ReLU): def __init__(self, inplace=False, nbits=32, **kwargs): super(QuantReLU, self).__init__(inplace) assert nbits > 0 and nbits < 33 self.nbits = nbits self.q_n = 0. self.q_p = 2. ** self.nbits - 1 if self.nbits != 32: self.quantizer = LSQ(self.nbits, self.q_n, self.q_p) def forward(self, x): if self.nbits == 32: output = F.relu(x, inplace=self.inplace) else: output = self.quantizer(x) return output class QuantReLU6(nn.ReLU6): def __init__(self, inplace=False, nbits=32, **kwargs): super(QuantReLU6, self).__init__(inplace) assert nbits > 0 and nbits < 33 self.nbits = nbits self.q_n = 0. self.q_p = 2. ** self.nbits - 1 if self.nbits != 32: self.quantizer = LSQ(self.nbits, self.q_n, self.q_p) def forward(self, x): output = F.hardtanh(x, self.min_val, self.max_val, self.inplace) if self.nbits != 32: output = self.quantizer(output) return output class QuantIdentity(nn.Identity): def __init__(self, nbits=32, symmetric=True, **kwargs): super(QuantIdentity, self).__init__() assert nbits > 0 and nbits < 33 self.nbits = nbits if symmetric: self.q_n = -1. * 2. ** (self.nbits - 1) + 1 self.q_p = 2. ** (self.nbits - 1) - 1 else: self.q_n = -1. * 2. ** (self.nbits - 1) self.q_p = 2. ** (self.nbits - 1) - 1 if self.nbits != 32: self.quantizer = LSQ(self.nbits, self.q_n, self.q_p) def forward(self, x): if self.nbits == 32: output = x else: output = self.quantizer(x) return output
30.456693
98
0.553516
0e0a52ac5c95c6299e8abbd422696e513983383a
291
py
Python
brainspace/datasets/__init__.py
josemariamoreira/BrainSpace
d7e8e65c6463a81146e7fcfcca902feef04d329d
[ "BSD-3-Clause" ]
null
null
null
brainspace/datasets/__init__.py
josemariamoreira/BrainSpace
d7e8e65c6463a81146e7fcfcca902feef04d329d
[ "BSD-3-Clause" ]
null
null
null
brainspace/datasets/__init__.py
josemariamoreira/BrainSpace
d7e8e65c6463a81146e7fcfcca902feef04d329d
[ "BSD-3-Clause" ]
null
null
null
from .base import (load_conte69, load_mask, load_group_fc, load_parcellation, load_gradient, load_marker) __all__ = ['load_conte69', 'load_mask', 'load_group_fc', 'load_gradient', 'load_parcellation', 'load_marker']
29.1
77
0.587629
0ab9e34a8d3e2b972aac50a04fcb569442318cc0
30,426
py
Python
sphinxcontrib/jupyter/writers/translate_all.py
AnjuJoon/sphinxcontrib-jupyter
ac828e0b165fa81bc5b4073ec604faee965ceabc
[ "BSD-3-Clause" ]
null
null
null
sphinxcontrib/jupyter/writers/translate_all.py
AnjuJoon/sphinxcontrib-jupyter
ac828e0b165fa81bc5b4073ec604faee965ceabc
[ "BSD-3-Clause" ]
null
null
null
sphinxcontrib/jupyter/writers/translate_all.py
AnjuJoon/sphinxcontrib-jupyter
ac828e0b165fa81bc5b4073ec604faee965ceabc
[ "BSD-3-Clause" ]
null
null
null
from __future__ import unicode_literals import re import nbformat.v4 from docutils import nodes, writers from .translate_code import JupyterCodeTranslator from .utils import JupyterOutputCellGenerators from shutil import copyfile import os class JupyterTranslator(JupyterCodeTranslator, object): """ Jupyter Translator for Text and Code """ SPLIT_URI_ID_REGEX = re.compile(r"([^\#]*)\#?(.*)") def __init__(self, builder, document): super(JupyterTranslator, self).__init__(builder, document) # Settings self.sep_lines = " \n" self.sep_paras = "\n\n" self.indent_char = " " self.indent = self.indent_char * 4 self.default_ext = ".ipynb" self.html_ext = ".html" self.urlpath = builder.urlpath # Variables used in visit/depart self.in_code_block = False # if False, it means in markdown_cell self.in_block_quote = False self.block_quote_type = "block-quote" self.in_note = False self.in_attribution = False self.in_rubric = False self.in_footnote = False self.in_footnote_reference = False self.in_download_reference = False self.in_inpage_reference = False self.in_caption = False self.in_toctree = False self.in_list = False self.in_math = False self.in_math_block = False self.code_lines = [] self.markdown_lines = [] self.indents = [] self.section_level = 0 self.bullets = [] self.list_item_starts = [] self.in_topic = False self.reference_text_start = 0 self.in_reference = False self.list_level = 0 self.in_citation = False self.math_block_label = None self.images = [] self.files = [] self.table_builder = None # Slideshow option self.metadata_slide = False #False is the value by default for all the notebooks self.slide = "slide" #value by default # specific visit and depart methods # --------------------------------- def visit_document(self, node): """at start """ JupyterCodeTranslator.visit_document(self, node) def depart_document(self, node): """at end Almost the exact same implementation as that of the superclass. Notes ----- [1] if copyfile is not graceful should catch exception if file not found / issue warning in sphinx [2] should this be moved to CodeTranslator for support files when producing code only notebooks? """ self.add_markdown_cell() #Parse .. jupyter-dependency:: if len(self.files) > 0: for fl in self.files: src_fl = os.path.join(self.builder.srcdir, fl) out_fl = os.path.join(self.builder.outdir, os.path.basename(fl)) #copy file to same location as notebook (remove dir structure) #Check if output directory exists out_dir = os.path.dirname(out_fl) if not os.path.exists(out_dir): os.makedirs(out_dir) print("Copying {} to {}".format(src_fl, out_fl)) copyfile(src_fl, out_fl) JupyterCodeTranslator.depart_document(self, node) # ========= # Sections # ========= def visit_only(self, node): pass def depart_only(self, node): pass def visit_topic(self, node): self.in_topic = True def depart_topic(self, node): self.in_topic = False def visit_section(self, node): self.section_level += 1 def depart_section(self, node): self.section_level -= 1 #================= # Inline elements #================= def visit_Text(self, node): text = node.astext() #Escape Special markdown chars except in code block if self.in_code_block == False: text = text.replace("$", "\$") if self.in_math: text = '$ {} $'.format(text.strip()) elif self.in_math_block and self.math_block_label: text = "$$\n{0}{1}$${2}".format( text.strip(), self.math_block_label, self.sep_paras ) self.math_block_label = None elif self.in_math_block: text = "$$\n{0}\n$${1}".format(text.strip(), self.sep_paras) if self.in_code_block: self.code_lines.append(text) elif self.table_builder: self.table_builder['line_pending'] += text elif self.in_block_quote or self.in_note: if self.block_quote_type == "epigraph": self.markdown_lines.append(text.replace("\n", "\n> ")) #Ensure all lines are indented else: self.markdown_lines.append(text) elif self.in_caption and self.in_toctree: self.markdown_lines.append("# {}".format(text)) else: self.markdown_lines.append(text) def depart_Text(self, node): pass def visit_attribution(self, node): self.in_attribution = True self.markdown_lines.append("> ") def depart_attribution(self, node): self.in_attribution = False self.markdown_lines.append("\n") # image def visit_image(self, node): """ Notes ----- 1. Should this use .has_attrs()? 2. the scale, height and width properties are not combined in this implementation as is done in http://docutils.sourceforge.net/docs/ref/rst/directives.html#image """ uri = node.attributes["uri"] self.images.append(uri) #TODO: list of image files if self.jupyter_download_nb_image_urlpath: for file_path in self.jupyter_static_file_path: if file_path in uri: uri = uri.replace(file_path +"/", self.jupyter_download_nb_image_urlpath) break #don't need to check other matches attrs = node.attributes if self.jupyter_images_markdown: #-Construct MD image image = "![{0}]({0})".format(uri) else: # Construct HTML image image = '<img src="{}" '.format(uri) if "alt" in attrs.keys(): image += 'alt="{}" '.format(attrs["alt"]) style = "" if "width" in attrs.keys(): style += "width:{};".format(attrs["width"]) if "height" in attrs.keys(): style += "height:{};".format(attrs["height"]) if "scale" in attrs.keys(): style = "width:{0}%;height:{0}%".format(attrs["scale"]) image += 'style="{}" '.format(style) if "align" in attrs.keys(): image += 'align="{}"'.format(attrs["align"]) image = image.rstrip() + ">\n\n" #Add double space for html self.markdown_lines.append(image) # math def visit_math(self, node): """inline math""" # With sphinx < 1.8, a math node has a 'latex' attribute, from which the # formula can be obtained and added to the text. # With sphinx >= 1.8, a math node has no 'latex' attribute, which mean # that a flag has to be raised, so that the in visit_Text() we know that # we are dealing with a formula. try: # sphinx < 1.8 math_text = node.attributes["latex"].strip() except KeyError: # sphinx >= 1.8 self.in_math = True # the flag is raised, the function can be exited. return formatted_text = "$ {} $".format(math_text) if self.table_builder: self.table_builder['line_pending'] += formatted_text else: self.markdown_lines.append(formatted_text) def depart_math(self, node): self.in_math = False def visit_displaymath(self, node): """directive math""" # displaymath is called with sphinx < 1.8 only math_text = node.attributes["latex"].strip() if self.in_list and node["label"]: self.markdown_lines.pop() #remove entry \n from table builder if self.list_level == 0: formatted_text = "$$\n{0}\n$${1}".format( math_text, self.sep_paras) else: formatted_text = "$$\n{0}\n$${1}".format( math_text, self.sep_paras) #check for labelled math if node["label"]: #Use \tags in the LaTeX environment if self.jupyter_target_pdf: #pdf should have label following tag and removed html id tags in visit_target referenceBuilder = " \\tag{" + str(node["number"]) + "}" + "\\label{" + node["ids"][0] + "}\n" else: referenceBuilder = " \\tag{" + str(node["number"]) + "}\n" #node["ids"] should always exist for labelled displaymath formatted_text = formatted_text.rstrip("$$\n") + referenceBuilder + "$${}".format(self.sep_paras) self.markdown_lines.append(formatted_text) def depart_displaymath(self, node): if self.in_list: self.markdown_lines[-1] = self.markdown_lines[-1][:-1] #remove excess \n def visit_math_block(self, node): """directive math""" # visit_math_block is called only with sphinx >= 1.8 self.in_math_block = True if self.in_list and node["label"]: self.markdown_lines.pop() #remove entry \n from table builder #check for labelled math if node["label"]: #Use \tags in the LaTeX environment if self.jupyter_target_pdf: #pdf should have label following tag and removed html id tags in visit_target referenceBuilder = " \\tag{" + str(node["number"]) + "}" + "\\label{" + node["ids"][0] + "}\n" else: referenceBuilder = " \\tag{" + str(node["number"]) + "}\n" #node["ids"] should always exist for labelled displaymath self.math_block_label = referenceBuilder def depart_math_block(self, node): if self.in_list: self.markdown_lines[-1] = self.markdown_lines[-1][:-1] #remove excess \n self.in_math_block = False def visit_table(self, node): self.table_builder = dict() self.table_builder['column_widths'] = [] self.table_builder['lines'] = [] self.table_builder['line_pending'] = "" if 'align' in node: self.table_builder['align'] = node['align'] else: self.table_builder['align'] = "center" def depart_table(self, node): table_lines = "".join(self.table_builder['lines']) self.markdown_lines.append(table_lines) self.table_builder = None def visit_thead(self, node): """ Table Header """ self.table_builder['current_line'] = 0 def depart_thead(self, node): """ create the header line which contains the alignment for each column """ header_line = "|" for col_width in self.table_builder['column_widths']: header_line += self.generate_alignment_line( col_width, self.table_builder['align']) header_line += "|" self.table_builder['lines'].append(header_line + "\n") def generate_alignment_line(self, line_length, alignment): left = ":" if alignment != "right" else "-" right = ":" if alignment != "left" else "-" return left + "-" * (line_length - 2) + right def visit_colspec(self, node): self.table_builder['column_widths'].append(node['colwidth']) def visit_row(self, node): self.table_builder['line_pending'] = "|" def depart_row(self, node): finished_line = self.table_builder['line_pending'] + "\n" self.table_builder['lines'].append(finished_line) def visit_entry(self, node): pass def depart_entry(self, node): self.table_builder['line_pending'] += "|" def visit_raw(self, node): pass def visit_rubric(self, node): self.in_rubric = True self.add_markdown_cell() if len(node.children) == 1 and node.children[0].astext() in ['Footnotes']: self.markdown_lines.append('**{}**\n\n'.format(node.children[0].astext())) raise nodes.SkipNode def depart_rubric(self, node): self.add_markdown_cell() self.in_rubric = False def visit_footnote_reference(self, node): self.in_footnote_reference = True refid = node.attributes['refid'] ids = node.astext() if self.jupyter_target_html: link = "<sup><a href=#{} id={}-link>[{}]</a></sup>".format(refid, refid, ids) else: link = "<sup>[{}](#{})</sup>".format(ids, refid) self.markdown_lines.append(link) raise nodes.SkipNode def depart_footnote_reference(self, node): self.in_footnote_reference = False def visit_footnote(self, node): self.in_footnote = True def depart_footnote(self, node): self.in_footnote = False def visit_download_reference(self, node): self.in_download_reference = True html = "<a href={} download>".format(node["reftarget"]) self.markdown_lines.append(html) def depart_download_reference(self, node): self.markdown_lines.append("</a>") self.in_download_reference = False #================ # markdown cells #================ # general paragraph def visit_paragraph(self, node): pass def depart_paragraph(self, node): if self.list_level > 0: self.markdown_lines.append(self.sep_lines) elif self.table_builder: pass elif self.block_quote_type == "epigraph": try: attribution = node.parent.children[1] self.markdown_lines.append("\n>\n") #Continue block for attribution except: self.markdown_lines.append(self.sep_paras) else: self.markdown_lines.append(self.sep_paras) # title(section) def visit_title(self, node): JupyterCodeTranslator.visit_title(self, node) self.add_markdown_cell() if self.in_topic: self.markdown_lines.append( "{} ".format("#" * (self.section_level + 1))) elif self.table_builder: self.markdown_lines.append( "### {}\n".format(node.astext())) else: self.markdown_lines.append( "{} ".format("#" * self.section_level)) def depart_title(self, node): if not self.table_builder: self.markdown_lines.append(self.sep_paras) # emphasis(italic) def visit_emphasis(self, node): self.markdown_lines.append("*") def depart_emphasis(self, node): self.markdown_lines.append("*") # strong(bold) def visit_strong(self, node): self.markdown_lines.append("**") def depart_strong(self, node): self.markdown_lines.append("**") def visit_literal(self, node): if self.in_download_reference: return self.markdown_lines.append("`") def depart_literal(self, node): if self.in_download_reference: return self.markdown_lines.append("`") # figures def visit_figure(self, node): pass def depart_figure(self, node): self.markdown_lines.append(self.sep_lines) # reference def visit_reference(self, node): """anchor link""" self.in_reference = True if self.jupyter_target_pdf: if "refid" in node: if 'equation-' in node['refid']: self.markdown_lines.append("\eqref{") elif self.in_topic: pass else: self.markdown_lines.append("\hyperlink{") else: self.markdown_lines.append("\hyperlink{") else: self.markdown_lines.append("[") self.reference_text_start = len(self.markdown_lines) def depart_reference(self, node): if self.in_topic: # Jupyter Notebook uses the target text as its id uri_text = "".join( self.markdown_lines[self.reference_text_start:]).strip() uri_text = re.sub( self.URI_SPACE_REPLACE_FROM, self.URI_SPACE_REPLACE_TO, uri_text) if self.jupyter_target_html: #Adjust contents (toc) text when targetting html to prevent nbconvert from breaking html on ) uri_text = uri_text.replace("(", "%28") uri_text = uri_text.replace(")", "%29") #Format end of reference in topic if self.jupyter_target_pdf: uri_text = uri_text.lower() SPECIALCHARS = [r"!", r"@", r"#", r"$", r"%", r"^", r"&", r"*", r"(", r")", r"[", r"]", r"{", r"}", r"|", r":", r";", r","] for CHAR in SPECIALCHARS: uri_text = uri_text.replace(CHAR,"") formatted_text = " \\ref{" + uri_text + "}" #Use Ref and Plain Text titles else: formatted_text = "](#{})".format(uri_text) self.markdown_lines.append(formatted_text) else: # if refuri exists, then it includes id reference(#hoge) if "refuri" in node.attributes: refuri = node["refuri"] # add default extension(.ipynb) if "internal" in node.attributes and node.attributes["internal"] == True: if self.jupyter_target_html: refuri = self.add_extension_to_inline_link(refuri, self.html_ext) ## add url path if it is set if self.urlpath is not None: refuri = self.urlpath + refuri elif self.jupyter_target_pdf and 'references#' in refuri: label = refuri.split("#")[-1] bibtex = self.markdown_lines.pop() if "hyperlink" in self.markdown_lines[-1]: self.markdown_lines.pop() refuri = "reference-\\cite{" + label else: refuri = self.add_extension_to_inline_link(refuri, self.default_ext) else: # in-page link if "refid" in node: refid = node["refid"] self.in_inpage_reference = True if not self.jupyter_target_pdf: #markdown doesn't handle closing brackets very well so will replace with %28 and %29 #ignore adjustment when targeting pdf as pandoc doesn't parse %28 correctly refid = refid.replace("(", "%28") refid = refid.replace(")", "%29") if self.jupyter_target_pdf: refuri = refid else: #markdown target refuri = "#{}".format(refid) # error else: self.error("Invalid reference") refuri = "" #TODO: review if both %28 replacements necessary in this function? # Propose delete above in-link refuri if not self.jupyter_target_pdf: #ignore adjustment when targeting pdf as pandoc doesn't parse %28 correctly refuri = refuri.replace("(", "%28") #Special case to handle markdown issue with reading first ) refuri = refuri.replace(")", "%29") if self.jupyter_target_pdf and 'reference-' in refuri: self.markdown_lines.append(refuri.replace("reference-","") + "}") elif self.jupyter_target_pdf and self.in_inpage_reference: labeltext = self.markdown_lines.pop() # Check for Equations as they do not need labetext if 'equation-' in refuri: self.markdown_lines.append(refuri + "}") else: self.markdown_lines.append(refuri + "}{" + labeltext + "}") # if self.jupyter_target_pdf and self.in_toctree: # #TODO: this will become an internal link when making a single unified latex file # formatted_text = " \\ref{" + refuri + "}" # self.markdown_lines.append(formatted_text) else: self.markdown_lines.append("]({})".format(refuri)) if self.in_toctree: self.markdown_lines.append("\n") self.in_reference = False # target: make anchor def visit_target(self, node): if "refid" in node.attributes: refid = node.attributes["refid"] if self.jupyter_target_pdf: if 'equation' in refid: #no html targets when computing notebook to target pdf in labelled math pass else: #set hypertargets for non math targets self.markdown_lines.append("\n\\hypertarget{" + refid + "}{}\n\n") else: self.markdown_lines.append("\n<a id='{}'></a>\n".format(refid)) # list items def visit_bullet_list(self, node): self.list_level += 1 # markdown does not have option changing bullet chars self.bullets.append("-") self.indents.append(len(self.bullets[-1] * 2)) #add two per level def depart_bullet_list(self, node): self.list_level -= 1 if self.list_level == 0: self.markdown_lines.append(self.sep_paras) if self.in_topic: self.add_markdown_cell() self.bullets.pop() self.indents.pop() def visit_enumerated_list(self, node): self.list_level += 1 # markdown does not have option changing bullet chars self.bullets.append("1.") self.indents.append(len(self.bullets[-1])) def depart_enumerated_list(self, node): self.list_level -= 1 if self.list_level == 0: self.markdown_lines.append(self.sep_paras) self.bullets.pop() self.indents.pop() def visit_list_item(self, node): self.in_list = True head = "{} ".format(self.bullets[-1]) self.markdown_lines.append(head) self.list_item_starts.append(len(self.markdown_lines)) def depart_list_item(self, node): self.in_list = False list_item_start = self.list_item_starts.pop() indent = self.indent_char * self.indents[-1] br_removed_flag = False # remove last breakline if self.markdown_lines and self.markdown_lines[-1][-1] == "\n": br_removed_flag = True self.markdown_lines[-1] = self.markdown_lines[-1][:-1] for i in range(list_item_start, len(self.markdown_lines)): self.markdown_lines[i] = self.markdown_lines[i].replace( "\n", "\n{}".format(indent)) # add breakline if br_removed_flag: self.markdown_lines.append("\n") # definition list def visit_definition_list(self, node): self.markdown_lines.append("\n<dl style='margin: 20px 0;'>\n") def depart_definition_list(self, node): self.markdown_lines.append("\n</dl>{}".format(self.sep_paras)) def visit_term(self, node): self.markdown_lines.append("<dt>") def depart_term(self, node): self.markdown_lines.append("</dt>\n") def visit_definition(self, node): self.markdown_lines.append("<dd>\n") def depart_definition(self, node): self.markdown_lines.append("</dd>\n") # field list def visit_field_list(self, node): self.visit_definition_list(node) def depart_field_list(self, node): self.depart_definition_list(node) def visit_field_name(self, node): self.visit_term(node) def depart_field_name(self, node): self.depart_term(node) def visit_field_body(self, node): self.visit_definition(node) def depart_field_body(self, node): self.depart_definition(node) # citation def visit_citation(self, node): self.in_citation = True if "ids" in node.attributes: ids = node.attributes["ids"] id_text = "" for id_ in ids: id_text += "{} ".format(id_) else: id_text = id_text[:-1] self.markdown_lines.append( "<a id='{}'></a>\n".format(id_text)) def depart_citation(self, node): self.in_citation = False # label def visit_label(self, node): if self.in_footnote: ids = node.parent.attributes["ids"] id_text = "" for id_ in ids: id_text += "{} ".format(id_) else: id_text = id_text[:-1] if self.jupyter_target_html: self.markdown_lines.append("<p><a id={} href=#{}-link><strong>[{}]</strong></a> ".format(id_text, id_text, node.astext())) else: self.markdown_lines.append("<a id='{}'></a>\n**[{}]** ".format(id_text, node.astext())) raise nodes.SkipNode if self.in_citation: self.markdown_lines.append("\[") def depart_label(self, node): if self.in_citation: self.markdown_lines.append("\] ") # =============================================== # code blocks are implemented in the superclass # =============================================== def visit_block_quote(self, node): if self.in_list: #allow for 4 spaces interpreted as block_quote self.markdown_lines.append("\n") return self.in_block_quote = True if "epigraph" in node.attributes["classes"]: self.block_quote_type = "epigraph" self.markdown_lines.append("> ") def depart_block_quote(self, node): if "epigraph" in node.attributes["classes"]: self.block_quote_type = "block-quote" self.markdown_lines.append("\n") self.in_block_quote = False def visit_literal_block(self, node): JupyterCodeTranslator.visit_literal_block(self, node) if self.in_code_block: self.add_markdown_cell() def depart_literal_block(self, node): JupyterCodeTranslator.depart_literal_block(self, node) def visit_note(self, node): self.in_note = True self.markdown_lines.append(">**Note**\n>\n>") def depart_note(self, node): self.in_note = False def depart_raw(self, node): self.markdown_lines.append("\n\n") # ============= # Jupyter Nodes # ============= def visit_jupyter_node(self, node): try: if 'cell-break' in node.attributes: self.add_markdown_cell() if 'slide' in node.attributes: self.metadata_slide = node['slide'] # this activates the slideshow metadata for the notebook if 'slide-type' in node.attributes: if "fragment" in node['slide-type']: self.add_markdown_cell(slide_type=node['slide-type']) #start a new cell self.slide = node['slide-type'] # replace the default value except: pass #Parse jupyter_dependency directive (TODO: Should this be a separate node type?) try: self.files.append(node['uri']) except: pass def depart_jupyter_node(self, node): if 'cell-break' in node.attributes: pass if 'slide' in node.attributes: pass if 'slide-type' in node.attributes: pass def visit_comment(self, node): raise nodes.SkipNode def visit_compact_paragraph(self, node): try: if node.attributes['toctree']: self.in_toctree = True except: pass #Should this execute visit_compact_paragragh in BaseTranslator? def depart_compact_paragraph(self, node): try: if node.attributes['toctree']: self.in_toctree = False except: pass def visit_caption(self, node): self.in_caption = True def depart_caption(self, node): self.in_caption = False if self.in_toctree: self.markdown_lines.append("\n") # ================ # general methods # ================ def add_markdown_cell(self, slide_type="slide"): """split a markdown cell here * add the slideshow metadata * append `markdown_lines` to notebook * reset `markdown_lines` """ line_text = "".join(self.markdown_lines) formatted_line_text = self.strip_blank_lines_in_end_of_block(line_text) slide_info = {'slide_type': self.slide} if len(formatted_line_text.strip()) > 0: new_md_cell = nbformat.v4.new_markdown_cell(formatted_line_text) if self.metadata_slide: # modify the slide metadata on each cell new_md_cell.metadata["slideshow"] = slide_info self.slide = slide_type self.output["cells"].append(new_md_cell) self.markdown_lines = [] @classmethod def split_uri_id(cls, uri): return re.search(cls.SPLIT_URI_ID_REGEX, uri).groups() @classmethod def add_extension_to_inline_link(cls, uri, ext): if "." not in uri: if len(uri) > 0 and uri[0] == "#": return uri uri, id_ = cls.split_uri_id(uri) if len(id_) == 0: return "{}{}".format(uri, ext) else: return "{}{}#{}".format(uri, ext, id_) #adjust relative references elif "../" in uri: uri = uri.replace("../", "") uri, id_ = cls.split_uri_id(uri) if len(id_) == 0: return "{}{}".format(uri, ext) else: return "{}{}#{}".format(uri, ext, id_) return uri
36.007101
149
0.564156
ef61706dc805b4fdc539524783ec8f8823b8ee46
6,044
py
Python
gamestate-changes/change_statistics/basicUtils.py
phylib/MinecraftNDN-RAFNET19
c7bfa7962707af367fafe9d879bc63637c06aec7
[ "MIT" ]
1
2020-05-18T15:55:09.000Z
2020-05-18T15:55:09.000Z
gamestate-changes/change_statistics/basicUtils.py
phylib/MinecraftNDN-RAFNET19
c7bfa7962707af367fafe9d879bc63637c06aec7
[ "MIT" ]
null
null
null
gamestate-changes/change_statistics/basicUtils.py
phylib/MinecraftNDN-RAFNET19
c7bfa7962707af367fafe9d879bc63637c06aec7
[ "MIT" ]
null
null
null
from datetime import datetime from enum import Enum ChangeType = Enum('ChangeType', 'block tile_entity entity status') def getType(value): if value == 'status': return ChangeType.status elif value == 'BLOCK': return ChangeType.block elif value.startswith('TILE_ENTITY'): return ChangeType.tile_entity else: return ChangeType.entity def to_date(str): return datetime.strptime(str, '%d-%m-%Y_%H:%M:%S:%f') # data structure for storing change information # takes lines/rows as lists of string values and saves them (some values converted to more useful data types) in order class IntervalData: def __init__(self): self.entries = [] # all change entries can be found in this list self.status_entries = [] # additional list only storing the status information entries def addLogRowItems(self, rowItems): logTime = to_date(rowItems[0]) # wall clock time of log entry creation worldFullTime = int(rowItems[1]) # MC server full time (ticks since startup) type = getType(rowItems[2]) # Category/Type of change (ChangeType.(status|block|tile_entity|entity) # store basic information (common to entries of all types) entry = {'logTime': logTime, 'worldFullTime': worldFullTime, 'type': type, 'typeStr': rowItems[2]} if type == ChangeType.status: # information specific to status entries # 20-10-2018_19:34:40:724 time type="status" #loadedChunks #changedChunks #tileEntities #changedTileEntities #entities #changedEntities #onlinePlayers totalStateDiffTime loadedChunks = int(rowItems[3]) # total number of loaded chunks changedChunks = int(rowItems[4]) # number of chunks that changed (indicated by Events) tileEntities = int(rowItems[5]) # total number of tile/block-entities changedTileEntities = int(rowItems[6]) # number of tile entities that changed entities = int(rowItems[7]) # total number of entities changedEntities = int(rowItems[8]) # number of entities that changed onlinePlayers = int(rowItems[9]) # total number of players logged in to the server totalStateDiffTime = float(rowItems[10].replace('ms','')) # time it took the measurement plugin to compare the current with the last state (comparing "dirty" chunks as indicated by Events) # update dictionary with type-specific information entry.update({"loadedChunks": loadedChunks, 'changedChunks': changedChunks, 'tileEntities': tileEntities, 'changedTileEntities': changedTileEntities, 'entities': entities , 'changedEntities': changedEntities, 'onlinePlayers': onlinePlayers, 'totalStateDiffTime': totalStateDiffTime}) # store change entry (in all lists) self.entries.append(entry) self.status_entries.append(entry) else: # change must be involving a block, tile/block-entity or entity, which all share the following properties xpos = rowItems[3] # global coordinate system (block x coordinate) ypos = rowItems[4] # global coordinate system (block y coordinate) zpos = rowItems[5] # global coordinate system (block z coordinate) world = rowItems[6] # name of the world (e.g. "world", "world_nether", "world_the_end" chunk = rowItems[7] # x,z coordinates of the chunk that the change happened in section = rowItems[8] # section number (0-15) of the section that the change happened in (inside the chunk) # add properties common to block and (tile) entity entry.update({'xpos': xpos, 'ypos': ypos, 'zpos': zpos, 'world': world, 'chunk': chunk, 'section': section}) if type == ChangeType.entity or type == ChangeType.tile_entity: # change involves tile/block-entity or entity # 20-10-2018_19:34:40:724 time type="entity" xpos ypos zpos world chunk section uuid [changed attributes] uuid = rowItems[9] # all entities and tileEntities have an identifier (uuid) changes = rowItems[10] # the NBT diff of the previous and current state of the (tile) entity # update dict with (tile-)entity specific infos entry.update({'uuid': uuid, 'changes': changes}) # store change entry self.entries.append(entry) elif type == ChangeType.block: # change involves a block # 20-10-2018_19:34:40:724 time type="block" xpos ypos zpos world chunk section material skylight emittedLight BlockData material = rowItems[9] # the material a block consists of skylight = rowItems[10] # the transparency regarding light from above (sun/moon) emittedLight = rowItems[11] # light emitted/reflected by/from the block itself blockData = rowItems[12] # additional data (<= one byte) # update dictionary with block specific information entry.update({'material' : material, 'skylight': skylight, 'emittedLight': emittedLight, 'blockData': blockData}) # store change entry self.entries.append(entry) else: raise ValueError("type '" + type + "' is not handled!") # handle type that is not handled otherwise def clearEntries(self): del(self.entries) self.entries=[] def getNumStatusEntries(self): return len(self.status_entries) def append(self, other): if type(other) != type(self): raise ValueError("Object types do not match up!") self.entries += other.entries self.status_entries += other.status_entries
62.309278
202
0.627399
28a42507f1646fa07299a387a05c4a957da93bb9
1,888
py
Python
data/tair/add_gene.py
SilkeAllmannLab/gwas
ced0000477890316f3c3fd9ec6b327aeb9364b25
[ "Apache-2.0" ]
1
2021-08-28T07:02:15.000Z
2021-08-28T07:02:15.000Z
data/tair/add_gene.py
SilkeAllmannLab/gwas
ced0000477890316f3c3fd9ec6b327aeb9364b25
[ "Apache-2.0" ]
3
2020-01-30T15:02:51.000Z
2020-03-31T15:53:39.000Z
data/tair/add_gene.py
SilkeAllmannLab/gwas
ced0000477890316f3c3fd9ec6b327aeb9364b25
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # Usage: python add_gene.py chrom_pos_marker.tsv chr01_start_end_gene.tsv chr01_genes_with_marker.tsv # In[1]: import sys import pandas as pd # file with chromosome position marker id chrom_pos_marker_id_file_path = sys.argv[1] # file with chrom start end gene chrom_start_end_gene_file_path = sys.argv[2] # out file outfile = sys.argv[3] # In[2]: chrom_pos_marker = pd.read_csv(chrom_pos_marker_id_file_path, sep="\t", names=["chrom","pos","marker_id"]) # In[3]: genes = pd.read_csv(chrom_start_end_gene_file_path, sep="\t", names=["chrom","start","end","gene"]) # to collect gene as key and marker as values gene_to_marker_dict = {} # two loops # outer loop iterates over each Arabidopsis gene # inner loop iterates over each marker n_genes = genes.shape[0] for i in range(0,n_genes,1): # collect the chromosome + positions of gene number i row = genes.iloc[i,:] chrom_gene = row["chrom"] start_gene = row["start"] end_gene = row["end"] gene = row["gene"] print("working on gene:",gene) # find chromosome of gene and filter the chrom_pos_marker dataframe chrom_pos_marker_filtered = chrom_pos_marker.query('chrom == @chrom_gene') # is the SNP marker position between start and end position of the gene number i? for j in range(0,chrom_pos_marker_filtered.shape[0],1): marker_j = chrom_pos_marker_filtered.iloc[j,:] if start_gene <= marker_j["pos"] <= end_gene: gene_to_marker_dict[gene] = marker_j["marker_id"] # In[ ]: genes_with_marker = pd.DataFrame.from_dict(gene_to_marker_dict, orient = "index",columns=["marker_id"]) genes_with_marker.reset_index(level = 0, inplace = True) genes_with_marker = genes_with_marker.rename(columns={"index":"gene"}) # In[ ]: genes_with_marker.to_csv(outfile, sep = "\t")
25.173333
103
0.700212
9f024035a9a25ef15387f973fc545e10795504d8
1,097
py
Python
h/views/home.py
julien-cheng/h
36c8ec044725720cf36f0986cdf025395aca8929
[ "BSD-2-Clause" ]
2
2019-08-04T07:22:11.000Z
2020-07-17T05:01:41.000Z
h/views/home.py
fuelpress/i.fuel.press
af7b25895d813af0fef656dcf483afe852a99d76
[ "BSD-2-Clause" ]
4
2020-03-24T17:38:24.000Z
2022-03-02T05:45:01.000Z
h/views/home.py
fuelpress/i.fuel.press
af7b25895d813af0fef656dcf483afe852a99d76
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """Views serving the homepage and related endpoints.""" from __future__ import unicode_literals from pyramid import httpexceptions from pyramid.view import view_config @view_config(route_name="via_redirect", request_method="GET") def via_redirect(context, request): url = request.params.get("url") if url is None: raise httpexceptions.HTTPBadRequest('"url" parameter missing') via_link = "https://via.hypothes.is/{}".format(url) raise httpexceptions.HTTPFound(location=via_link) @view_config(route_name="index", request_method="GET") def index_redirect(context, request): try: redirect = request.registry.settings["h.homepage_redirect_url"] except KeyError: # When the redirect URL isn't explicitly configured, we send people to # the main activity stream. redirect = request.route_url("activity.search") if request.user is not None: redirect = request.route_url( "activity.user_search", username=request.user.username ) raise httpexceptions.HTTPFound(redirect)
29.648649
78
0.711942
af07a2462ed7aa7fcc9b71d3ea441e37aeb5e6a1
3,987
py
Python
train-model/scripts/preprocess.py
leijianqiao3/web-audio-recognition
c2c9f8b2d1af43dcc637335c62a0653f5b12e38b
[ "Apache-2.0" ]
80
2017-12-22T12:38:08.000Z
2021-08-31T00:14:46.000Z
train-model/scripts/preprocess.py
leijianqiao3/web-audio-recognition
c2c9f8b2d1af43dcc637335c62a0653f5b12e38b
[ "Apache-2.0" ]
null
null
null
train-model/scripts/preprocess.py
leijianqiao3/web-audio-recognition
c2c9f8b2d1af43dcc637335c62a0653f5b12e38b
[ "Apache-2.0" ]
31
2017-12-25T20:34:40.000Z
2021-09-05T10:03:45.000Z
#!/usr/bin/env python # Copyright 2017 Google LLC # # Licensed under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. """Concatenate all training examples into one large, conjoined wav file. This is necessary to reduce the number of XHRs we need to make to load all of the data. Ensure that each sample is exactly 44100 samples long.""" import argparse import numpy as np import os import random import scipy.io.wavfile OUT_PATH = 'out' DATA_PATH = '../speech_commands_v0.01/' DURATION = 1 SAMPLE_RATE = 16000 EXAMPLES_PER_LABEL = 10000 BACKGROUND_LABEL = '_background_noise_' parser = argparse.ArgumentParser(description='Combine labeled wavs into one.') parser.add_argument('--labels', nargs='+', help='Which labels to process', default=[]) parser.add_argument('--examples_per_label', type=int, default=EXAMPLES_PER_LABEL, help='How many examples to take from each label') parser.add_argument('--examples_per_other_label', type=int, default=EXAMPLES_PER_LABEL * 4, help='How many examples to take from each label') parser.add_argument('--out', type=str, default=OUT_PATH, help='Directory to write the files to.') parser.add_argument('--other', action='store_true', default=True) parser.add_argument('--background', action='store_true', default=True) args = parser.parse_args() def GetAllLabels(): subdirs = [x[0].split('/')[-1] for x in os.walk(DATA_PATH)] return subdirs[2:] def GetAllExamplePaths(label): path = os.path.join(DATA_PATH, label) examples = [x[2] for x in os.walk(path)][0] return [os.path.join(label, eg) for eg in examples if eg.endswith('.wav')] def GetAllExamplePathsForLabels(labels): out = [] for label in labels: out += GetAllExamplePaths(label) return out def ReadWav(path): sr, y = scipy.io.wavfile.read(path) return y def PadBuffer(buf, length): if len(buf) > length: return buf[:length] elif len(buf) == length: return buf else: # Array is too short, zero-pad it. return buf + ([0] * (length - len(buf))) def WriteWav(buf, path): # Ensure directory exists. dir = os.path.dirname(path) if not os.path.exists(dir): os.mkdir(dir) scipy.io.wavfile.write(path, SAMPLE_RATE, buf) if __name__ == '__main__': labels = args.labels or GetAllLabels() if args.background: labels += [BACKGROUND_LABEL] print('Loading %d labels' % len(labels)) for label in labels: example_paths = GetAllExamplePaths(label) bufs = example_paths[:args.examples_per_label] print('Writing %d examples for label %s.' % (len(bufs), label)) combined_buf = [] for path in bufs: buf = list(ReadWav(os.path.join(DATA_PATH, path))) if label != BACKGROUND_LABEL: buf = PadBuffer(buf, DURATION * SAMPLE_RATE) combined_buf += buf arr = np.array(combined_buf, dtype=np.int16) WriteWav(arr, os.path.join(args.out, '%s.wav' % label)) if args.other: # Get a bunch of non-specified examples and put them all into other.wav. other_labels = set(GetAllLabels()).difference(labels) other_paths = GetAllExamplePathsForLabels(other_labels)[:args.examples_per_other_label] random.shuffle(other_paths) combined_buf = [] for path in other_paths: buf = list(ReadWav(os.path.join(DATA_PATH, path))) buf = PadBuffer(buf, DURATION * SAMPLE_RATE) combined_buf += buf arr = np.array(combined_buf, dtype=np.int16) print('Writing %s examples to other.wav' % len(other_paths)) WriteWav(arr, os.path.join(args.out, 'other.wav'))
32.950413
91
0.712315
ba7d23fbe1e9ad416691dc1d184793b13a3f1ae8
3,982
py
Python
win64-postgresql/pgAdmin 4/web/pgadmin/browser/server_groups/servers/types.py
vnetcon/curvy
ed3749bd5d298c7ab6c0625de91c211d6da4c762
[ "Apache-2.0" ]
null
null
null
win64-postgresql/pgAdmin 4/web/pgadmin/browser/server_groups/servers/types.py
vnetcon/curvy
ed3749bd5d298c7ab6c0625de91c211d6da4c762
[ "Apache-2.0" ]
3
2021-09-02T15:51:44.000Z
2022-03-02T09:53:17.000Z
win64-postgresql/pgAdmin 4/web/pgadmin/browser/server_groups/servers/types.py
vnetcon/curvy
ed3749bd5d298c7ab6c0625de91c211d6da4c762
[ "Apache-2.0" ]
null
null
null
########################################################################## # # pgAdmin 4 - PostgreSQL Tools # # Copyright (C) 2013 - 2020, The pgAdmin Development Team # This software is released under the PostgreSQL Licence # ########################################################################## import os import sys from flask import render_template from flask_babelex import gettext as _ from pgadmin.utils.preferences import Preferences import config class ServerType(object): """ Server Type Create an instance of this class to define new type of the server support, In order to define new type of instance, you may want to override this class with overriden function - instanceOf for type checking for identification based on the version. """ registry = dict() UTILITY_PATH_LABEL = _("PostgreSQL Binary Path") UTILITY_PATH_HELP = _( "Path to the directory containing the PostgreSQL utility programs" " (pg_dump, pg_restore etc)." ) def __init__(self, server_type, description, priority): self.stype = server_type self.desc = description self.spriority = priority self.utility_path = None assert (server_type not in ServerType.registry) ServerType.registry[server_type] = self @property def icon(self): return "%s.svg" % self.stype @property def server_type(self): return self.stype @property def description(self): return self.desc @classmethod def register_preferences(cls): paths = Preferences('paths', _('Paths')) for key in cls.registry: st = cls.registry[key] default_path = config.DEFAULT_BINARY_PATHS.get(st.stype, "") st.utility_path = paths.register( 'bin_paths', st.stype + '_bin_dir', st.UTILITY_PATH_LABEL, 'text', default_path, category_label=_('Binary paths'), help_str=st.UTILITY_PATH_HELP ) @property def priority(self): return self.spriority def __str__(self): return "Type: {0}, Description:{1}, Priority: {2}".format( self.stype, self.desc, self.spriority ) def instanceOf(self, version): return True @property def csssnippets(self): """ Returns a snippet of css to include in the page """ return [ render_template( "css/server_type.css", server_type=self.stype, icon=self.icon ) ] @classmethod def types(cls): return sorted( ServerType.registry.values(), key=lambda x: x.priority, reverse=True ) def utility(self, operation, sversion): res = None if operation == 'backup': res = 'pg_dump' elif operation == 'backup_server': res = 'pg_dumpall' elif operation == 'restore': res = 'pg_restore' elif operation == 'sql': res = 'psql' else: raise Exception( _("Could not find the utility for the operation '%s'".format( operation )) ) bin_path = self.utility_path.get() if "$DIR" in bin_path: # When running as an WSGI application, we will not find the # '__file__' attribute for the '__main__' module. main_module_file = getattr( sys.modules['__main__'], '__file__', None ) if main_module_file is not None: bin_path = bin_path.replace( "$DIR", os.path.dirname(main_module_file) ) return os.path.abspath(os.path.join( bin_path, (res if os.name != 'nt' else (res + '.exe')) )) # Default Server Type ServerType('pg', _("PostgreSQL"), -1)
27.846154
78
0.55324
91c9e1eb3c8a8d2c32d9aa8cd9a07688c100fc89
838
py
Python
python/controls/stack/horizontal_stack_vertical_alignments.py
pglet/pglet-samples
ab47e797a4daccfa4779daa3d1fd1cc27d92e7f9
[ "MIT" ]
null
null
null
python/controls/stack/horizontal_stack_vertical_alignments.py
pglet/pglet-samples
ab47e797a4daccfa4779daa3d1fd1cc27d92e7f9
[ "MIT" ]
null
null
null
python/controls/stack/horizontal_stack_vertical_alignments.py
pglet/pglet-samples
ab47e797a4daccfa4779daa3d1fd1cc27d92e7f9
[ "MIT" ]
null
null
null
import pglet from pglet import Stack, Text with pglet.page("horizontal-stack-vertical-alignments") as page: bg_color = '#ddddee' page.horizontal_align = 'stretch' def items(count): items = [] for i in range(1, count + 1): items.append(Text(value=i, align='center', vertical_align='center', width=30, height=30, bgcolor='BlueMagenta10', color='white', padding=5)) return items page.add( Text('start'), Stack(horizontal=True, vertical_align='start', height=100, bgcolor=bg_color, gap=20, controls=items(3)), Text('center'), Stack(horizontal=True, vertical_align='center', height=100, bgcolor=bg_color, gap=20, controls=items(3)), Text('end'), Stack(horizontal=True, vertical_align='end', height=100, bgcolor=bg_color, gap=20, controls=items(3))) input()
33.52
146
0.668258
da5d2d4fede35dcc8bcdb31a9f0d855e0d57ecda
51,134
py
Python
python_modules/libraries/dagster-aws/dagster_aws/emr/configs.py
bambielli-flex/dagster
30b75ba7c62fc536bc827f177c1dc6ba20f5ae20
[ "Apache-2.0" ]
null
null
null
python_modules/libraries/dagster-aws/dagster_aws/emr/configs.py
bambielli-flex/dagster
30b75ba7c62fc536bc827f177c1dc6ba20f5ae20
[ "Apache-2.0" ]
null
null
null
python_modules/libraries/dagster-aws/dagster_aws/emr/configs.py
bambielli-flex/dagster
30b75ba7c62fc536bc827f177c1dc6ba20f5ae20
[ "Apache-2.0" ]
null
null
null
from dagster import Bool, Dict, Field, Float, Int, List, PermissiveDict, String from .types import ( EbsVolumeType, EmrActionOnFailure, EmrAdjustmentType, EmrComparisonOperator, EmrInstanceRole, EmrMarket, EmrRepoUpgradeOnBoot, EmrScaleDownBehavior, EmrStatistic, EmrSupportedProducts, EmrTimeoutAction, EmrUnit, ) def _define_configurations(): return Field( List( Dict( fields={ 'Classification': Field( String, description='The classification within a configuration.', is_optional=True, ), 'Configurations': Field( List(PermissiveDict()), description='''A list of additional configurations to apply within a configuration object.''', is_optional=True, ), 'Properties': Field( PermissiveDict(), description='''A set of properties specified within a configuration classification.''', is_optional=True, ), } ) ), description='''For Amazon EMR releases 4.0 and later. The list of configurations supplied for the EMR cluster you are creating. An optional configuration specification to be used when provisioning cluster instances, which can include configurations for applications and software bundled with Amazon EMR. A configuration consists of a classification, properties, and optional nested configurations. A classification refers to an application-specific configuration file. Properties are the settings you want to change in that file. For more information, see the EMR Configuring Applications guide.''', is_optional=True, ) def _define_steps(): name = Field(String, description='The name of the step.', is_optional=False) actionOnFailure = Field( EmrActionOnFailure, description='''The action to take when the cluster step fails. Possible values are TERMINATE_CLUSTER, CANCEL_AND_WAIT, and CONTINUE. TERMINATE_JOB_FLOW is provided for backward compatibility. We recommend using TERMINATE_CLUSTER instead.''', is_optional=True, ) hadoopJarStep = Field( Dict( fields={ 'Properties': Field( List(Dict(fields={'Key': Field(String), 'Value': Field(String)})), description='''A list of Java properties that are set when the step runs. You can use these properties to pass key value pairs to your main function.''', is_optional=True, ), 'Jar': Field( String, description='A path to a JAR file run during the step.', is_optional=False, ), 'MainClass': Field( String, description='''The name of the main class in the specified Java file. If not specified, the JAR file should specify a Main-Class in its manifest file.''', is_optional=True, ), 'Args': Field( List(String), description='''A list of command line arguments passed to the JAR file's main function when executed.''', is_optional=True, ), } ), description='The JAR file used for the step.', ) return Field( List( Dict( fields={ 'Name': name, 'ActionOnFailure': actionOnFailure, 'HadoopJarStep': hadoopJarStep, } ) ), description='A list of steps to run.', ) def _define_bootstrap_actions(): name = Field(String, description='The name of the bootstrap action.', is_optional=False) path = Field( String, description='''Location of the script to run during a bootstrap action. Can be either a location in Amazon S3 or on a local file system.''', is_optional=False, ) args = Field( List(String), description='A list of command line arguments to pass to the bootstrap action script.', is_optional=True, ) bootstrap_action = Dict( fields={ 'Name': name, 'ScriptBootstrapAction': Field( Dict(fields={'Path': path, 'Args': args}), description='The script run by the bootstrap action.', is_optional=False, ), } ) return Field( List(bootstrap_action), description='''A list of bootstrap actions to run before Hadoop starts on the cluster nodes.''', is_optional=True, ) def _define_ebs_configuration(): volume_specification = Field( Dict( fields={ 'VolumeType': Field( EbsVolumeType, description='''The volume type. Volume types supported are gp2, io1, standard.''', is_optional=False, ), 'Iops': Field( Int, description='''The number of I/O operations per second (IOPS) that the volume supports.''', is_optional=True, ), 'SizeInGB': Field( Int, description='''The volume size, in gibibytes (GiB). This can be a number from 1 - 1024. If the volume type is EBS-optimized, the minimum value is 10.''', is_optional=False, ), } ), description='''EBS volume specifications such as volume type, IOPS, and size (GiB) that will be requested for the EBS volume attached to an EC2 instance in the cluster.''', is_optional=False, ) volumes_per_instance = Field( Int, description='''Number of EBS volumes with a specific volume configuration that will be associated with every instance in the instance group''', is_optional=True, ) return Field( Dict( fields={ 'EbsBlockDeviceConfigs': Field( List( Dict( fields={ 'VolumeSpecification': volume_specification, 'VolumesPerInstance': volumes_per_instance, } ) ), description='''An array of Amazon EBS volume specifications attached to a cluster instance.''', is_optional=True, ), 'EbsOptimized': Field( Bool, description='Indicates whether an Amazon EBS volume is EBS-optimized.', is_optional=True, ), } ), description='''EBS configurations that will be attached to each EC2 instance in the instance group.''', is_optional=True, ) def _define_auto_scaling_policy(): simple_scaling_policy_configuration = Field( Dict( fields={ 'AdjustmentType': Field( EmrAdjustmentType, description='''The way in which EC2 instances are added (if ScalingAdjustment is a positive number) or terminated (if ScalingAdjustment is a negative number) each time the scaling activity is triggered. CHANGE_IN_CAPACITY is the default. CHANGE_IN_CAPACITY indicates that the EC2 instance count increments or decrements by ScalingAdjustment , which should be expressed as an integer. PERCENT_CHANGE_IN_CAPACITY indicates the instance count increments or decrements by the percentage specified by ScalingAdjustment , which should be expressed as an integer. For example, 20 indicates an increase in 20% increments of cluster capacity. EXACT_CAPACITY indicates the scaling activity results in an instance group with the number of EC2 instances specified by ScalingAdjustment , which should be expressed as a positive integer.''', is_optional=True, ), 'ScalingAdjustment': Field( Int, description='''The amount by which to scale in or scale out, based on the specified AdjustmentType . A positive value adds to the instance group's EC2 instance count while a negative number removes instances. If AdjustmentType is set to EXACT_CAPACITY , the number should only be a positive integer. If AdjustmentType is set to PERCENT_CHANGE_IN_CAPACITY , the value should express the percentage as an integer. For example, -20 indicates a decrease in 20% increments of cluster capacity.''', is_optional=False, ), 'CoolDown': Field( Int, description='''The amount of time, in seconds, after a scaling activity completes before any further trigger-related scaling activities can start. The default value is 0.''', is_optional=True, ), } ), description='''The type of adjustment the automatic scaling activity makes when triggered, and the periodicity of the adjustment.''', is_optional=False, ) action = Field( Dict( fields={ 'Market': Field( EmrMarket, description='''Not available for instance groups. Instance groups use the market type specified for the group.''', is_optional=True, ), 'SimpleScalingPolicyConfiguration': simple_scaling_policy_configuration, } ), description='The conditions that trigger an automatic scaling activity.', is_optional=False, ) dimensions = Field( List( Dict( fields={ 'Key': Field(String, description='The dimension name.', is_optional=False), 'Value': Field(String, description='The dimension value.', is_optional=True), } ) ), description='''A CloudWatch metric dimension.''', is_optional=True, ) trigger = Field( Dict( fields={ 'CloudWatchAlarmDefinition': Field( Dict( fields={ 'ComparisonOperator': Field( EmrComparisonOperator, description='''Determines how the metric specified by MetricName is compared to the value specified by Threshold.''', is_optional=False, ), 'EvaluationPeriods': Field( Int, description='''The number of periods, expressed in seconds using Period, during which the alarm condition must exist before the alarm triggers automatic scaling activity. The default value is 1.''', is_optional=True, ), 'MetricName': Field( String, description='''The name of the CloudWatch metric that is watched to determine an alarm condition.''', is_optional=True, ), 'Namespace': Field( String, description='''The namespace for the CloudWatch metric. The default is AWS/ElasticMapReduce.''', is_optional=True, ), 'Period': Field( Int, description='''The period, in seconds, over which the statistic is applied. EMR CloudWatch metrics are emitted every five minutes (300 seconds), so if an EMR CloudWatch metric is specified, specify 300.''', is_optional=False, ), 'Statistic': Field( EmrStatistic, description='''The statistic to apply to the metric associated with the alarm. The default is AVERAGE.''', is_optional=True, ), 'Threshold': Field( Float, description='''The value against which the specified statistic is compared.''', is_optional=False, ), 'Unit': Field( EmrUnit, description='''The unit of measure associated with the CloudWatch metric being watched. The value specified for Unit must correspond to the units specified in the CloudWatch metric.''', is_optional=True, ), 'Dimensions': dimensions, } ), description='''The definition of a CloudWatch metric alarm. When the defined alarm conditions are met along with other trigger parameters, scaling activity begins.''', is_optional=False, ) } ), description='''The CloudWatch alarm definition that determines when automatic scaling activity is triggered.''', is_optional=False, ) return Field( Dict( fields={ 'Constraints': Field( Dict( fields={ 'MinCapacity': Field( Int, description='''The lower boundary of EC2 instances in an instance group below which scaling activities are not allowed to shrink. Scale-in activities will not terminate instances below this boundary.''', is_optional=False, ), 'MaxCapacity': Field( Int, description='''The upper boundary of EC2 instances in an instance group beyond which scaling activities are not allowed to grow. Scale-out activities will not add instances beyond this boundary.''', is_optional=False, ), } ), description='''The upper and lower EC2 instance limits for an automatic scaling policy. Automatic scaling activity will not cause an instance group to grow above or below these limits.''', is_optional=False, ), 'Rules': Field( List( Dict( fields={ 'Name': Field( String, description='''The name used to identify an automatic scaling rule. Rule names must be unique within a scaling policy.''', ), 'Description': Field( String, description='''A friendly, more verbose description of the automatic scaling rule.''', ), 'Action': action, 'Trigger': trigger, } ) ), description='''A scale-in or scale-out rule that defines scaling activity, including the CloudWatch metric alarm that triggers activity, how EC2 instances are added or removed, and the periodicity of adjustments. The automatic scaling policy for an instance group can comprise one or more automatic scaling rules.''', is_optional=False, ), } ), description='''An automatic scaling policy for a core instance group or task instance group in an Amazon EMR cluster. The automatic scaling policy defines how an instance group dynamically adds and terminates EC2 instances in response to the value of a CloudWatch metric. See the EMR PutAutoScalingPolicy docs. ''', is_optional=True, ) def _define_instance_groups(): return Field( List( Dict( fields={ 'Name': Field( String, description='Friendly name given to the instance group.', is_optional=True, ), 'Market': Field( EmrMarket, description='''Market type of the EC2 instances used to create a cluster node.''', is_optional=True, ), 'InstanceRole': Field( EmrInstanceRole, description='The role of the instance group in the cluster.', is_optional=False, ), 'BidPrice': Field( String, description='''The maximum Spot price your are willing to pay for EC2 instances. An optional, nullable field that applies if the MarketType for the instance group is specified as SPOT . Specify the maximum spot price in USD. If the value is NULL and SPOT is specified, the maximum Spot price is set equal to the On-Demand price.''', is_optional=True, ), 'InstanceType': Field( String, description='''The EC2 instance type for all instances in the instance group.''', is_optional=False, ), 'InstanceCount': Field( Int, description='Target number of instances for the instance group.', is_optional=False, ), 'Configurations': _define_configurations(), 'EbsConfiguration': _define_ebs_configuration(), 'AutoScalingPolicy': _define_auto_scaling_policy(), } ) ), description='Configuration for the instance groups in a cluster.', is_optional=True, ) def _define_instance_fleets(): target_on_demand_capacity = Field( Int, description='''The target capacity of On-Demand units for the instance fleet, which determines how many On-Demand instances to provision. When the instance fleet launches, Amazon EMR tries to provision On-Demand instances as specified by InstanceTypeConfig. Each instance configuration has a specified WeightedCapacity. When an On-Demand instance is provisioned, the WeightedCapacity units count toward the target capacity. Amazon EMR provisions instances until the target capacity is totally fulfilled, even if this results in an overage. For example, if there are 2 units remaining to fulfill capacity, and Amazon EMR can only provision an instance with a WeightedCapacity of 5 units, the instance is provisioned, and the target capacity is exceeded by 3 units. Note: If not specified or set to 0, only Spot instances are provisioned for the instance fleet using TargetSpotCapacity. At least one of TargetSpotCapacity and TargetOnDemandCapacity should be greater than 0. For a master instance fleet, only one of TargetSpotCapacity and TargetOnDemandCapacity can be specified, and its value must be 1. ''', is_optional=False, ) target_spot_capacity = Field( Int, description='''The target capacity of Spot units for the instance fleet, which determines how many Spot instances to provision. When the instance fleet launches, Amazon EMR tries to provision Spot instances as specified by InstanceTypeConfig . Each instance configuration has a specified WeightedCapacity . When a Spot instance is provisioned, the WeightedCapacity units count toward the target capacity. Amazon EMR provisions instances until the target capacity is totally fulfilled, even if this results in an overage. For example, if there are 2 units remaining to fulfill capacity, and Amazon EMR can only provision an instance with a WeightedCapacity of 5 units, the instance is provisioned, and the target capacity is exceeded by 3 units. Note: If not specified or set to 0, only On-Demand instances are provisioned for the instance fleet. At least one of TargetSpotCapacity and TargetOnDemandCapacity should be greater than 0. For a master instance fleet, only one of TargetSpotCapacity and TargetOnDemandCapacity can be specified, and its value must be 1. ''', is_optional=True, ) instance_type_configs = Field( List( Dict( fields={ 'InstanceType': Field( String, description='An EC2 instance type, such as m3.xlarge.', is_optional=False, ), 'WeightedCapacity': Field( Int, description='''The number of units that a provisioned instance of this type provides toward fulfilling the target capacities defined in InstanceFleetConfig. This value is 1 for a master instance fleet, and must be 1 or greater for core and task instance fleets. Defaults to 1 if not specified.''', is_optional=True, ), 'BidPrice': Field( String, description='''The bid price for each EC2 Spot instance type as defined by InstanceType. Expressed in USD. If neither BidPrice nor BidPriceAsPercentageOfOnDemandPrice is provided, BidPriceAsPercentageOfOnDemandPrice defaults to 100%.''', ), 'BidPriceAsPercentageOfOnDemandPrice': Field( Float, description='''The bid price, as a percentage of On-Demand price, for each EC2 Spot instance as defined by InstanceType . Expressed as a number (for example, 20 specifies 20%). If neither BidPrice nor BidPriceAsPercentageOfOnDemandPrice is provided, BidPriceAsPercentageOfOnDemandPrice defaults to 100%.''', is_optional=True, ), 'EbsConfiguration': _define_ebs_configuration(), 'Configurations': _define_configurations(), } ) ), description='''An instance type configuration for each instance type in an instance fleet, which determines the EC2 instances Amazon EMR attempts to provision to fulfill On-Demand and Spot target capacities. There can be a maximum of 5 instance type configurations in a fleet.''', is_optional=True, ) launch_specifications = Field( Dict( fields={ 'SpotSpecification': Field( Dict( fields={ 'TimeoutDurationMinutes': Field( Int, description='''The spot provisioning timeout period in minutes. If Spot instances are not provisioned within this time period, the TimeOutAction is taken. Minimum value is 5 and maximum value is 1440. The timeout applies only during initial provisioning, when the cluster is first created.''', is_optional=False, ), 'TimeoutAction': Field( EmrTimeoutAction, description='''The action to take when TargetSpotCapacity has not been fulfilled when the TimeoutDurationMinutes has expired; that is, when all Spot instances could not be provisioned within the Spot provisioning timeout. Valid values are TERMINATE_CLUSTER and SWITCH_TO_ON_DEMAND. SWITCH_TO_ON_DEMAND specifies that if no Spot instances are available, On-Demand Instances should be provisioned to fulfill any remaining Spot capacity.''', is_optional=False, ), 'BlockDurationMinutes': Field( Int, description='''The defined duration for Spot instances (also known as Spot blocks) in minutes. When specified, the Spot instance does not terminate before the defined duration expires, and defined duration pricing for Spot instances applies. Valid values are 60, 120, 180, 240, 300, or 360. The duration period starts as soon as a Spot instance receives its instance ID. At the end of the duration, Amazon EC2 marks the Spot instance for termination and provides a Spot instance termination notice, which gives the instance a two-minute warning before it terminates.''', is_optional=True, ), } ), description='''The launch specification for Spot instances in the fleet, which determines the defined duration and provisioning timeout behavior.''', is_optional=False, ) } ), description='The launch specification for the instance fleet.', is_optional=True, ) return Field( List( Dict( fields={ 'Name': Field( String, description='The friendly name of the instance fleet.', is_optional=True, ), 'InstanceFleetType': Field( EmrInstanceRole, description='''The node type that the instance fleet hosts. Valid values are MASTER,CORE,and TASK.''', ), 'TargetOnDemandCapacity': target_on_demand_capacity, 'TargetSpotCapacity': target_spot_capacity, 'InstanceTypeConfigs': instance_type_configs, 'LaunchSpecifications': launch_specifications, } ) ), description='''Describes the EC2 instances and instance configurations for clusters that use the instance fleet configuration.''', is_optional=True, ) def define_emr_run_job_flow_config(): name = Field(String, description='The name of the job flow.', is_optional=False) log_uri = Field( String, description='''The location in Amazon S3 to write the log files of the job flow. If a value is not provided, logs are not created.''', is_optional=True, ) additional_info = Field( String, description='A JSON string for selecting additional features.', is_optional=True ) ami_version = Field( String, description='''Applies only to Amazon EMR AMI versions 3.x and 2.x. For Amazon EMR releases 4.0 and later, ReleaseLabel is used. To specify a custom AMI, use CustomAmiID.''', is_optional=True, ) release_label = Field( String, description='''The Amazon EMR release label, which determines the version of open-source application packages installed on the cluster. Release labels are in the form emr-x.x.x, where x.x.x is an Amazon EMR release version, for example, emr-5.14.0 . For more information about Amazon EMR release versions and included application versions and features, see https://docs.aws.amazon.com/emr/latest/ReleaseGuide/. The release label applies only to Amazon EMR releases versions 4.x and later. Earlier versions use AmiVersion.''', is_optional=True, ) instances = Field( Dict( fields={ 'MasterInstanceType': Field( String, description='The EC2 instance type of the master node.', is_optional=True, ), 'SlaveInstanceType': Field( String, description='The EC2 instance type of the core and task nodes.', is_optional=True, ), 'InstanceCount': Field( Int, description='The number of EC2 instances in the cluster.', is_optional=True ), 'InstanceGroups': _define_instance_groups(), 'InstanceFleets': _define_instance_fleets(), 'Ec2KeyName': Field( String, description='''The name of the EC2 key pair that can be used to ssh to the master node as the user called "hadoop."''', is_optional=True, ), 'Placement': Field( Dict( fields={ 'AvailabilityZone': Field( String, description='''The Amazon EC2 Availability Zone for the cluster. AvailabilityZone is used for uniform instance groups, while AvailabilityZones (plural) is used for instance fleets.''', is_optional=True, ), 'AvailabilityZones': Field( List(String), description='''When multiple Availability Zones are specified, Amazon EMR evaluates them and launches instances in the optimal Availability Zone. AvailabilityZones is used for instance fleets, while AvailabilityZone (singular) is used for uniform instance groups.''', is_optional=True, ), } ), description='The Availability Zone in which the cluster runs.', is_optional=True, ), 'KeepJobFlowAliveWhenNoSteps': Field( Bool, description='''Specifies whether the cluster should remain available after completing all steps.''', is_optional=True, ), 'TerminationProtected': Field( Bool, description='''Specifies whether to lock the cluster to prevent the Amazon EC2 instances from being terminated by API call, user intervention, or in the event of a job-flow error.''', is_optional=True, ), 'HadoopVersion': Field( String, description='''Applies only to Amazon EMR release versions earlier than 4.0. The Hadoop version for the cluster. Valid inputs are "0.18" (deprecated), "0.20" (deprecated), "0.20.205" (deprecated), "1.0.3", "2.2.0", or "2.4.0". If you do not set this value, the default of 0.18 is used, unless the AmiVersion parameter is set in the RunJobFlow call, in which case the default version of Hadoop for that AMI version is used.''', is_optional=True, ), 'Ec2SubnetId': Field( String, description='''Applies to clusters that use the uniform instance group configuration. To launch the cluster in Amazon Virtual Private Cloud (Amazon VPC), set this parameter to the identifier of the Amazon VPC subnet where you want the cluster to launch. If you do not specify this value, the cluster launches in the normal Amazon Web Services cloud, outside of an Amazon VPC, if the account launching the cluster supports EC2 Classic networks in the region where the cluster launches. Amazon VPC currently does not support cluster compute quadruple extra large (cc1.4xlarge) instances. Thus you cannot specify the cc1.4xlarge instance type for clusters launched in an Amazon VPC.''', is_optional=True, ), 'Ec2SubnetIds': Field( List(String), description='''Applies to clusters that use the instance fleet configuration. When multiple EC2 subnet IDs are specified, Amazon EMR evaluates them and launches instances in the optimal subnet.''', is_optional=True, ), 'EmrManagedMasterSecurityGroup': Field( String, description='''The identifier of the Amazon EC2 security group for the master node.''', is_optional=True, ), 'EmrManagedSlaveSecurityGroup': Field( String, description='''The identifier of the Amazon EC2 security group for the core and task nodes.''', is_optional=True, ), 'ServiceAccessSecurityGroup': Field( String, description='''The identifier of the Amazon EC2 security group for the Amazon EMR service to access clusters in VPC private subnets.''', is_optional=True, ), 'AdditionalMasterSecurityGroups': Field( List(String), description='''A list of additional Amazon EC2 security group IDs for the master node.''', is_optional=True, ), 'AdditionalSlaveSecurityGroups': Field( List(String), description='''A list of additional Amazon EC2 security group IDs for the core and task nodes.''', is_optional=True, ), } ), description='A specification of the number and type of Amazon EC2 instances.', is_optional=False, ) supported_products = Field( List(EmrSupportedProducts), description='''A list of strings that indicates third-party software to use. For more information, see the Amazon EMR Developer Guide. Currently supported values are: - "mapr-m3" - launch the job flow using MapR M3 Edition. - "mapr-m5" - launch the job flow using MapR M5 Edition. ''', is_optional=True, ) new_supported_products = Field( List( Dict( fields={ 'Name': Field(String, is_optional=False), 'Args': Field(List(String), description='The list of user-supplied arguments.'), } ) ), description=''' The list of supported product configurations which allow user-supplied arguments. EMR accepts these arguments and forwards them to the corresponding installation script as bootstrap action arguments. A list of strings that indicates third-party software to use with the job flow that accepts a user argument list. EMR accepts and forwards the argument list to the corresponding installation script as bootstrap action arguments. For more information, see "Launch a Job Flow on the MapR Distribution for Hadoop" in the Amazon EMR Developer Guide. Supported values are: - "mapr-m3" - launch the cluster using MapR M3 Edition. - "mapr-m5" - launch the cluster using MapR M5 Edition. - "mapr" with the user arguments specifying "--edition,m3" or "--edition,m5" - launch the job flow using MapR M3 or M5 Edition respectively. - "mapr-m7" - launch the cluster using MapR M7 Edition. - "hunk" - launch the cluster with the Hunk Big Data Analtics Platform. - "hue"- launch the cluster with Hue installed. - "spark" - launch the cluster with Apache Spark installed. - "ganglia" - launch the cluster with the Ganglia Monitoring System installed.''', is_optional=True, ) applications = Field( List( Dict( fields={ 'Name': Field( String, description='The name of the application.', is_optional=False ), 'Version': Field( String, description='The version of the application.', is_optional=True ), 'Args': Field( List(String), description='Arguments for Amazon EMR to pass to the application.', is_optional=True, ), 'AdditionalInfo': Field( PermissiveDict(), description='''This option is for advanced users only. This is meta information about third-party applications that third-party vendors use for testing purposes.''', is_optional=True, ), } ) ), description='''Applies to Amazon EMR releases 4.0 and later. A case-insensitive list of applications for Amazon EMR to install and configure when launching the cluster. For a list of applications available for each Amazon EMR release version, see the Amazon EMR Release Guide. With Amazon EMR release version 4.0 and later, the only accepted parameter is the application name. To pass arguments to applications, you use configuration classifications specified using configuration JSON objects. For more information, see the EMR Configuring Applications guide. With earlier Amazon EMR releases, the application is any Amazon or third-party software that you can add to the cluster. This structure contains a list of strings that indicates the software to use with the cluster and accepts a user argument list. Amazon EMR accepts and forwards the argument list to the corresponding installation script as bootstrap action argument.''', is_optional=True, ) visible_to_all_users = Field( Bool, description='''Whether the cluster is visible to all IAM users of the AWS account associated with the cluster. If this value is set to True, all IAM users of that AWS account can view and (if they have the proper policy permissions set) manage the cluster. If it is set to False, only the IAM user that created the cluster can view and manage it.''', is_optional=True, default_value=True, ) job_flow_role = Field( String, description='''Also called instance profile and EC2 role. An IAM role for an EMR cluster. The EC2 instances of the cluster assume this role. The default role is EMR_EC2_DefaultRole. In order to use the default role, you must have already created it using the CLI or console. ''', is_optional=True, ) service_role = Field( String, description='''The IAM role that will be assumed by the Amazon EMR service to access AWS resources on your behalf.''', is_optional=True, ) tags = Field( List( Dict( fields={ 'Key': Field( String, description='''A user-defined key, which is the minimum required information for a valid tag. For more information, see the EMR Tag guide.''', is_optional=False, ), 'Value': Field( String, description='''A user-defined value, which is optional in a tag. For more information, see the EMR Tag Clusters guide.''', is_optional=True, ), } ) ), description='''A list of tags to associate with a cluster and propagate to Amazon EC2 instances. A key/value pair containing user-defined metadata that you can associate with an Amazon EMR resource. Tags make it easier to associate clusters in various ways, such as grouping clusters to track your Amazon EMR resource allocation costs. For more information, see the EMR Tag Clusters guide.''', is_optional=True, ) security_configuration = Field( String, description='The name of a security configuration to apply to the cluster.', is_optional=True, ) auto_scaling_role = Field( String, description='''An IAM role for automatic scaling policies. The default role is EMR_AutoScaling_DefaultRole. The IAM role provides permissions that the automatic scaling feature requires to launch and terminate EC2 instances in an instance group.''', is_optional=True, ) scale_down_behavior = Field( EmrScaleDownBehavior, description='''Specifies the way that individual Amazon EC2 instances terminate when an automatic scale-in activity occurs or an instance group is resized. TERMINATE_AT_INSTANCE_HOUR indicates that Amazon EMR terminates nodes at the instance-hour boundary, regardless of when the request to terminate the instance was submitted. This option is only available with Amazon EMR 5.1.0 and later and is the default for clusters created using that version. TERMINATE_AT_TASK_COMPLETION indicates that Amazon EMR blacklists and drains tasks from nodes before terminating the Amazon EC2 instances, regardless of the instance-hour boundary. With either behavior, Amazon EMR removes the least active nodes first and blocks instance termination if it could lead to HDFS corruption. TERMINATE_AT_TASK_COMPLETION available only in Amazon EMR version 4.1.0 and later, and is the default for versions of Amazon EMR earlier than 5.1.0.''', is_optional=True, ) custom_ami_id = Field( String, description='''Available only in Amazon EMR version 5.7.0 and later. The ID of a custom Amazon EBS-backed Linux AMI. If specified, Amazon EMR uses this AMI when it launches cluster EC2 instances. For more information about custom AMIs in Amazon EMR, see Using a Custom AMI in the Amazon EMR Management Guide. If omitted, the cluster uses the base Linux AMI for the ReleaseLabel specified. For Amazon EMR versions 2.x and 3.x, use AmiVersion instead. For information about creating a custom AMI, see Creating an Amazon EBS-Backed Linux AMI in the Amazon Elastic Compute Cloud User Guide for Linux Instances. For information about finding an AMI ID, see Finding a Linux AMI.''', is_optional=True, ) repo_upgrade_on_boot = Field( EmrRepoUpgradeOnBoot, description='''Applies only when CustomAmiID is used. Specifies which updates from the Amazon Linux AMI package repositories to apply automatically when the instance boots using the AMI. If omitted, the default is SECURITY , which indicates that only security updates are applied. If NONE is specified, no updates are applied, and all updates must be applied manually.''', is_optional=True, ) kerberos_attributes = Field( Dict( fields={ 'Realm': Field( String, description='''The name of the Kerberos realm to which all nodes in a cluster belong. For example, EC2.INTERNAL.''', is_optional=False, ), 'KdcAdminPassword': Field( String, description='''The password used within the cluster for the kadmin service on the cluster-dedicated KDC, which maintains Kerberos principals, password policies, and keytabs for the cluster.''', is_optional=False, ), 'CrossRealmTrustPrincipalPassword': Field( String, description='''Required only when establishing a cross-realm trust with a KDC in a different realm. The cross-realm principal password, which must be identical across realms.''', is_optional=True, ), 'ADDomainJoinUser': Field( String, description='''Required only when establishing a cross-realm trust with an Active Directory domain. A user with sufficient privileges to join resources to the domain.''', is_optional=True, ), 'ADDomainJoinPassword': Field( String, description='''The Active Directory password for ADDomainJoinUser.''', is_optional=True, ), } ), description='''Attributes for Kerberos configuration when Kerberos authentication is enabled using a security configuration. For more information see Use Kerberos Authentication in the EMR Management Guide .''', is_optional=True, ) return Field( Dict( fields={ 'Name': name, 'LogUri': log_uri, 'AdditionalInfo': additional_info, 'AmiVersion': ami_version, 'ReleaseLabel': release_label, 'Instances': instances, 'Steps': _define_steps(), 'BootstrapActions': _define_bootstrap_actions(), 'SupportedProducts': supported_products, 'NewSupportedProducts': new_supported_products, 'Applications': applications, 'Configurations': _define_configurations(), 'VisibleToAllUsers': visible_to_all_users, 'JobFlowRole': job_flow_role, 'ServiceRole': service_role, 'Tags': tags, 'SecurityConfiguration': security_configuration, 'AutoScalingRole': auto_scaling_role, 'ScaleDownBehavior': scale_down_behavior, 'CustomAmiId': custom_ami_id, 'EbsRootVolumeSize': Field( Int, description='''The size, in GiB, of the EBS root device volume of the Linux AMI that is used for each EC2 instance. Available in Amazon EMR version 4.x and later.''', is_optional=True, ), 'RepoUpgradeOnBoot': repo_upgrade_on_boot, 'KerberosAttributes': kerberos_attributes, } ), description='AWS EMR run job flow configuration', )
47.390176
100
0.529393
72660f9a9c193ad6d220c4cede48bc128e4ee792
830
py
Python
docsearch/mapper/default.py
brpaz/ulauncher-docsearch
3ec40ebc18c97787e8fb2b8380178d37667601fd
[ "MIT" ]
21
2020-03-04T00:27:52.000Z
2022-03-15T09:48:35.000Z
docsearch/mapper/default.py
brpaz/ulauncher-docsearch
3ec40ebc18c97787e8fb2b8380178d37667601fd
[ "MIT" ]
7
2020-03-14T02:05:33.000Z
2021-05-09T14:53:40.000Z
docsearch/mapper/default.py
brpaz/ulauncher-docsearch
3ec40ebc18c97787e8fb2b8380178d37667601fd
[ "MIT" ]
5
2020-03-10T10:48:54.000Z
2021-12-01T10:27:47.000Z
""" Default mapper for Algoia Docsearch responses """ class DefaultMapper(): def map(self, docset, hit): title, description = self.map_description(hit) if not description: description = hit['url'] return { 'url': hit['url'], 'title': title, 'icon': docset['icon'], 'category': description } def map_description(self, hit): """ Returns the text to display as result item title """ hierarchy = hit['hierarchy'].values() # Filter the list by removing the empty values res = [i for i in hierarchy if i] if len(res) < 2: return res[0], "" # The last element found will be the description and the previous one the title. return res[-1], ' -> '.join(res[:-1])
26.774194
88
0.551807
83587ebbb9a80f700b3bfcdb950d4988775ec8dd
1,797
py
Python
xue/prepopulate/querier.py
team-xue/xue
e6bd9539803a2bf902f48b65a9df86356b5d46b2
[ "BSD-3-Clause" ]
1
2015-11-23T02:33:07.000Z
2015-11-23T02:33:07.000Z
xue/prepopulate/querier.py
team-xue/xue
e6bd9539803a2bf902f48b65a9df86356b5d46b2
[ "BSD-3-Clause" ]
null
null
null
xue/prepopulate/querier.py
team-xue/xue
e6bd9539803a2bf902f48b65a9df86356b5d46b2
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # simple prepopulated tables querier -- querier object from __future__ import unicode_literals, division from functools import wraps from os.path import join as pathjoin from os.path import abspath, dirname from django.conf import settings from xue.prepopulate.parse import parse_file MYPATH = settings.XUE_PREPOPULATE_DIR INPUT_FILES = settings.XUE_PREPOPULATE_FILES def _prepare_db(): result_dct = {} for fn in INPUT_FILES: path = pathjoin(MYPATH, fn) result_dct.update(parse_file(path)) return result_dct class Querier(object): def __init__(self): self._db = _prepare_db() def have(self, num): return (num in self._db) def lookup(self, num): try: return self._db[unicode(num)] except KeyError: raise ValueError('no user matching number \'%s\' exists' % num) def extract_org(self, id_num): # TODO: refactor to use something generic, maybe file-based # XXX What is written below is TOTALLY hack and ABSOLUTELY NOT # portable across schools, so clean this up ASAP!! year, major_code, cls_seq = None, None, None if id_num[0] == '0': # old format major_code = id_num[:4] yr_2digit = int(id_num[4:6]) cls_seq = int(id_num[6:8]) year = (1900 if yr_2digit > 50 else 2000) + yr_2digit else: # new format in use beginning from 2012 # it's like 1030512101... also 10 digits major_code = id_num[1:5] yr_2digit = int(id_num[5:7]) cls_seq = int(id_num[7]) year = 2000 + yr_2digit return year, major_code, cls_seq querier = Querier() # vim:set ai et ts=4 sw=4 sts=4 fenc=utf-8:
26.820896
75
0.62493
d267a0c93d48446063a5d78f7ee6ad837dace4ab
117
py
Python
music/admin.py
Ragh2018/website
f797ccd4412b4335f5ee45484159cec459492da3
[ "MIT" ]
null
null
null
music/admin.py
Ragh2018/website
f797ccd4412b4335f5ee45484159cec459492da3
[ "MIT" ]
null
null
null
music/admin.py
Ragh2018/website
f797ccd4412b4335f5ee45484159cec459492da3
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Album,song admin.site.register(Album) admin.site.register(song)
23.4
32
0.820513
3199bf1dcd98944482c1eca22846b0dcfa6deba0
3,875
py
Python
exp/cxif5315/proc-cxif5315-r0169-peaks-fit-file-v1.py
slaclab/lclslib
dbb11cf5f0f671fa0ec16c54b6346e9d1df3b0e0
[ "BSD-3-Clause-LBNL" ]
null
null
null
exp/cxif5315/proc-cxif5315-r0169-peaks-fit-file-v1.py
slaclab/lclslib
dbb11cf5f0f671fa0ec16c54b6346e9d1df3b0e0
[ "BSD-3-Clause-LBNL" ]
1
2016-06-23T22:51:33.000Z
2016-06-23T23:27:51.000Z
exp/cxif5315/proc-cxif5315-r0169-peaks-fit-file-v1.py
slaclab/lclslib
dbb11cf5f0f671fa0ec16c54b6346e9d1df3b0e0
[ "BSD-3-Clause-LBNL" ]
1
2020-12-13T01:51:19.000Z
2020-12-13T01:51:19.000Z
#!/usr/bin/env python ##----------------------------- """Example of analysis script: processes cxif5315-r0169 peak list with phi-beta fit info; loop over all entries of the peak-fit file and create histograms for fit parameters """ ##----------------------------- import sys import os import math import numpy as np from time import time # strftime, localtime #, gmtime, time from pyimgalgos.TDFileContainer import TDFileContainer from pyimgalgos.TDPeakRecord import TDPeakRecord from pyimgalgos.GlobalGraphics import hist1d, show, move, save #, move_fig, save_fig, fig_axes, plot_img, plot_peaks_on_img #------------------------------ class Storage : """Store for shared parameters.""" prefix = './his-equ-fit' # file name prefix for histograms DO_HIST = True # save histograms def __init__(self) : self.h1d_phi = [] self.h1d_beta = [] self.h1d_phi_err = [] self.h1d_beta_err = [] self.h1d_prob = [] sp = Storage() #------------------------------ def h1d(hlst, bins=None, amp_range=None, weights=None, color=None, show_stat=True, log=False,\ figsize=(6,5), axwin=(0.15, 0.12, 0.78, 0.80), title='Title', xlabel='x', ylabel='y', titwin=None, fnm='fnm.png') : """Wrapper for hist1d, move, and save methods, using common store parameters """ fig, axhi, hi = hist1d(np.array(hlst), bins, amp_range, weights, color, show_stat,\ log, figsize, axwin, title, xlabel, ylabel, titwin) #move(sp.hwin_x0y0[0], sp.hwin_x0y0[1]) save('%s-%s' % (sp.prefix, fnm), sp.DO_HIST) return fig, axhi, hi #------------------------------ def plot_histograms() : #--------- h1d(np.array(sp.h1d_phi), bins=80, amp_range=(-40.,40.), \ title ='Equ: fit phi angle', xlabel='$\phi$ (deg)', ylabel='Events', fnm='phi.png') #--------- h1d(np.array(sp.h1d_beta), bins=100, amp_range=(-60.,40.), \ title ='Equ: fit beta angle', xlabel='beta (deg)', ylabel='Events', fnm='beta.png') #--------- h1d(np.array(sp.h1d_phi_err), bins=100, amp_range=(0.,10.), \ title ='Equ: fit phi angle', xlabel='error of $\phi$ (deg)', ylabel='Events', fnm='phi-err.png') #--------- h1d(np.array(sp.h1d_beta_err), bins=100, amp_range=(0.,50.), \ title ='Equ: fit beta angle', xlabel='error of beta (deg)', ylabel='Events', fnm='beta-err.png') #--------- h1d(np.array(sp.h1d_prob), bins=100, amp_range=(0.,1.), \ title ='Equ: fit probability', xlabel='probability', ylabel='Events', fnm='prob.png') #--------- show() #------------------------------ def proc_file(fname) : """Process file with peak records extended by the phi-beta fit info """ t0_sec = time() sp.fc = TDFileContainer(fname, indhdr='Evnum', objtype=TDPeakRecord) #, pbits=256) print 'File load time = %7.3f sec' % (time()-t0_sec) #sp.fc.print_content(nlines=20) for evnum in sp.fc.group_num_iterator() : event = sp.fc.next() lst_peaks = event.get_objs() pk0 = lst_peaks[0] print '%s\nEvent# %6d exp=%s:run=%d %s %s' % (80*'_', evnum, pk0.exp, pk0.run, pk0.date, pk0.time) print ' %s\n%s' % (sp.fc.hdr, pk0.line) #for pk in lst_peaks : print 'x=%.6f, y=%.6f' % (px.x, pk.y) # fill histogram arrays for event sp.h1d_phi .append(pk0.fit_phi) sp.h1d_beta .append(pk0.fit_beta) sp.h1d_phi_err .append(pk0.fit_phi_err) sp.h1d_beta_err.append(pk0.fit_beta_err) sp.h1d_prob .append(pk0.fit_prob) if sp.DO_HIST : plot_histograms() #------------------------------ if __name__ == "__main__" : proc_file('/reg/neh/home1/dubrovin/LCLS/rel-mengning/work/pfv2-fit-cxif5315-r0169-2016-04-06T08:32:23.txt') sys.exit('Processing is completed') #------------------------------
35.227273
123
0.578065
a98e0ef0e2d025a102e86846b89c05b0eac808c8
11,885
py
Python
networking_cisco/plugins/cisco/db/device_manager/hosting_devices_db.py
CiscoSystems/networking-cisco
ed18627faf90caa1c0d1b7fe00f240a57901dee4
[ "Apache-2.0" ]
8
2016-02-12T01:25:29.000Z
2019-01-13T14:19:25.000Z
networking_cisco/plugins/cisco/db/device_manager/hosting_devices_db.py
CiscoSystems/networking-cisco
ed18627faf90caa1c0d1b7fe00f240a57901dee4
[ "Apache-2.0" ]
25
2016-01-28T12:33:41.000Z
2016-07-28T21:18:03.000Z
networking_cisco/plugins/cisco/db/device_manager/hosting_devices_db.py
CiscoSystems/networking-cisco
ed18627faf90caa1c0d1b7fe00f240a57901dee4
[ "Apache-2.0" ]
9
2015-05-07T02:47:55.000Z
2019-10-18T15:25:27.000Z
# Copyright 2014 Cisco Systems, Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_db import exception as db_exc from oslo_log import log as logging from oslo_utils import excutils from oslo_utils import timeutils from oslo_utils import uuidutils from sqlalchemy import exc as sql_exc from sqlalchemy.orm import exc from neutron.db import common_db_mixin from neutron.plugins.common import constants as svc_constants from networking_cisco.plugins.cisco.db.device_manager import hd_models from networking_cisco.plugins.cisco.extensions import ciscohostingdevicemanager LOG = logging.getLogger(__name__) AUTO_DELETE_DEFAULT = ciscohostingdevicemanager.AUTO_DELETE_DEFAULT class HostingDeviceDBMixin( ciscohostingdevicemanager.CiscoHostingDevicePluginBase, common_db_mixin.CommonDbMixin): """A class implementing DB functionality for hosting devices.""" def create_hosting_device(self, context, hosting_device): LOG.debug("create_hosting_device() called") hd = hosting_device['hosting_device'] tenant_id = self._get_tenant_id_for_create(context, hd) with context.session.begin(subtransactions=True): credentials_id = hd.get('credentials_id') if credentials_id is None: hdt_db = self._get_hosting_device_template(context, hd['template_id']) credentials_id = hdt_db['default_credentials_id'] hd_db = hd_models.HostingDevice( id=self._get_id(hd), complementary_id=hd.get('complementary_id'), tenant_id=tenant_id, template_id=hd['template_id'], credentials_id=credentials_id, name=hd.get('name'), description=hd.get('description'), device_id=hd.get('device_id'), admin_state_up=hd.get('admin_state_up', True), management_ip_address=hd['management_ip_address'], management_port_id=hd['management_port_id'], protocol_port=hd.get('protocol_port'), cfg_agent_id=hd.get('cfg_agent_id'), created_at=hd.get('created_at', timeutils.utcnow()), status=hd.get('status', svc_constants.ACTIVE), tenant_bound=hd.get('tenant_bound'), auto_delete=hd.get('auto_delete', AUTO_DELETE_DEFAULT)) context.session.add(hd_db) return self._make_hosting_device_dict(hd_db) def update_hosting_device(self, context, id, hosting_device): LOG.debug("update_hosting_device() called") hd = hosting_device['hosting_device'] with context.session.begin(subtransactions=True): #TODO(bobmel): handle tenant_bound changes hd_query = context.session.query(hd_models.HostingDevice) if not hd_query.filter_by(id=id).update(hd): raise ciscohostingdevicemanager.HostingDeviceNotFound(id=id) #TODO(bobmel): notify_agent on changes to credentials, # admin_state_up, tenant_bound return self.get_hosting_device(context, id) def delete_hosting_device(self, context, id): LOG.debug("delete_hosting_device() called") try: with context.session.begin(subtransactions=True): hd_query = context.session.query(hd_models.HostingDevice) if not hd_query.filter_by(id=id).delete(): raise ciscohostingdevicemanager.HostingDeviceNotFound( id=id) except db_exc.DBError as e: with excutils.save_and_reraise_exception() as ctxt: if isinstance(e.inner_exception, sql_exc.IntegrityError): ctxt.reraise = False raise ciscohostingdevicemanager.HostingDeviceInUse(id=id) def get_hosting_device(self, context, id, fields=None): LOG.debug("get_hosting_device() called") hd_db = self._get_hosting_device(context, id) return self._make_hosting_device_dict(hd_db) def get_hosting_devices(self, context, filters=None, fields=None, sorts=None, limit=None, marker=None, page_reverse=False): LOG.debug("get_hosting_devices() called") return self._get_collection(context, hd_models.HostingDevice, self._make_hosting_device_dict, filters=filters, fields=fields, sorts=sorts, limit=limit, marker_obj=marker, page_reverse=page_reverse) def create_hosting_device_template(self, context, hosting_device_template): LOG.debug("create_hosting_device_template() called") hdt = hosting_device_template['hosting_device_template'] tenant_id = self._get_tenant_id_for_create(context, hdt) #TODO(bobmel): check service types with context.session.begin(subtransactions=True): hdt_db = hd_models.HostingDeviceTemplate( id=self._get_id(hdt), tenant_id=tenant_id, name=hdt.get('name'), enabled=hdt.get('enabled', True), host_category=hdt['host_category'], service_types=hdt.get('service_types'), image=hdt.get('image'), flavor=hdt.get('flavor'), default_credentials_id=hdt.get('default_credentials_id'), configuration_mechanism=hdt.get('configuration_mechanism'), protocol_port=hdt.get('protocol_port'), booting_time=hdt.get('booting_time'), slot_capacity=hdt['slot_capacity'], desired_slots_free=hdt['desired_slots_free'], tenant_bound=':'.join(hdt['tenant_bound']), device_driver=hdt['device_driver'], plugging_driver=hdt['plugging_driver']) context.session.add(hdt_db) return self._make_hosting_device_template_dict(hdt_db) def update_hosting_device_template(self, context, id, hosting_device_template): LOG.debug("update_hosting_device_template() called") hdt = hosting_device_template['hosting_device_template'] tenant_bound = hdt.get('tenant_bound') if tenant_bound is not None: hdt['tenant_bound'] = ':'.join(tenant_bound) with context.session.begin(subtransactions=True): hdt_query = context.session.query(hd_models.HostingDeviceTemplate) if not hdt_query.filter_by(id=id).update(hdt): raise ciscohostingdevicemanager.HostingDeviceTemplateNotFound( id=id) return self.get_hosting_device_template(context, id) def delete_hosting_device_template(self, context, id): LOG.debug("delete_hosting_device_template() called") try: with context.session.begin(subtransactions=True): hdt_query = context.session.query( hd_models.HostingDeviceTemplate) if not hdt_query.filter_by(id=id).delete(): raise (ciscohostingdevicemanager. HostingDeviceTemplateNotFound(id=id)) except db_exc.DBError as e: with excutils.save_and_reraise_exception() as ctxt: if isinstance(e.inner_exception, sql_exc.IntegrityError): ctxt.reraise = False raise (ciscohostingdevicemanager. HostingDeviceTemplateInUse(id=id)) def get_hosting_device_template(self, context, id, fields=None): LOG.debug("get_hosting_device_template() called") hdt_db = self._get_hosting_device_template(context, id) return self._make_hosting_device_template_dict(hdt_db) def get_hosting_device_templates(self, context, filters=None, fields=None, sorts=None, limit=None, marker=None, page_reverse=False): LOG.debug("get_hosting_device_templates() called") return self._get_collection(context, hd_models.HostingDeviceTemplate, self._make_hosting_device_template_dict, filters=filters, fields=fields, sorts=sorts, limit=limit, marker_obj=marker, page_reverse=page_reverse) def _get_id(self, res): uuid = res.get('id') if uuid: return uuid return uuidutils.generate_uuid() def _get_hosting_device(self, context, id): try: return self._get_by_id(context, hd_models.HostingDevice, id) except exc.NoResultFound: raise ciscohostingdevicemanager.HostingDeviceNotFound(id=id) def _make_hosting_device_dict(self, hd, fields=None): res = {'id': hd['id'], 'complementary_id': hd['complementary_id'], 'tenant_id': hd['tenant_id'], 'template_id': hd['template_id'], 'credentials_id': hd['credentials_id'], 'name': hd['name'], 'description': hd['description'], 'device_id': hd['device_id'], 'admin_state_up': hd['admin_state_up'], 'management_ip_address': hd['management_ip_address'], 'management_port_id': hd['management_port_id'], 'protocol_port': hd['protocol_port'], 'cfg_agent_id': hd['cfg_agent_id'], 'created_at': hd['created_at'], 'status': hd['status'], 'tenant_bound': hd['tenant_bound'], 'auto_delete': hd['auto_delete']} return self._fields(res, fields) def _get_hosting_device_template(self, context, id): try: return self._get_by_id(context, hd_models.HostingDeviceTemplate, id) except exc.NoResultFound: raise ciscohostingdevicemanager.HostingDeviceTemplateNotFound( id=id) def _make_hosting_device_template_dict(self, hdt, fields=None): tb = hdt['tenant_bound'].split(':') if len(hdt['tenant_bound']) else [] res = {'id': hdt['id'], 'tenant_id': hdt['tenant_id'], 'name': hdt['name'], 'enabled': hdt['enabled'], 'host_category': hdt['host_category'], 'service_types': hdt['service_types'], 'image': hdt['image'], 'flavor': hdt['flavor'], 'default_credentials_id': hdt['default_credentials_id'], 'configuration_mechanism': hdt['configuration_mechanism'], 'protocol_port': hdt['protocol_port'], 'booting_time': hdt['booting_time'], 'slot_capacity': hdt['slot_capacity'], 'desired_slots_free': hdt['desired_slots_free'], 'tenant_bound': tb, 'device_driver': hdt['device_driver'], 'plugging_driver': hdt['plugging_driver']} return self._fields(res, fields)
48.510204
79
0.613799
c4409e6022c96881f96f61d9bbc07b9005839581
19,921
py
Python
mezzanine/core/tests.py
abendig/mezzanine
3219ac9ba2d6d94ce63e8b2a747c3b264b13beec
[ "BSD-2-Clause" ]
null
null
null
mezzanine/core/tests.py
abendig/mezzanine
3219ac9ba2d6d94ce63e8b2a747c3b264b13beec
[ "BSD-2-Clause" ]
null
null
null
mezzanine/core/tests.py
abendig/mezzanine
3219ac9ba2d6d94ce63e8b2a747c3b264b13beec
[ "BSD-2-Clause" ]
null
null
null
from __future__ import unicode_literals import re try: # Python 3 from urllib.parse import urlencode except ImportError: # Python 2 from urllib import urlencode from django import VERSION from django.contrib.admin import AdminSite from django.contrib.admin.options import InlineModelAdmin from django.contrib.sites.models import Site from django.core import mail from django.core.urlresolvers import reverse from django.db import models from django.forms import Textarea from django.forms.models import modelform_factory from django.templatetags.static import static from django.test.utils import override_settings from django.utils.html import strip_tags from django.utils.unittest import skipUnless from mezzanine.conf import settings from mezzanine.core.admin import BaseDynamicInlineAdmin from mezzanine.core.fields import RichTextField from mezzanine.core.managers import DisplayableManager from mezzanine.core.models import (CONTENT_STATUS_DRAFT, CONTENT_STATUS_PUBLISHED) from mezzanine.forms.admin import FieldAdmin from mezzanine.forms.models import Form from mezzanine.pages.models import RichTextPage from mezzanine.utils.importing import import_dotted_path from mezzanine.utils.tests import (TestCase, run_pyflakes_for_package, run_pep8_for_package) from mezzanine.utils.html import TagCloser class CoreTests(TestCase): def test_tagcloser(self): """ Test tags are closed, and tags that shouldn't be closed aren't. """ self.assertEqual(TagCloser("<p>Unclosed paragraph").html, "<p>Unclosed paragraph</p>") self.assertEqual(TagCloser("Line break<br>").html, "Line break<br>") @skipUnless("mezzanine.mobile" in settings.INSTALLED_APPS and "mezzanine.pages" in settings.INSTALLED_APPS, "mobile and pages apps required") def test_device_specific_template(self): """ Test that an alternate template is rendered when a mobile device is used. """ ua = settings.DEVICE_USER_AGENTS[0][1][0] kwargs = {"slug": "device-test"} url = reverse("page", kwargs=kwargs) kwargs["status"] = CONTENT_STATUS_PUBLISHED RichTextPage.objects.get_or_create(**kwargs) default = self.client.get(url) mobile = self.client.get(url, HTTP_USER_AGENT=ua) self.assertNotEqual(default.template_name[0], mobile.template_name[0]) def test_syntax(self): """ Run pyflakes/pep8 across the code base to check for potential errors. """ warnings = [] warnings.extend(run_pyflakes_for_package("mezzanine")) warnings.extend(run_pep8_for_package("mezzanine")) if warnings: self.fail("Syntax warnings!\n\n%s" % "\n".join(warnings)) def test_utils(self): """ Miscellanous tests for the ``mezzanine.utils`` package. """ self.assertRaises(ImportError, import_dotted_path, "mezzanine") self.assertRaises(ImportError, import_dotted_path, "mezzanine.NO") self.assertRaises(ImportError, import_dotted_path, "mezzanine.core.NO") try: import_dotted_path("mezzanine.core") except ImportError: self.fail("mezzanine.utils.imports.import_dotted_path" "could not import \"mezzanine.core\"") @skipUnless("mezzanine.pages" in settings.INSTALLED_APPS, "pages app required") def test_description(self): """ Test generated description is text version of the first line of content. """ description = "<p>How now brown cow</p>" page = RichTextPage.objects.create(title="Draft", content=description * 3) self.assertEqual(page.description, strip_tags(description)) @skipUnless("mezzanine.pages" in settings.INSTALLED_APPS, "pages app required") def test_draft(self): """ Test a draft object as only being viewable by a staff member. """ self.client.logout() draft = RichTextPage.objects.create(title="Draft", status=CONTENT_STATUS_DRAFT) response = self.client.get(draft.get_absolute_url(), follow=True) self.assertEqual(response.status_code, 404) self.client.login(username=self._username, password=self._password) response = self.client.get(draft.get_absolute_url(), follow=True) self.assertEqual(response.status_code, 200) def test_searchable_manager_search_fields(self): """ Test that SearchableManager can get appropriate params. """ manager = DisplayableManager() self.assertFalse(manager._search_fields) manager = DisplayableManager(search_fields={'foo': 10}) self.assertTrue(manager._search_fields) @skipUnless("mezzanine.pages" in settings.INSTALLED_APPS, "pages app required") def test_search(self): """ Objects with status "Draft" should not be within search results. """ RichTextPage.objects.all().delete() published = {"status": CONTENT_STATUS_PUBLISHED} first = RichTextPage.objects.create(title="test page", status=CONTENT_STATUS_DRAFT).id second = RichTextPage.objects.create(title="test another test page", **published).id # Draft shouldn't be a result. results = RichTextPage.objects.search("test") self.assertEqual(len(results), 1) RichTextPage.objects.filter(id=first).update(**published) results = RichTextPage.objects.search("test") self.assertEqual(len(results), 2) # Either word. results = RichTextPage.objects.search("another test") self.assertEqual(len(results), 2) # Must include first word. results = RichTextPage.objects.search("+another test") self.assertEqual(len(results), 1) # Mustn't include first word. results = RichTextPage.objects.search("-another test") self.assertEqual(len(results), 1) if results: self.assertEqual(results[0].id, first) # Exact phrase. results = RichTextPage.objects.search('"another test"') self.assertEqual(len(results), 1) if results: self.assertEqual(results[0].id, second) # Test ordering. results = RichTextPage.objects.search("test") self.assertEqual(len(results), 2) if results: self.assertEqual(results[0].id, second) # Test the actual search view. response = self.client.get(reverse("search") + "?q=test") self.assertEqual(response.status_code, 200) def _create_page(self, title, status): return RichTextPage.objects.create(title=title, status=status) def _test_site_pages(self, title, status, count): # test _default_manager pages = RichTextPage._default_manager.all() self.assertEqual(pages.count(), count) self.assertTrue(title in [page.title for page in pages]) # test objects manager pages = RichTextPage.objects.all() self.assertEqual(pages.count(), count) self.assertTrue(title in [page.title for page in pages]) # test response status code code = 200 if status == CONTENT_STATUS_PUBLISHED else 404 pages = RichTextPage.objects.filter(status=status) response = self.client.get(pages[0].get_absolute_url(), follow=True) self.assertEqual(response.status_code, code) @skipUnless("mezzanine.pages" in settings.INSTALLED_APPS, "pages app required") def test_multisite(self): from django.conf import settings # setup try: old_site_id = settings.SITE_ID except: old_site_id = None site1 = Site.objects.create(domain="site1.com") site2 = Site.objects.create(domain="site2.com") # create pages under site1, which should be only accessible # when SITE_ID is site1 settings.SITE_ID = site1.pk site1_page = self._create_page("Site1", CONTENT_STATUS_PUBLISHED) self._test_site_pages("Site1", CONTENT_STATUS_PUBLISHED, count=1) # create pages under site2, which should only be accessible # when SITE_ID is site2 settings.SITE_ID = site2.pk self._create_page("Site2", CONTENT_STATUS_PUBLISHED) self._test_site_pages("Site2", CONTENT_STATUS_PUBLISHED, count=1) # original page should 404 response = self.client.get(site1_page.get_absolute_url(), follow=True) self.assertEqual(response.status_code, 404) # change back to site1, and only the site1 pages should be retrieved settings.SITE_ID = site1.pk self._test_site_pages("Site1", CONTENT_STATUS_PUBLISHED, count=1) # insert a new record, see the count change self._create_page("Site1 Draft", CONTENT_STATUS_DRAFT) self._test_site_pages("Site1 Draft", CONTENT_STATUS_DRAFT, count=2) self._test_site_pages("Site1 Draft", CONTENT_STATUS_PUBLISHED, count=2) # change back to site2, and only the site2 pages should be retrieved settings.SITE_ID = site2.pk self._test_site_pages("Site2", CONTENT_STATUS_PUBLISHED, count=1) # insert a new record, see the count change self._create_page("Site2 Draft", CONTENT_STATUS_DRAFT) self._test_site_pages("Site2 Draft", CONTENT_STATUS_DRAFT, count=2) self._test_site_pages("Site2 Draft", CONTENT_STATUS_PUBLISHED, count=2) # tear down if old_site_id: settings.SITE_ID = old_site_id else: del settings.SITE_ID site1.delete() site2.delete() def _static_proxy(self, querystring): self.client.login(username=self._username, password=self._password) proxy_url = '%s?%s' % (reverse('static_proxy'), querystring) response = self.client.get(proxy_url) self.assertEqual(response.status_code, 200) @override_settings(STATIC_URL='/static/') def test_static_proxy(self): querystring = urlencode([('u', static("test/image.jpg"))]) self._static_proxy(querystring) @override_settings(STATIC_URL='http://testserver/static/') def test_static_proxy_with_host(self): querystring = urlencode( [('u', static("test/image.jpg"))]) self._static_proxy(querystring) @override_settings(STATIC_URL='http://testserver:8000/static/') def test_static_proxy_with_static_url_with_full_host(self): from django.templatetags.static import static querystring = urlencode([('u', static("test/image.jpg"))]) self._static_proxy(querystring) def _get_csrftoken(self, response): csrf = re.findall( b'\<input type\=\'hidden\' name\=\'csrfmiddlewaretoken\' ' b'value\=\'([^"\']+)\' \/\>', response.content ) self.assertEqual(len(csrf), 1, 'No csrfmiddlewaretoken found!') return csrf[0] def _get_formurl(self, response): action = re.findall( b'\<form action\=\"([^\"]*)\" method\=\"post\"\>', response.content ) self.assertEqual(len(action), 1, 'No form with action found!') if action[0] == b'': action = response.request['PATH_INFO'] return action @skipUnless('mezzanine.pages' in settings.INSTALLED_APPS, 'pages app required') @override_settings(LANGUAGE_CODE="en") def test_password_reset(self): """ Test sending of password-reset mails and evaluation of the links. """ self.client.logout() del mail.outbox[:] # Go to admin-login, search for reset-link response = self.client.get('/admin/', follow=True) self.assertContains(response, u'Forgot password?') url = re.findall( b'\<a href\=["\']([^\'"]+)["\']\>Forgot password\?\<\/a\>', response.content ) self.assertEqual(len(url), 1) url = url[0] # Go to reset-page, submit form response = self.client.get(url) self.assertEqual(response.status_code, 200) csrf = self._get_csrftoken(response) url = self._get_formurl(response) response = self.client.post(url, { 'csrfmiddlewaretoken': csrf, 'email': self._emailaddress }) self.assertEqual(response.status_code, 302) self.assertEqual(len(mail.outbox), 1) # Get reset-link, submit form url = re.findall( r'http://example.com((?:/\w{2,3})?/reset/[^/]+/[^/]+/)', mail.outbox[0].body )[0] response = self.client.get(url) csrf = self._get_csrftoken(response) url = self._get_formurl(response) response = self.client.post(url, { 'csrfmiddlewaretoken': csrf, 'new_password1': 'newdefault', 'new_password2': 'newdefault' }, follow=True) self.assertEqual(response.status_code, 200) def test_richtext_widget(self): """ Test that the RichTextField gets its widget type correctly from settings, and is able to be overridden in a form's Meta. """ class RichTextModel(models.Model): text_default = RichTextField() text_overridden = RichTextField() form_class = modelform_factory( RichTextModel, fields=('text_default', 'text_overridden'), widgets={'text_overridden': Textarea}) form = form_class() richtext_widget = import_dotted_path(settings.RICHTEXT_WIDGET_CLASS) self.assertIsInstance(form.fields['text_default'].widget, richtext_widget) self.assertIsInstance(form.fields['text_overridden'].widget, Textarea) def test_admin_sites_dropdown(self): """ Ensures the site selection dropdown appears in the admin. """ self.client.login(username=self._username, password=self._password) response = self.client.get('/admin/', follow=True) set_site_url = reverse("set_site") # Set site URL shouldn't appear without multiple sites. self.assertNotContains(response, set_site_url) site1 = Site.objects.create(domain="test-site-dropdown1.com", name="test-site-dropdown1.com") site2 = Site.objects.create(domain="test-site-dropdown2.com", name="test-site-dropdown2.com") response = self.client.get('/admin/', follow=True) self.assertContains(response, set_site_url) self.assertContains(response, site1.name) self.assertContains(response, site2.name) site1.delete() site2.delete() def test_dynamic_inline_admins(self): """ Verifies that ``BaseDynamicInlineAdmin`` properly adds the ``_order`` field for admins of ``Orderable`` subclasses. """ request = self._request_factory.get('/admin/') request.user = self._user field_admin = FieldAdmin(Form, AdminSite()) fieldsets = field_admin.get_fieldsets(request) self.assertEqual(fieldsets[0][1]['fields'][-1], '_order') if VERSION >= (1, 7): fields = field_admin.get_fields(request) self.assertEqual(fields[-1], '_order') def test_dynamic_inline_admins_fields_tuple(self): """ Checks if moving the ``_order`` field works with immutable sequences. """ class MyModelInline(BaseDynamicInlineAdmin, InlineModelAdmin): # Any model would work since we're only instantiating the class and # not actually using it. model = RichTextPage fields = ('a', '_order', 'b') request = self._request_factory.get('/admin/') inline = MyModelInline(None, AdminSite()) fields = inline.get_fieldsets(request)[0][1]['fields'] self.assertSequenceEqual(fields, ('a', 'b', '_order')) def test_dynamic_inline_admins_fields_without_order(self): """ Checks that ``_order`` field will be added if ``fields`` are listed without it. """ class MyModelInline(BaseDynamicInlineAdmin, InlineModelAdmin): model = RichTextPage fields = ('a', 'b') request = self._request_factory.get('/admin/') inline = MyModelInline(None, AdminSite()) fields = inline.get_fieldsets(request)[0][1]['fields'] self.assertSequenceEqual(fields, ('a', 'b', '_order')) def test_dynamic_inline_admins_fieldsets(self): """ Tests if ``_order`` is moved to the end of the last fieldsets fields. """ class MyModelInline(BaseDynamicInlineAdmin, InlineModelAdmin): model = RichTextPage fieldsets = (("Fieldset 1", {'fields': ('a',)}), ("Fieldset 2", {'fields': ('_order', 'b')}), ("Fieldset 3", {'fields': ('c')})) request = self._request_factory.get('/admin/') inline = MyModelInline(None, AdminSite()) fieldsets = inline.get_fieldsets(request) self.assertEqual(fieldsets[-1][1]["fields"][-1], '_order') self.assertNotIn('_order', fieldsets[1][1]["fields"]) @skipUnless("mezzanine.pages" in settings.INSTALLED_APPS, "pages app required") class SiteRelatedTestCase(TestCase): def test_update_site(self): from django.conf import settings from mezzanine.utils.sites import current_site_id # setup try: old_site_id = settings.SITE_ID except: old_site_id = None site1 = Site.objects.create(domain="site1.com") site2 = Site.objects.create(domain="site2.com") # default behaviour, page gets assigned current site settings.SITE_ID = site2.pk self.assertEqual(settings.SITE_ID, current_site_id()) page = RichTextPage() page.save() self.assertEqual(page.site_id, site2.pk) # Subsequent saves do not update site to current site page.site = site1 page.save() self.assertEqual(page.site_id, site1.pk) # resave w/ update_site=True, page gets assigned current site settings.SITE_ID = site1.pk page.site = site2 page.save(update_site=True) self.assertEqual(page.site_id, site1.pk) # resave w/ update_site=False, page does not update site settings.SITE_ID = site2.pk page.save(update_site=False) self.assertEqual(page.site_id, site1.pk) # When update_site=True, new page gets assigned current site settings.SITE_ID = site2.pk page = RichTextPage() page.site = site1 page.save(update_site=True) self.assertEqual(page.site_id, site2.pk) # When update_site=False, new page keeps current site settings.SITE_ID = site2.pk page = RichTextPage() page.site = site1 page.save(update_site=False) self.assertEqual(page.site_id, site1.pk) # When site explicitly assigned, new page keeps assigned site settings.SITE_ID = site2.pk page = RichTextPage() page.site = site1 page.save() self.assertEqual(page.site_id, site1.pk) # tear down if old_site_id: settings.SITE_ID = old_site_id else: del settings.SITE_ID site1.delete() site2.delete()
38.984344
79
0.63039
0e80ce5c588f6e623effcc181d5baa28701e6308
2,104
py
Python
main/templatetags/ranking_filter.py
sapuri/srandom.com
e0a7843886a97329f9022d4889ffafa3de708448
[ "MIT" ]
3
2019-05-04T08:22:38.000Z
2019-12-14T13:07:49.000Z
main/templatetags/ranking_filter.py
sapuri/srandom.com
e0a7843886a97329f9022d4889ffafa3de708448
[ "MIT" ]
49
2019-07-02T15:17:09.000Z
2022-03-21T20:11:59.000Z
main/templatetags/ranking_filter.py
sapuri/srandom.com
e0a7843886a97329f9022d4889ffafa3de708448
[ "MIT" ]
null
null
null
from django import template register = template.Library() # 指定された曲の平均BAD数を返す @register.filter def bad_count_avg(bad_count_list, music): if not bad_count_list: return None bad_count_sum = 0 # BAD数の合計 bad_count_num = 0 # BAD数の個数 for bad_count in bad_count_list: if bad_count.music.id == music.id: bad_count_sum += bad_count.int() bad_count_num += 1 # BAD数の平均を計算 (小数点以下四捨五入) bad_count_avg = round(bad_count_sum / bad_count_num) return bad_count_avg # 指定された曲の順位を返す @register.filter def bad_count_rank(bad_count_list_ordered, music_id_and_myself_id): ''' 指定された曲の順位を返す @param bad_count_list_ordered: 昇順で整列済のBAD数リスト @param music_id_and_myself_id: 曲IDと自ユーザーIDをコンマで区切った文字列 ''' if not bad_count_list_ordered: return '-' # コンマで分割 music_id_and_myself_id = music_id_and_myself_id.split(",") music_id = int(music_id_and_myself_id[0]) myself_id = int(music_id_and_myself_id[1]) bad_count_num = 0 # BAD数の個数 bad_count_now = -1 # 現在のBAD数 myrank = -1 # 自ランク found = False # BAD数を登録済であればTrueを返す for bad_count in bad_count_list_ordered: if bad_count.music.id == music_id: bad_count_before = bad_count_now bad_count_now = bad_count.bad_count # BAD数が前後で重複した場合 if bad_count_now == bad_count_before: # 指定されたユーザーの記録が見つかれば myrank にランクを格納 if bad_count.user.id == myself_id: found = True myrank = tmp_rank bad_count_num += 1 # BAD数が重複しなかった場合 else: bad_count_num += 1 # 一時ランクを更新 tmp_rank = bad_count_num # 自分の記録が見つかれば myrank にランクを格納 if bad_count.user.id == myself_id: found = True myrank = bad_count_num if found: return '%d / %d' % (myrank, bad_count_num) elif bad_count_num != 0: return '- / %d' % (bad_count_num) else: return '- / -'
27.324675
67
0.602662
ca57524649791d4e2b49c32bfc1def0c7a5b47ff
8,326
py
Python
dreamcoder/PCFG/program.py
nathanael-fijalkow/ec
c20fd84ca3944f904f5c999ed5df46eb6b6f8ef5
[ "MIT" ]
1
2021-06-11T08:20:25.000Z
2021-06-11T08:20:25.000Z
dreamcoder/PCFG/program.py
nathanael-fijalkow/ec
c20fd84ca3944f904f5c999ed5df46eb6b6f8ef5
[ "MIT" ]
null
null
null
dreamcoder/PCFG/program.py
nathanael-fijalkow/ec
c20fd84ca3944f904f5c999ed5df46eb6b6f8ef5
[ "MIT" ]
null
null
null
from dreamcoder.PCFG.type_system import * from dreamcoder.PCFG.cons_list import index import logging # dictionary { number of environment : value } # environment: a cons list # list = None | (value, list) # probability: a dictionary {(G.__hash(), S) : probability} # such that P.probability[S] is the probability that P is generated # from the non-terminal S when the underlying PCFG is G. class Program: """ Object that represents a program: a lambda term with basic primitives """ def __eq__(self, other): return ( isinstance(self, Program) and isinstance(other, Program) and self.type.__eq__(other.type) and self.typeless_eq(other) ) def typeless_eq(self, other, verbose=False): if verbose: print( "checking:\n 1:{}\nclass: {}\n 2:{}\nclass: {}".format( self, self.__class__.__name__, other, other.__class__.__name__, ) ) b = isinstance(self, Program) and isinstance(other, Program) b2 = ( isinstance(self, Variable) and isinstance(other, Variable) and self.variable == other.variable ) b2 = b2 or ( isinstance(self, Function) and isinstance(other, Function) and self.function.typeless_eq(other.function, verbose) and len(self.arguments) == len(other.arguments) and all( [ x.typeless_eq(y, verbose) for x, y in zip(self.arguments, other.arguments) ] ) ) b2 = b2 or ( isinstance(self, Lambda) and isinstance(other, Lambda) and self.body.typeless_eq(other.body) ) b2 = b2 or ( isinstance(self, BasicPrimitive) and isinstance(other, BasicPrimitive) and self.primitive == other.primitive ) b2 = b2 or ( isinstance(self, New) and isinstance(other, New) and (self.body).typeless_eq(other.body, verbose) ) return b and b2 def __gt__(self, other): True def __lt__(self, other): False def __ge__(self, other): True def __le__(self, other): False def __hash__(self): return self.hash class Variable(Program): def __init__(self, variable, type_=UnknownType(), probability={}): # self.variable is a natural number # assert isinstance(variable, int) self.variable = variable # assert isinstance(type_, Type) self.type = type_ self.hash = variable self.probability = probability self.evaluation = {} def __repr__(self): return "var" + format(self.variable) def eval(self, dsl, environment, i): if i in self.evaluation: # logging.debug('Already evaluated') return self.evaluation[i] # logging.debug('Not yet evaluated') try: result = index(environment, self.variable) self.evaluation[i] = result return result except (IndexError, ValueError, TypeError): self.evaluation[i] = None return None class Function(Program): def __init__(self, function, arguments, type_=UnknownType(), probability={}): # assert isinstance(function, Program) self.function = function # assert isinstance(arguments, list) self.arguments = arguments self.type = type_ self.hash = hash(tuple([arg.hash for arg in self.arguments] + [self.function.hash])) self.probability = probability self.evaluation = {} def __repr__(self): if len(self.arguments) == 0: return format(self.function) else: s = "(" + format(self.function) for arg in self.arguments: s += " " + format(arg) return s + ")" def eval(self, dsl, environment, i): if i in self.evaluation: # logging.debug('Already evaluated') return self.evaluation[i] # logging.debug('Not yet evaluated') try: if len(self.arguments) == 0: return self.function.eval(dsl, environment, i) else: evaluated_arguments = [] for j in range(len(self.arguments)): e = self.arguments[j].eval(dsl, environment, i) evaluated_arguments.append(e) result = self.function.eval(dsl, environment, i) for evaluated_arg in evaluated_arguments: result = result(evaluated_arg) self.evaluation[i] = result return result except (IndexError, ValueError, TypeError): self.evaluation[i] = None return None class Lambda(Program): def __init__(self, body, type_=UnknownType(), probability={}): # assert isinstance(body, Program) self.body = body # assert isinstance(type_, Type) self.type = type_ self.hash = hash(94135 + body.hash) self.probability = probability self.evaluation = {} def __repr__(self): s = "(lambda " + format(self.body) + ")" return s def eval(self, dsl, environment, i): if i in self.evaluation: # logging.debug('Already evaluated') return self.evaluation[i] # logging.debug('Not yet evaluated') try: result = lambda x: self.body.eval(dsl, (x, environment), i) self.evaluation[i] = result return result except (IndexError, ValueError, TypeError): self.evaluation[i] = None return None class BasicPrimitive(Program): def __init__(self, primitive, type_=UnknownType(), probability={}): # assert isinstance(primitive, str) self.primitive = primitive # assert isinstance(type_, Type) self.type = type_ self.hash = hash(primitive) + self.type.hash self.probability = probability self.evaluation = {} def __repr__(self): return format(self.primitive) def eval(self, dsl, environment, i): return dsl.semantics[self.primitive] class New(Program): def __init__(self, body, type_=UnknownType(), probability={}): self.body = body self.type = type_ self.hash = hash(783712 + body.hash) + type_.hash self.probability = probability self.evaluation = {} def __repr__(self): return format(self.body) def eval(self, dsl, environment, i): if i in self.evaluation: # logging.debug('Already evaluated') return self.evaluation[i] # logging.debug('Not yet evaluated') try: result = self.body.eval(dsl, environment, i) self.evaluation[i] = result return result except (IndexError, ValueError, TypeError): self.evaluation[i] = None return None def reconstruct_from_list(program_as_list, target_type): if len(program_as_list) == 1: return program_as_list.pop() else: P = program_as_list.pop() if isinstance(P, (New, BasicPrimitive)): list_arguments = P.type.ends_with(target_type) arguments = [None] * len(list_arguments) for i in range(len(list_arguments)): arguments[len(list_arguments) - i - 1] = reconstruct_from_list( program_as_list, list_arguments[len(list_arguments) - i - 1] ) return Function(P, arguments) if isinstance(P, Variable): return P assert False def reconstruct_from_compressed(program, target_type): program_as_list = [] list_from_compressed(program, program_as_list) program_as_list.reverse() return reconstruct_from_list(program_as_list, target_type) def list_from_compressed(program, program_as_list=[]): (P, sub_program) = program if sub_program: list_from_compressed(sub_program, program_as_list) program_as_list.append(P)
31.657795
92
0.575306
82371bf8e8cf85dc10bc4167d71e962a2c01a661
17,749
py
Python
Python/read_bbox.py
xyj77/MRIDataLoader
dbbe6a77b3c96d66e374705370ac38a518cdce0f
[ "MIT" ]
2
2018-10-10T13:12:10.000Z
2019-04-18T13:11:55.000Z
Python/read_bbox.py
xyj77/MRIDataLoader
dbbe6a77b3c96d66e374705370ac38a518cdce0f
[ "MIT" ]
null
null
null
Python/read_bbox.py
xyj77/MRIDataLoader
dbbe6a77b3c96d66e374705370ac38a518cdce0f
[ "MIT" ]
3
2018-06-21T10:06:34.000Z
2018-10-10T13:18:16.000Z
#-*- coding:utf-8 -*- import os import re import pandas import pickle import numpy as np from PIL import Image import scipy.io as sio import scipy.misc as misc BBOX_DATA_DIR = '../../Data/BboxAug' MAT_DATA_DIR = '/media/lab304/J52/Dataset/Mat' LABEL_PATH = '../../Data/labels.csv' SAVE_DIR = '../../Data' sampleSet = set() def readLabel(asIndex = 'modalNo', index = 'A'): '''Read labels Read labels as request. Args: asIndex: String, Index type. index: String, Index. Returns: labels: A DataFrame of reorganized labels. For example: serNo Location Center meanSize \ tumourNo modalNo 1 A 7 [257,167,301,236,5,8] [279,201,7] [42,64] B 8 [255,178,300,237,6,8] [277,207,8] [42,64] ... J 22 [247,170,287,234,14,24] [267,202,22] [42,64] 2 A 8 [214,182,254,229,6,9] [234,205,8] [35,42] B 8 [218,183,253,227,7,9] [235,205,8] [35,42] ... J 25 [206,186,240,227,23,28] [223,206,25] [35,42] 3 A 9 [281,142,303,166,8,9] [292,154,9] [19,22] ... Or: serNo Location Center meanSize \ patientNo tumourNo '00070993' 1 8 [223,176,284,242,6,10] [253,209,8] [62,65] '00090960' 1 5 [191,139,224,184,5,5] [207,161,5] [31,42] '00159253' 1 13 [231,149,288,206,11,15] [259,177,13] [56,57] '00190415' 1 7 [257,167,301,236,5,8] [279,201,7] [42,64] 2 8 [214,182,254,229,6,9] [234,205,8] [35,42] 3 9 [281,142,303,166,8,9] [292,154,9] [19,22] '00431620' 1 15 [245,64,348,172,9,17] [296,118,15] [97,103] '00525849' 1 9 [153,216,183,242,9,9] [168,229,9] [28,25] '00582685' 1 12 [264,104,317,159,10,13] [290,131,12] [56,59] ... Raises: None Usage: readLabel(asIndex = 'patientNo', index = '00190415') readLabel(asIndex = 'modalNo', index = 'A') ''' #读csv文件 if asIndex == 'modalNo': labels = pandas.read_csv(LABEL_PATH, index_col=[2,0,1]) elif asIndex == 'patientNo': index = '\'' + index + '\'' labels = pandas.read_csv(LABEL_PATH, index_col=[0,1,2]) labels = labels.fillna('null') ''' DataFeame usage: # print(labels.dtypes) # print(labels.iloc[0]) # print(labels.loc[('\'00190415\'', 2, 'B'), :]) # print(labels.loc[('\'00190415\'', 2, 'B'), 'WHO']) # print(labels.loc['\'00190415\'', 2, 'B']['WHO']) ''' return labels.loc[index] def readBbox(liverVolume, tumourInfo, saveNeg=False): pattern = re.compile(r'[\d]') tumourLoc = [int(x) for x in tumourInfo['Location'][1:-1].split(',') if pattern.search(x)] tumourCenter = [int(x) for x in tumourInfo['Center'][1:-1].split(',') if pattern.search(x)] tumourSize = [int(x) for x in tumourInfo['meanSize'][1:-1].split(',') if pattern.search(x)] if saveNeg: tumourD = [int(x) for x in tumourInfo['d'][1:-1].split(',') if pattern.search(x)] tumourCenter[0], tumourCenter[1] = tumourCenter[0] + tumourD[0], tumourCenter[1] + tumourD[1] return liverVolume[tumourCenter[0]-tumourSize[0]/2:tumourCenter[0]+tumourSize[0]/2+1, tumourCenter[1]-tumourSize[1]/2:tumourCenter[1]+tumourSize[1]/2+1, tumourLoc[4]:tumourLoc[5]+1] def saveSliceToFile(Bbox, index, savePath): ''' # Method 1:使用numpy的rot90和flip ''' # 保存原图 image = np.squeeze(Bbox[:, :, index]) misc.imsave(savePath + '.jpg', image) # 保存扩容图 ############## rotate volume ############## rot90 = np.rot90(Bbox) #设置逆时针旋转90 image = np.squeeze(rot90[:, :, index]) misc.imsave(savePath + '_90.jpg', image) rot180 = np.rot90(Bbox, 2) #设置逆时针旋转180 image = np.squeeze(rot180[:, :, index]) misc.imsave(savePath + '_180.jpg', image) rot270 = np.rot90(Bbox, 3) #设置逆时针旋转270 image = np.squeeze(rot270[:, :, index]) misc.imsave(savePath + '_270.jpg', image) ############### flip volume ############### lr = np.fliplr(Bbox) #左右互换 image = np.squeeze(lr[:, :, index]) misc.imsave(savePath + '_lr.jpg', image) ud = np.flipud(Bbox) #上下互换 image = np.squeeze(ud[:, :, index]) misc.imsave(savePath + '_ud.jpg', image) print(savePath+' saved!') ''' # Method 2: 使用PIL Image的transpose,和rotate # 只能用于单通道灰度图和三通道彩色图 roi = Bbox[:, :, index] # 扩容 image = np.squeeze(roi) image = Image.fromarray(image) # 调整尺寸特别小的数据的大小 w, h = image.size m = min(w, h) if m < 32: w, h = int(32.0*w/m), int(32.0*h/m) image = image.resize((w, h)) #重设宽,高 print(w, h) # 保存原图 misc.imsave(savePath + '.jpg', roi) # 保存扩容图 # dst5 = img.rotate(45) #逆时针旋转45 img = image.transpose(Image.ROTATE_90) #设置逆时针旋转90 misc.imsave(savePath + '_90.jpg', img) img = image.transpose(Image.ROTATE_180) #设置逆时针旋转180 misc.imsave(savePath + '_180.jpg', img) img = image.transpose(Image.ROTATE_270) #设置逆时针旋转270 misc.imsave(savePath + '_270.jpg', img) img = image.transpose(Image.FLIP_LEFT_RIGHT) #左右互换 misc.imsave(savePath + '_lr.jpg', img) img = image.transpose(Image.FLIP_TOP_BOTTOM) #上下互换 misc.imsave(savePath + '_ud.jpg', img) print(savePath+' saved!') ''' def saveFusionToFile(picMat, savePath, saveTpye): if saveTpye == '.jpg': # 保存原图 misc.imsave(savePath+saveTpye, picMat) # 保存扩容图 ############## rotate volume ############## rot90 = np.rot90(picMat) #设置逆时针旋转90 misc.imsave(savePath + '_90' + saveTpye, rot90) rot180 = np.rot90(picMat, 2) #设置逆时针旋转180 misc.imsave(savePath + '_180' + saveTpye, rot180) rot270 = np.rot90(picMat, 3) #设置逆时针旋转270 misc.imsave(savePath + '_270' + saveTpye, rot270) ############### flip volume ############### lr = np.fliplr(picMat) #左右互换 misc.imsave(savePath + '_lr' + saveTpye, lr) ud = np.flipud(picMat) #上下互换 misc.imsave(savePath + '_ud' + saveTpye, ud) else: # 保存原图 np.save(savePath+saveTpye, picMat) # 保存扩容图 ############## rotate volume ############## rot90 = np.rot90(picMat) #设置逆时针旋转90 np.save(savePath + '_90' + saveTpye, rot90) rot180 = np.rot90(picMat, 2) #设置逆时针旋转180 np.save(savePath + '_180' + saveTpye, rot180) rot270 = np.rot90(picMat, 3) #设置逆时针旋转270 np.save(savePath + '_270' + saveTpye, rot270) ############### flip volume ############### lr = np.fliplr(picMat) #左右互换 np.save(savePath + '_lr' + saveTpye, lr) ud = np.flipud(picMat) #上下互换 np.save(savePath + '_ud' + saveTpye, ud) print(savePath+' saved!') def saveSlice(patientNo, tumourNo, modal, Bbox, tumourInfo, standard, saveNeg=False): if saveNeg and patientNo in ['00431620', '03930451']: return pattern = re.compile(r'[\d]') tumourLoc = [int(x) for x in tumourInfo['Location'][1:-1].split(',') if pattern.search(x)] serNo = tumourInfo['serNo'] tumourWHO = tumourInfo['WHO'] tumourEd = int(tumourInfo['Edmondson']) # 确定存储目录 saveDir = os.path.join(os.path.join(SAVE_DIR, standard), modal) if standard == 'Binary': if saveNeg: saveDir = os.path.join(saveDir, '0') else: saveDir = os.path.join(saveDir, '1') else: if standard == 'WHO': saveDir = os.path.join(saveDir, str(tumourWHO-1)) else: saveDir = os.path.join(saveDir, str(tumourEd-1)) if not os.path.exists(saveDir): os.makedirs(saveDir) up, bottom = serNo-tumourLoc[4], tumourLoc[5]-serNo up, bottom = int(up*0.75+0.5), int(bottom*0.75+0.5) # 保存中间层面 sampleName = patientNo + '_' + str(tumourNo+1) + '_0_' + modal\ + '_' + str(tumourWHO) + '_' + str(tumourEd) savePath = os.path.join(saveDir, sampleName) saveSliceToFile(Bbox, up, savePath)# 保存到文件 sampleSet.add(patientNo + '_' + str(tumourNo+1) + '_0')# 保存样本编号 # 保存上面层面 for i in range(up): sampleName = patientNo + '_' + str(tumourNo+1) + '_' + str(-1-i) + '_' + modal\ + '_' + str(tumourWHO) + '_' + str(tumourEd) savePath = os.path.join(saveDir, sampleName) saveSliceToFile(Bbox, up-i-1, savePath)# 保存到文件 sampleSet.add(patientNo + '_' + str(tumourNo+1) + '_' + str(-1-i)) # 保存下面层面 for i in range(bottom): sampleName = patientNo + '_' + str(tumourNo+1) + '_' +str(i+1) + '_' + modal\ + '_' + str(tumourWHO) + '_' + str(tumourEd) savePath = os.path.join(saveDir, sampleName) saveSliceToFile(Bbox, up+i+1, savePath)# 保存到文件 sampleSet.add(patientNo + '_' + str(tumourNo+1) + '_' +str(i+1)) def saveFusion(patientNo, tumourNo, Bboxs, BboxInfo, fusionName, standard, saveTpye, saveNeg=False): global sampleSet if saveNeg and patientNo in ['00431620', '03930451']: return tumourWHO = BboxInfo[0]['WHO'] tumourEd = int(BboxInfo[0]['Edmondson']) # 确定存储目录 saveDir = os.path.join(os.path.join(SAVE_DIR, standard), fusionName) if standard == 'Binary': if saveNeg: saveDir = os.path.join(saveDir, '0') else: saveDir = os.path.join(saveDir, '1') else: if standard == 'WHO': saveDir = os.path.join(saveDir, str(tumourWHO-1)) else: saveDir = os.path.join(saveDir, str(tumourEd-1)) if not os.path.exists(saveDir): os.makedirs(saveDir) tumourSize = Bboxs[0].shape # 保存融合图像 picMat = np.zeros((tumourSize[0], tumourSize[1], len(BboxInfo))) # 计算能够在上下两端保存多少张图像 upSlice, bottomSlice = [], [] #中间序列所在层面(同时对应中间层面上面的层面数), 中间层面下的层面数 for info in BboxInfo: tumourLoc = [int(x) for x in info['Location'][1:-1].split(',')] serNo, Z1, Z2 = info['serNo'], tumourLoc[4], tumourLoc[5] upSlice.append(serNo-Z1) bottomSlice.append(Z2-serNo) up, bottom = min(upSlice), min(bottomSlice) print(upSlice, bottomSlice, up, bottom, int(up*0.75+0.5), int(bottom*0.75+0.5)) # 去掉过于边缘的图像 up, bottom = int(up*0.75+0.5), int(bottom*0.75+0.5) # 保存中间层面 for index, info in enumerate(BboxInfo): picMat[:, :, index] = Bboxs[index][:, :, upSlice[index]] sampleName = patientNo + '_' + str(tumourNo+1) + '_0_' + fusionName\ + '_' + str(tumourWHO) + '_' + str(tumourEd) savePath = os.path.join(saveDir, sampleName) saveFusionToFile(picMat, savePath, saveTpye) sampleSet.add(patientNo + '_' + str(tumourNo+1) + '_0') # 保存上面层面 for i in range(up): for index, info in enumerate(BboxInfo): picMat[:, :, index] = Bboxs[index][:, :, upSlice[index]-i-1] sampleName = patientNo + '_' + str(tumourNo+1) + '_' +str(-1-i) + '_' + fusionName\ + '_' + str(tumourWHO) + '_' + str(tumourEd) savePath = os.path.join(saveDir, sampleName) saveFusionToFile(picMat, savePath, saveTpye) sampleSet.add(patientNo + '_' + str(tumourNo+1) + '_' +str(-1-i)) # 保存下面层面 for i in range(bottom): for index, info in enumerate(BboxInfo): picMat[:, :, index] = Bboxs[index][:, :, upSlice[index]+i+1] sampleName = patientNo + '_' + str(tumourNo+1) + '_' + str(i+1) + '_' + fusionName\ + '_' + str(tumourWHO) + '_' + str(tumourEd) savePath = os.path.join(saveDir, sampleName) saveFusionToFile(picMat, savePath, saveTpye) sampleSet.add(patientNo + '_' + str(tumourNo+1) + '_' + str(i+1)) def readModalData(modal = 'A', standard = 'WHO'): ''' 指定模态读取数据 ''' if modal == 'K': labels = readLabel(asIndex = 'modalNo', index = 'B') else: labels = readLabel(asIndex = 'modalNo', index = modal) patientList = os.listdir(MAT_DATA_DIR) for patientNo in patientList: # 读取MRI体数据 512x512xS dataDir = os.path.join(MAT_DATA_DIR, patientNo) dataPath = os.path.join(dataDir, modal+'.mat') liverVolume = sio.loadmat(dataPath)['D'] # 读取tumour信息 patientInfo = labels.loc['\'' + patientNo + '\''] for tumourNo in range(len(patientInfo)): # print(patientNo, tumourNo) # 读取肿瘤信息 tumourInfo = patientInfo.iloc[tumourNo] # roi区域 posBbox = readBbox(liverVolume, tumourInfo) saveSlice(patientNo, tumourNo, modal, posBbox, tumourInfo, standard) # print(posBbox.shape) if standard is 'Binary': # 背景区域 negBbox = readBbox(liverVolume, tumourInfo, saveNeg=True) saveSlice(patientNo, tumourNo, modal, negBbox, tumourInfo, standard, saveNeg=True) def readPatientData(Fusion = ['A', 'B', 'K'], standard = 'WHO', saveTpye = '.jpg'): ''' 按照病人读取多个模态数据 ''' patientList = os.listdir(MAT_DATA_DIR) for patientNo in patientList: # 读取病人的标注信息 labels = readLabel(asIndex = 'patientNo', index = patientNo) for tumourNo in range(len(labels)/8): Info = labels.loc[tumourNo+1] posBboxs, negBboxs, BboxInfo, fusionName = [], [], [], '' for modal in Fusion: # 读取MRI体数据 512x512xS fusionName = fusionName + modal dataDir = os.path.join(MAT_DATA_DIR, patientNo) dataPath = os.path.join(dataDir, modal+'.mat') liverVolume = sio.loadmat(dataPath)['D'] if modal == 'K': tumourInfo = Info.loc['B'] else: tumourInfo = Info.loc[modal] # 读取Bbox posBbox = readBbox(liverVolume, tumourInfo) posBboxs.append(posBbox) BboxInfo.append(tumourInfo) if standard == 'Binary': negBbox = readBbox(liverVolume, tumourInfo, saveNeg=True) negBboxs.append(negBbox) saveFusion(patientNo, tumourNo, posBboxs, BboxInfo, fusionName, standard, saveTpye) if standard == 'Binary': saveFusion(patientNo, tumourNo, negBboxs, BboxInfo, fusionName, standard, saveTpye, saveNeg=True) def main(): # modalList = ['A', 'B', 'K', 'E', 'F', 'G', 'H', 'I', 'J'] # fusionList = ['ABK', 'EGJ'] # 按照模态读取 # for modal in modalList: # readModalData(modal=modal, standard = 'WHO') # # 按照个体读取 # for fusion in fusionList: # readPatientData(Fusion = list(fusion), standard = 'WHO') # # 按照模态读取 # for modal in modalList: # readModalData(modal=modal, standard = 'Edmondson') # # 按照个体读取 # for fusion in fusionList: # readPatientData(Fusion = list(fusion), standard = 'Edmondson') # # 按照模态读取 # for modal in modalList: # readModalData(modal=modal, standard = 'Binary') # # 按照个体读取 # for fusion in fusionList: # readPatientData(Fusion = list(fusion), standard = 'Binary') ######################################################################################## fusionList = ['EFGHIJ', 'ABKEFGHIJ'] global sampleSet # 按照个体读取 for fusion in fusionList: sampleSet.clear() readPatientData(Fusion = list(fusion), standard = 'WHO', saveTpye = '.npy') binPath = os.path.join(os.path.join(os.path.join(SAVE_DIR, 'WHO'), fusion), 'sample.bin') with open(binPath, 'ab') as fp: pickle.dump(sampleSet, fp)#顺序存入变量 # with open(binPath, 'rb') as fp: # data=pickle.load(fp)#顺序导出变量 # print(data) for fusion in fusionList: sampleSet.clear() readPatientData(Fusion = list(fusion), standard = 'Edmondson', saveTpye = '.npy') binPath = os.path.join(os.path.join(os.path.join(SAVE_DIR, 'Edmondson'), fusion), 'sample.bin') with open(binPath, 'ab') as fp: pickle.dump(sampleSet, fp)#顺序存入变量 for fusion in fusionList: sampleSet.clear() readPatientData(Fusion = list(fusion), standard = 'Binary', saveTpye = '.npy') binPath = os.path.join(os.path.join(os.path.join(SAVE_DIR, 'Binary'), fusion), 'sample.bin') with open(binPath, 'ab') as fp: pickle.dump(sampleSet, fp)#顺序存入变量 if __name__ == "__main__": main()
40.065463
103
0.524199
ce0976dc870364860a0bbb8119085c428542536a
284
py
Python
setup.py
WaylonWalker/unsync
04a57892dde57472c45a9ca4092fb57d8a222871
[ "MIT" ]
null
null
null
setup.py
WaylonWalker/unsync
04a57892dde57472c45a9ca4092fb57d8a222871
[ "MIT" ]
null
null
null
setup.py
WaylonWalker/unsync
04a57892dde57472c45a9ca4092fb57d8a222871
[ "MIT" ]
null
null
null
from setuptools import setup setup( name='unsync', version='1.2.1', packages=['unsync'], url='https://github.com/alex-sherman/unsync', license='MIT', author='Alex-Sherman', author_email='asherman1024@gmail.com', description='Unsynchronize asyncio', )
21.846154
49
0.661972
5aa3c08023b3a097a4d7ba965f41077b3395192f
701
py
Python
108.py
sunilmhta/UVA
397e58fb88ba44c542f19d082c448987281e84ee
[ "MIT" ]
2
2017-03-06T21:19:57.000Z
2017-03-08T10:13:43.000Z
108.py
sunilmhta/UVA
397e58fb88ba44c542f19d082c448987281e84ee
[ "MIT" ]
null
null
null
108.py
sunilmhta/UVA
397e58fb88ba44c542f19d082c448987281e84ee
[ "MIT" ]
null
null
null
# Author: Sunil Kumar # Problem : Maximum sum of a subrectangle [in a matrix], ID: 108, Judge: UVA # Technique used: Kadane's algorithm # Time Complexity ; O(n^3) ans=-15000000 def kadane(start,end,matrix): storelist=[sum(matrix[i][start:end+1]) for i in range(0,len(matrix))] maxendinghere=maxtillnow = storelist[0] for x in range(1,len(storelist)): maxendinghere = max(maxendinghere+storelist[x],storelist[x]) maxtillnow = max(maxtillnow,maxendinghere) global ans ans=max(ans,maxtillnow) return num=int(input()) matrix=[[int(x) for x in input().split()]for i in range(0,num)] newlist=[[kadane(startcol,endcol,matrix) for endcol in range(0,num)]for startcol in range(0,num)] print(ans)
36.894737
97
0.727532
e8f8d02f03b32ef6d12488e59a5df21636ab899f
130,988
py
Python
ai_flow/protobuf/message_pb2.py
flink-extended/ai-flow
d1427a243097d94d77fedbe1966500ae26975a13
[ "Apache-2.0" ]
79
2021-10-15T07:32:27.000Z
2022-03-28T04:10:19.000Z
ai_flow/protobuf/message_pb2.py
flink-extended/ai-flow
d1427a243097d94d77fedbe1966500ae26975a13
[ "Apache-2.0" ]
153
2021-10-15T05:23:46.000Z
2022-02-23T06:07:10.000Z
ai_flow/protobuf/message_pb2.py
flink-extended/ai-flow
d1427a243097d94d77fedbe1966500ae26975a13
[ "Apache-2.0" ]
23
2021-10-15T02:36:37.000Z
2022-03-17T02:59:27.000Z
# # Copyright 2022 The AI Flow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: message.proto """Generated protocol buffer code.""" from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import wrappers_pb2 as google_dot_protobuf_dot_wrappers__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='message.proto', package='ai_flow', syntax='proto3', serialized_options=b'\n\027org.aiflow.client.protoZ\010/ai_flow\210\001\001\220\001\001', create_key=_descriptor._internal_create_key, serialized_pb=b'\n\rmessage.proto\x12\x07\x61i_flow\x1a\x1egoogle/protobuf/wrappers.proto\"K\n\x0bSchemaProto\x12\x11\n\tname_list\x18\x01 \x03(\t\x12)\n\ttype_list\x18\x02 \x03(\x0e\x32\x16.ai_flow.DataTypeProto\"\xc6\x05\n\x0c\x44\x61tasetProto\x12\x0c\n\x04uuid\x18\x01 \x01(\x03\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x39\n\nproperties\x18\x03 \x03(\x0b\x32%.ai_flow.DatasetProto.PropertiesEntry\x12$\n\x06schema\x18\x04 \x01(\x0b\x32\x14.ai_flow.SchemaProto\x12\x31\n\x0b\x64\x61ta_format\x18\x05 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12)\n\x03uri\x18\x06 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x31\n\x0b\x64\x65scription\x18\x07 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x30\n\x0b\x63reate_time\x18\x08 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12\x30\n\x0bupdate_time\x18\t \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12\x32\n\x0c\x63\x61talog_name\x18\n \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x32\n\x0c\x63\x61talog_type\x18\x0b \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x36\n\x10\x63\x61talog_database\x18\x0c \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12<\n\x16\x63\x61talog_connection_uri\x18\r \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x33\n\rcatalog_table\x18\x0e \x01(\x0b\x32\x1c.google.protobuf.StringValue\x1a\x31\n\x0fPropertiesEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\"a\n\x12ModelRelationProto\x12\x0c\n\x04uuid\x18\x01 \x01(\x03\x12\x0c\n\x04name\x18\x02 \x01(\t\x12/\n\nproject_id\x18\x03 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\"\x8b\x01\n\nModelProto\x12\x0c\n\x04uuid\x18\x01 \x01(\x03\x12\x0c\n\x04name\x18\x02 \x01(\t\x12/\n\nproject_id\x18\x03 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12\x30\n\nmodel_desc\x18\x04 \x01(\x0b\x32\x1c.google.protobuf.StringValue\"\xb2\x01\n\x19ModelVersionRelationProto\x12,\n\x07version\x18\x01 \x01(\x0b\x32\x1b.google.protobuf.Int32Value\x12-\n\x08model_id\x18\x02 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12\x38\n\x13project_snapshot_id\x18\x03 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\"\xa8\x03\n\x11ModelVersionProto\x12,\n\x07version\x18\x01 \x01(\x0b\x32\x1b.google.protobuf.Int32Value\x12-\n\x08model_id\x18\x02 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12\x38\n\x13project_snapshot_id\x18\x03 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12\x30\n\nmodel_path\x18\x04 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x30\n\nmodel_type\x18\x06 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x32\n\x0cversion_desc\x18\x07 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x31\n\rcurrent_stage\x18\x08 \x01(\x0e\x32\x1a.ai_flow.ModelVersionStage\x12\x31\n\x0b\x63reate_time\x18\t \x01(\x0b\x32\x1c.google.protobuf.DoubleValue\"\xd6\x04\n\x08JobProto\x12\x0c\n\x04uuid\x18\x01 \x01(\x03\x12\x0c\n\x04name\x18\x02 \x01(\t\x12:\n\x15workflow_execution_id\x18\x03 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12&\n\tjob_state\x18\x04 \x01(\x0e\x32\x13.ai_flow.StateProto\x12\x35\n\nproperties\x18\x05 \x03(\x0b\x32!.ai_flow.JobProto.PropertiesEntry\x12,\n\x06job_id\x18\x06 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12/\n\nstart_time\x18\x07 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12-\n\x08\x65nd_time\x18\x08 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12-\n\x07log_uri\x18\t \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12/\n\tsignature\x18\n \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12;\n\x12workflow_execution\x18\x0b \x01(\x0b\x32\x1f.ai_flow.WorkflowExecutionProto\x12\x35\n\x0f\x65xecution_label\x18\x0c \x01(\x0b\x32\x1c.google.protobuf.StringValue\x1a\x31\n\x0fPropertiesEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\"\xe2\x01\n\rWorkflowProto\x12\x0c\n\x04uuid\x18\x01 \x01(\x03\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x33\n\rworkflow_json\x18\x03 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12:\n\nproperties\x18\x04 \x03(\x0b\x32&.ai_flow.WorkflowProto.PropertiesEntry\x12\x11\n\tnamespace\x18\x05 \x01(\t\x1a\x31\n\x0fPropertiesEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\"\xef\x04\n\x16WorkflowExecutionProto\x12\x0c\n\x04uuid\x18\x01 \x01(\x03\x12\x0c\n\x04name\x18\x02 \x01(\t\x12/\n\nproject_id\x18\x03 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12,\n\x0f\x65xecution_state\x18\x04 \x01(\x0e\x32\x13.ai_flow.StateProto\x12\x43\n\nproperties\x18\x05 \x03(\x0b\x32/.ai_flow.WorkflowExecutionProto.PropertiesEntry\x12/\n\nstart_time\x18\x06 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12-\n\x08\x65nd_time\x18\x07 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12-\n\x07log_uri\x18\x08 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x33\n\rworkflow_json\x18\t \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12/\n\tsignature\x18\n \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x14\n\x0c\x65xecution_id\x18\x0b \x01(\t\x12(\n\x08workflow\x18\x0c \x01(\x0b\x32\x16.ai_flow.WorkflowProto\x12-\n\x07\x63ontext\x18\r \x01(\x0b\x32\x1c.google.protobuf.StringValue\x1a\x31\n\x0fPropertiesEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\"\xc3\x01\n\x0cProjectProto\x12\x0c\n\x04uuid\x18\x01 \x01(\x03\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x39\n\nproperties\x18\x03 \x03(\x0b\x32%.ai_flow.ProjectProto.PropertiesEntry\x12)\n\x03uri\x18\x04 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x1a\x31\n\x0fPropertiesEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\"\x88\x03\n\x11WorkflowMetaProto\x12\x0c\n\x04uuid\x18\x01 \x01(\x03\x12\x0c\n\x04name\x18\x02 \x01(\t\x12/\n\nproject_id\x18\x03 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12>\n\nproperties\x18\x04 \x03(\x0b\x32*.ai_flow.WorkflowMetaProto.PropertiesEntry\x12\x30\n\x0b\x63reate_time\x18\x05 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12\x30\n\x0bupdate_time\x18\x06 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12\"\n\x1a\x63ontext_extractor_in_bytes\x18\x07 \x01(\x0c\x12+\n\x05graph\x18\x08 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x1a\x31\n\x0fPropertiesEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\"\xe5\x01\n\x15WorkflowSnapshotProto\x12\x0c\n\x04uuid\x18\x01 \x01(\x03\x12\x30\n\x0bworkflow_id\x18\x02 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12)\n\x03uri\x18\x03 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12/\n\tsignature\x18\x04 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x30\n\x0b\x63reate_time\x18\x05 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\"\x91\x03\n\rArtifactProto\x12\x0c\n\x04uuid\x18\x01 \x01(\x03\x12\x0c\n\x04name\x18\x02 \x01(\t\x12:\n\nproperties\x18\x03 \x03(\x0b\x32&.ai_flow.ArtifactProto.PropertiesEntry\x12\x33\n\rartifact_type\x18\x04 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12)\n\x03uri\x18\x05 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x31\n\x0b\x64\x65scription\x18\x06 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x30\n\x0b\x63reate_time\x18\x07 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12\x30\n\x0bupdate_time\x18\x08 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x1a\x31\n\x0fPropertiesEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\"z\n\x14RegisteredModelParam\x12\x30\n\nmodel_name\x18\x01 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x30\n\nmodel_desc\x18\x02 \x01(\x0b\x32\x1c.google.protobuf.StringValue\"\xde\x01\n\x11ModelVersionParam\x12\x30\n\nmodel_path\x18\x01 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x30\n\nmodel_type\x18\x02 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x32\n\x0cversion_desc\x18\x03 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x31\n\rcurrent_stage\x18\x04 \x01(\x0e\x32\x1a.ai_flow.ModelVersionStage\"v\n\x0eModelMetaParam\x12\x30\n\nmodel_name\x18\x01 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x32\n\rmodel_version\x18\x02 \x01(\x0b\x32\x1b.google.protobuf.Int32Value\"A\n\x08Response\x12\x13\n\x0breturn_code\x18\x01 \x01(\t\x12\x12\n\nreturn_msg\x18\x02 \x01(\t\x12\x0c\n\x04\x64\x61ta\x18\x03 \x01(\t\"[\n\x13RegisteredModelMeta\x12\x12\n\nmodel_name\x18\x01 \x01(\t\x12\x30\n\nmodel_desc\x18\x02 \x01(\x0b\x32\x1c.google.protobuf.StringValue\"\xd2\x02\n\x10ModelVersionMeta\x12\x12\n\nmodel_name\x18\x01 \x01(\t\x12\x15\n\rmodel_version\x18\x02 \x01(\x05\x12\x30\n\nmodel_path\x18\x03 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x30\n\nmodel_type\x18\x05 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x32\n\x0cversion_desc\x18\x06 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x33\n\x0eversion_status\x18\x07 \x01(\x0e\x32\x1b.ai_flow.ModelVersionStatus\x12\x31\n\rcurrent_stage\x18\x08 \x01(\x0e\x32\x1a.ai_flow.ModelVersionStage\x12\x13\n\x0b\x63reate_time\x18\t \x01(\x03\"\x88\x01\n\x15RegisteredModelDetail\x12\x36\n\x10registered_model\x18\x01 \x01(\x0b\x32\x1c.ai_flow.RegisteredModelMeta\x12\x37\n\x14latest_model_version\x18\x02 \x01(\x0b\x32\x19.ai_flow.ModelVersionMeta\"O\n\x14RegisteredModelMetas\x12\x37\n\x11registered_models\x18\x01 \x03(\x0b\x32\x1c.ai_flow.RegisteredModelMeta\"J\n\x0bResultProto\x12$\n\x06status\x18\x01 \x01(\x0e\x32\x14.ai_flow.StatusProto\x12\x15\n\rerror_message\x18\x02 \x01(\t\"\x98\x05\n\x0fMetricMetaProto\x12\x31\n\x0bmetric_name\x18\x01 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12-\n\x0bmetric_type\x18\x02 \x01(\x0e\x32\x18.ai_flow.MetricTypeProto\x12\x31\n\x0bmetric_desc\x18\x03 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x32\n\x0cproject_name\x18\x04 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x32\n\x0c\x64\x61taset_name\x18\x05 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x30\n\nmodel_name\x18\x06 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12.\n\x08job_name\x18\x07 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12/\n\nstart_time\x18\x08 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12-\n\x08\x65nd_time\x18\t \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12)\n\x03uri\x18\n \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12*\n\x04tags\x18\x0b \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12<\n\nproperties\x18\x0c \x03(\x0b\x32(.ai_flow.MetricMetaProto.PropertiesEntry\x1a\x31\n\x0fPropertiesEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\"\xde\x02\n\x12MetricSummaryProto\x12\x0c\n\x04uuid\x18\x01 \x01(\x03\x12\x31\n\x0bmetric_name\x18\x02 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x30\n\nmetric_key\x18\x03 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x32\n\x0cmetric_value\x18\x04 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x35\n\x10metric_timestamp\x18\x05 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12\x32\n\rmodel_version\x18\x06 \x01(\x0b\x32\x1b.google.protobuf.Int32Value\x12\x36\n\x10job_execution_id\x18\x07 \x01(\x0b\x32\x1c.google.protobuf.StringValue*\xc0\x03\n\nReturnCode\x12\x0b\n\x07SUCCESS\x10\x00\x12\x12\n\x0eINTERNAL_ERROR\x10\x01\x12\x1b\n\x17TEMPORARILY_UNAVAILABLE\x10\x02\x12\x0c\n\x08IO_ERROR\x10\x03\x12\x0f\n\x0b\x42\x41\x44_REQUEST\x10\x04\x12\x1c\n\x17INVALID_PARAMETER_VALUE\x10\xe8\x07\x12\x17\n\x12\x45NDPOINT_NOT_FOUND\x10\xe9\x07\x12\x16\n\x11MALFORMED_REQUEST\x10\xea\x07\x12\x12\n\rINVALID_STATE\x10\xeb\x07\x12\x16\n\x11PERMISSION_DENIED\x10\xec\x07\x12\x15\n\x10\x46\x45\x41TURE_DISABLED\x10\xed\x07\x12\x1a\n\x15\x43USTOMER_UNAUTHORIZED\x10\xee\x07\x12\x1b\n\x16REQUEST_LIMIT_EXCEEDED\x10\xef\x07\x12\x1c\n\x17RESOURCE_ALREADY_EXISTS\x10\xd1\x0f\x12\x1c\n\x17RESOURCE_DOES_NOT_EXIST\x10\xd2\x0f\x12\x13\n\x0eQUOTA_EXCEEDED\x10\xb9\x17\x12\x1c\n\x17MAX_BLOCK_SIZE_EXCEEDED\x10\xba\x17\x12\x1b\n\x16MAX_READ_SIZE_EXCEEDED\x10\xbb\x17* \n\x0bStatusProto\x12\x06\n\x02OK\x10\x00\x12\t\n\x05\x45RROR\x10\x01*\xd6\x01\n\rDataTypeProto\x12\x19\n\x15\x44\x41TA_TYPE_UNSPECIFIED\x10\x00\x12\t\n\x05INT32\x10\x01\x12\t\n\x05INT64\x10\x02\x12\x0b\n\x07\x46LOAT32\x10\x03\x12\x0b\n\x07\x46LOAT64\x10\x04\x12\n\n\x06STRING\x10\x05\x12\x0e\n\nINT32ARRAY\x10\x06\x12\x0e\n\nINT64ARRAY\x10\x07\x12\x10\n\x0c\x46lOAT32ARRAY\x10\x08\x12\x10\n\x0c\x46LOAT64ARRAY\x10\t\x12\x0f\n\x0bSTRINGARRAY\x10\n\x12\t\n\x05\x42YTES\x10\x0b\x12\x0e\n\nBYTESARRAY\x10\x0c*{\n\nStateProto\x12\x15\n\x11STATE_UNSPECIFIED\x10\x00\x12\x08\n\x04INIT\x10\x01\x12\x0c\n\x08STARTING\x10\x02\x12\x0b\n\x07RUNNING\x10\x03\x12\x0c\n\x08\x46INISHED\x10\x04\x12\n\n\x06\x46\x41ILED\x10\x05\x12\x0b\n\x07KILLING\x10\x06\x12\n\n\x06KILLED\x10\x07*F\n\rExecutionMode\x12\x1e\n\x1a\x45XECUTION_MODE_UNSPECIFIED\x10\x00\x12\t\n\x05\x42\x41TCH\x10\x01\x12\n\n\x06STREAM\x10\x02*}\n\x12ModelVersionStatus\x12\x18\n\x14PENDING_REGISTRATION\x10\x00\x12\x17\n\x13\x46\x41ILED_REGISTRATION\x10\x01\x12\t\n\x05READY\x10\x03\x12\x14\n\x10PENDING_DELETION\x10\x04\x12\x13\n\x0f\x46\x41ILED_DELETION\x10\x05*\\\n\x11ModelVersionStage\x12\r\n\tGENERATED\x10\x00\x12\r\n\tVALIDATED\x10\x01\x12\x0c\n\x08\x44\x45PLOYED\x10\x02\x12\x0e\n\nDEPRECATED\x10\x03\x12\x0b\n\x07\x44\x45LETED\x10\x04*)\n\x0fMetricTypeProto\x12\x0b\n\x07\x44\x41TASET\x10\x00\x12\t\n\x05MODEL\x10\x01\x42)\n\x17org.aiflow.client.protoZ\x08/ai_flow\x88\x01\x01\x90\x01\x01\x62\x06proto3' , dependencies=[google_dot_protobuf_dot_wrappers__pb2.DESCRIPTOR,]) _RETURNCODE = _descriptor.EnumDescriptor( name='ReturnCode', full_name='ai_flow.ReturnCode', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='SUCCESS', index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='INTERNAL_ERROR', index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='TEMPORARILY_UNAVAILABLE', index=2, number=2, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='IO_ERROR', index=3, number=3, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='BAD_REQUEST', index=4, number=4, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='INVALID_PARAMETER_VALUE', index=5, number=1000, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='ENDPOINT_NOT_FOUND', index=6, number=1001, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='MALFORMED_REQUEST', index=7, number=1002, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='INVALID_STATE', index=8, number=1003, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='PERMISSION_DENIED', index=9, number=1004, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='FEATURE_DISABLED', index=10, number=1005, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='CUSTOMER_UNAUTHORIZED', index=11, number=1006, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='REQUEST_LIMIT_EXCEEDED', index=12, number=1007, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='RESOURCE_ALREADY_EXISTS', index=13, number=2001, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='RESOURCE_DOES_NOT_EXIST', index=14, number=2002, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='QUOTA_EXCEEDED', index=15, number=3001, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='MAX_BLOCK_SIZE_EXCEEDED', index=16, number=3002, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='MAX_READ_SIZE_EXCEEDED', index=17, number=3003, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=6669, serialized_end=7117, ) _sym_db.RegisterEnumDescriptor(_RETURNCODE) ReturnCode = enum_type_wrapper.EnumTypeWrapper(_RETURNCODE) _STATUSPROTO = _descriptor.EnumDescriptor( name='StatusProto', full_name='ai_flow.StatusProto', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='OK', index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='ERROR', index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=7119, serialized_end=7151, ) _sym_db.RegisterEnumDescriptor(_STATUSPROTO) StatusProto = enum_type_wrapper.EnumTypeWrapper(_STATUSPROTO) _DATATYPEPROTO = _descriptor.EnumDescriptor( name='DataTypeProto', full_name='ai_flow.DataTypeProto', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='DATA_TYPE_UNSPECIFIED', index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='INT32', index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='INT64', index=2, number=2, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='FLOAT32', index=3, number=3, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='FLOAT64', index=4, number=4, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='STRING', index=5, number=5, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='INT32ARRAY', index=6, number=6, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='INT64ARRAY', index=7, number=7, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='FlOAT32ARRAY', index=8, number=8, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='FLOAT64ARRAY', index=9, number=9, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='STRINGARRAY', index=10, number=10, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='BYTES', index=11, number=11, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='BYTESARRAY', index=12, number=12, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=7154, serialized_end=7368, ) _sym_db.RegisterEnumDescriptor(_DATATYPEPROTO) DataTypeProto = enum_type_wrapper.EnumTypeWrapper(_DATATYPEPROTO) _STATEPROTO = _descriptor.EnumDescriptor( name='StateProto', full_name='ai_flow.StateProto', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='STATE_UNSPECIFIED', index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='INIT', index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='STARTING', index=2, number=2, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='RUNNING', index=3, number=3, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='FINISHED', index=4, number=4, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='FAILED', index=5, number=5, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='KILLING', index=6, number=6, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='KILLED', index=7, number=7, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=7370, serialized_end=7493, ) _sym_db.RegisterEnumDescriptor(_STATEPROTO) StateProto = enum_type_wrapper.EnumTypeWrapper(_STATEPROTO) _EXECUTIONMODE = _descriptor.EnumDescriptor( name='ExecutionMode', full_name='ai_flow.ExecutionMode', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='EXECUTION_MODE_UNSPECIFIED', index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='BATCH', index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='STREAM', index=2, number=2, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=7495, serialized_end=7565, ) _sym_db.RegisterEnumDescriptor(_EXECUTIONMODE) ExecutionMode = enum_type_wrapper.EnumTypeWrapper(_EXECUTIONMODE) _MODELVERSIONSTATUS = _descriptor.EnumDescriptor( name='ModelVersionStatus', full_name='ai_flow.ModelVersionStatus', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='PENDING_REGISTRATION', index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='FAILED_REGISTRATION', index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='READY', index=2, number=3, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='PENDING_DELETION', index=3, number=4, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='FAILED_DELETION', index=4, number=5, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=7567, serialized_end=7692, ) _sym_db.RegisterEnumDescriptor(_MODELVERSIONSTATUS) ModelVersionStatus = enum_type_wrapper.EnumTypeWrapper(_MODELVERSIONSTATUS) _MODELVERSIONSTAGE = _descriptor.EnumDescriptor( name='ModelVersionStage', full_name='ai_flow.ModelVersionStage', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='GENERATED', index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='VALIDATED', index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='DEPLOYED', index=2, number=2, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='DEPRECATED', index=3, number=3, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='DELETED', index=4, number=4, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=7694, serialized_end=7786, ) _sym_db.RegisterEnumDescriptor(_MODELVERSIONSTAGE) ModelVersionStage = enum_type_wrapper.EnumTypeWrapper(_MODELVERSIONSTAGE) _METRICTYPEPROTO = _descriptor.EnumDescriptor( name='MetricTypeProto', full_name='ai_flow.MetricTypeProto', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='DATASET', index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='MODEL', index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=7788, serialized_end=7829, ) _sym_db.RegisterEnumDescriptor(_METRICTYPEPROTO) MetricTypeProto = enum_type_wrapper.EnumTypeWrapper(_METRICTYPEPROTO) SUCCESS = 0 INTERNAL_ERROR = 1 TEMPORARILY_UNAVAILABLE = 2 IO_ERROR = 3 BAD_REQUEST = 4 INVALID_PARAMETER_VALUE = 1000 ENDPOINT_NOT_FOUND = 1001 MALFORMED_REQUEST = 1002 INVALID_STATE = 1003 PERMISSION_DENIED = 1004 FEATURE_DISABLED = 1005 CUSTOMER_UNAUTHORIZED = 1006 REQUEST_LIMIT_EXCEEDED = 1007 RESOURCE_ALREADY_EXISTS = 2001 RESOURCE_DOES_NOT_EXIST = 2002 QUOTA_EXCEEDED = 3001 MAX_BLOCK_SIZE_EXCEEDED = 3002 MAX_READ_SIZE_EXCEEDED = 3003 OK = 0 ERROR = 1 DATA_TYPE_UNSPECIFIED = 0 INT32 = 1 INT64 = 2 FLOAT32 = 3 FLOAT64 = 4 STRING = 5 INT32ARRAY = 6 INT64ARRAY = 7 FlOAT32ARRAY = 8 FLOAT64ARRAY = 9 STRINGARRAY = 10 BYTES = 11 BYTESARRAY = 12 STATE_UNSPECIFIED = 0 INIT = 1 STARTING = 2 RUNNING = 3 FINISHED = 4 FAILED = 5 KILLING = 6 KILLED = 7 EXECUTION_MODE_UNSPECIFIED = 0 BATCH = 1 STREAM = 2 PENDING_REGISTRATION = 0 FAILED_REGISTRATION = 1 READY = 3 PENDING_DELETION = 4 FAILED_DELETION = 5 GENERATED = 0 VALIDATED = 1 DEPLOYED = 2 DEPRECATED = 3 DELETED = 4 DATASET = 0 MODEL = 1 _SCHEMAPROTO = _descriptor.Descriptor( name='SchemaProto', full_name='ai_flow.SchemaProto', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='name_list', full_name='ai_flow.SchemaProto.name_list', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='type_list', full_name='ai_flow.SchemaProto.type_list', index=1, number=2, type=14, cpp_type=8, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=58, serialized_end=133, ) _DATASETPROTO_PROPERTIESENTRY = _descriptor.Descriptor( name='PropertiesEntry', full_name='ai_flow.DatasetProto.PropertiesEntry', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='key', full_name='ai_flow.DatasetProto.PropertiesEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='value', full_name='ai_flow.DatasetProto.PropertiesEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'8\001', is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=797, serialized_end=846, ) _DATASETPROTO = _descriptor.Descriptor( name='DatasetProto', full_name='ai_flow.DatasetProto', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='uuid', full_name='ai_flow.DatasetProto.uuid', index=0, number=1, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='ai_flow.DatasetProto.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='properties', full_name='ai_flow.DatasetProto.properties', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='schema', full_name='ai_flow.DatasetProto.schema', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='data_format', full_name='ai_flow.DatasetProto.data_format', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='uri', full_name='ai_flow.DatasetProto.uri', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='description', full_name='ai_flow.DatasetProto.description', index=6, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='create_time', full_name='ai_flow.DatasetProto.create_time', index=7, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='update_time', full_name='ai_flow.DatasetProto.update_time', index=8, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='catalog_name', full_name='ai_flow.DatasetProto.catalog_name', index=9, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='catalog_type', full_name='ai_flow.DatasetProto.catalog_type', index=10, number=11, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='catalog_database', full_name='ai_flow.DatasetProto.catalog_database', index=11, number=12, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='catalog_connection_uri', full_name='ai_flow.DatasetProto.catalog_connection_uri', index=12, number=13, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='catalog_table', full_name='ai_flow.DatasetProto.catalog_table', index=13, number=14, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[_DATASETPROTO_PROPERTIESENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=136, serialized_end=846, ) _MODELRELATIONPROTO = _descriptor.Descriptor( name='ModelRelationProto', full_name='ai_flow.ModelRelationProto', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='uuid', full_name='ai_flow.ModelRelationProto.uuid', index=0, number=1, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='ai_flow.ModelRelationProto.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='project_id', full_name='ai_flow.ModelRelationProto.project_id', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=848, serialized_end=945, ) _MODELPROTO = _descriptor.Descriptor( name='ModelProto', full_name='ai_flow.ModelProto', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='uuid', full_name='ai_flow.ModelProto.uuid', index=0, number=1, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='ai_flow.ModelProto.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='project_id', full_name='ai_flow.ModelProto.project_id', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='model_desc', full_name='ai_flow.ModelProto.model_desc', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=948, serialized_end=1087, ) _MODELVERSIONRELATIONPROTO = _descriptor.Descriptor( name='ModelVersionRelationProto', full_name='ai_flow.ModelVersionRelationProto', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='version', full_name='ai_flow.ModelVersionRelationProto.version', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='model_id', full_name='ai_flow.ModelVersionRelationProto.model_id', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='project_snapshot_id', full_name='ai_flow.ModelVersionRelationProto.project_snapshot_id', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1090, serialized_end=1268, ) _MODELVERSIONPROTO = _descriptor.Descriptor( name='ModelVersionProto', full_name='ai_flow.ModelVersionProto', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='version', full_name='ai_flow.ModelVersionProto.version', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='model_id', full_name='ai_flow.ModelVersionProto.model_id', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='project_snapshot_id', full_name='ai_flow.ModelVersionProto.project_snapshot_id', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='model_path', full_name='ai_flow.ModelVersionProto.model_path', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='model_type', full_name='ai_flow.ModelVersionProto.model_type', index=4, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='version_desc', full_name='ai_flow.ModelVersionProto.version_desc', index=5, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='current_stage', full_name='ai_flow.ModelVersionProto.current_stage', index=6, number=8, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='create_time', full_name='ai_flow.ModelVersionProto.create_time', index=7, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1271, serialized_end=1695, ) _JOBPROTO_PROPERTIESENTRY = _descriptor.Descriptor( name='PropertiesEntry', full_name='ai_flow.JobProto.PropertiesEntry', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='key', full_name='ai_flow.JobProto.PropertiesEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='value', full_name='ai_flow.JobProto.PropertiesEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'8\001', is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=797, serialized_end=846, ) _JOBPROTO = _descriptor.Descriptor( name='JobProto', full_name='ai_flow.JobProto', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='uuid', full_name='ai_flow.JobProto.uuid', index=0, number=1, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='ai_flow.JobProto.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='workflow_execution_id', full_name='ai_flow.JobProto.workflow_execution_id', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='job_state', full_name='ai_flow.JobProto.job_state', index=3, number=4, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='properties', full_name='ai_flow.JobProto.properties', index=4, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='job_id', full_name='ai_flow.JobProto.job_id', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='start_time', full_name='ai_flow.JobProto.start_time', index=6, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='end_time', full_name='ai_flow.JobProto.end_time', index=7, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='log_uri', full_name='ai_flow.JobProto.log_uri', index=8, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='signature', full_name='ai_flow.JobProto.signature', index=9, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='workflow_execution', full_name='ai_flow.JobProto.workflow_execution', index=10, number=11, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='execution_label', full_name='ai_flow.JobProto.execution_label', index=11, number=12, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[_JOBPROTO_PROPERTIESENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1698, serialized_end=2296, ) _WORKFLOWPROTO_PROPERTIESENTRY = _descriptor.Descriptor( name='PropertiesEntry', full_name='ai_flow.WorkflowProto.PropertiesEntry', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='key', full_name='ai_flow.WorkflowProto.PropertiesEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='value', full_name='ai_flow.WorkflowProto.PropertiesEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'8\001', is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=797, serialized_end=846, ) _WORKFLOWPROTO = _descriptor.Descriptor( name='WorkflowProto', full_name='ai_flow.WorkflowProto', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='uuid', full_name='ai_flow.WorkflowProto.uuid', index=0, number=1, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='ai_flow.WorkflowProto.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='workflow_json', full_name='ai_flow.WorkflowProto.workflow_json', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='properties', full_name='ai_flow.WorkflowProto.properties', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='namespace', full_name='ai_flow.WorkflowProto.namespace', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[_WORKFLOWPROTO_PROPERTIESENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2299, serialized_end=2525, ) _WORKFLOWEXECUTIONPROTO_PROPERTIESENTRY = _descriptor.Descriptor( name='PropertiesEntry', full_name='ai_flow.WorkflowExecutionProto.PropertiesEntry', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='key', full_name='ai_flow.WorkflowExecutionProto.PropertiesEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='value', full_name='ai_flow.WorkflowExecutionProto.PropertiesEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'8\001', is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=797, serialized_end=846, ) _WORKFLOWEXECUTIONPROTO = _descriptor.Descriptor( name='WorkflowExecutionProto', full_name='ai_flow.WorkflowExecutionProto', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='uuid', full_name='ai_flow.WorkflowExecutionProto.uuid', index=0, number=1, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='ai_flow.WorkflowExecutionProto.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='project_id', full_name='ai_flow.WorkflowExecutionProto.project_id', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='execution_state', full_name='ai_flow.WorkflowExecutionProto.execution_state', index=3, number=4, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='properties', full_name='ai_flow.WorkflowExecutionProto.properties', index=4, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='start_time', full_name='ai_flow.WorkflowExecutionProto.start_time', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='end_time', full_name='ai_flow.WorkflowExecutionProto.end_time', index=6, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='log_uri', full_name='ai_flow.WorkflowExecutionProto.log_uri', index=7, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='workflow_json', full_name='ai_flow.WorkflowExecutionProto.workflow_json', index=8, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='signature', full_name='ai_flow.WorkflowExecutionProto.signature', index=9, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='execution_id', full_name='ai_flow.WorkflowExecutionProto.execution_id', index=10, number=11, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='workflow', full_name='ai_flow.WorkflowExecutionProto.workflow', index=11, number=12, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='context', full_name='ai_flow.WorkflowExecutionProto.context', index=12, number=13, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[_WORKFLOWEXECUTIONPROTO_PROPERTIESENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2528, serialized_end=3151, ) _PROJECTPROTO_PROPERTIESENTRY = _descriptor.Descriptor( name='PropertiesEntry', full_name='ai_flow.ProjectProto.PropertiesEntry', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='key', full_name='ai_flow.ProjectProto.PropertiesEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='value', full_name='ai_flow.ProjectProto.PropertiesEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'8\001', is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=797, serialized_end=846, ) _PROJECTPROTO = _descriptor.Descriptor( name='ProjectProto', full_name='ai_flow.ProjectProto', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='uuid', full_name='ai_flow.ProjectProto.uuid', index=0, number=1, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='ai_flow.ProjectProto.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='properties', full_name='ai_flow.ProjectProto.properties', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='uri', full_name='ai_flow.ProjectProto.uri', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[_PROJECTPROTO_PROPERTIESENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3154, serialized_end=3349, ) _WORKFLOWMETAPROTO_PROPERTIESENTRY = _descriptor.Descriptor( name='PropertiesEntry', full_name='ai_flow.WorkflowMetaProto.PropertiesEntry', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='key', full_name='ai_flow.WorkflowMetaProto.PropertiesEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='value', full_name='ai_flow.WorkflowMetaProto.PropertiesEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'8\001', is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=797, serialized_end=846, ) _WORKFLOWMETAPROTO = _descriptor.Descriptor( name='WorkflowMetaProto', full_name='ai_flow.WorkflowMetaProto', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='uuid', full_name='ai_flow.WorkflowMetaProto.uuid', index=0, number=1, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='ai_flow.WorkflowMetaProto.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='project_id', full_name='ai_flow.WorkflowMetaProto.project_id', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='properties', full_name='ai_flow.WorkflowMetaProto.properties', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='create_time', full_name='ai_flow.WorkflowMetaProto.create_time', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='update_time', full_name='ai_flow.WorkflowMetaProto.update_time', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='context_extractor_in_bytes', full_name='ai_flow.WorkflowMetaProto.context_extractor_in_bytes', index=6, number=7, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b"", message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='graph', full_name='ai_flow.WorkflowMetaProto.graph', index=7, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[_WORKFLOWMETAPROTO_PROPERTIESENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3352, serialized_end=3744, ) _WORKFLOWSNAPSHOTPROTO = _descriptor.Descriptor( name='WorkflowSnapshotProto', full_name='ai_flow.WorkflowSnapshotProto', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='uuid', full_name='ai_flow.WorkflowSnapshotProto.uuid', index=0, number=1, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='workflow_id', full_name='ai_flow.WorkflowSnapshotProto.workflow_id', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='uri', full_name='ai_flow.WorkflowSnapshotProto.uri', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='signature', full_name='ai_flow.WorkflowSnapshotProto.signature', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='create_time', full_name='ai_flow.WorkflowSnapshotProto.create_time', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3747, serialized_end=3976, ) _ARTIFACTPROTO_PROPERTIESENTRY = _descriptor.Descriptor( name='PropertiesEntry', full_name='ai_flow.ArtifactProto.PropertiesEntry', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='key', full_name='ai_flow.ArtifactProto.PropertiesEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='value', full_name='ai_flow.ArtifactProto.PropertiesEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'8\001', is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=797, serialized_end=846, ) _ARTIFACTPROTO = _descriptor.Descriptor( name='ArtifactProto', full_name='ai_flow.ArtifactProto', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='uuid', full_name='ai_flow.ArtifactProto.uuid', index=0, number=1, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='ai_flow.ArtifactProto.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='properties', full_name='ai_flow.ArtifactProto.properties', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='artifact_type', full_name='ai_flow.ArtifactProto.artifact_type', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='uri', full_name='ai_flow.ArtifactProto.uri', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='description', full_name='ai_flow.ArtifactProto.description', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='create_time', full_name='ai_flow.ArtifactProto.create_time', index=6, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='update_time', full_name='ai_flow.ArtifactProto.update_time', index=7, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[_ARTIFACTPROTO_PROPERTIESENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3979, serialized_end=4380, ) _REGISTEREDMODELPARAM = _descriptor.Descriptor( name='RegisteredModelParam', full_name='ai_flow.RegisteredModelParam', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='model_name', full_name='ai_flow.RegisteredModelParam.model_name', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='model_desc', full_name='ai_flow.RegisteredModelParam.model_desc', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=4382, serialized_end=4504, ) _MODELVERSIONPARAM = _descriptor.Descriptor( name='ModelVersionParam', full_name='ai_flow.ModelVersionParam', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='model_path', full_name='ai_flow.ModelVersionParam.model_path', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='model_type', full_name='ai_flow.ModelVersionParam.model_type', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='version_desc', full_name='ai_flow.ModelVersionParam.version_desc', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='current_stage', full_name='ai_flow.ModelVersionParam.current_stage', index=3, number=4, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=4507, serialized_end=4729, ) _MODELMETAPARAM = _descriptor.Descriptor( name='ModelMetaParam', full_name='ai_flow.ModelMetaParam', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='model_name', full_name='ai_flow.ModelMetaParam.model_name', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='model_version', full_name='ai_flow.ModelMetaParam.model_version', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=4731, serialized_end=4849, ) _RESPONSE = _descriptor.Descriptor( name='Response', full_name='ai_flow.Response', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='return_code', full_name='ai_flow.Response.return_code', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='return_msg', full_name='ai_flow.Response.return_msg', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='data', full_name='ai_flow.Response.data', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=4851, serialized_end=4916, ) _REGISTEREDMODELMETA = _descriptor.Descriptor( name='RegisteredModelMeta', full_name='ai_flow.RegisteredModelMeta', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='model_name', full_name='ai_flow.RegisteredModelMeta.model_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='model_desc', full_name='ai_flow.RegisteredModelMeta.model_desc', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=4918, serialized_end=5009, ) _MODELVERSIONMETA = _descriptor.Descriptor( name='ModelVersionMeta', full_name='ai_flow.ModelVersionMeta', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='model_name', full_name='ai_flow.ModelVersionMeta.model_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='model_version', full_name='ai_flow.ModelVersionMeta.model_version', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='model_path', full_name='ai_flow.ModelVersionMeta.model_path', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='model_type', full_name='ai_flow.ModelVersionMeta.model_type', index=3, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='version_desc', full_name='ai_flow.ModelVersionMeta.version_desc', index=4, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='version_status', full_name='ai_flow.ModelVersionMeta.version_status', index=5, number=7, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='current_stage', full_name='ai_flow.ModelVersionMeta.current_stage', index=6, number=8, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='create_time', full_name='ai_flow.ModelVersionMeta.create_time', index=7, number=9, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=5012, serialized_end=5350, ) _REGISTEREDMODELDETAIL = _descriptor.Descriptor( name='RegisteredModelDetail', full_name='ai_flow.RegisteredModelDetail', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='registered_model', full_name='ai_flow.RegisteredModelDetail.registered_model', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='latest_model_version', full_name='ai_flow.RegisteredModelDetail.latest_model_version', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=5353, serialized_end=5489, ) _REGISTEREDMODELMETAS = _descriptor.Descriptor( name='RegisteredModelMetas', full_name='ai_flow.RegisteredModelMetas', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='registered_models', full_name='ai_flow.RegisteredModelMetas.registered_models', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=5491, serialized_end=5570, ) _RESULTPROTO = _descriptor.Descriptor( name='ResultProto', full_name='ai_flow.ResultProto', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='status', full_name='ai_flow.ResultProto.status', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='error_message', full_name='ai_flow.ResultProto.error_message', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=5572, serialized_end=5646, ) _METRICMETAPROTO_PROPERTIESENTRY = _descriptor.Descriptor( name='PropertiesEntry', full_name='ai_flow.MetricMetaProto.PropertiesEntry', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='key', full_name='ai_flow.MetricMetaProto.PropertiesEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='value', full_name='ai_flow.MetricMetaProto.PropertiesEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'8\001', is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=797, serialized_end=846, ) _METRICMETAPROTO = _descriptor.Descriptor( name='MetricMetaProto', full_name='ai_flow.MetricMetaProto', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='metric_name', full_name='ai_flow.MetricMetaProto.metric_name', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='metric_type', full_name='ai_flow.MetricMetaProto.metric_type', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='metric_desc', full_name='ai_flow.MetricMetaProto.metric_desc', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='project_name', full_name='ai_flow.MetricMetaProto.project_name', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='dataset_name', full_name='ai_flow.MetricMetaProto.dataset_name', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='model_name', full_name='ai_flow.MetricMetaProto.model_name', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='job_name', full_name='ai_flow.MetricMetaProto.job_name', index=6, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='start_time', full_name='ai_flow.MetricMetaProto.start_time', index=7, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='end_time', full_name='ai_flow.MetricMetaProto.end_time', index=8, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='uri', full_name='ai_flow.MetricMetaProto.uri', index=9, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='tags', full_name='ai_flow.MetricMetaProto.tags', index=10, number=11, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='properties', full_name='ai_flow.MetricMetaProto.properties', index=11, number=12, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[_METRICMETAPROTO_PROPERTIESENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=5649, serialized_end=6313, ) _METRICSUMMARYPROTO = _descriptor.Descriptor( name='MetricSummaryProto', full_name='ai_flow.MetricSummaryProto', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='uuid', full_name='ai_flow.MetricSummaryProto.uuid', index=0, number=1, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='metric_name', full_name='ai_flow.MetricSummaryProto.metric_name', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='metric_key', full_name='ai_flow.MetricSummaryProto.metric_key', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='metric_value', full_name='ai_flow.MetricSummaryProto.metric_value', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='metric_timestamp', full_name='ai_flow.MetricSummaryProto.metric_timestamp', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='model_version', full_name='ai_flow.MetricSummaryProto.model_version', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='job_execution_id', full_name='ai_flow.MetricSummaryProto.job_execution_id', index=6, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=6316, serialized_end=6666, ) _SCHEMAPROTO.fields_by_name['type_list'].enum_type = _DATATYPEPROTO _DATASETPROTO_PROPERTIESENTRY.containing_type = _DATASETPROTO _DATASETPROTO.fields_by_name['properties'].message_type = _DATASETPROTO_PROPERTIESENTRY _DATASETPROTO.fields_by_name['schema'].message_type = _SCHEMAPROTO _DATASETPROTO.fields_by_name['data_format'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _DATASETPROTO.fields_by_name['uri'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _DATASETPROTO.fields_by_name['description'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _DATASETPROTO.fields_by_name['create_time'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _DATASETPROTO.fields_by_name['update_time'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _DATASETPROTO.fields_by_name['catalog_name'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _DATASETPROTO.fields_by_name['catalog_type'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _DATASETPROTO.fields_by_name['catalog_database'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _DATASETPROTO.fields_by_name['catalog_connection_uri'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _DATASETPROTO.fields_by_name['catalog_table'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _MODELRELATIONPROTO.fields_by_name['project_id'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _MODELPROTO.fields_by_name['project_id'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _MODELPROTO.fields_by_name['model_desc'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _MODELVERSIONRELATIONPROTO.fields_by_name['version'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT32VALUE _MODELVERSIONRELATIONPROTO.fields_by_name['model_id'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _MODELVERSIONRELATIONPROTO.fields_by_name['project_snapshot_id'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _MODELVERSIONPROTO.fields_by_name['version'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT32VALUE _MODELVERSIONPROTO.fields_by_name['model_id'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _MODELVERSIONPROTO.fields_by_name['project_snapshot_id'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _MODELVERSIONPROTO.fields_by_name['model_path'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _MODELVERSIONPROTO.fields_by_name['model_type'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _MODELVERSIONPROTO.fields_by_name['version_desc'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _MODELVERSIONPROTO.fields_by_name['current_stage'].enum_type = _MODELVERSIONSTAGE _MODELVERSIONPROTO.fields_by_name['create_time'].message_type = google_dot_protobuf_dot_wrappers__pb2._DOUBLEVALUE _JOBPROTO_PROPERTIESENTRY.containing_type = _JOBPROTO _JOBPROTO.fields_by_name['workflow_execution_id'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _JOBPROTO.fields_by_name['job_state'].enum_type = _STATEPROTO _JOBPROTO.fields_by_name['properties'].message_type = _JOBPROTO_PROPERTIESENTRY _JOBPROTO.fields_by_name['job_id'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _JOBPROTO.fields_by_name['start_time'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _JOBPROTO.fields_by_name['end_time'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _JOBPROTO.fields_by_name['log_uri'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _JOBPROTO.fields_by_name['signature'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _JOBPROTO.fields_by_name['workflow_execution'].message_type = _WORKFLOWEXECUTIONPROTO _JOBPROTO.fields_by_name['execution_label'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _WORKFLOWPROTO_PROPERTIESENTRY.containing_type = _WORKFLOWPROTO _WORKFLOWPROTO.fields_by_name['workflow_json'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _WORKFLOWPROTO.fields_by_name['properties'].message_type = _WORKFLOWPROTO_PROPERTIESENTRY _WORKFLOWEXECUTIONPROTO_PROPERTIESENTRY.containing_type = _WORKFLOWEXECUTIONPROTO _WORKFLOWEXECUTIONPROTO.fields_by_name['project_id'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _WORKFLOWEXECUTIONPROTO.fields_by_name['execution_state'].enum_type = _STATEPROTO _WORKFLOWEXECUTIONPROTO.fields_by_name['properties'].message_type = _WORKFLOWEXECUTIONPROTO_PROPERTIESENTRY _WORKFLOWEXECUTIONPROTO.fields_by_name['start_time'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _WORKFLOWEXECUTIONPROTO.fields_by_name['end_time'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _WORKFLOWEXECUTIONPROTO.fields_by_name['log_uri'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _WORKFLOWEXECUTIONPROTO.fields_by_name['workflow_json'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _WORKFLOWEXECUTIONPROTO.fields_by_name['signature'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _WORKFLOWEXECUTIONPROTO.fields_by_name['workflow'].message_type = _WORKFLOWPROTO _WORKFLOWEXECUTIONPROTO.fields_by_name['context'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _PROJECTPROTO_PROPERTIESENTRY.containing_type = _PROJECTPROTO _PROJECTPROTO.fields_by_name['properties'].message_type = _PROJECTPROTO_PROPERTIESENTRY _PROJECTPROTO.fields_by_name['uri'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _WORKFLOWMETAPROTO_PROPERTIESENTRY.containing_type = _WORKFLOWMETAPROTO _WORKFLOWMETAPROTO.fields_by_name['project_id'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _WORKFLOWMETAPROTO.fields_by_name['properties'].message_type = _WORKFLOWMETAPROTO_PROPERTIESENTRY _WORKFLOWMETAPROTO.fields_by_name['create_time'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _WORKFLOWMETAPROTO.fields_by_name['update_time'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _WORKFLOWMETAPROTO.fields_by_name['graph'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _WORKFLOWSNAPSHOTPROTO.fields_by_name['workflow_id'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _WORKFLOWSNAPSHOTPROTO.fields_by_name['uri'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _WORKFLOWSNAPSHOTPROTO.fields_by_name['signature'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _WORKFLOWSNAPSHOTPROTO.fields_by_name['create_time'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _ARTIFACTPROTO_PROPERTIESENTRY.containing_type = _ARTIFACTPROTO _ARTIFACTPROTO.fields_by_name['properties'].message_type = _ARTIFACTPROTO_PROPERTIESENTRY _ARTIFACTPROTO.fields_by_name['artifact_type'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _ARTIFACTPROTO.fields_by_name['uri'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _ARTIFACTPROTO.fields_by_name['description'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _ARTIFACTPROTO.fields_by_name['create_time'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _ARTIFACTPROTO.fields_by_name['update_time'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _REGISTEREDMODELPARAM.fields_by_name['model_name'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _REGISTEREDMODELPARAM.fields_by_name['model_desc'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _MODELVERSIONPARAM.fields_by_name['model_path'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _MODELVERSIONPARAM.fields_by_name['model_type'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _MODELVERSIONPARAM.fields_by_name['version_desc'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _MODELVERSIONPARAM.fields_by_name['current_stage'].enum_type = _MODELVERSIONSTAGE _MODELMETAPARAM.fields_by_name['model_name'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _MODELMETAPARAM.fields_by_name['model_version'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT32VALUE _REGISTEREDMODELMETA.fields_by_name['model_desc'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _MODELVERSIONMETA.fields_by_name['model_path'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _MODELVERSIONMETA.fields_by_name['model_type'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _MODELVERSIONMETA.fields_by_name['version_desc'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _MODELVERSIONMETA.fields_by_name['version_status'].enum_type = _MODELVERSIONSTATUS _MODELVERSIONMETA.fields_by_name['current_stage'].enum_type = _MODELVERSIONSTAGE _REGISTEREDMODELDETAIL.fields_by_name['registered_model'].message_type = _REGISTEREDMODELMETA _REGISTEREDMODELDETAIL.fields_by_name['latest_model_version'].message_type = _MODELVERSIONMETA _REGISTEREDMODELMETAS.fields_by_name['registered_models'].message_type = _REGISTEREDMODELMETA _RESULTPROTO.fields_by_name['status'].enum_type = _STATUSPROTO _METRICMETAPROTO_PROPERTIESENTRY.containing_type = _METRICMETAPROTO _METRICMETAPROTO.fields_by_name['metric_name'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _METRICMETAPROTO.fields_by_name['metric_type'].enum_type = _METRICTYPEPROTO _METRICMETAPROTO.fields_by_name['metric_desc'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _METRICMETAPROTO.fields_by_name['project_name'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _METRICMETAPROTO.fields_by_name['dataset_name'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _METRICMETAPROTO.fields_by_name['model_name'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _METRICMETAPROTO.fields_by_name['job_name'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _METRICMETAPROTO.fields_by_name['start_time'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _METRICMETAPROTO.fields_by_name['end_time'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _METRICMETAPROTO.fields_by_name['uri'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _METRICMETAPROTO.fields_by_name['tags'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _METRICMETAPROTO.fields_by_name['properties'].message_type = _METRICMETAPROTO_PROPERTIESENTRY _METRICSUMMARYPROTO.fields_by_name['metric_name'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _METRICSUMMARYPROTO.fields_by_name['metric_key'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _METRICSUMMARYPROTO.fields_by_name['metric_value'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _METRICSUMMARYPROTO.fields_by_name['metric_timestamp'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _METRICSUMMARYPROTO.fields_by_name['model_version'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT32VALUE _METRICSUMMARYPROTO.fields_by_name['job_execution_id'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE DESCRIPTOR.message_types_by_name['SchemaProto'] = _SCHEMAPROTO DESCRIPTOR.message_types_by_name['DatasetProto'] = _DATASETPROTO DESCRIPTOR.message_types_by_name['ModelRelationProto'] = _MODELRELATIONPROTO DESCRIPTOR.message_types_by_name['ModelProto'] = _MODELPROTO DESCRIPTOR.message_types_by_name['ModelVersionRelationProto'] = _MODELVERSIONRELATIONPROTO DESCRIPTOR.message_types_by_name['ModelVersionProto'] = _MODELVERSIONPROTO DESCRIPTOR.message_types_by_name['JobProto'] = _JOBPROTO DESCRIPTOR.message_types_by_name['WorkflowProto'] = _WORKFLOWPROTO DESCRIPTOR.message_types_by_name['WorkflowExecutionProto'] = _WORKFLOWEXECUTIONPROTO DESCRIPTOR.message_types_by_name['ProjectProto'] = _PROJECTPROTO DESCRIPTOR.message_types_by_name['WorkflowMetaProto'] = _WORKFLOWMETAPROTO DESCRIPTOR.message_types_by_name['WorkflowSnapshotProto'] = _WORKFLOWSNAPSHOTPROTO DESCRIPTOR.message_types_by_name['ArtifactProto'] = _ARTIFACTPROTO DESCRIPTOR.message_types_by_name['RegisteredModelParam'] = _REGISTEREDMODELPARAM DESCRIPTOR.message_types_by_name['ModelVersionParam'] = _MODELVERSIONPARAM DESCRIPTOR.message_types_by_name['ModelMetaParam'] = _MODELMETAPARAM DESCRIPTOR.message_types_by_name['Response'] = _RESPONSE DESCRIPTOR.message_types_by_name['RegisteredModelMeta'] = _REGISTEREDMODELMETA DESCRIPTOR.message_types_by_name['ModelVersionMeta'] = _MODELVERSIONMETA DESCRIPTOR.message_types_by_name['RegisteredModelDetail'] = _REGISTEREDMODELDETAIL DESCRIPTOR.message_types_by_name['RegisteredModelMetas'] = _REGISTEREDMODELMETAS DESCRIPTOR.message_types_by_name['ResultProto'] = _RESULTPROTO DESCRIPTOR.message_types_by_name['MetricMetaProto'] = _METRICMETAPROTO DESCRIPTOR.message_types_by_name['MetricSummaryProto'] = _METRICSUMMARYPROTO DESCRIPTOR.enum_types_by_name['ReturnCode'] = _RETURNCODE DESCRIPTOR.enum_types_by_name['StatusProto'] = _STATUSPROTO DESCRIPTOR.enum_types_by_name['DataTypeProto'] = _DATATYPEPROTO DESCRIPTOR.enum_types_by_name['StateProto'] = _STATEPROTO DESCRIPTOR.enum_types_by_name['ExecutionMode'] = _EXECUTIONMODE DESCRIPTOR.enum_types_by_name['ModelVersionStatus'] = _MODELVERSIONSTATUS DESCRIPTOR.enum_types_by_name['ModelVersionStage'] = _MODELVERSIONSTAGE DESCRIPTOR.enum_types_by_name['MetricTypeProto'] = _METRICTYPEPROTO _sym_db.RegisterFileDescriptor(DESCRIPTOR) SchemaProto = _reflection.GeneratedProtocolMessageType('SchemaProto', (_message.Message,), { 'DESCRIPTOR' : _SCHEMAPROTO, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.SchemaProto) }) _sym_db.RegisterMessage(SchemaProto) DatasetProto = _reflection.GeneratedProtocolMessageType('DatasetProto', (_message.Message,), { 'PropertiesEntry' : _reflection.GeneratedProtocolMessageType('PropertiesEntry', (_message.Message,), { 'DESCRIPTOR' : _DATASETPROTO_PROPERTIESENTRY, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.DatasetProto.PropertiesEntry) }) , 'DESCRIPTOR' : _DATASETPROTO, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.DatasetProto) }) _sym_db.RegisterMessage(DatasetProto) _sym_db.RegisterMessage(DatasetProto.PropertiesEntry) ModelRelationProto = _reflection.GeneratedProtocolMessageType('ModelRelationProto', (_message.Message,), { 'DESCRIPTOR' : _MODELRELATIONPROTO, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.ModelRelationProto) }) _sym_db.RegisterMessage(ModelRelationProto) ModelProto = _reflection.GeneratedProtocolMessageType('ModelProto', (_message.Message,), { 'DESCRIPTOR' : _MODELPROTO, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.ModelProto) }) _sym_db.RegisterMessage(ModelProto) ModelVersionRelationProto = _reflection.GeneratedProtocolMessageType('ModelVersionRelationProto', (_message.Message,), { 'DESCRIPTOR' : _MODELVERSIONRELATIONPROTO, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.ModelVersionRelationProto) }) _sym_db.RegisterMessage(ModelVersionRelationProto) ModelVersionProto = _reflection.GeneratedProtocolMessageType('ModelVersionProto', (_message.Message,), { 'DESCRIPTOR' : _MODELVERSIONPROTO, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.ModelVersionProto) }) _sym_db.RegisterMessage(ModelVersionProto) JobProto = _reflection.GeneratedProtocolMessageType('JobProto', (_message.Message,), { 'PropertiesEntry' : _reflection.GeneratedProtocolMessageType('PropertiesEntry', (_message.Message,), { 'DESCRIPTOR' : _JOBPROTO_PROPERTIESENTRY, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.JobProto.PropertiesEntry) }) , 'DESCRIPTOR' : _JOBPROTO, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.JobProto) }) _sym_db.RegisterMessage(JobProto) _sym_db.RegisterMessage(JobProto.PropertiesEntry) WorkflowProto = _reflection.GeneratedProtocolMessageType('WorkflowProto', (_message.Message,), { 'PropertiesEntry' : _reflection.GeneratedProtocolMessageType('PropertiesEntry', (_message.Message,), { 'DESCRIPTOR' : _WORKFLOWPROTO_PROPERTIESENTRY, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.WorkflowProto.PropertiesEntry) }) , 'DESCRIPTOR' : _WORKFLOWPROTO, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.WorkflowProto) }) _sym_db.RegisterMessage(WorkflowProto) _sym_db.RegisterMessage(WorkflowProto.PropertiesEntry) WorkflowExecutionProto = _reflection.GeneratedProtocolMessageType('WorkflowExecutionProto', (_message.Message,), { 'PropertiesEntry' : _reflection.GeneratedProtocolMessageType('PropertiesEntry', (_message.Message,), { 'DESCRIPTOR' : _WORKFLOWEXECUTIONPROTO_PROPERTIESENTRY, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.WorkflowExecutionProto.PropertiesEntry) }) , 'DESCRIPTOR' : _WORKFLOWEXECUTIONPROTO, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.WorkflowExecutionProto) }) _sym_db.RegisterMessage(WorkflowExecutionProto) _sym_db.RegisterMessage(WorkflowExecutionProto.PropertiesEntry) ProjectProto = _reflection.GeneratedProtocolMessageType('ProjectProto', (_message.Message,), { 'PropertiesEntry' : _reflection.GeneratedProtocolMessageType('PropertiesEntry', (_message.Message,), { 'DESCRIPTOR' : _PROJECTPROTO_PROPERTIESENTRY, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.ProjectProto.PropertiesEntry) }) , 'DESCRIPTOR' : _PROJECTPROTO, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.ProjectProto) }) _sym_db.RegisterMessage(ProjectProto) _sym_db.RegisterMessage(ProjectProto.PropertiesEntry) WorkflowMetaProto = _reflection.GeneratedProtocolMessageType('WorkflowMetaProto', (_message.Message,), { 'PropertiesEntry' : _reflection.GeneratedProtocolMessageType('PropertiesEntry', (_message.Message,), { 'DESCRIPTOR' : _WORKFLOWMETAPROTO_PROPERTIESENTRY, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.WorkflowMetaProto.PropertiesEntry) }) , 'DESCRIPTOR' : _WORKFLOWMETAPROTO, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.WorkflowMetaProto) }) _sym_db.RegisterMessage(WorkflowMetaProto) _sym_db.RegisterMessage(WorkflowMetaProto.PropertiesEntry) WorkflowSnapshotProto = _reflection.GeneratedProtocolMessageType('WorkflowSnapshotProto', (_message.Message,), { 'DESCRIPTOR' : _WORKFLOWSNAPSHOTPROTO, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.WorkflowSnapshotProto) }) _sym_db.RegisterMessage(WorkflowSnapshotProto) ArtifactProto = _reflection.GeneratedProtocolMessageType('ArtifactProto', (_message.Message,), { 'PropertiesEntry' : _reflection.GeneratedProtocolMessageType('PropertiesEntry', (_message.Message,), { 'DESCRIPTOR' : _ARTIFACTPROTO_PROPERTIESENTRY, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.ArtifactProto.PropertiesEntry) }) , 'DESCRIPTOR' : _ARTIFACTPROTO, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.ArtifactProto) }) _sym_db.RegisterMessage(ArtifactProto) _sym_db.RegisterMessage(ArtifactProto.PropertiesEntry) RegisteredModelParam = _reflection.GeneratedProtocolMessageType('RegisteredModelParam', (_message.Message,), { 'DESCRIPTOR' : _REGISTEREDMODELPARAM, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.RegisteredModelParam) }) _sym_db.RegisterMessage(RegisteredModelParam) ModelVersionParam = _reflection.GeneratedProtocolMessageType('ModelVersionParam', (_message.Message,), { 'DESCRIPTOR' : _MODELVERSIONPARAM, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.ModelVersionParam) }) _sym_db.RegisterMessage(ModelVersionParam) ModelMetaParam = _reflection.GeneratedProtocolMessageType('ModelMetaParam', (_message.Message,), { 'DESCRIPTOR' : _MODELMETAPARAM, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.ModelMetaParam) }) _sym_db.RegisterMessage(ModelMetaParam) Response = _reflection.GeneratedProtocolMessageType('Response', (_message.Message,), { 'DESCRIPTOR' : _RESPONSE, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.Response) }) _sym_db.RegisterMessage(Response) RegisteredModelMeta = _reflection.GeneratedProtocolMessageType('RegisteredModelMeta', (_message.Message,), { 'DESCRIPTOR' : _REGISTEREDMODELMETA, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.RegisteredModelMeta) }) _sym_db.RegisterMessage(RegisteredModelMeta) ModelVersionMeta = _reflection.GeneratedProtocolMessageType('ModelVersionMeta', (_message.Message,), { 'DESCRIPTOR' : _MODELVERSIONMETA, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.ModelVersionMeta) }) _sym_db.RegisterMessage(ModelVersionMeta) RegisteredModelDetail = _reflection.GeneratedProtocolMessageType('RegisteredModelDetail', (_message.Message,), { 'DESCRIPTOR' : _REGISTEREDMODELDETAIL, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.RegisteredModelDetail) }) _sym_db.RegisterMessage(RegisteredModelDetail) RegisteredModelMetas = _reflection.GeneratedProtocolMessageType('RegisteredModelMetas', (_message.Message,), { 'DESCRIPTOR' : _REGISTEREDMODELMETAS, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.RegisteredModelMetas) }) _sym_db.RegisterMessage(RegisteredModelMetas) ResultProto = _reflection.GeneratedProtocolMessageType('ResultProto', (_message.Message,), { 'DESCRIPTOR' : _RESULTPROTO, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.ResultProto) }) _sym_db.RegisterMessage(ResultProto) MetricMetaProto = _reflection.GeneratedProtocolMessageType('MetricMetaProto', (_message.Message,), { 'PropertiesEntry' : _reflection.GeneratedProtocolMessageType('PropertiesEntry', (_message.Message,), { 'DESCRIPTOR' : _METRICMETAPROTO_PROPERTIESENTRY, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.MetricMetaProto.PropertiesEntry) }) , 'DESCRIPTOR' : _METRICMETAPROTO, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.MetricMetaProto) }) _sym_db.RegisterMessage(MetricMetaProto) _sym_db.RegisterMessage(MetricMetaProto.PropertiesEntry) MetricSummaryProto = _reflection.GeneratedProtocolMessageType('MetricSummaryProto', (_message.Message,), { 'DESCRIPTOR' : _METRICSUMMARYPROTO, '__module__' : 'message_pb2' # @@protoc_insertion_point(class_scope:ai_flow.MetricSummaryProto) }) _sym_db.RegisterMessage(MetricSummaryProto) DESCRIPTOR._options = None _DATASETPROTO_PROPERTIESENTRY._options = None _JOBPROTO_PROPERTIESENTRY._options = None _WORKFLOWPROTO_PROPERTIESENTRY._options = None _WORKFLOWEXECUTIONPROTO_PROPERTIESENTRY._options = None _PROJECTPROTO_PROPERTIESENTRY._options = None _WORKFLOWMETAPROTO_PROPERTIESENTRY._options = None _ARTIFACTPROTO_PROPERTIESENTRY._options = None _METRICMETAPROTO_PROPERTIESENTRY._options = None # @@protoc_insertion_point(module_scope)
47.805839
12,989
0.769887
ba08393a82b8c3f297e9c51f13c5fa53c10a7ff8
286
py
Python
InternetOfThings101/hello.py
Guanatos/theiotlearninginitiative
2ea81180f0911b5915ca1ba9af695d7c1330a349
[ "Apache-2.0" ]
null
null
null
InternetOfThings101/hello.py
Guanatos/theiotlearninginitiative
2ea81180f0911b5915ca1ba9af695d7c1330a349
[ "Apache-2.0" ]
null
null
null
InternetOfThings101/hello.py
Guanatos/theiotlearninginitiative
2ea81180f0911b5915ca1ba9af695d7c1330a349
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python my_str = "Hello World!!!" split = my_str.split() print(split) A = list(range(10)) print(A) B = [11,12,13,14] print(B) A.append(12) print("Append to A",A) age = 55 if age == 35: print("Age is equal to 35!") for x in range(3,16): if x % 2 == 0: print(x)
16.823529
31
0.594406
90798118444d755b3011d6760d284aecf1c6a3ac
286
py
Python
app/constants/letter_type.py
joelbcastillo/NYCOpenRecords
001dfa21cc33d75a9067cae78752c5ba5734718b
[ "Apache-2.0" ]
37
2016-01-21T18:33:56.000Z
2021-10-24T01:43:20.000Z
app/constants/letter_type.py
CityOfNewYork/NYCOpenRecords
476a236a573e6f3a2f96c6537a30ee27b2bd3a2b
[ "Apache-2.0" ]
179
2016-01-21T21:33:31.000Z
2022-02-15T21:31:35.000Z
app/constants/letter_type.py
joelbcastillo/NYCOpenRecords
001dfa21cc33d75a9067cae78752c5ba5734718b
[ "Apache-2.0" ]
13
2017-05-19T17:27:31.000Z
2020-07-05T00:55:29.000Z
from app.constants import ( determination_type, response_type ) letter_type = [ determination_type.ACKNOWLEDGMENT, determination_type.EXTENSION, determination_type.CLOSING, determination_type.DENIAL, determination_type.REOPENING, response_type.LETTER ]
20.428571
38
0.762238
accfdd21b9fc322814e78dd12f667976516bc06e
16,865
py
Python
YOLO/.history/pytorch-yolo-v3/video_demo_v1_20201106020535.py
jphacks/D_2003
60a5684d549862e85bdf758069518702d9925a48
[ "MIT" ]
1
2020-11-07T07:58:13.000Z
2020-11-07T07:58:13.000Z
YOLO/.history/pytorch-yolo-v3/video_demo_v1_20201106020535.py
jphacks/D_2003
60a5684d549862e85bdf758069518702d9925a48
[ "MIT" ]
null
null
null
YOLO/.history/pytorch-yolo-v3/video_demo_v1_20201106020535.py
jphacks/D_2003
60a5684d549862e85bdf758069518702d9925a48
[ "MIT" ]
4
2020-11-02T02:51:45.000Z
2020-11-07T02:54:47.000Z
from __future__ import division import time import torch import torch.nn as nn from torch.autograd import Variable import numpy as np import cv2 from util import * from darknet import Darknet from preprocess import prep_image, inp_to_image import pandas as pd import random import argparse import pickle as pkl import requests from requests.auth import HTTPDigestAuth import io from PIL import Image, ImageDraw, ImageFilter import play import csv import itertools with open('csv/Lidar.csv', 'r', encoding="utf-8_sig", newline = '') as f: l = csv.reader(f) LiDAR = [row for row in l] # for row in LiDAR: # print(row) print("LiDAR_len", len(LiDAR)) def prep_image(img, inp_dim): # CNNに通すために画像を加工する orig_im = img dim = orig_im.shape[1], orig_im.shape[0] img = cv2.resize(orig_im, (inp_dim, inp_dim)) img_ = img[:,:,::-1].transpose((2,0,1)).copy() img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0) return img_, orig_im, dim def count(x, img, count): # 画像に結果を描画 c1 = tuple(x[1:3].int()) c2 = tuple(x[3:5].int()) cls = int(x[-1]) label = "{0}".format(classes[cls]) print("label:\n", label) # 人数カウント if(label=='no-mask'): count+=1 print(count) return count def write(x, img,camId): global count global point p = [0,0] # 画像に結果を描画 c1 = tuple(x[1:3].int()) c2 = tuple(x[3:5].int()) cls = int(x[-1]) print(camId, "_c0:",c1) print(camId, "_c1:",c2) label = "{0}".format(classes[cls]) print("label:", label) # 人数カウント if(label=='no-mask'): count+=1 print(count) p[0] = (c2[0]+c1[0])/2 p[1] = (c2[1]+c1[1])/2 point[camId].append(p) color = random.choice(colors) cv2.rectangle(img, c1, c2,color, 1) t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0] c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4 cv2.rectangle(img, c1, c2,color, -1) cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1); return img def arg_parse(): # モジュールの引数を作成 parser = argparse.ArgumentParser(description='YOLO v3 Cam Demo') # ArgumentParserで引数を設定する parser.add_argument("--confidence", dest = "confidence", help = "Object Confidence to filter predictions", default = 0.25) # confidenceは信頼性 parser.add_argument("--nms_thresh", dest = "nms_thresh", help = "NMS Threshhold", default = 0.4) # nms_threshは閾値 parser.add_argument("--reso", dest = 'reso', help = "Input resolution of the network. Increase to increase accuracy. Decrease to increase speed", default = "160", type = str) # resoはCNNの入力解像度で、増加させると精度が上がるが、速度が低下する。 return parser.parse_args() # 引数を解析し、返す def cvpaste(img, imgback, x, y, angle, scale): # x and y are the distance from the center of the background image r = img.shape[0] c = img.shape[1] rb = imgback.shape[0] cb = imgback.shape[1] hrb=round(rb/2) hcb=round(cb/2) hr=round(r/2) hc=round(c/2) # Copy the forward image and move to the center of the background image imgrot = np.zeros((rb,cb,3),np.uint8) imgrot[hrb-hr:hrb+hr,hcb-hc:hcb+hc,:] = img[:hr*2,:hc*2,:] # Rotation and scaling M = cv2.getRotationMatrix2D((hcb,hrb),angle,scale) imgrot = cv2.warpAffine(imgrot,M,(cb,rb)) # Translation M = np.float32([[1,0,x],[0,1,y]]) imgrot = cv2.warpAffine(imgrot,M,(cb,rb)) # Makeing mask imggray = cv2.cvtColor(imgrot,cv2.COLOR_BGR2GRAY) ret, mask = cv2.threshold(imggray, 10, 255, cv2.THRESH_BINARY) mask_inv = cv2.bitwise_not(mask) # Now black-out the area of the forward image in the background image img1_bg = cv2.bitwise_and(imgback,imgback,mask = mask_inv) # Take only region of the forward image. img2_fg = cv2.bitwise_and(imgrot,imgrot,mask = mask) # Paste the forward image on the background image imgpaste = cv2.add(img1_bg,img2_fg) return imgpaste def cosineTheorem(Lidar, radian1, radian2): theta = abs(radian1-radian2) distance = Lidar[radian1][1] ** 2 + Lidar[radian2][1] ** 2 - 2 * Lidar[radian1][1] * Lidar[radian2][1] * math.cos(abs(radian2 - radian1)) return distance def combinations_count(n, r): return math.factorial(n) // (math.factorial(n - r) * math.factorial(r)) # def beep(freq, dur=100): # winsound.Beep(freq, dur) if __name__ == '__main__': #学習前YOLO # cfgfile = "cfg/yolov3.cfg" # 設定ファイル # weightsfile = "weight/yolov3.weights" # 重みファイル # classes = load_classes('data/coco.names') # 識別クラスのリスト #マスク学習後YOLO cfgfile = "cfg/mask.cfg" # 設定ファイル weightsfile = "weight/mask_1500.weights" # 重みファイル classes = load_classes('data/mask.names') # 識別クラスのリスト num_classes = 80 # クラスの数 args = arg_parse() # 引数を取得 confidence = float(args.confidence) # 信頼性の設定値を取得 nms_thesh = float(args.nms_thresh) # 閾値を取得 start = 0 CUDA = torch.cuda.is_available() # CUDAが使用可能かどうか num_classes = 80 # クラスの数 bbox_attrs = 5 + num_classes max = 0 #限界人数 num_camera = 1 #camera数 model = [[] for i in range(num_camera)] inp_dim = [[] for i in range(num_camera)] cap = [[] for i in range(num_camera)] ret = [[] for i in range(num_camera)] frame = [[] for i in range(num_camera)] img = [[] for i in range(num_camera)] orig_im = [[] for i in range(num_camera)] dim = [[] for i in range(num_camera)] # output = [[] for i in range(num_camera)] # output = torch.tensor(output) # print("output_shape\n", output.shape) for i in range(num_camera): model[i] = Darknet(cfgfile) #model1の作成 model[i].load_weights(weightsfile) # model1に重みを読み込む model[i].net_info["height"] = args.reso inp_dim[i] = int(model[i].net_info["height"]) assert inp_dim[i] % 32 == 0 assert inp_dim[i] > 32 #mixer.init() #初期化 if CUDA: for i in range(num_camera): model[i].cuda() #CUDAが使用可能であればcudaを起動 for i in range(num_camera): model[i].eval() cap[0] = cv2.VideoCapture(1) #カメラを指定(USB接続) # cap[1] = cv2.VideoCapture(1) #カメラを指定(USB接続) # cap = cv2.VideoCapture("movies/sample.mp4") #cap = cv2.VideoCapture("movies/one_v2.avi") # Use the next line if your camera has a username and password # cap = cv2.VideoCapture('protocol://username:password@IP:port/1') #cap = cv2.VideoCapture('rtsp://admin:admin@192.168.11.4/1') #(ネットワーク接続) #cap = cv2.VideoCapture('rtsp://admin:admin@192.168.11.4/80') #cap = cv2.VideoCapture('http://admin:admin@192.168.11.4:80/video') #cap = cv2.VideoCapture('http://admin:admin@192.168.11.4/camera-cgi/admin/recorder.cgi?action=start&id=samba') #cap = cv2.VideoCapture('http://admin:admin@192.168.11.4/recorder.cgi?action=start&id=samba') #cap = cv2.VideoCapture('http://admin:admin@192.168.11.5:80/snapshot.jpg?user=admin&pwd=admin&strm=0') print('-1') #assert cap.isOpened(), 'Cannot capture source' #カメラが起動できたか確認 img1 = cv2.imread("images/phase_1.jpg") img2 = cv2.imread("images/phase_2.jpg") img3 = cv2.imread("images/phase_2_red.jpg") img4 = cv2.imread("images/phase_3.jpg") #mixer.music.load("voice/voice_3.m4a") #print(img1) frames = 0 count_frame = 0 #フレーム数カウント flag = 0 #密状態(0:疎密,1:密入り) start = time.time() print('-1') while (cap[i].isOpened() for i in range(num_camera)): #カメラが起動している間 count=0 #人数をカウント point = [[] for i in range(num_camera)] for i in range(num_camera): ret[i], frame[i] = cap[i].read() #キャプチャ画像を取得 if (ret[i] for i in range(num_camera)): # 解析準備としてキャプチャ画像を加工 for i in range(num_camera): img[i], orig_im[i], dim[i] = prep_image(frame[i], inp_dim[i]) if CUDA: for i in range(num_camera): im_dim[i] = im_dim[i].cuda() img[i] = img[i].cuda() for i in range(num_camera): # output[i] = model[i](Variable(img[i]), CUDA) output = model[i](Variable(img[i]), CUDA) #print("output:\n", output) # output[i] = write_results(output[i], confidence, num_classes, nms = True, nms_conf = nms_thesh) output = write_results(output, confidence, num_classes, nms = True, nms_conf = nms_thesh) # print("output", i, ":\n", output[i]) print(output.shape) """ # FPSの表示 if (type(output[i]) == int for i in range(num_camera)): print("表示") frames += 1 print("FPS of the video is {:5.2f}".format( frames / (time.time() - start))) # qキーを押すとFPS表示の終了 key = cv2.waitKey(1) if key & 0xFF == ord('q'): break continue for i in range(num_camera): output[i][:,1:5] = torch.clamp(output[i][:,1:5], 0.0, float(inp_dim[i]))/inp_dim[i] output[i][:,[1,3]] *= frame[i].shape[1] output[i][:,[2,4]] *= frame[i].shape[0] """ # FPSの表示 if type(output) == int: print("表示") frames += 1 print("FPS of the video is {:5.2f}".format( frames / (time.time() - start))) # qキーを押すとFPS表示の終了 key = cv2.waitKey(1) if key & 0xFF == ord('q'): break continue for i in range(num_camera): output[:,1:5] = torch.clamp(output[:,1:5], 0.0, float(inp_dim[i]))/inp_dim[i] output[:,[1,3]] *= frame[i].shape[1] output[:,[2,4]] *= frame[i].shape[0] colors = pkl.load(open("pallete", "rb")) #count = lambda x: count(x, orig_im, count) #人数をカウント """ for i in range(num_camera): list(map(lambda x: write(x, orig_im[i]), output[i])) print("count:\n",count) """ for i in range(num_camera): list(map(lambda x: write(x, orig_im[i], i), output)) print("count:\n",count) print("count_frame", count_frame) print("framex", frame[0].shape[1]) print("framey", frame[0].shape[0]) print("point0",point[0]) #LiDARの情報の人識別 radian_lists = [] close_list = [0] * 4 dense_list = [0] * 4 for k, (radian, length) in enumerate(LiDAR): radian_cam = [[] for i in range(len(point))] num_person = 0 # print("k:", k) if k % 90 == 0: # print("hahahah") if not k == 0: radian_lists.append(radian_list) radian_list = [] if k < 90: for num, p in enumerate(point[0]): radian_cam[num] = p[0] / frame[0].shape[1] * 100 for dif in range(10): for radi_num in range(len(radian_cam)): if int(radian)+dif-5 == int(radian_cam[radi_num]): num_person += 1 radian_list.append(radian) if num_person > 1: close_list[0] = 1 if num_person > 2: dense_list[0] = 1 elif k < 180: for num, p in enumerate(point[0]): radian_cam[num] = p[0] / frame[0].shape[1] * 100 for dif in range(10): for radi_num in range(len(radian_cam)): if int(radian)+dif-5 == int(radian_cam[radi_num]): num_person += 1 radian_list.append(radian) if num_person > 1: close_list[1] = 1 if num_person > 2: dense_list[1] = 1 elif k < 270: for num, p in enumerate(point[0]): radian_cam[num] = p[0] / frame[0].shape[1] * 100 for dif in range(10): for radi_num in range(len(radian_cam)): if int(radian)+dif-5 == int(radian_cam[radi_num]): num_person += 1 radian_list.append(radian) if num_person > 1: close_list[2] = 1 if num_person > 2: dense_list[2] = 1 else: for num, p in enumerate(point[0]): radian_cam[num] = p[0] / frame[0].shape[1] * 100 for dif in range(10): for radi_num in range(len(radian_cam)): if int(radian)+dif-5 == int(radian_cam[radi_num]): num_person += 1 radian_list.append(radian) if num_person > 1: close_list[3] = 1 if num_person > 2: dense_list[3] = 1 print("radian_lists_len", len(radian_lists)) #距離計算 dis_list = [] for direction in range(4): if len(radian_lists[direction]) > 1: # n = combinations_k(len(radian_lists[direction]), 2) dis_combination = list(itertools.combinations(radian_lists[direction], 2)) distance = [[] for i in range(len(dis_combination))] print(type(LiDAR)) for num_dis, com_list in enumerate(dis_combination): distance[num_dis] = cosineTheorem(LiDAR, int(com_list[0]), int(com_list[1])) dis_list.append(distance) #密集判定 for direction in range(4): close = 0 #密接数 dense = 0 #密集数 for dis in distance[distance]: if dis < 2: close += 1 close_list[direction] = 1 if close > 1: dense_list[direction] = 1 print("close_list", close_list) print("dense_list", dense_list) # print("point1",point[1]) if count > max: count_frame += 1 #print("-1") if count_frame <= 50: x=0 y=0 angle=20 scale=1.5 for i in range(num_camera): imgpaste = cvpaste(img1, orig_im[i], x, y, angle, scale) if flag == 1: play.googlehome() flag += 1 #mixer.music.play(1) elif count_frame <= 100: x=-30 y=10 angle=20 scale=1.1 if count_frame%2==1: for i in range(num_camera): imgpaste = cvpaste(img2, orig_im[i], x, y, angle, scale) else: for i in range(num_camera): imgpaste = cvpaste(img3, orig_im[i], x, y, angle, scale) if flag == 2: play.googlehome() flag += 1 else: x=-30 y=0 angle=20 scale=1.5 for i in range(num_camera): imgpaste = cvpaste(img4, orig_im[i], x, y, angle, scale) if count_frame > 101: #<--2フレームずらす print("\007") #警告音 time.sleep(3) if flag == 3: play.googlehome() flag += 1 cv2.imshow("frame", imgpaste) else: count_frame = 0 flag = 0 #print("-2") for i in range(num_camera): cv2.imshow("frame", orig_im[i]) # play.googlehome() key = cv2.waitKey(1) # qキーを押すと動画表示の終了 if key & 0xFF == ord('q'): break frames += 1 print("count_frame:\n", count_frame) print("FPS of the video is {:5.2f}".format( frames / (time.time() - start))) else: break
36.190987
141
0.50756
3060ef061106c53f208fb5a26ba571ef0987dbb6
966
py
Python
venv/Lib/site-packages/nipype/algorithms/tests/test_splitmerge.py
richung99/digitizePlots
6b408c820660a415a289726e3223e8f558d3e18b
[ "MIT" ]
585
2015-01-12T16:06:47.000Z
2022-03-26T14:51:08.000Z
nipype/algorithms/tests/test_splitmerge.py
tamires-consulting/nipype
b7879d75a63b6500b2e7d2c3eba5aa7670339274
[ "Apache-2.0" ]
2,329
2015-01-01T09:56:41.000Z
2022-03-30T14:24:49.000Z
nipype/algorithms/tests/test_splitmerge.py
tamires-consulting/nipype
b7879d75a63b6500b2e7d2c3eba5aa7670339274
[ "Apache-2.0" ]
487
2015-01-20T01:04:52.000Z
2022-03-21T21:22:47.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- from nipype.testing import example_data def test_split_and_merge(tmpdir): import numpy as np import nibabel as nb import os.path as op import os from nipype.algorithms.misc import split_rois, merge_rois in_mask = example_data("tpms_msk.nii.gz") dwfile = tmpdir.join("dwi.nii.gz").strpath mask_img = nb.load(in_mask) mskdata = np.asanyarray(mask_img.dataobj) aff = mask_img.affine dwshape = (mskdata.shape[0], mskdata.shape[1], mskdata.shape[2], 6) dwdata = np.random.normal(size=dwshape) tmpdir.chdir() nb.Nifti1Image(dwdata.astype(np.float32), aff, None).to_filename(dwfile) resdw, resmsk, resid = split_rois(dwfile, in_mask, roishape=(20, 20, 2)) merged = merge_rois(resdw, resid, in_mask) dwmerged = nb.load(merged).get_fdata(dtype=np.float32) dwmasked = dwdata * mskdata[:, :, :, np.newaxis] assert np.allclose(dwmasked, dwmerged)
29.272727
76
0.690476
bbc881559703ba0607fd5b6445ca6ff7c47ade54
1,594
py
Python
vox/show_notices.py
drocco007/vox_linux
9807bc3af8bc35f8f6634019ec4bc22b5e3b2e33
[ "MIT" ]
5
2015-03-25T11:56:10.000Z
2018-02-03T21:11:27.000Z
vox/show_notices.py
drocco007/vox_linux
9807bc3af8bc35f8f6634019ec4bc22b5e3b2e33
[ "MIT" ]
null
null
null
vox/show_notices.py
drocco007/vox_linux
9807bc3af8bc35f8f6634019ec4bc22b5e3b2e33
[ "MIT" ]
null
null
null
# coding: utf-8 import sys from glib import GError import pynotify import bus from commands import SHOW_NOTIFICATION from process_utils import spawn_daemon_process def notifier(): pynotify.init(sys.argv[0]) title = 'Dragon Naturally Speaking' notice = pynotify.Notification(title, '') notice.show() def show_notice(message, retry=True, notice=notice): try: if not pynotify.is_initted(): pynotify.init(sys.argv[0]) if not notice: notice = pynotify.Notification(title, message) else: notice.update(title, message) notice.show() except GError: # libnotify's documentation is… awful. This song and dance is required # because at some point in the process lifecycle pynotify loses its # connection and raises. Disconnecting and reestablishing the # connection gets things back on track. notice = None pynotify.uninit() if retry: show_notice(message, False) return show_notice def show_notice_worker(host='localhost'): socket = bus.connect_subscribe(host=host, subscriptions=(SHOW_NOTIFICATION,)) show_notice = notifier() while True: try: message = socket.recv()[1:] show_notice(message) except: print 'Error showing notice:', message def show_notices(host='localhost'): return [spawn_daemon_process(show_notice_worker, call_kw={'host': host})]
26.566667
82
0.614806
f54bb984f0fd3558aee69bf3b6754c275c1a33e0
10,066
py
Python
monai/metrics/metric.py
vijayakumargopal/MONAI
10ffd1f1424e1dcafbce8d71481bed9c7a250a89
[ "Apache-2.0" ]
2,971
2019-10-16T23:53:16.000Z
2022-03-31T20:58:24.000Z
monai/metrics/metric.py
vijayakumargopal/MONAI
10ffd1f1424e1dcafbce8d71481bed9c7a250a89
[ "Apache-2.0" ]
2,851
2020-01-10T16:23:44.000Z
2022-03-31T22:14:53.000Z
monai/metrics/metric.py
vijayakumargopal/MONAI
10ffd1f1424e1dcafbce8d71481bed9c7a250a89
[ "Apache-2.0" ]
614
2020-01-14T19:18:01.000Z
2022-03-31T14:06:14.000Z
# Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from typing import Any, List, Optional import torch from monai.config import TensorOrList from monai.utils import evenly_divisible_all_gather class Metric(ABC): """ Base class of all Metrics interface. `__call__` is designed to execute metric computation. """ @abstractmethod def __call__(self, *args: Any, **kwds: Any): """ API to execute the metric computation. """ raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") class IterationMetric(Metric): """ Base class of Metrics interface for computation on a batch of tensors, usually the data of 1 iteration. `__call__` is supposed to compute independent logic for several samples of `y_pred` and `y`(optional). Usually, subclass only needs to implement the `_compute_tensor` function for computation process. The input data shape should be `list of channel-first tensors` or a `batch-first tensor`. """ def __call__(self, y_pred: TensorOrList, y: Optional[TensorOrList] = None): # type: ignore """ Execute basic computation for model prediction and ground truth. It can support both `list of channel-first Tensor` and `batch-first Tensor`. And users can execute on every batch of data, then accumulate the results, or accumulate the original `y_pred` and `y`, then execute on the accumulated data. Args: y_pred: the model prediction data to compute, must be a list of `channel-first` Tensor or a `batch-first` Tensor. y: the ground truth to compute, must be a list of `channel-first` Tensor or a `batch-first` Tensor. """ ret: TensorOrList if isinstance(y_pred, (list, tuple)) or isinstance(y, (list, tuple)): # if y_pred or y is a list of channel-first data, add batch dim and compute metric ret = self._compute_list(y_pred, y) elif isinstance(y_pred, torch.Tensor): y_ = y.detach() if y is not None and isinstance(y, torch.Tensor) else None ret = self._compute_tensor(y_pred.detach(), y_) else: raise ValueError("y_pred or y must be a list of `channel-first` Tensors or a `batch-first` Tensor.") return ret def _compute_list(self, y_pred: TensorOrList, y: Optional[TensorOrList] = None): """ Excute the computation for the y_pred and y items of a iteration, the data is in the list shape. Will concat the results to guarantee the output shape of ret is BCHW[D], otherwise it's list of batch-first, which is against our principle that data in metrics should be BCHW[D] or list of channel-first. Note: subclass may enhance the operation with multi-threads to accelerate. """ ret: TensorOrList if y is not None: ret = [self._compute_tensor(p.detach().unsqueeze(0), y_.detach().unsqueeze(0)) for p, y_ in zip(y_pred, y)] else: ret = [self._compute_tensor(p_.detach().unsqueeze(0), None) for p_ in y_pred] # concat the list of results if isinstance(ret[0], torch.Tensor): ret = torch.cat(ret, dim=0) elif isinstance(ret[0], (list, tuple)) and all(isinstance(i, torch.Tensor) for i in ret[0]): # if _compute_tensor() returned not only 1 Tensor, concat them separately ret = [torch.cat([k[i] for k in ret], dim=0) for i in range(len(ret[0]))] return ret @abstractmethod def _compute_tensor(self, y_pred: torch.Tensor, y: Optional[torch.Tensor] = None): """ computation logic for the y_pred and y of a iteration, the data should be `batch-first` Tensors. Every subclass metric should implement its own computation logic according to its algorithm. """ raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") class Cumulative(ABC): """ Utility class for the typical cumulative computation process based on PyTorch Tensors. It cumulates tensors in the buffer, then sync across distributed ranks and aggregate. To speed up computation with multi-processing, PyTorch programs usually split data to distributed ranks by `DistributedSampler` before an epoch, every rank then computes only based on its own data part and `add` to the buffers in its process. Eventually, sync the values of all ranks to compute the final results. Note: the data list should have the same length every time calling `add()` in a round, it will automatically create buffers according to the length of data list. Typically, this class is expected to execute the steps referring to below examples:: cum = Cumulative() cum.add(x, y) cum.add(a, b) cum.add(c, d) cum.aggregate() result = cum.get_buffer() # optional cum.reset() """ def __init__(self): self.buffer_num: int = 0 self._buffers: Optional[List[List[torch.Tensor]]] = None self._synced_tensors: Optional[List[Optional[torch.Tensor]]] = None self._synced: bool = False def reset(self): """ Reset the buffers for cumulative tensors and the synced results. """ self._buffers = None self._synced_tensors = None self._synced = False def add(self, *data: torch.Tensor): """ Add samples to the cumulative buffers. Args: data: list of input tensor, make sure the input data order is always the same in a round. every item of data will be added to the corresponding buffer. """ data_len = len(data) if self._buffers is None: self._buffers = [[] for _ in range(data_len)] elif len(self._buffers) != data_len: raise ValueError(f"data length: {data_len} doesn't match buffers length: {len(self._buffers)}.") if self._synced_tensors is None: self._synced_tensors = [None for _ in range(data_len)] for i, d in enumerate(data): if not isinstance(d, torch.Tensor): raise ValueError(f"the data to cumulate in a buffer must be PyTorch Tensor, but got: {type(d)}.") self._buffers[i].append(d) self._synced = False @abstractmethod def aggregate(self, *args: Any, **kwds: Any): """ Aggregate final results based on the buffers. """ raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") def _sync(self): """ All gather the buffers across distributed ranks for aggregating. Every buffer will be concatenated as a PyTorch Tensor. """ self._synced_tensors = [evenly_divisible_all_gather(torch.cat(b, dim=0), concat=True) for b in self._buffers] self._synced = True def get_buffer(self): """ Get the synced buffers list. A typical usage is to generate the metrics report based on the raw metric details. """ if not self._synced: self._sync() return self._synced_tensors[0] if len(self._synced_tensors) == 1 else self._synced_tensors class CumulativeIterationMetric(Cumulative, IterationMetric): """ Base class of cumulative metric which computes on batch data of every iteration and aggregate. Typically, it computes some intermediate results for every iteration, cumulates in buffers, then syncs across all the distributed ranks and aggregates for the final result when epoch completed. For example, `MeanDice` inherits this class and the usage: .. code-block:: python dice_metric = DiceMetric(include_background=True, reduction="mean") for val_data in val_loader: val_outputs = model(val_data["img"]) val_outputs = [postprocessing_transform(i) for i in decollate_batch(val_outputs)] # compute metric for current iteration dice_metric(y_pred=val_outputs, y=val_data["seg"]) # aggregate the final mean dice result metric = dice_metric.aggregate().item() # reset the status for next computation round dice_metric.reset() And to load `predictions` and `labels` from files, then compute metrics with multi-processing, please refer to: https://github.com/Project-MONAI/tutorials/blob/master/modules/compute_metric.py. """ def __call__(self, y_pred: TensorOrList, y: Optional[TensorOrList] = None): # type: ignore """ Execute basic computation for model prediction and ground truth. It can support both `list of channel-first Tensor` and `batch-first Tensor`. Users call this API to execute computation on every batch of data, then accumulate the results, or accumulate the original `y_pred` and `y`, then execute on the accumulated data. Args: y_pred: the model prediction data to compute, must be a list of `channel-first` Tensor or a `batch-first` Tensor. y: the ground truth to compute, must be a list of `channel-first` Tensor or a `batch-first` Tensor. """ ret = super().__call__(y_pred=y_pred, y=y) if isinstance(ret, (tuple, list)): self.add(*ret) else: self.add(ret) return ret
41.254098
119
0.661534
d2e75b9cd4d7a4ea745a88029f049fb214739b7b
283
py
Python
Backend/Tools for Pictures/copyfiles.py
RaresTeodor/Hacklytics2021
d329880efa062ca3d85592f51bca5f4e91618d2e
[ "MIT" ]
null
null
null
Backend/Tools for Pictures/copyfiles.py
RaresTeodor/Hacklytics2021
d329880efa062ca3d85592f51bca5f4e91618d2e
[ "MIT" ]
null
null
null
Backend/Tools for Pictures/copyfiles.py
RaresTeodor/Hacklytics2021
d329880efa062ca3d85592f51bca5f4e91618d2e
[ "MIT" ]
null
null
null
import shutil with open("../names.txt") as f: content = f.readlines() content = [x.strip() for x in content] for superstar in content: newname = superstar.replace(" ", "") directory = "./" + newname + "/" shutil.copy(directory + newname + ".png", './')
25.727273
55
0.575972
cd6b1eaf10be5e0429bcdbb1b2ff218d05d45adb
6,304
py
Python
System_of_Beams/testing_collection/test_runner.py
ChairOfStructuralMechanicsTUM/Mechanics_Apps
b064a42d4df3fa9bde62a5cff9cb27ca61b0127c
[ "MIT" ]
11
2017-05-06T17:05:29.000Z
2020-11-12T09:26:47.000Z
System_of_Beams/testing_collection/test_runner.py
ChairOfStructuralMechanicsTUM/Mechanics_Apps
b064a42d4df3fa9bde62a5cff9cb27ca61b0127c
[ "MIT" ]
49
2017-04-20T11:26:11.000Z
2020-05-29T13:18:06.000Z
System_of_Beams/testing_collection/test_runner.py
ChairOfStructuralMechanicsTUM/Mechanics_Apps
b064a42d4df3fa9bde62a5cff9cb27ca61b0127c
[ "MIT" ]
4
2017-02-14T12:55:34.000Z
2022-01-12T15:07:07.000Z
from testing_collection import visualisation_tests as visu_tests from Classes.CurrentDocument import CurrentDoc def run_tests(curr_doc: CurrentDoc): """ 1.) write test case and add it to file test_cases.py 2.) Call it in this function (run_tests() will be called in 'System_of_Beams\main.py' 3.) make sure, the variable 'run_tests' in the file main.py is set to true 4.) Only the latest run test can be plotted (no opportunities up to now to run one after another) 5.) Results will be visualized at the bokeh server """ """ VISUALISATION TESTS """ # print("Single beam lineload test") # visu_tests.single_beam_lineload_visu(curr_doc) # print("Final Software lab structure") # visu_tests.final_structure_software_lab(curr_doc) print('Test example Quirin') #19.11 visu_tests.example_unterlagen_visu(curr_doc) # print("Visualise all possible nodedep elements") # visu_tests.vis_all_possible_nodedep_ele(curr_doc) """ CALCULATION TESTS """ # print("Single beam lineload test") #24.11 # test_cases.single_beam_lineload_test(curr_doc) # print('normal line load') #24.11 # test_cases.single_beam_normal_lineload_test(curr_doc) # print("Single beam clamping test") #24.11 # test_cases.single_clamping_left_side(curr_doc) # print("Two beam lineload test") #17.11 # test_cases.two_beam_lineload_test(curr_doc) # print("Two beam lineload overdefined test") #17.11 # test_cases.single_beam_lineload_test_overdefined(curr_doc) # print("Single beam lineload test underdefined") #24.11 # test_cases.single_beam_lineload_test_underdefined(curr_doc) # print('Big beam out of free elements') #17.11 # test_cases.two_beam_combined_to_one_complete_lineload_test(curr_doc) # print('Big beam out of free elements 2 l') #17.11 # test_cases.two_beam_combined_to_one_complete_lineload_test_2l(curr_doc) # print('Single load in the middle') #17.11 # test_cases.two_beam_combined_to_one_single_load_middle(curr_doc) # print('Seperated elements') #17.11 # test_cases.single_beam_lineload_test_seperated_elements(curr_doc) # print('Joint test) #18.11 # test_cases.two_beam_combined_to_one_single_load_middle_joint(curr_doc) # # print('Clamping with single load test') #17.11 # test_cases.single_clamping_left_side_single_load(curr_doc) # print('TM example') #17.11 # test_cases.example_from_sheet_2_4(curr_doc) # print('Trapezlast') #17.11 # test_cases.single_beam_trapezload_test(curr_doc) # print('Temperature test') #17.11 # test_cases.single_beam_temperature_test(curr_doc) # print('Triangle test') #17.11 # test_cases.two_beam_triangle_load_middle(curr_doc) # print('Temperature clamping') #18.11 # test_cases.single_clamping_left_side_temperature(curr_doc) # print('ss13') #17.11 # test_cases.example_ss13(curr_doc) # print('ss12') #17.11 # test_cases.example_ss12(curr_doc) # # print('ss12_vereinfacht') #17.11 # test_cases.example_ss12_vereinfacht(curr_doc) # print('ss11') #17.11 # test_cases.example_ss11(curr_doc) # print('ss14') #19.11 # test_cases.example_ss14(curr_doc) # print('schraeg') #17.11 # test_cases.single_beam_schraeg(curr_doc) # print('vertical') #17.11 # test_cases.single_beam_lineload_vertical_test(curr_doc) # print('vertical single load') #17.11 # test_cases.single_beam_single_load_vertical_test(curr_doc) # print('Test Ecke') #17.11 # test_cases.two_beam_corner_line_load(curr_doc) # print('triangle_not_symmetric') #17.11 # test_cases.two_beam_triangle_load_middle_not_symmetrical(curr_doc) # print('Test example Quirin') #19.11 # test_cases.example_unterlagen_test(curr_doc) # print('Test Quirin vereinfacht') #19.11 # test_cases.example_unterlagen_test_vereinfacht(curr_doc) # print('test cos') #18.11 # test_cases.single_beam_cos_test(curr_doc) # print('test multiple elements') #19.11 # test_cases.multiple_elements(curr_doc) # print('test case spring') #24.11 # test_cases.example_2_3_neu(curr_doc) # print('Test case ss 15') #24.11 # test_cases.example_ss15(curr_doc) # print('Test case ss 16') #24.11 # test_cases.example_SS_16(curr_doc) # test_cases.single_beam_lineload_test_infinity(curr_doc) # test_cases.final_structure_software_lab(curr_doc) # test_cases.final_structure_software_lab(curr_doc)
44.70922
101
0.521415
91e4eba8b9d04faea73b94fa9d178eeceb497dbb
472
py
Python
output/models/nist_data/list_pkg/token/schema_instance/nistschema_sv_iv_list_token_max_length_1_xsd/nistschema_sv_iv_list_token_max_length_1.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
1
2021-08-14T17:59:21.000Z
2021-08-14T17:59:21.000Z
output/models/nist_data/list_pkg/token/schema_instance/nistschema_sv_iv_list_token_max_length_1_xsd/nistschema_sv_iv_list_token_max_length_1.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
4
2020-02-12T21:30:44.000Z
2020-04-15T20:06:46.000Z
output/models/nist_data/list_pkg/token/schema_instance/nistschema_sv_iv_list_token_max_length_1_xsd/nistschema_sv_iv_list_token_max_length_1.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
null
null
null
from dataclasses import dataclass, field from typing import List __NAMESPACE__ = "NISTSchema-SV-IV-list-token-maxLength-1-NS" @dataclass class NistschemaSvIvListTokenMaxLength1: class Meta: name = "NISTSchema-SV-IV-list-token-maxLength-1" namespace = "NISTSchema-SV-IV-list-token-maxLength-1-NS" value: List[str] = field( default_factory=list, metadata={ "max_length": 5, "tokens": True, } )
23.6
64
0.646186
a2ae7e356ff7a79831a1c7eb71a09948031d45d7
694
py
Python
angrytux/config/Config.py
Wilson194/Angry-tux
62b7457948675071fe328b69ba5d85aab6b39ed1
[ "CC0-1.0" ]
null
null
null
angrytux/config/Config.py
Wilson194/Angry-tux
62b7457948675071fe328b69ba5d85aab6b39ed1
[ "CC0-1.0" ]
1
2019-02-05T04:50:27.000Z
2019-02-05T04:50:27.000Z
angrytux/config/Config.py
Wilson194/Angry-tux
62b7457948675071fe328b69ba5d85aab6b39ed1
[ "CC0-1.0" ]
null
null
null
import os from angrytux.model.Singleton import Singleton class Config(metaclass=Singleton): """ Class for global game config Has getitem from getting variables Singleton class """ def __init__(self): variables = {} exec(open(os.path.join(os.path.dirname(__file__), 'Data.py'), 'r').read(), variables) self.__config = variables['config'] self.__config['root_dir'] = os.path.join(os.path.dirname(os.path.abspath(__file__)), '..') def __getitem__(self, item): if item in self.__config: return self.__config.get(item) else: raise AttributeError('Item {} not found in config!'.format(item))
25.703704
98
0.634006
195e035980eaa21dead07d02e22de8b925c5ad88
944
py
Python
src/layers/infrastructure/providers/chapi_provider.py
v-martel/CrakTextSummarizer
888c261f8b86b6f0fbb38025ed2d4bca873e84a4
[ "MIT" ]
null
null
null
src/layers/infrastructure/providers/chapi_provider.py
v-martel/CrakTextSummarizer
888c261f8b86b6f0fbb38025ed2d4bca873e84a4
[ "MIT" ]
null
null
null
src/layers/infrastructure/providers/chapi_provider.py
v-martel/CrakTextSummarizer
888c261f8b86b6f0fbb38025ed2d4bca873e84a4
[ "MIT" ]
2
2020-09-15T20:01:51.000Z
2020-09-15T20:12:40.000Z
from src.shared.config.configuration import configuration from src.layers.infrastructure.providers.temporary.queries import queryMfcTagsAndTitles, queryMfcTotal import requests import json class ChapiProvider: def __init__(self): self.config = configuration.layers.infrastructure.providers.chapi_provider def get_total_vids_number(self): response = requests.post( url=self.config.chapi_url, json={'query': queryMfcTotal(self.config.chapi_token)} ) return json.loads(response.content.decode('utf-8'))['data'] if response.status_code == 200 else None def get_vids_at_page(self, page: str) -> dict: response = requests.post( url=self.config.chapi_url, json={'query': queryMfcTagsAndTitles(self.config.chapi_token, page)} ) return json.loads(response.content.decode('utf-8'))['data'] if response.status_code == 200 else None
34.962963
108
0.701271
b12c1233a779fedc10dde49845e8162e5ffb6a46
479
py
Python
nomadgram/users/migrations/0016_auto_20180603_1125.py
yoosojeong/Nomadgram.
cd27f552e92f703ac925c8ef2266f89286f326d5
[ "MIT" ]
null
null
null
nomadgram/users/migrations/0016_auto_20180603_1125.py
yoosojeong/Nomadgram.
cd27f552e92f703ac925c8ef2266f89286f326d5
[ "MIT" ]
null
null
null
nomadgram/users/migrations/0016_auto_20180603_1125.py
yoosojeong/Nomadgram.
cd27f552e92f703ac925c8ef2266f89286f326d5
[ "MIT" ]
null
null
null
# Generated by Django 2.0.3 on 2018-06-03 02:25 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0015_auto_20180603_1022'), ] operations = [ migrations.AlterField( model_name='user', name='gender', field=models.CharField(choices=[('male', 'Male'), ('female', 'Female'), ('not-specified', 'Not specified')], max_length=80, null=True), ), ]
25.210526
147
0.597077
a3caa22dca604c3accf528d829986c4e84bcf5c0
948
py
Python
DAppVotingSystem/utility/migrations/0005_alter_booth_manager_phone_no_and_more.py
vidyakore/Blockchain-based-E-VotingSystem
a86ad14d9699b5430f0556b15261506e4f5c46a6
[ "MIT" ]
1
2022-03-23T06:50:05.000Z
2022-03-23T06:50:05.000Z
DAppVotingSystem/utility/migrations/0005_alter_booth_manager_phone_no_and_more.py
vidyakore/Blockchain-based-E-VotingSystem
a86ad14d9699b5430f0556b15261506e4f5c46a6
[ "MIT" ]
null
null
null
DAppVotingSystem/utility/migrations/0005_alter_booth_manager_phone_no_and_more.py
vidyakore/Blockchain-based-E-VotingSystem
a86ad14d9699b5430f0556b15261506e4f5c46a6
[ "MIT" ]
1
2022-03-31T15:20:23.000Z
2022-03-31T15:20:23.000Z
# Generated by Django 4.0.3 on 2022-03-31 06:53 from django.db import migrations import phonenumber_field.modelfields class Migration(migrations.Migration): dependencies = [ ('utility', '0004_booth_manager_candidate_candidate_constituency_and_more'), ] operations = [ migrations.AlterField( model_name='booth_manager', name='phone_no', field=phonenumber_field.modelfields.PhoneNumberField(max_length=13, region=None, unique=True), ), migrations.AlterField( model_name='contract_manager', name='phone_no', field=phonenumber_field.modelfields.PhoneNumberField(max_length=13, region=None, unique=True), ), migrations.AlterField( model_name='voter', name='phone_no', field=phonenumber_field.modelfields.PhoneNumberField(max_length=13, region=None, unique=True), ), ]
31.6
106
0.655063
239f6ff8e5ba1d247a8bd624f6c016f2c64a9d39
3,155
py
Python
Django/django_app/django_app/settings.py
justnclrk/Python
0922961cbd94694a69ae8132a5c33baf552d8d89
[ "MIT" ]
null
null
null
Django/django_app/django_app/settings.py
justnclrk/Python
0922961cbd94694a69ae8132a5c33baf552d8d89
[ "MIT" ]
8
2020-06-06T01:02:06.000Z
2022-03-12T00:24:13.000Z
Django/django_app/django_app/settings.py
justnclrk/Python
0922961cbd94694a69ae8132a5c33baf552d8d89
[ "MIT" ]
null
null
null
""" Django settings for django_app project. Generated by 'django-admin startproject' using Django 1.11.10. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '5-%eixdb*5j9pc*qhx%av5-xa7$x&&=2a1yprc=_zfia@#k(54' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'apps.time_display', 'apps.blog_app', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'django_app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'django_app.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
25.650407
91
0.696038