hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
3a373e469546b3ab9cba2a722ab7dc51df112fb2
7,167
py
Python
src/ops/sklearn_ops.py
pybokeh/dagster-examples
459cfbe00585f1d123e49058685c74149efb867d
[ "MIT" ]
null
null
null
src/ops/sklearn_ops.py
pybokeh/dagster-examples
459cfbe00585f1d123e49058685c74149efb867d
[ "MIT" ]
null
null
null
src/ops/sklearn_ops.py
pybokeh/dagster-examples
459cfbe00585f1d123e49058685c74149efb867d
[ "MIT" ]
null
null
null
from dagster import op, In, Out, Output, String from sklearn.preprocessing import LabelEncoder from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.linear_model import SGDClassifier import numpy as np import pandas as pd import scipy import sklearn @op( description="Fetch free-hand text to generic features training or test data", out={ "df": Out( description="pandas dataframe containing training or test data", dagster_type=pd.DataFrame, ) }, config_schema={ "full_path": String } ) def fetch_freehand_text_to_generic_data(context) -> pd.DataFrame: df = pd.read_csv(context.op_config["full_path"]) context.log.info(f"Number of (rows, columns): {df.shape}") yield Output(df, output_name="df") @op( description="Separate features from the target label.", ins={ "df": In( description="pandas dataframe", ) }, out={ "X": Out( description="Feature matrix", dagster_type=pd.Series, ), "y": Out( description="Target label", dagster_type=pd.Series, ), } ) def separate_features_from_target_label(context, df: pd.DataFrame): """ It is assumed the 1st column of the dataframe is the text features column and the 2nd column is the target label """ X = df.iloc[:, 0] y = df.iloc[:, 1] context.log.info(f"Type of X is: {type(X)}") context.log.info(f"Dimensions of X: {X.shape}") context.log.info(f"Type of y is: {type(y)}") context.log.info(f"Dimensions of y: {y.shape}") yield Output(X, output_name="X") yield Output(y, output_name="y") @op( description="Label encode the categorical target label", ins={ "y": In( description="Target label", ) }, out={ "y_encoded": Out( description="Target label that has been label encoded", dagster_type=np.ndarray ), "label_encoder": Out( description="Label encoder", dagster_type=sklearn.preprocessing._label.LabelEncoder, ), } ) def label_encode_target(context, y: pd.Series): le = LabelEncoder() le.fit(y) y_encoded = le.fit_transform(y) context.log.info(f"Dimenions of encoded y: {y_encoded.shape}") yield Output(y_encoded, output_name="y_encoded") yield Output(le, output_name="label_encoder") @op( description="Encode the features of training data: CountVectorize then TfIdTransform", ins={ "X": In( description="pandas series containing unencoded features/text document data", ) }, out={ "X_encoded_train": Out( description="Features data that has been both count vectorized and tfid transformed", dagster_type=scipy.sparse.csr.csr_matrix ), "count_vect": Out( description="Fitted count vector model", dagster_type=sklearn.feature_extraction.text.CountVectorizer ), "tfid_vect": Out( description="Fitted tfid model", dagster_type=sklearn.feature_extraction.text.TfidfTransformer ), }, ) def count_tfid_transform_train(context, X: pd.Series): count_vect = CountVectorizer() X_count = count_vect.fit_transform(X) tfid_vect = TfidfTransformer() X_tfid = tfid_vect.fit_transform(X_count) context.log.info(f"Dimenions of encoded X: {X_tfid.shape}") yield Output(X_tfid, output_name="X_encoded_train") yield Output(count_vect, output_name="count_vect") yield Output(tfid_vect, output_name="tfid_vect") @op( description="Encode the features of test data: CountVectorize and then TfIdTransform", ins={ "df": In( description="Pandas dataframe of test data", ), "count_vect": In( description="Count vector model already fitted on test data", ), "tfid_vect": In( description="tfidt vector model already fitted on test data", ), }, out={ "X_encoded_test": Out( description="Encoded features of test data", dagster_type=scipy.sparse.csr.csr_matrix ) } ) def count_tfid_transform_test( context, df: pd.DataFrame, count_vect: sklearn.feature_extraction.text.CountVectorizer, tfid_vect: sklearn.feature_extraction.text.TfidfTransformer ): """ It is assumed the 1st column of the file is the text features data """ X_test = df.iloc[:, 0] X_test_count_vect = count_vect.transform(X_test) X_test_tfid = tfid_vect.transform(X_test_count_vect) context.log.info(f"Dimensions of encoded X test: {X_test_tfid.shape}") yield Output(X_test_tfid, output_name="X_encoded_test") @op( description="Create SGD Classifier model", ins={ "X_encoded": In( description="Feature matrix encoded with count vectorizer and tfid transform", ), "y_encoded": In( description="Feature matrix encoded with count vectorizer and tfid transform", ), }, out={ "clf": Out( description="Trained SGD classifier model", dagster_type=sklearn.linear_model._stochastic_gradient.SGDClassifier, ) } ) def create_sgd_classifier_model( context, X_encoded: scipy.sparse.csr.csr_matrix, y_encoded: np.ndarray ): clf = SGDClassifier().fit(X_encoded, y_encoded) yield Output(clf, output_name="clf") @op( description="Make prediction", ins={ "X_test_encoded": In( description="Encoded features matrix", ), "clf": In( description="Classification model already fitted on training data", ), "label_encoder": In( description="Label encoder fitted on the training data", ), }, out={ "prediction": Out( description="Predicted values", dagster_type=np.ndarray ) } ) def predict( context, X_test_encoded: scipy.sparse.csr.csr_matrix, clf, label_encoder: sklearn.preprocessing._label.LabelEncoder ): predicted = clf.predict(X_test_encoded) context.log.info(f"Dimenions of encoded X test: {X_test_encoded.shape}") context.log.info(f"Sample prediction values: {label_encoder.classes_[predicted[:5]]}") yield Output(predicted, output_name="prediction") @op( description="Measure accuracy score", ins={ "predicted_values": In( description="predicted values from model", ), "actual_values": In( description="Actual values", ) } ) def get_accuracy_score(context, predicted_values: np.ndarray, actual_values: np.ndarray): pass
29.134146
98
0.610297
f06ab4aba44d268a0a0dc31f95fe18a717006bfe
40
py
Python
test/1.py
hopingpeople/test
5b672c44e9b69275d45c59ab5e40b04b8e4fe105
[ "MIT" ]
null
null
null
test/1.py
hopingpeople/test
5b672c44e9b69275d45c59ab5e40b04b8e4fe105
[ "MIT" ]
null
null
null
test/1.py
hopingpeople/test
5b672c44e9b69275d45c59ab5e40b04b8e4fe105
[ "MIT" ]
null
null
null
a = 1 b = 2 def sum(): return a+b
5.714286
14
0.45
fae6ce1c0a9f34f9eeb48cef4b1536a78e6a44d2
1,696
py
Python
azure-mgmt-compute/azure/mgmt/compute/v2016_03_30/models/virtual_machine_agent_instance_view_py3.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2021-09-07T18:36:04.000Z
2021-09-07T18:36:04.000Z
azure-mgmt-compute/azure/mgmt/compute/v2016_03_30/models/virtual_machine_agent_instance_view_py3.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
54
2016-03-25T17:25:01.000Z
2018-10-22T17:27:54.000Z
azure-mgmt-compute/azure/mgmt/compute/v2016_03_30/models/virtual_machine_agent_instance_view_py3.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
2
2017-01-20T18:25:46.000Z
2017-05-12T21:31:47.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class VirtualMachineAgentInstanceView(Model): """The instance view of the VM Agent running on the virtual machine. :param vm_agent_version: The VM Agent full version. :type vm_agent_version: str :param extension_handlers: The virtual machine extension handler instance view. :type extension_handlers: list[~azure.mgmt.compute.v2016_03_30.models.VirtualMachineExtensionHandlerInstanceView] :param statuses: The resource status information. :type statuses: list[~azure.mgmt.compute.v2016_03_30.models.InstanceViewStatus] """ _attribute_map = { 'vm_agent_version': {'key': 'vmAgentVersion', 'type': 'str'}, 'extension_handlers': {'key': 'extensionHandlers', 'type': '[VirtualMachineExtensionHandlerInstanceView]'}, 'statuses': {'key': 'statuses', 'type': '[InstanceViewStatus]'}, } def __init__(self, *, vm_agent_version: str=None, extension_handlers=None, statuses=None, **kwargs) -> None: super(VirtualMachineAgentInstanceView, self).__init__(**kwargs) self.vm_agent_version = vm_agent_version self.extension_handlers = extension_handlers self.statuses = statuses
42.4
115
0.664505
e84c66c0bdd05e5a00e446840fc4e50e173527c6
37,335
py
Python
Lib/unittest/test/testmock/testasync.py
gerph/cpython
98813cb03c2371789669c3d8debf8fca2a344de9
[ "CNRI-Python-GPL-Compatible" ]
2,441
2020-07-31T06:45:53.000Z
2022-03-30T15:56:49.000Z
Lib/unittest/test/testmock/testasync.py
gerph/cpython
98813cb03c2371789669c3d8debf8fca2a344de9
[ "CNRI-Python-GPL-Compatible" ]
238
2020-10-21T04:54:00.000Z
2022-03-31T21:49:03.000Z
Lib/unittest/test/testmock/testasync.py
gerph/cpython
98813cb03c2371789669c3d8debf8fca2a344de9
[ "CNRI-Python-GPL-Compatible" ]
93
2020-08-09T12:00:17.000Z
2022-03-25T07:57:24.000Z
import asyncio import inspect import re import unittest from unittest.mock import (ANY, call, AsyncMock, patch, MagicMock, Mock, create_autospec, sentinel, _CallList) def tearDownModule(): asyncio.set_event_loop_policy(None) class AsyncClass: def __init__(self): pass async def async_method(self): pass def normal_method(self): pass @classmethod async def async_class_method(cls): pass @staticmethod async def async_static_method(): pass class AwaitableClass: def __await__(self): yield async def async_func(): pass async def async_func_args(a, b, *, c): pass def normal_func(): pass class NormalClass(object): def a(self): pass async_foo_name = f'{__name__}.AsyncClass' normal_foo_name = f'{__name__}.NormalClass' class AsyncPatchDecoratorTest(unittest.TestCase): def test_is_coroutine_function_patch(self): @patch.object(AsyncClass, 'async_method') def test_async(mock_method): self.assertTrue(asyncio.iscoroutinefunction(mock_method)) test_async() def test_is_async_patch(self): @patch.object(AsyncClass, 'async_method') def test_async(mock_method): m = mock_method() self.assertTrue(inspect.isawaitable(m)) asyncio.run(m) @patch(f'{async_foo_name}.async_method') def test_no_parent_attribute(mock_method): m = mock_method() self.assertTrue(inspect.isawaitable(m)) asyncio.run(m) test_async() test_no_parent_attribute() def test_is_AsyncMock_patch(self): @patch.object(AsyncClass, 'async_method') def test_async(mock_method): self.assertIsInstance(mock_method, AsyncMock) test_async() def test_is_AsyncMock_patch_staticmethod(self): @patch.object(AsyncClass, 'async_static_method') def test_async(mock_method): self.assertIsInstance(mock_method, AsyncMock) test_async() def test_is_AsyncMock_patch_classmethod(self): @patch.object(AsyncClass, 'async_class_method') def test_async(mock_method): self.assertIsInstance(mock_method, AsyncMock) test_async() def test_async_def_patch(self): @patch(f"{__name__}.async_func", return_value=1) @patch(f"{__name__}.async_func_args", return_value=2) async def test_async(func_args_mock, func_mock): self.assertEqual(func_args_mock._mock_name, "async_func_args") self.assertEqual(func_mock._mock_name, "async_func") self.assertIsInstance(async_func, AsyncMock) self.assertIsInstance(async_func_args, AsyncMock) self.assertEqual(await async_func(), 1) self.assertEqual(await async_func_args(1, 2, c=3), 2) asyncio.run(test_async()) self.assertTrue(inspect.iscoroutinefunction(async_func)) class AsyncPatchCMTest(unittest.TestCase): def test_is_async_function_cm(self): def test_async(): with patch.object(AsyncClass, 'async_method') as mock_method: self.assertTrue(asyncio.iscoroutinefunction(mock_method)) test_async() def test_is_async_cm(self): def test_async(): with patch.object(AsyncClass, 'async_method') as mock_method: m = mock_method() self.assertTrue(inspect.isawaitable(m)) asyncio.run(m) test_async() def test_is_AsyncMock_cm(self): def test_async(): with patch.object(AsyncClass, 'async_method') as mock_method: self.assertIsInstance(mock_method, AsyncMock) test_async() def test_async_def_cm(self): async def test_async(): with patch(f"{__name__}.async_func", AsyncMock()): self.assertIsInstance(async_func, AsyncMock) self.assertTrue(inspect.iscoroutinefunction(async_func)) asyncio.run(test_async()) class AsyncMockTest(unittest.TestCase): def test_iscoroutinefunction_default(self): mock = AsyncMock() self.assertTrue(asyncio.iscoroutinefunction(mock)) def test_iscoroutinefunction_function(self): async def foo(): pass mock = AsyncMock(foo) self.assertTrue(asyncio.iscoroutinefunction(mock)) self.assertTrue(inspect.iscoroutinefunction(mock)) def test_isawaitable(self): mock = AsyncMock() m = mock() self.assertTrue(inspect.isawaitable(m)) asyncio.run(m) self.assertIn('assert_awaited', dir(mock)) def test_iscoroutinefunction_normal_function(self): def foo(): pass mock = AsyncMock(foo) self.assertTrue(asyncio.iscoroutinefunction(mock)) self.assertTrue(inspect.iscoroutinefunction(mock)) def test_future_isfuture(self): loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) fut = asyncio.Future() loop.stop() loop.close() mock = AsyncMock(fut) self.assertIsInstance(mock, asyncio.Future) class AsyncAutospecTest(unittest.TestCase): def test_is_AsyncMock_patch(self): @patch(async_foo_name, autospec=True) def test_async(mock_method): self.assertIsInstance(mock_method.async_method, AsyncMock) self.assertIsInstance(mock_method, MagicMock) @patch(async_foo_name, autospec=True) def test_normal_method(mock_method): self.assertIsInstance(mock_method.normal_method, MagicMock) test_async() test_normal_method() def test_create_autospec_instance(self): with self.assertRaises(RuntimeError): create_autospec(async_func, instance=True) def test_create_autospec_awaitable_class(self): awaitable_mock = create_autospec(spec=AwaitableClass()) self.assertIsInstance(create_autospec(awaitable_mock), AsyncMock) def test_create_autospec(self): spec = create_autospec(async_func_args) awaitable = spec(1, 2, c=3) async def main(): await awaitable self.assertEqual(spec.await_count, 0) self.assertIsNone(spec.await_args) self.assertEqual(spec.await_args_list, []) spec.assert_not_awaited() asyncio.run(main()) self.assertTrue(asyncio.iscoroutinefunction(spec)) self.assertTrue(asyncio.iscoroutine(awaitable)) self.assertEqual(spec.await_count, 1) self.assertEqual(spec.await_args, call(1, 2, c=3)) self.assertEqual(spec.await_args_list, [call(1, 2, c=3)]) spec.assert_awaited_once() spec.assert_awaited_once_with(1, 2, c=3) spec.assert_awaited_with(1, 2, c=3) spec.assert_awaited() def test_patch_with_autospec(self): async def test_async(): with patch(f"{__name__}.async_func_args", autospec=True) as mock_method: awaitable = mock_method(1, 2, c=3) self.assertIsInstance(mock_method.mock, AsyncMock) self.assertTrue(asyncio.iscoroutinefunction(mock_method)) self.assertTrue(asyncio.iscoroutine(awaitable)) self.assertTrue(inspect.isawaitable(awaitable)) # Verify the default values during mock setup self.assertEqual(mock_method.await_count, 0) self.assertEqual(mock_method.await_args_list, []) self.assertIsNone(mock_method.await_args) mock_method.assert_not_awaited() await awaitable self.assertEqual(mock_method.await_count, 1) self.assertEqual(mock_method.await_args, call(1, 2, c=3)) self.assertEqual(mock_method.await_args_list, [call(1, 2, c=3)]) mock_method.assert_awaited_once() mock_method.assert_awaited_once_with(1, 2, c=3) mock_method.assert_awaited_with(1, 2, c=3) mock_method.assert_awaited() mock_method.reset_mock() self.assertEqual(mock_method.await_count, 0) self.assertIsNone(mock_method.await_args) self.assertEqual(mock_method.await_args_list, []) asyncio.run(test_async()) class AsyncSpecTest(unittest.TestCase): def test_spec_normal_methods_on_class(self): def inner_test(mock_type): mock = mock_type(AsyncClass) self.assertIsInstance(mock.async_method, AsyncMock) self.assertIsInstance(mock.normal_method, MagicMock) for mock_type in [AsyncMock, MagicMock]: with self.subTest(f"test method types with {mock_type}"): inner_test(mock_type) def test_spec_normal_methods_on_class_with_mock(self): mock = Mock(AsyncClass) self.assertIsInstance(mock.async_method, AsyncMock) self.assertIsInstance(mock.normal_method, Mock) def test_spec_mock_type_kw(self): def inner_test(mock_type): async_mock = mock_type(spec=async_func) self.assertIsInstance(async_mock, mock_type) with self.assertWarns(RuntimeWarning): # Will raise a warning because never awaited self.assertTrue(inspect.isawaitable(async_mock())) sync_mock = mock_type(spec=normal_func) self.assertIsInstance(sync_mock, mock_type) for mock_type in [AsyncMock, MagicMock, Mock]: with self.subTest(f"test spec kwarg with {mock_type}"): inner_test(mock_type) def test_spec_mock_type_positional(self): def inner_test(mock_type): async_mock = mock_type(async_func) self.assertIsInstance(async_mock, mock_type) with self.assertWarns(RuntimeWarning): # Will raise a warning because never awaited self.assertTrue(inspect.isawaitable(async_mock())) sync_mock = mock_type(normal_func) self.assertIsInstance(sync_mock, mock_type) for mock_type in [AsyncMock, MagicMock, Mock]: with self.subTest(f"test spec positional with {mock_type}"): inner_test(mock_type) def test_spec_as_normal_kw_AsyncMock(self): mock = AsyncMock(spec=normal_func) self.assertIsInstance(mock, AsyncMock) m = mock() self.assertTrue(inspect.isawaitable(m)) asyncio.run(m) def test_spec_as_normal_positional_AsyncMock(self): mock = AsyncMock(normal_func) self.assertIsInstance(mock, AsyncMock) m = mock() self.assertTrue(inspect.isawaitable(m)) asyncio.run(m) def test_spec_async_mock(self): @patch.object(AsyncClass, 'async_method', spec=True) def test_async(mock_method): self.assertIsInstance(mock_method, AsyncMock) test_async() def test_spec_parent_not_async_attribute_is(self): @patch(async_foo_name, spec=True) def test_async(mock_method): self.assertIsInstance(mock_method, MagicMock) self.assertIsInstance(mock_method.async_method, AsyncMock) test_async() def test_target_async_spec_not(self): @patch.object(AsyncClass, 'async_method', spec=NormalClass.a) def test_async_attribute(mock_method): self.assertIsInstance(mock_method, MagicMock) self.assertFalse(inspect.iscoroutine(mock_method)) self.assertFalse(inspect.isawaitable(mock_method)) test_async_attribute() def test_target_not_async_spec_is(self): @patch.object(NormalClass, 'a', spec=async_func) def test_attribute_not_async_spec_is(mock_async_func): self.assertIsInstance(mock_async_func, AsyncMock) test_attribute_not_async_spec_is() def test_spec_async_attributes(self): @patch(normal_foo_name, spec=AsyncClass) def test_async_attributes_coroutines(MockNormalClass): self.assertIsInstance(MockNormalClass.async_method, AsyncMock) self.assertIsInstance(MockNormalClass, MagicMock) test_async_attributes_coroutines() class AsyncSpecSetTest(unittest.TestCase): def test_is_AsyncMock_patch(self): @patch.object(AsyncClass, 'async_method', spec_set=True) def test_async(async_method): self.assertIsInstance(async_method, AsyncMock) def test_is_async_AsyncMock(self): mock = AsyncMock(spec_set=AsyncClass.async_method) self.assertTrue(asyncio.iscoroutinefunction(mock)) self.assertIsInstance(mock, AsyncMock) def test_is_child_AsyncMock(self): mock = MagicMock(spec_set=AsyncClass) self.assertTrue(asyncio.iscoroutinefunction(mock.async_method)) self.assertFalse(asyncio.iscoroutinefunction(mock.normal_method)) self.assertIsInstance(mock.async_method, AsyncMock) self.assertIsInstance(mock.normal_method, MagicMock) self.assertIsInstance(mock, MagicMock) def test_magicmock_lambda_spec(self): mock_obj = MagicMock() mock_obj.mock_func = MagicMock(spec=lambda x: x) with patch.object(mock_obj, "mock_func") as cm: self.assertIsInstance(cm, MagicMock) class AsyncArguments(unittest.IsolatedAsyncioTestCase): async def test_add_return_value(self): async def addition(self, var): return var + 1 mock = AsyncMock(addition, return_value=10) output = await mock(5) self.assertEqual(output, 10) async def test_add_side_effect_exception(self): async def addition(var): return var + 1 mock = AsyncMock(addition, side_effect=Exception('err')) with self.assertRaises(Exception): await mock(5) async def test_add_side_effect_coroutine(self): async def addition(var): return var + 1 mock = AsyncMock(side_effect=addition) result = await mock(5) self.assertEqual(result, 6) async def test_add_side_effect_normal_function(self): def addition(var): return var + 1 mock = AsyncMock(side_effect=addition) result = await mock(5) self.assertEqual(result, 6) async def test_add_side_effect_iterable(self): vals = [1, 2, 3] mock = AsyncMock(side_effect=vals) for item in vals: self.assertEqual(await mock(), item) with self.assertRaises(StopAsyncIteration) as e: await mock() async def test_add_side_effect_exception_iterable(self): class SampleException(Exception): pass vals = [1, SampleException("foo")] mock = AsyncMock(side_effect=vals) self.assertEqual(await mock(), 1) with self.assertRaises(SampleException) as e: await mock() async def test_return_value_AsyncMock(self): value = AsyncMock(return_value=10) mock = AsyncMock(return_value=value) result = await mock() self.assertIs(result, value) async def test_return_value_awaitable(self): fut = asyncio.Future() fut.set_result(None) mock = AsyncMock(return_value=fut) result = await mock() self.assertIsInstance(result, asyncio.Future) async def test_side_effect_awaitable_values(self): fut = asyncio.Future() fut.set_result(None) mock = AsyncMock(side_effect=[fut]) result = await mock() self.assertIsInstance(result, asyncio.Future) with self.assertRaises(StopAsyncIteration): await mock() async def test_side_effect_is_AsyncMock(self): effect = AsyncMock(return_value=10) mock = AsyncMock(side_effect=effect) result = await mock() self.assertEqual(result, 10) async def test_wraps_coroutine(self): value = asyncio.Future() ran = False async def inner(): nonlocal ran ran = True return value mock = AsyncMock(wraps=inner) result = await mock() self.assertEqual(result, value) mock.assert_awaited() self.assertTrue(ran) async def test_wraps_normal_function(self): value = 1 ran = False def inner(): nonlocal ran ran = True return value mock = AsyncMock(wraps=inner) result = await mock() self.assertEqual(result, value) mock.assert_awaited() self.assertTrue(ran) async def test_await_args_list_order(self): async_mock = AsyncMock() mock2 = async_mock(2) mock1 = async_mock(1) await mock1 await mock2 async_mock.assert_has_awaits([call(1), call(2)]) self.assertEqual(async_mock.await_args_list, [call(1), call(2)]) self.assertEqual(async_mock.call_args_list, [call(2), call(1)]) class AsyncMagicMethods(unittest.TestCase): def test_async_magic_methods_return_async_mocks(self): m_mock = MagicMock() self.assertIsInstance(m_mock.__aenter__, AsyncMock) self.assertIsInstance(m_mock.__aexit__, AsyncMock) self.assertIsInstance(m_mock.__anext__, AsyncMock) # __aiter__ is actually a synchronous object # so should return a MagicMock self.assertIsInstance(m_mock.__aiter__, MagicMock) def test_sync_magic_methods_return_magic_mocks(self): a_mock = AsyncMock() self.assertIsInstance(a_mock.__enter__, MagicMock) self.assertIsInstance(a_mock.__exit__, MagicMock) self.assertIsInstance(a_mock.__next__, MagicMock) self.assertIsInstance(a_mock.__len__, MagicMock) def test_magicmock_has_async_magic_methods(self): m_mock = MagicMock() self.assertTrue(hasattr(m_mock, "__aenter__")) self.assertTrue(hasattr(m_mock, "__aexit__")) self.assertTrue(hasattr(m_mock, "__anext__")) def test_asyncmock_has_sync_magic_methods(self): a_mock = AsyncMock() self.assertTrue(hasattr(a_mock, "__enter__")) self.assertTrue(hasattr(a_mock, "__exit__")) self.assertTrue(hasattr(a_mock, "__next__")) self.assertTrue(hasattr(a_mock, "__len__")) def test_magic_methods_are_async_functions(self): m_mock = MagicMock() self.assertIsInstance(m_mock.__aenter__, AsyncMock) self.assertIsInstance(m_mock.__aexit__, AsyncMock) # AsyncMocks are also coroutine functions self.assertTrue(asyncio.iscoroutinefunction(m_mock.__aenter__)) self.assertTrue(asyncio.iscoroutinefunction(m_mock.__aexit__)) class AsyncContextManagerTest(unittest.TestCase): class WithAsyncContextManager: async def __aenter__(self, *args, **kwargs): self.entered = True return self async def __aexit__(self, *args, **kwargs): self.exited = True class WithSyncContextManager: def __enter__(self, *args, **kwargs): return self def __exit__(self, *args, **kwargs): pass class ProductionCode: # Example real-world(ish) code def __init__(self): self.session = None async def main(self): async with self.session.post('https://python.org') as response: val = await response.json() return val def test_set_return_value_of_aenter(self): def inner_test(mock_type): pc = self.ProductionCode() pc.session = MagicMock(name='sessionmock') cm = mock_type(name='magic_cm') response = AsyncMock(name='response') response.json = AsyncMock(return_value={'json': 123}) cm.__aenter__.return_value = response pc.session.post.return_value = cm result = asyncio.run(pc.main()) self.assertEqual(result, {'json': 123}) for mock_type in [AsyncMock, MagicMock]: with self.subTest(f"test set return value of aenter with {mock_type}"): inner_test(mock_type) def test_mock_supports_async_context_manager(self): def inner_test(mock_type): called = False cm = self.WithAsyncContextManager() cm_mock = mock_type(cm) async def use_context_manager(): nonlocal called async with cm_mock as result: called = True return result cm_result = asyncio.run(use_context_manager()) self.assertTrue(called) self.assertTrue(cm_mock.__aenter__.called) self.assertTrue(cm_mock.__aexit__.called) cm_mock.__aenter__.assert_awaited() cm_mock.__aexit__.assert_awaited() # We mock __aenter__ so it does not return self self.assertIsNot(cm_mock, cm_result) for mock_type in [AsyncMock, MagicMock]: with self.subTest(f"test context manager magics with {mock_type}"): inner_test(mock_type) def test_mock_customize_async_context_manager(self): instance = self.WithAsyncContextManager() mock_instance = MagicMock(instance) expected_result = object() mock_instance.__aenter__.return_value = expected_result async def use_context_manager(): async with mock_instance as result: return result self.assertIs(asyncio.run(use_context_manager()), expected_result) def test_mock_customize_async_context_manager_with_coroutine(self): enter_called = False exit_called = False async def enter_coroutine(*args): nonlocal enter_called enter_called = True async def exit_coroutine(*args): nonlocal exit_called exit_called = True instance = self.WithAsyncContextManager() mock_instance = MagicMock(instance) mock_instance.__aenter__ = enter_coroutine mock_instance.__aexit__ = exit_coroutine async def use_context_manager(): async with mock_instance: pass asyncio.run(use_context_manager()) self.assertTrue(enter_called) self.assertTrue(exit_called) def test_context_manager_raise_exception_by_default(self): async def raise_in(context_manager): async with context_manager: raise TypeError() instance = self.WithAsyncContextManager() mock_instance = MagicMock(instance) with self.assertRaises(TypeError): asyncio.run(raise_in(mock_instance)) class AsyncIteratorTest(unittest.TestCase): class WithAsyncIterator(object): def __init__(self): self.items = ["foo", "NormalFoo", "baz"] def __aiter__(self): return self async def __anext__(self): try: return self.items.pop() except IndexError: pass raise StopAsyncIteration def test_aiter_set_return_value(self): mock_iter = AsyncMock(name="tester") mock_iter.__aiter__.return_value = [1, 2, 3] async def main(): return [i async for i in mock_iter] result = asyncio.run(main()) self.assertEqual(result, [1, 2, 3]) def test_mock_aiter_and_anext_asyncmock(self): def inner_test(mock_type): instance = self.WithAsyncIterator() mock_instance = mock_type(instance) # Check that the mock and the real thing bahave the same # __aiter__ is not actually async, so not a coroutinefunction self.assertFalse(asyncio.iscoroutinefunction(instance.__aiter__)) self.assertFalse(asyncio.iscoroutinefunction(mock_instance.__aiter__)) # __anext__ is async self.assertTrue(asyncio.iscoroutinefunction(instance.__anext__)) self.assertTrue(asyncio.iscoroutinefunction(mock_instance.__anext__)) for mock_type in [AsyncMock, MagicMock]: with self.subTest(f"test aiter and anext corourtine with {mock_type}"): inner_test(mock_type) def test_mock_async_for(self): async def iterate(iterator): accumulator = [] async for item in iterator: accumulator.append(item) return accumulator expected = ["FOO", "BAR", "BAZ"] def test_default(mock_type): mock_instance = mock_type(self.WithAsyncIterator()) self.assertEqual(asyncio.run(iterate(mock_instance)), []) def test_set_return_value(mock_type): mock_instance = mock_type(self.WithAsyncIterator()) mock_instance.__aiter__.return_value = expected[:] self.assertEqual(asyncio.run(iterate(mock_instance)), expected) def test_set_return_value_iter(mock_type): mock_instance = mock_type(self.WithAsyncIterator()) mock_instance.__aiter__.return_value = iter(expected[:]) self.assertEqual(asyncio.run(iterate(mock_instance)), expected) for mock_type in [AsyncMock, MagicMock]: with self.subTest(f"default value with {mock_type}"): test_default(mock_type) with self.subTest(f"set return_value with {mock_type}"): test_set_return_value(mock_type) with self.subTest(f"set return_value iterator with {mock_type}"): test_set_return_value_iter(mock_type) class AsyncMockAssert(unittest.TestCase): def setUp(self): self.mock = AsyncMock() async def _runnable_test(self, *args, **kwargs): await self.mock(*args, **kwargs) async def _await_coroutine(self, coroutine): return await coroutine def test_assert_called_but_not_awaited(self): mock = AsyncMock(AsyncClass) with self.assertWarns(RuntimeWarning): # Will raise a warning because never awaited mock.async_method() self.assertTrue(asyncio.iscoroutinefunction(mock.async_method)) mock.async_method.assert_called() mock.async_method.assert_called_once() mock.async_method.assert_called_once_with() with self.assertRaises(AssertionError): mock.assert_awaited() with self.assertRaises(AssertionError): mock.async_method.assert_awaited() def test_assert_called_then_awaited(self): mock = AsyncMock(AsyncClass) mock_coroutine = mock.async_method() mock.async_method.assert_called() mock.async_method.assert_called_once() mock.async_method.assert_called_once_with() with self.assertRaises(AssertionError): mock.async_method.assert_awaited() asyncio.run(self._await_coroutine(mock_coroutine)) # Assert we haven't re-called the function mock.async_method.assert_called_once() mock.async_method.assert_awaited() mock.async_method.assert_awaited_once() mock.async_method.assert_awaited_once_with() def test_assert_called_and_awaited_at_same_time(self): with self.assertRaises(AssertionError): self.mock.assert_awaited() with self.assertRaises(AssertionError): self.mock.assert_called() asyncio.run(self._runnable_test()) self.mock.assert_called_once() self.mock.assert_awaited_once() def test_assert_called_twice_and_awaited_once(self): mock = AsyncMock(AsyncClass) coroutine = mock.async_method() with self.assertWarns(RuntimeWarning): # The first call will be awaited so no warning there # But this call will never get awaited, so it will warn here mock.async_method() with self.assertRaises(AssertionError): mock.async_method.assert_awaited() mock.async_method.assert_called() asyncio.run(self._await_coroutine(coroutine)) mock.async_method.assert_awaited() mock.async_method.assert_awaited_once() def test_assert_called_once_and_awaited_twice(self): mock = AsyncMock(AsyncClass) coroutine = mock.async_method() mock.async_method.assert_called_once() asyncio.run(self._await_coroutine(coroutine)) with self.assertRaises(RuntimeError): # Cannot reuse already awaited coroutine asyncio.run(self._await_coroutine(coroutine)) mock.async_method.assert_awaited() def test_assert_awaited_but_not_called(self): with self.assertRaises(AssertionError): self.mock.assert_awaited() with self.assertRaises(AssertionError): self.mock.assert_called() with self.assertRaises(TypeError): # You cannot await an AsyncMock, it must be a coroutine asyncio.run(self._await_coroutine(self.mock)) with self.assertRaises(AssertionError): self.mock.assert_awaited() with self.assertRaises(AssertionError): self.mock.assert_called() def test_assert_has_calls_not_awaits(self): kalls = [call('foo')] with self.assertWarns(RuntimeWarning): # Will raise a warning because never awaited self.mock('foo') self.mock.assert_has_calls(kalls) with self.assertRaises(AssertionError): self.mock.assert_has_awaits(kalls) def test_assert_has_mock_calls_on_async_mock_no_spec(self): with self.assertWarns(RuntimeWarning): # Will raise a warning because never awaited self.mock() kalls_empty = [('', (), {})] self.assertEqual(self.mock.mock_calls, kalls_empty) with self.assertWarns(RuntimeWarning): # Will raise a warning because never awaited self.mock('foo') self.mock('baz') mock_kalls = ([call(), call('foo'), call('baz')]) self.assertEqual(self.mock.mock_calls, mock_kalls) def test_assert_has_mock_calls_on_async_mock_with_spec(self): a_class_mock = AsyncMock(AsyncClass) with self.assertWarns(RuntimeWarning): # Will raise a warning because never awaited a_class_mock.async_method() kalls_empty = [('', (), {})] self.assertEqual(a_class_mock.async_method.mock_calls, kalls_empty) self.assertEqual(a_class_mock.mock_calls, [call.async_method()]) with self.assertWarns(RuntimeWarning): # Will raise a warning because never awaited a_class_mock.async_method(1, 2, 3, a=4, b=5) method_kalls = [call(), call(1, 2, 3, a=4, b=5)] mock_kalls = [call.async_method(), call.async_method(1, 2, 3, a=4, b=5)] self.assertEqual(a_class_mock.async_method.mock_calls, method_kalls) self.assertEqual(a_class_mock.mock_calls, mock_kalls) def test_async_method_calls_recorded(self): with self.assertWarns(RuntimeWarning): # Will raise warnings because never awaited self.mock.something(3, fish=None) self.mock.something_else.something(6, cake=sentinel.Cake) self.assertEqual(self.mock.method_calls, [ ("something", (3,), {'fish': None}), ("something_else.something", (6,), {'cake': sentinel.Cake}) ], "method calls not recorded correctly") self.assertEqual(self.mock.something_else.method_calls, [("something", (6,), {'cake': sentinel.Cake})], "method calls not recorded correctly") def test_async_arg_lists(self): def assert_attrs(mock): names = ('call_args_list', 'method_calls', 'mock_calls') for name in names: attr = getattr(mock, name) self.assertIsInstance(attr, _CallList) self.assertIsInstance(attr, list) self.assertEqual(attr, []) assert_attrs(self.mock) with self.assertWarns(RuntimeWarning): # Will raise warnings because never awaited self.mock() self.mock(1, 2) self.mock(a=3) self.mock.reset_mock() assert_attrs(self.mock) a_mock = AsyncMock(AsyncClass) with self.assertWarns(RuntimeWarning): # Will raise warnings because never awaited a_mock.async_method() a_mock.async_method(1, a=3) a_mock.reset_mock() assert_attrs(a_mock) def test_assert_awaited(self): with self.assertRaises(AssertionError): self.mock.assert_awaited() asyncio.run(self._runnable_test()) self.mock.assert_awaited() def test_assert_awaited_once(self): with self.assertRaises(AssertionError): self.mock.assert_awaited_once() asyncio.run(self._runnable_test()) self.mock.assert_awaited_once() asyncio.run(self._runnable_test()) with self.assertRaises(AssertionError): self.mock.assert_awaited_once() def test_assert_awaited_with(self): msg = 'Not awaited' with self.assertRaisesRegex(AssertionError, msg): self.mock.assert_awaited_with('foo') asyncio.run(self._runnable_test()) msg = 'expected await not found' with self.assertRaisesRegex(AssertionError, msg): self.mock.assert_awaited_with('foo') asyncio.run(self._runnable_test('foo')) self.mock.assert_awaited_with('foo') asyncio.run(self._runnable_test('SomethingElse')) with self.assertRaises(AssertionError): self.mock.assert_awaited_with('foo') def test_assert_awaited_once_with(self): with self.assertRaises(AssertionError): self.mock.assert_awaited_once_with('foo') asyncio.run(self._runnable_test('foo')) self.mock.assert_awaited_once_with('foo') asyncio.run(self._runnable_test('foo')) with self.assertRaises(AssertionError): self.mock.assert_awaited_once_with('foo') def test_assert_any_wait(self): with self.assertRaises(AssertionError): self.mock.assert_any_await('foo') asyncio.run(self._runnable_test('baz')) with self.assertRaises(AssertionError): self.mock.assert_any_await('foo') asyncio.run(self._runnable_test('foo')) self.mock.assert_any_await('foo') asyncio.run(self._runnable_test('SomethingElse')) self.mock.assert_any_await('foo') def test_assert_has_awaits_no_order(self): calls = [call('foo'), call('baz')] with self.assertRaises(AssertionError) as cm: self.mock.assert_has_awaits(calls) self.assertEqual(len(cm.exception.args), 1) asyncio.run(self._runnable_test('foo')) with self.assertRaises(AssertionError): self.mock.assert_has_awaits(calls) asyncio.run(self._runnable_test('foo')) with self.assertRaises(AssertionError): self.mock.assert_has_awaits(calls) asyncio.run(self._runnable_test('baz')) self.mock.assert_has_awaits(calls) asyncio.run(self._runnable_test('SomethingElse')) self.mock.assert_has_awaits(calls) def test_assert_has_awaits_ordered(self): calls = [call('foo'), call('baz')] with self.assertRaises(AssertionError): self.mock.assert_has_awaits(calls, any_order=True) asyncio.run(self._runnable_test('baz')) with self.assertRaises(AssertionError): self.mock.assert_has_awaits(calls, any_order=True) asyncio.run(self._runnable_test('bamf')) with self.assertRaises(AssertionError): self.mock.assert_has_awaits(calls, any_order=True) asyncio.run(self._runnable_test('foo')) self.mock.assert_has_awaits(calls, any_order=True) asyncio.run(self._runnable_test('qux')) self.mock.assert_has_awaits(calls, any_order=True) def test_assert_not_awaited(self): self.mock.assert_not_awaited() asyncio.run(self._runnable_test()) with self.assertRaises(AssertionError): self.mock.assert_not_awaited() def test_assert_has_awaits_not_matching_spec_error(self): async def f(x=None): pass self.mock = AsyncMock(spec=f) asyncio.run(self._runnable_test(1)) with self.assertRaisesRegex( AssertionError, '^{}$'.format( re.escape('Awaits not found.\n' 'Expected: [call()]\n' 'Actual: [call(1)]'))) as cm: self.mock.assert_has_awaits([call()]) self.assertIsNone(cm.exception.__cause__) with self.assertRaisesRegex( AssertionError, '^{}$'.format( re.escape( 'Error processing expected awaits.\n' "Errors: [None, TypeError('too many positional " "arguments')]\n" 'Expected: [call(), call(1, 2)]\n' 'Actual: [call(1)]'))) as cm: self.mock.assert_has_awaits([call(), call(1, 2)]) self.assertIsInstance(cm.exception.__cause__, TypeError)
35.693117
84
0.648078
d8d59c0ac46f2ab2bc9dd825cf7819b4f192a62d
9,842
py
Python
Examples/Python/models/customer_create.py
Duett-AS/DuettAPI
ffd2f6060d6cfcc62e18a1c3b00ba1db58d5d289
[ "MIT" ]
4
2021-11-25T10:25:02.000Z
2021-12-01T09:37:55.000Z
Examples/Python/models/customer_create.py
Duett-AS/DuettAPI
ffd2f6060d6cfcc62e18a1c3b00ba1db58d5d289
[ "MIT" ]
null
null
null
Examples/Python/models/customer_create.py
Duett-AS/DuettAPI
ffd2f6060d6cfcc62e18a1c3b00ba1db58d5d289
[ "MIT" ]
2
2021-11-26T11:23:26.000Z
2021-12-09T10:44:34.000Z
# coding: utf-8 """ OpenApi ## ![N|Solid](https://duett.no/wp-content/uploads/2018/10/cropped-Duett-favicon-32x32.png) _How to take the Duett api in use_ To be able to use the API, you must have an interaction key and a client key. Eksample curl: ```swift curl -X 'GET' \\ 'https://api.duett.no/article/v1 \\ -H 'accept: application/json' \\ -H 'X-Api-Integration-Key: 89ff1c42-9d90-435a-8a94-20207bc06e1a' \\ -H 'X-Api-Client-Key: 7896feb3-aaa2-4fd2-aaa2-c69de5fd1e5f' ``` ##### [Metode description][1] ##### [Filtering data in openApi][2] ### Use a code generator as to auto-generate api client: ##### [NSwagStudio](https://github.com/RicoSuter/NSwag/wiki/NSwagStudio) ##### [Visual studio add-in](https://marketplace.visualstudio.com/items?itemName=ChristianResmaHelle.ApiClientCodeGenerator) \\ ##### [Online code generator for many languages and versions](https://github.com/swagger-api/swagger-codegen) *** [1]: ../metods-help.html [2]: ../query-help.html # noqa: E501 OpenAPI spec version: 1.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class CustomerCreate(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'external_id': 'str', 'vat_number': 'str', 'bank_account_number': 'str', 'invoice_email': 'str', 'hour_attestation_mobile': 'str', 'address': 'StreetAddress', 'contact_info': 'Contact', 'contact_person': 'ContactPerson' } attribute_map = { 'external_id': 'externalId', 'vat_number': 'vatNumber', 'bank_account_number': 'bankAccountNumber', 'invoice_email': 'invoiceEmail', 'hour_attestation_mobile': 'hourAttestationMobile', 'address': 'address', 'contact_info': 'contactInfo', 'contact_person': 'contactPerson' } def __init__(self, external_id=None, vat_number=None, bank_account_number=None, invoice_email=None, hour_attestation_mobile=None, address=None, contact_info=None, contact_person=None): # noqa: E501 """CustomerCreate - a model defined in Swagger""" # noqa: E501 self._external_id = None self._vat_number = None self._bank_account_number = None self._invoice_email = None self._hour_attestation_mobile = None self._address = None self._contact_info = None self._contact_person = None self.discriminator = None self.external_id = external_id if vat_number is not None: self.vat_number = vat_number if bank_account_number is not None: self.bank_account_number = bank_account_number if invoice_email is not None: self.invoice_email = invoice_email if hour_attestation_mobile is not None: self.hour_attestation_mobile = hour_attestation_mobile self.address = address self.contact_info = contact_info if contact_person is not None: self.contact_person = contact_person @property def external_id(self): """Gets the external_id of this CustomerCreate. # noqa: E501 :return: The external_id of this CustomerCreate. # noqa: E501 :rtype: str """ return self._external_id @external_id.setter def external_id(self, external_id): """Sets the external_id of this CustomerCreate. :param external_id: The external_id of this CustomerCreate. # noqa: E501 :type: str """ if external_id is None: raise ValueError("Invalid value for `external_id`, must not be `None`") # noqa: E501 self._external_id = external_id @property def vat_number(self): """Gets the vat_number of this CustomerCreate. # noqa: E501 :return: The vat_number of this CustomerCreate. # noqa: E501 :rtype: str """ return self._vat_number @vat_number.setter def vat_number(self, vat_number): """Sets the vat_number of this CustomerCreate. :param vat_number: The vat_number of this CustomerCreate. # noqa: E501 :type: str """ self._vat_number = vat_number @property def bank_account_number(self): """Gets the bank_account_number of this CustomerCreate. # noqa: E501 :return: The bank_account_number of this CustomerCreate. # noqa: E501 :rtype: str """ return self._bank_account_number @bank_account_number.setter def bank_account_number(self, bank_account_number): """Sets the bank_account_number of this CustomerCreate. :param bank_account_number: The bank_account_number of this CustomerCreate. # noqa: E501 :type: str """ self._bank_account_number = bank_account_number @property def invoice_email(self): """Gets the invoice_email of this CustomerCreate. # noqa: E501 :return: The invoice_email of this CustomerCreate. # noqa: E501 :rtype: str """ return self._invoice_email @invoice_email.setter def invoice_email(self, invoice_email): """Sets the invoice_email of this CustomerCreate. :param invoice_email: The invoice_email of this CustomerCreate. # noqa: E501 :type: str """ self._invoice_email = invoice_email @property def hour_attestation_mobile(self): """Gets the hour_attestation_mobile of this CustomerCreate. # noqa: E501 :return: The hour_attestation_mobile of this CustomerCreate. # noqa: E501 :rtype: str """ return self._hour_attestation_mobile @hour_attestation_mobile.setter def hour_attestation_mobile(self, hour_attestation_mobile): """Sets the hour_attestation_mobile of this CustomerCreate. :param hour_attestation_mobile: The hour_attestation_mobile of this CustomerCreate. # noqa: E501 :type: str """ self._hour_attestation_mobile = hour_attestation_mobile @property def address(self): """Gets the address of this CustomerCreate. # noqa: E501 :return: The address of this CustomerCreate. # noqa: E501 :rtype: StreetAddress """ return self._address @address.setter def address(self, address): """Sets the address of this CustomerCreate. :param address: The address of this CustomerCreate. # noqa: E501 :type: StreetAddress """ if address is None: raise ValueError("Invalid value for `address`, must not be `None`") # noqa: E501 self._address = address @property def contact_info(self): """Gets the contact_info of this CustomerCreate. # noqa: E501 :return: The contact_info of this CustomerCreate. # noqa: E501 :rtype: Contact """ return self._contact_info @contact_info.setter def contact_info(self, contact_info): """Sets the contact_info of this CustomerCreate. :param contact_info: The contact_info of this CustomerCreate. # noqa: E501 :type: Contact """ if contact_info is None: raise ValueError("Invalid value for `contact_info`, must not be `None`") # noqa: E501 self._contact_info = contact_info @property def contact_person(self): """Gets the contact_person of this CustomerCreate. # noqa: E501 :return: The contact_person of this CustomerCreate. # noqa: E501 :rtype: ContactPerson """ return self._contact_person @contact_person.setter def contact_person(self, contact_person): """Sets the contact_person of this CustomerCreate. :param contact_person: The contact_person of this CustomerCreate. # noqa: E501 :type: ContactPerson """ self._contact_person = contact_person def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(CustomerCreate, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CustomerCreate): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
33.25
970
0.625787
b7f984436e21305aa509bcada6d51ec1ae4531d0
763
py
Python
lesson1/exercise2_1.py
mfeindt0705/ansiblenetmf
8e1935e030c8adf621b8a7b5866f7ebc65420f09
[ "Apache-2.0" ]
null
null
null
lesson1/exercise2_1.py
mfeindt0705/ansiblenetmf
8e1935e030c8adf621b8a7b5866f7ebc65420f09
[ "Apache-2.0" ]
5
2020-02-26T20:13:55.000Z
2021-12-13T19:56:22.000Z
lesson1/exercise2_1.py
mfeindt0705/ansiblenetmf
8e1935e030c8adf621b8a7b5866f7ebc65420f09
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 """ define base functions for yaml file read-file and write_file """ # !/usr/bin/env python3 """ def basic functions for yaml processing """ import yaml from pprint import pprint def read_yaml(filename): """ yaml file processing function has filename as input and returns the file data processed by yaml """ with open(filename, 'r') as f: return yaml.load(f) def write_yaml(vdata, filename): """ yaml file processing function has data structure and filename as input data is written to file filename as a yaml formatted file """ return None if __name__ == "__main__": filename = input("Bitte geben Sie den Dateinamen ein : ") vdata = read_yaml(filename) pprint(vdata)
20.078947
78
0.68152
de7416d92ccdf00fa437ba1a1fba0498623ed6ec
16,422
py
Python
backend/main.py
johnr0/LanguageRule
f97d0a0c560e8feffe4e4aa9eb88eeacccc3e11a
[ "MIT" ]
null
null
null
backend/main.py
johnr0/LanguageRule
f97d0a0c560e8feffe4e4aa9eb88eeacccc3e11a
[ "MIT" ]
null
null
null
backend/main.py
johnr0/LanguageRule
f97d0a0c560e8feffe4e4aa9eb88eeacccc3e11a
[ "MIT" ]
null
null
null
from sanic import Sanic from sanic.response import json, file, text from nltk.corpus import wordnet as wn import numpy as np import stanfordnlp import nltk from nltk.stem import WordNetLemmatizer from empath import Empath import json as js from .db import db_connect, init_db from .random_code import get_random_code con=db_connect() cur=con.cursor() # init_db(cur) nlp = stanfordnlp.Pipeline() wordtags = nltk.ConditionalFreqDist((w.lower(), t) for w, t in nltk.corpus.brown.tagged_words(tagset="universal")) Lemmatizer = WordNetLemmatizer() emp = Empath() app = Sanic() app.static('/bundle.js', 'dist/bundle.js') #app.static('/', 'src') @app.route('/') async def index(request): return await file('dist/index.html') # possible TODO ? we might need to add related parameters in the route... @app.route('/<path:path>') async def index2(request, path): return await file('dist/index.html') @app.route('/query_keyphrase', methods=['POST']) def query_keyphrase(request): keyphrase_id = request.json['keyphrase_id'] keyphrase = con.execute('SELECT * FROM keyphrase WHERE keyphrase_id=?', (keyphrase_id,)) keyphrase = keyphrase.fetchall() if len(keyphrase)>0: keyphrase=keyphrase[0] return json({'keyphrase':keyphrase[1]}) else: return json({'keyphrase': False}) def extract_examples(concept): hypo_list = [] for i in concept.hyponyms(): hypo_list.append(i.name()) for i in concept.hyponyms(): hypo_list = hypo_list + extract_examples(i) hypo_list = list(set(hypo_list)) return hypo_list def extract_examples_short(concept): hypo_list = [] for i in concept.hyponyms(): hypo_list.append(i.name()) if len(hypo_list)>9: return list(set(hypo_list)) for i in concept.hyponyms(): hypo_list = hypo_list + extract_examples_short(i) if len(hypo_list)>9: break hypo_list = list(set(hypo_list)) return hypo_list def example_dist_sorted(concept, distance_words, short=False): if short==True: examples = extract_examples_short(concept) else: examples = extract_examples(concept) hypo_dict = {} for hypo in examples: cur_h = wn.synset(hypo) dists = [] for distance_word in distance_words: dists_sub=[] cur_ds = wn.synsets(distance_word) for cur_d in cur_ds: dist = cur_d.path_similarity(cur_h) # print(dist) if dist==None: dist = 0 dists_sub.append(dist) dists.append(np.max(dists_sub)) hypo_dict[hypo]=np.mean(dists) to_return = sorted(hypo_dict, key=hypo_dict.get, reverse=False) # print(hypo_dict) # print(to_return) return to_return def extract_candidate_common_parents(words): print('start extracting candidates!') result_common_hypernyms = [] hypernym_dict = {} for idx1 in range(len(words)): for idx2 in range(idx1+1, len(words)): word_synsets1 = wn.synsets(words[idx1]) word_synsets2 = wn.synsets(words[idx2]) for word_synset1 in word_synsets1: for word_synset2 in word_synsets2: common_hypernyms = word_synset1.lowest_common_hypernyms(word_synset2) for common_hypernym in common_hypernyms: if common_hypernym.name() not in hypernym_dict: hypernym_dict[common_hypernym.name()]=set() hypernym_dict[common_hypernym.name()].add(word_synset1.name()) hypernym_dict[common_hypernym.name()].add(word_synset2.name()) result_common_hypernyms = result_common_hypernyms + common_hypernyms # print(hypernym_dict) result_common_hypernyms = list(set(result_common_hypernyms)) print(result_common_hypernyms) # print(result_common_hypernyms) to_return_common_hypernyms = result_common_hypernyms.copy() # for idx1 in range(len(result_common_hypernyms)): # for idx2 in range(idx1+1, len(result_common_hypernyms)): # word_synset1 = result_common_hypernyms[idx1] # word_synset2 = result_common_hypernyms[idx2] # if len(hypernym_dict[word_synset1.name()] & hypernym_dict[word_synset2.name()])>0: # common_hypernyms = word_synset1.lowest_common_hypernyms(word_synset2) # for common_hypernym in common_hypernyms: # if common_hypernym.name()==word_synset1.name(): # if word_synset2 in to_return_common_hypernyms: # to_return_common_hypernyms.remove(word_synset2) # elif common_hypernym.name()==word_synset2.name(): # if word_synset1 in to_return_common_hypernyms: # to_return_common_hypernyms.remove(word_synset1) # else: # if word_synset1 in to_return_common_hypernyms: # to_return_common_hypernyms.remove(word_synset1) # if word_synset2 in to_return_common_hypernyms: # to_return_common_hypernyms.remove(word_synset2) # print('from', word_synset1, word_synset2, 'result', common_hypernyms) # to_return_common_hypernyms = to_return_common_hypernyms + common_hypernyms # to_return_common_hypernyms = list(set(to_return_common_hypernyms)) data_dict = {} hypo_dict = {} for hypo in to_return_common_hypernyms: cur_h = hypo dists = [] for distance_word in words: dists_sub=[] cur_ds = wn.synsets(distance_word) for cur_d in cur_ds: dist = cur_d.path_similarity(cur_h) # print(dist) if dist==None: dist = 0 dists_sub.append(dist) dists.append(np.max(dists_sub)) hypo_dict[hypo.name()]=np.mean(dists) # print(hypo_dict) to_return = sorted(hypo_dict, key=hypo_dict.get, reverse=True) print(to_return) return_dict_list = [] for item in to_return: s=wn.synset(item) each_dict = { 'name': s.name(), 'definition': s.definition(), 'examples': example_dist_sorted(s, words, True), } return_dict_list.append(each_dict) print(len(return_dict_list)) return return_dict_list @app.route('/query_pos', methods=["POST"],) def query_pos(request): word = request.json['word'] pos_list = list(wordtags[word]) print(pos_list) wnword = wn.synsets(word) for w in wnword: cur_pos = w.pos() if cur_pos=='n': pos_list.append('NOUN') elif cur_pos=='v': pos_list.append('VERB') elif cur_pos=='a': pos_list.append('ADJ') elif cur_pos=='r': pos_list.append('ADV') pos_list = list(set(pos_list)) return json({'query_result': pos_list}) @app.route('/query_empath_examples', methods=["POST"],) def query_empath_examples(request): words_passed = request.json['words'] pos = request.json['pos'] name = words_passed[len(words_passed)-1]+'_similar' examples = emp.create_category(name, words_passed) examples_in_pos = [] for example in examples: pos_list = list(wordtags[example]) wnword = wn.synsets(example) for w in wnword: cur_pos = w.pos() if cur_pos=='n': pos_list.append('NOUN') elif cur_pos=='v': pos_list.append('VERB') elif cur_pos=='a': pos_list.append('ADJ') elif cur_pos=='r': pos_list.append('ADV') pos_list = list(set(pos_list)) if pos in pos_list: if pos=='VERB': examples_in_pos.append(Lemmatizer.lemmatize(example.lower(), pos='v')) elif pos=='NOUN': examples_in_pos.append(Lemmatizer.lemmatize(example.lower(), pos='n')) elif pos=='ADJ': examples_in_pos.append(Lemmatizer.lemmatize(example.lower(), pos='a')) elif pos=='ADV': examples_in_pos.append(Lemmatizer.lemmatize(example.lower(), pos='r')) else: examples_in_pos.append(example.lower()) examples_in_pos = words_passed+examples_in_pos examples_in_pos = list(set(examples_in_pos)) return json({'query_result': examples_in_pos}) @app.route('/query_wordnet_word', methods=["POST",]) def query_wordnet_word(request): print("result!") word = request.json['word'] synset = wn.synsets(word) distance_words = [word] return_list = [] for s in synset: each_dict = { 'name': s.name(), 'definition': s.definition(), 'examples': example_dist_sorted(s, distance_words), } return_list.append(each_dict) return json({'query_result': return_list}) @app.route("/query_wordnet_hypernym", methods=["POST",]) def query_wordnet_hypernym(request): word = request.json['word'] word = wn.synset(word) hypernyms = word.hypernyms() print(request.json) if 'example_words' in request.json: distance_words = request.json['example_words'] distance_words.append(request.json['origin_word']) else: distance_words = [request.json['origin_word']] print(distance_words) return_list = [] for s in hypernyms: each_dict = { 'name': s.name(), 'definition': s.definition(), 'examples': example_dist_sorted(s, distance_words), } return_list.append(each_dict) return json({'query_result': return_list}) @app.route("/query_wordnet_resorted_examples", methods=["POST",]) def query_wordnet_resorted_examples(request): word_list = request.json['list'] distance_words = request.json['example_words'] distance_words.append(request.json['origin_word']) for idx1, sub_list in enumerate(word_list): for idx2, item in enumerate(sub_list): word = wn.synset(item['name']) new_example = example_dist_sorted(word, distance_words) word_list[idx1][idx2]['examples'] = new_example return json({"resorted_list": word_list}) @app.route("/query_wordnet_common_hypernym", methods=["POST",]) def query_wordnet_common_hypernym(request): words = request.json['words'] return_list = extract_candidate_common_parents(words) return json({'query_result': return_list}) def concept_dfs(cur_concept, path, target_concept): # print(cur_concept, path) if target_concept.name()==cur_concept.name(): path.append(cur_concept) return path elif len(cur_concept.hypernyms())>0: cur_results = [] arg_min_list = [] for hyper in cur_concept.hypernyms(): path.append(cur_concept) # print(path_) result = concept_dfs(hyper, path, target_concept) # print(result) if len(result)!=0: cur_results.append(result) arg_min_list.append(len(result)) if len(cur_results)>0: # print('cur_results', cur_results) return cur_results[np.argmin(arg_min_list)] # print('went through all') return [] else: return [] def find_concept_path(init_word, examples, choosen_word): examples.append(init_word) init_word_synsets = wn.synsets(init_word) choosen_word_synset = wn.synset(choosen_word) return_list = [] item_dict= {} for init_word_synset in init_word_synsets: dist = init_word_synset.path_similarity(choosen_word_synset) # print(dist) if dist!=None: result = concept_dfs(init_word_synset, [], choosen_word_synset) if len(result)>0: # print(result) single_list = [] for r in result: single_list.append(r.name()) if r.name() not in item_dict: item_dict[r.name()] = { 'name':r.name(), 'definition':r.definition(), 'examples': example_dist_sorted(r,examples), } while len(r.hypernyms())!=0: r = r.hypernyms()[0] single_list.append(r.name()) if r.name() not in item_dict: item_dict[r.name()] = { 'name':r.name(), 'definition':r.definition(), 'examples': example_dist_sorted(r,examples), } return_list.append(single_list) # print(return_list) # print(item_dict) return return_list, item_dict @app.route("/query_wordnet_common_hypernym_path", methods=["POST",]) def query_wordnet_common_hypernym_path(request): init_word = request.json['init_word'] examples = request.json['examples'] choosen_word = request.json['choosen_word'] # choosen_word = # find_concept_path() return_list, item_dict = find_concept_path(init_word, examples, choosen_word) return json({'return_result': return_list, 'item_dict': item_dict}) def return_dependency(words, selected_indexes, original_text): doc = nlp(original_text) indexes={} cur_order = 0 for idx1, sentence in enumerate(doc.sentences): for idx2, word in enumerate(sentence.words): if word.pos not in ['.', ',']: indexes[str(idx1)+'_'+str(idx2)]=cur_order cur_order = cur_order+1 print(indexes) dependencies = [] for sen_idx, sentence in enumerate(doc.sentences): for dependency in sentence.dependencies: or_cur_idx = str(sen_idx)+'_'+str(int(dependency[0].index)-1) or_head_idx = str(sen_idx)+'_'+str(int(dependency[2].index)-1) if or_cur_idx in indexes and or_head_idx in indexes: cur_idx = indexes[or_cur_idx] head_idx = indexes[or_head_idx] if cur_idx in selected_indexes and head_idx in selected_indexes: dep_dic = { 'head': cur_idx, 'word': head_idx, 'dependency':dependency[1] } # print(dep_dic) dependencies.append(dep_dic) return dependencies @app.route("/query_dependency_original_text", methods=["POST",]) def query_dependency_original_text(request): words = request.json['words'] selected_indexes = request.json['selected_indexes'] original_text = request.json['original_text'] dependencies = return_dependency(words, selected_indexes, original_text) return json({'dependencies': dependencies}) @app.route("/query_dependencies_from_examples", methods=["POST",]) def query_dependencies_from_examples(request): examples = request.json['examples'] query_results = [] for example in examples: words = example['words'] selected_indexes = example['selected_indexes'] original_text = example['original_text'] dependencies = return_dependency(words, selected_indexes, original_text) query_results.append(dependencies[0]['dependency']) dependency = max(query_results, key=query_results.count) return json({'dependency': dependency}) @app.route("/query_rule_storage", methods=["POST",]) def query_rule_storage(request): input_condition = request.json['input_condition'] output_condition = request.json['output_condition'] backend_condition = request.json['backend_condition'] user_id = request.json['user_id'] keyphrase_id = request.json['keyphrase_id'] rule = request.json['rule'] rule_id = get_random_code(lambda rule_id: len(con.execute( "SELECT * FROM rule where rule_id=?", (rule_id,) ).fetchall()) == 0) con.execute( 'INSERT INTO rule (rule_id, user_id, input_condition, output_condition, backend_condition, rule, keyphrase)'\ 'VALUES (?, ?, ?, ?, ?, json(?), ?)', (rule_id,user_id,input_condition,output_condition,backend_condition, js.dumps(rule), keyphrase_id) ) con.commit() return json({'done':'done'}) @app.route("/input_keyphrase", methods=["POST",]) def input_keyphrase(request): phrase = request.json['phrase'] keyphrase_id = get_random_code(lambda keyphrase_id: len(con.execute( "SELECT * FROM keyphrase where keyphrase_id=?", (keyphrase_id,) ).fetchall())==0) con.execute( 'INSERT INTO keyphrase (keyphrase_id, keyphrase_text)'\ 'VALUES (?, ?)', (keyphrase_id, phrase) ) con.commit() return json({'keyphrase_id':keyphrase_id}) @app.route("/example_post", methods=["POST",]) def create_user(request): return text("POST data: %s" % request.body) @app.route("/example_json") def post_json(request): return json({ "received": True, "data": request.json }) @app.route("/query_string") def query_string(request): return json({ "parsed": True, "args": request.args, "url": request.url, "query_string": request.query_string }) @app.websocket('/ws_data') async def feed(request, ws): while True: data = 'hello!' print('Sending: ' + data) await ws.send(data) data = await ws.recv() print('Received: ' + data)
33.175758
114
0.6635
87be6b625896e405fac4d799b160f7f509ba6ce8
31,600
py
Python
apps/life_sci/python/dgllife/utils/featurizers.py
shyustc/dgl
bdf1bb52e6cb7514e57d648bcba8ed660c11ca9c
[ "Apache-2.0" ]
1
2020-04-10T04:22:01.000Z
2020-04-10T04:22:01.000Z
apps/life_sci/python/dgllife/utils/featurizers.py
shyustc/dgl
bdf1bb52e6cb7514e57d648bcba8ed660c11ca9c
[ "Apache-2.0" ]
null
null
null
apps/life_sci/python/dgllife/utils/featurizers.py
shyustc/dgl
bdf1bb52e6cb7514e57d648bcba8ed660c11ca9c
[ "Apache-2.0" ]
null
null
null
"""Node and edge featurization for molecular graphs.""" import dgl.backend as F import itertools import numpy as np from collections import defaultdict from rdkit import Chem __all__ = ['one_hot_encoding', 'atom_type_one_hot', 'atomic_number_one_hot', 'atomic_number', 'atom_degree_one_hot', 'atom_degree', 'atom_total_degree_one_hot', 'atom_total_degree', 'atom_explicit_valence_one_hot', 'atom_explicit_valence', 'atom_implicit_valence_one_hot', 'atom_implicit_valence', 'atom_hybridization_one_hot', 'atom_total_num_H_one_hot', 'atom_total_num_H', 'atom_formal_charge_one_hot', 'atom_formal_charge', 'atom_num_radical_electrons_one_hot', 'atom_num_radical_electrons', 'atom_is_aromatic_one_hot', 'atom_is_aromatic', 'atom_is_in_ring_one_hot', 'atom_is_in_ring', 'atom_chiral_tag_one_hot', 'atom_mass', 'ConcatFeaturizer', 'BaseAtomFeaturizer', 'CanonicalAtomFeaturizer', 'bond_type_one_hot', 'bond_is_conjugated_one_hot', 'bond_is_conjugated', 'bond_is_in_ring_one_hot', 'bond_is_in_ring', 'bond_stereo_one_hot', 'BaseBondFeaturizer', 'CanonicalBondFeaturizer'] def one_hot_encoding(x, allowable_set, encode_unknown=False): """One-hot encoding. Parameters ---------- x Value to encode. allowable_set : list The elements of the allowable_set should be of the same type as x. encode_unknown : bool If True, map inputs not in the allowable set to the additional last element. Returns ------- list List of boolean values where at most one value is True. The list is of length ``len(allowable_set)`` if ``encode_unknown=False`` and ``len(allowable_set) + 1`` otherwise. """ if encode_unknown and (allowable_set[-1] is not None): allowable_set.append(None) if encode_unknown and (x not in allowable_set): x = None return list(map(lambda s: x == s, allowable_set)) ################################################################# # Atom featurization ################################################################# def atom_type_one_hot(atom, allowable_set=None, encode_unknown=False): """One hot encoding for the type of an atom. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. allowable_set : list of str Atom types to consider. Default: ``C``, ``N``, ``O``, ``S``, ``F``, ``Si``, ``P``, ``Cl``, ``Br``, ``Mg``, ``Na``, ``Ca``, ``Fe``, ``As``, ``Al``, ``I``, ``B``, ``V``, ``K``, ``Tl``, ``Yb``, ``Sb``, ``Sn``, ``Ag``, ``Pd``, ``Co``, ``Se``, ``Ti``, ``Zn``, ``H``, ``Li``, ``Ge``, ``Cu``, ``Au``, ``Ni``, ``Cd``, ``In``, ``Mn``, ``Zr``, ``Cr``, ``Pt``, ``Hg``, ``Pb``. encode_unknown : bool If True, map inputs not in the allowable set to the additional last element. (Default: False) Returns ------- list List of boolean values where at most one value is True. """ if allowable_set is None: allowable_set = ['C', 'N', 'O', 'S', 'F', 'Si', 'P', 'Cl', 'Br', 'Mg', 'Na', 'Ca', 'Fe', 'As', 'Al', 'I', 'B', 'V', 'K', 'Tl', 'Yb', 'Sb', 'Sn', 'Ag', 'Pd', 'Co', 'Se', 'Ti', 'Zn', 'H', 'Li', 'Ge', 'Cu', 'Au', 'Ni', 'Cd', 'In', 'Mn', 'Zr', 'Cr', 'Pt', 'Hg', 'Pb'] return one_hot_encoding(atom.GetSymbol(), allowable_set, encode_unknown) def atomic_number_one_hot(atom, allowable_set=None, encode_unknown=False): """One hot encoding for the atomic number of an atom. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. allowable_set : list of int Atomic numbers to consider. Default: ``1`` - ``100``. encode_unknown : bool If True, map inputs not in the allowable set to the additional last element. (Default: False) Returns ------- list List of boolean values where at most one value is True. """ if allowable_set is None: allowable_set = list(range(1, 101)) return one_hot_encoding(atom.GetAtomicNum(), allowable_set, encode_unknown) def atomic_number(atom): """Get the atomic number for an atom. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. Returns ------- list List containing one int only. """ return [atom.GetAtomicNum()] def atom_degree_one_hot(atom, allowable_set=None, encode_unknown=False): """One hot encoding for the degree of an atom. Note that the result will be different depending on whether the Hs are explicitly modeled in the graph. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. allowable_set : list of int Atom degrees to consider. Default: ``0`` - ``10``. encode_unknown : bool If True, map inputs not in the allowable set to the additional last element. (Default: False) Returns ------- list List of boolean values where at most one value is True. See Also -------- atom_total_degree_one_hot """ if allowable_set is None: allowable_set = list(range(11)) return one_hot_encoding(atom.GetDegree(), allowable_set, encode_unknown) def atom_degree(atom): """Get the degree of an atom. Note that the result will be different depending on whether the Hs are explicitly modeled in the graph. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. Returns ------- list List containing one int only. See Also -------- atom_total_degree """ return [atom.GetDegree()] def atom_total_degree_one_hot(atom, allowable_set=None, encode_unknown=False): """One hot encoding for the degree of an atom including Hs. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. allowable_set : list Total degrees to consider. Default: ``0`` - ``5``. encode_unknown : bool If True, map inputs not in the allowable set to the additional last element. (Default: False) See Also -------- atom_degree_one_hot """ if allowable_set is None: allowable_set = list(range(6)) return one_hot_encoding(atom.GetTotalDegree(), allowable_set, encode_unknown) def atom_total_degree(atom): """The degree of an atom including Hs. See Also -------- atom_degree Returns ------- list List containing one int only. """ return [atom.GetTotalDegree()] def atom_explicit_valence_one_hot(atom, allowable_set=None, encode_unknown=False): """One hot encoding for the explicit valence of an aotm. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. allowable_set : list of int Atom explicit valences to consider. Default: ``1`` - ``6``. encode_unknown : bool If True, map inputs not in the allowable set to the additional last element. (Default: False) Returns ------- list List of boolean values where at most one value is True. """ if allowable_set is None: allowable_set = list(range(1, 7)) return one_hot_encoding(atom.GetExplicitValence(), allowable_set, encode_unknown) def atom_explicit_valence(atom): """Get the explicit valence of an atom. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. Returns ------- list List containing one int only. """ return [atom.GetExplicitValence()] def atom_implicit_valence_one_hot(atom, allowable_set=None, encode_unknown=False): """One hot encoding for the implicit valence of an atom. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. allowable_set : list of int Atom implicit valences to consider. Default: ``0`` - ``6``. encode_unknown : bool If True, map inputs not in the allowable set to the additional last element. (Default: False) Returns ------- list List of boolean values where at most one value is True. """ if allowable_set is None: allowable_set = list(range(7)) return one_hot_encoding(atom.GetImplicitValence(), allowable_set, encode_unknown) def atom_implicit_valence(atom): """Get the implicit valence of an atom. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. Reurns ------ list List containing one int only. """ return [atom.GetImplicitValence()] def atom_hybridization_one_hot(atom, allowable_set=None, encode_unknown=False): """One hot encoding for the hybridization of an atom. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. allowable_set : list of rdkit.Chem.rdchem.HybridizationType Atom hybridizations to consider. Default: ``Chem.rdchem.HybridizationType.SP``, ``Chem.rdchem.HybridizationType.SP2``, ``Chem.rdchem.HybridizationType.SP3``, ``Chem.rdchem.HybridizationType.SP3D``, ``Chem.rdchem.HybridizationType.SP3D2``. encode_unknown : bool If True, map inputs not in the allowable set to the additional last element. (Default: False) Returns ------- list List of boolean values where at most one value is True. """ if allowable_set is None: allowable_set = [Chem.rdchem.HybridizationType.SP, Chem.rdchem.HybridizationType.SP2, Chem.rdchem.HybridizationType.SP3, Chem.rdchem.HybridizationType.SP3D, Chem.rdchem.HybridizationType.SP3D2] return one_hot_encoding(atom.GetHybridization(), allowable_set, encode_unknown) def atom_total_num_H_one_hot(atom, allowable_set=None, encode_unknown=False): """One hot encoding for the total number of Hs of an atom. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. allowable_set : list of int Total number of Hs to consider. Default: ``0`` - ``4``. encode_unknown : bool If True, map inputs not in the allowable set to the additional last element. (Default: False) Returns ------- list List of boolean values where at most one value is True. """ if allowable_set is None: allowable_set = list(range(5)) return one_hot_encoding(atom.GetTotalNumHs(), allowable_set, encode_unknown) def atom_total_num_H(atom): """Get the total number of Hs of an atom. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. Returns ------- list List containing one int only. """ return [atom.GetTotalNumHs()] def atom_formal_charge_one_hot(atom, allowable_set=None, encode_unknown=False): """One hot encoding for the formal charge of an atom. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. allowable_set : list of int Formal charges to consider. Default: ``-2`` - ``2``. encode_unknown : bool If True, map inputs not in the allowable set to the additional last element. (Default: False) Returns ------- list List of boolean values where at most one value is True. """ if allowable_set is None: allowable_set = list(range(-2, 3)) return one_hot_encoding(atom.GetFormalCharge(), allowable_set, encode_unknown) def atom_formal_charge(atom): """Get formal charge for an atom. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. Returns ------- list List containing one int only. """ return [atom.GetFormalCharge()] def atom_num_radical_electrons_one_hot(atom, allowable_set=None, encode_unknown=False): """One hot encoding for the number of radical electrons of an atom. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. allowable_set : list of int Number of radical electrons to consider. Default: ``0`` - ``4``. encode_unknown : bool If True, map inputs not in the allowable set to the additional last element. (Default: False) Returns ------- list List of boolean values where at most one value is True. """ if allowable_set is None: allowable_set = list(range(5)) return one_hot_encoding(atom.GetNumRadicalElectrons(), allowable_set, encode_unknown) def atom_num_radical_electrons(atom): """Get the number of radical electrons for an atom. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. Returns ------- list List containing one int only. """ return [atom.GetNumRadicalElectrons()] def atom_is_aromatic_one_hot(atom, allowable_set=None, encode_unknown=False): """One hot encoding for whether the atom is aromatic. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. allowable_set : list of bool Conditions to consider. Default: ``False`` and ``True``. encode_unknown : bool If True, map inputs not in the allowable set to the additional last element. (Default: False) Returns ------- list List of boolean values where at most one value is True. """ if allowable_set is None: allowable_set = [False, True] return one_hot_encoding(atom.GetIsAromatic(), allowable_set, encode_unknown) def atom_is_aromatic(atom): """Get whether the atom is aromatic. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. Returns ------- list List containing one bool only. """ return [atom.GetIsAromatic()] def atom_is_in_ring_one_hot(atom, allowable_set=None, encode_unknown=False): """One hot encoding for whether the atom is in ring. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. allowable_set : list of bool Conditions to consider. Default: ``False`` and ``True``. encode_unknown : bool If True, map inputs not in the allowable set to the additional last element. (Default: False) Returns ------- list List of boolean values where at most one value is True. """ if allowable_set is None: allowable_set = [False, True] return one_hot_encoding(atom.IsInRing(), allowable_set, encode_unknown) def atom_is_in_ring(atom): """Get whether the atom is in ring. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. Returns ------- list List containing one bool only. """ return [atom.IsInRing()] def atom_chiral_tag_one_hot(atom, allowable_set=None, encode_unknown=False): """One hot encoding for the chiral tag of an atom. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. allowable_set : list of rdkit.Chem.rdchem.ChiralType Chiral tags to consider. Default: ``rdkit.Chem.rdchem.ChiralType.CHI_UNSPECIFIED``, ``rdkit.Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CW``, ``rdkit.Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CCW``, ``rdkit.Chem.rdchem.ChiralType.CHI_OTHER``. """ if allowable_set is None: allowable_set = [Chem.rdchem.ChiralType.CHI_UNSPECIFIED, Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CW, Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CCW, Chem.rdchem.ChiralType.CHI_OTHER] return one_hot_encoding(atom.GetChiralTag(), allowable_set, encode_unknown) def atom_mass(atom, coef=0.01): """Get the mass of an atom and scale it. Parameters ---------- atom : rdkit.Chem.rdchem.Atom RDKit atom instance. coef : float The mass will be multiplied by ``coef``. Returns ------- list List containing one float only. """ return [atom.GetMass() * coef] class ConcatFeaturizer(object): """Concatenate the evaluation results of multiple functions as a single feature. Parameters ---------- func_list : list List of functions for computing molecular descriptors from objects of a same particular data type, e.g. ``rdkit.Chem.rdchem.Atom``. Each function is of signature ``func(data_type) -> list of float or bool or int``. The resulting order of the features will follow that of the functions in the list. """ def __init__(self, func_list): self.func_list = func_list def __call__(self, x): """Featurize the input data. Parameters ---------- x : Data to featurize. Returns ------- list List of feature values, which can be of type bool, float or int. """ return list(itertools.chain.from_iterable( [func(x) for func in self.func_list])) class BaseAtomFeaturizer(object): """An abstract class for atom featurizers. Loop over all atoms in a molecule and featurize them with the ``featurizer_funcs``. **We assume the resulting DGLGraph will not contain any virtual nodes.** Parameters ---------- featurizer_funcs : dict Mapping feature name to the featurization function. Each function is of signature ``func(rdkit.Chem.rdchem.Atom) -> list or 1D numpy array``. feat_sizes : dict Mapping feature name to the size of the corresponding feature. If None, they will be computed when needed. Default: None. Examples -------- >>> from dgl.data.life_sci import BaseAtomFeaturizer, atom_mass, atom_degree_one_hot >>> from rdkit import Chem >>> mol = Chem.MolFromSmiles('CCO') >>> atom_featurizer = BaseAtomFeaturizer({'mass': atom_mass, 'degree': atom_degree_one_hot}) >>> atom_featurizer(mol) {'mass': tensor([[0.1201], [0.1201], [0.1600]]), 'degree': tensor([[0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])} """ def __init__(self, featurizer_funcs, feat_sizes=None): self.featurizer_funcs = featurizer_funcs if feat_sizes is None: feat_sizes = dict() self._feat_sizes = feat_sizes def feat_size(self, feat_name): """Get the feature size for ``feat_name``. Returns ------- int Feature size for the feature with name ``feat_name``. """ if feat_name not in self.featurizer_funcs: return ValueError('Expect feat_name to be in {}, got {}'.format( list(self.featurizer_funcs.keys()), feat_name)) if feat_name not in self._feat_sizes: atom = Chem.MolFromSmiles('C').GetAtomWithIdx(0) self._feat_sizes[feat_name] = len(self.featurizer_funcs[feat_name](atom)) return self._feat_sizes[feat_name] def __call__(self, mol): """Featurize all atoms in a molecule. Parameters ---------- mol : rdkit.Chem.rdchem.Mol RDKit molecule instance. Returns ------- dict For each function in self.featurizer_funcs with the key ``k``, store the computed feature under the key ``k``. Each feature is a tensor of dtype float32 and shape (N, M), where N is the number of atoms in the molecule. """ num_atoms = mol.GetNumAtoms() atom_features = defaultdict(list) # Compute features for each atom for i in range(num_atoms): atom = mol.GetAtomWithIdx(i) for feat_name, feat_func in self.featurizer_funcs.items(): atom_features[feat_name].append(feat_func(atom)) # Stack the features and convert them to float arrays processed_features = dict() for feat_name, feat_list in atom_features.items(): feat = np.stack(feat_list) processed_features[feat_name] = F.zerocopy_from_numpy(feat.astype(np.float32)) return processed_features class CanonicalAtomFeaturizer(BaseAtomFeaturizer): """A default featurizer for atoms. The atom features include: * **One hot encoding of the atom type**. The supported atom types include ``C``, ``N``, ``O``, ``S``, ``F``, ``Si``, ``P``, ``Cl``, ``Br``, ``Mg``, ``Na``, ``Ca``, ``Fe``, ``As``, ``Al``, ``I``, ``B``, ``V``, ``K``, ``Tl``, ``Yb``, ``Sb``, ``Sn``, ``Ag``, ``Pd``, ``Co``, ``Se``, ``Ti``, ``Zn``, ``H``, ``Li``, ``Ge``, ``Cu``, ``Au``, ``Ni``, ``Cd``, ``In``, ``Mn``, ``Zr``, ``Cr``, ``Pt``, ``Hg``, ``Pb``. * **One hot encoding of the atom degree**. The supported possibilities include ``0 - 10``. * **One hot encoding of the number of implicit Hs on the atom**. The supported possibilities include ``0 - 6``. * **Formal charge of the atom**. * **Number of radical electrons of the atom**. * **One hot encoding of the atom hybridization**. The supported possibilities include ``SP``, ``SP2``, ``SP3``, ``SP3D``, ``SP3D2``. * **Whether the atom is aromatic**. * **One hot encoding of the number of total Hs on the atom**. The supported possibilities include ``0 - 4``. **We assume the resulting DGLGraph will not contain any virtual nodes.** Parameters ---------- atom_data_field : str Name for storing atom features in DGLGraphs, default to be 'h'. """ def __init__(self, atom_data_field='h'): super(CanonicalAtomFeaturizer, self).__init__( featurizer_funcs={atom_data_field: ConcatFeaturizer( [atom_type_one_hot, atom_degree_one_hot, atom_implicit_valence_one_hot, atom_formal_charge, atom_num_radical_electrons, atom_hybridization_one_hot, atom_is_aromatic, atom_total_num_H_one_hot] )}) def bond_type_one_hot(bond, allowable_set=None, encode_unknown=False): """One hot encoding for the type of a bond. Parameters ---------- bond : rdkit.Chem.rdchem.Bond RDKit bond instance. allowable_set : list of Chem.rdchem.BondType Bond types to consider. Default: ``Chem.rdchem.BondType.SINGLE``, ``Chem.rdchem.BondType.DOUBLE``, ``Chem.rdchem.BondType.TRIPLE``, ``Chem.rdchem.BondType.AROMATIC``. encode_unknown : bool If True, map inputs not in the allowable set to the additional last element. (Default: False) Returns ------- list List of boolean values where at most one value is True. """ if allowable_set is None: allowable_set = [Chem.rdchem.BondType.SINGLE, Chem.rdchem.BondType.DOUBLE, Chem.rdchem.BondType.TRIPLE, Chem.rdchem.BondType.AROMATIC] return one_hot_encoding(bond.GetBondType(), allowable_set, encode_unknown) def bond_is_conjugated_one_hot(bond, allowable_set=None, encode_unknown=False): """One hot encoding for whether the bond is conjugated. Parameters ---------- bond : rdkit.Chem.rdchem.Bond RDKit bond instance. allowable_set : list of bool Conditions to consider. Default: ``False`` and ``True``. encode_unknown : bool If True, map inputs not in the allowable set to the additional last element. (Default: False) Returns ------- list List of boolean values where at most one value is True. """ if allowable_set is None: allowable_set = [False, True] return one_hot_encoding(bond.GetIsConjugated(), allowable_set, encode_unknown) def bond_is_conjugated(bond): """Get whether the bond is conjugated. Parameters ---------- bond : rdkit.Chem.rdchem.Bond RDKit bond instance. Returns ------- list List containing one bool only. """ return [bond.GetIsConjugated()] def bond_is_in_ring_one_hot(bond, allowable_set=None, encode_unknown=False): """One hot encoding for whether the bond is in a ring of any size. Parameters ---------- bond : rdkit.Chem.rdchem.Bond RDKit bond instance. allowable_set : list of bool Conditions to consider. Default: ``False`` and ``True``. encode_unknown : bool If True, map inputs not in the allowable set to the additional last element. (Default: False) Returns ------- list List of boolean values where at most one value is True. """ if allowable_set is None: allowable_set = [False, True] return one_hot_encoding(bond.IsInRing(), allowable_set, encode_unknown) def bond_is_in_ring(bond): """Get whether the bond is in a ring of any size. Parameters ---------- bond : rdkit.Chem.rdchem.Bond RDKit bond instance. Returns ------- list List containing one bool only. """ return [bond.IsInRing()] def bond_stereo_one_hot(bond, allowable_set=None, encode_unknown=False): """One hot encoding for the stereo configuration of a bond. Parameters ---------- bond : rdkit.Chem.rdchem.Bond RDKit bond instance. allowable_set : list of rdkit.Chem.rdchem.BondStereo Stereo configurations to consider. Default: ``rdkit.Chem.rdchem.BondStereo.STEREONONE``, ``rdkit.Chem.rdchem.BondStereo.STEREOANY``, ``rdkit.Chem.rdchem.BondStereo.STEREOZ``, ``rdkit.Chem.rdchem.BondStereo.STEREOE``, ``rdkit.Chem.rdchem.BondStereo.STEREOCIS``, ``rdkit.Chem.rdchem.BondStereo.STEREOTRANS``. encode_unknown : bool If True, map inputs not in the allowable set to the additional last element. (Default: False) Returns ------- list List of boolean values where at most one value is True. """ if allowable_set is None: allowable_set = [Chem.rdchem.BondStereo.STEREONONE, Chem.rdchem.BondStereo.STEREOANY, Chem.rdchem.BondStereo.STEREOZ, Chem.rdchem.BondStereo.STEREOE, Chem.rdchem.BondStereo.STEREOCIS, Chem.rdchem.BondStereo.STEREOTRANS] return one_hot_encoding(bond.GetStereo(), allowable_set, encode_unknown) class BaseBondFeaturizer(object): """An abstract class for bond featurizers. Loop over all bonds in a molecule and featurize them with the ``featurizer_funcs``. We assume the constructed ``DGLGraph`` is a bi-directed graph where the **i** th bond in the molecule, i.e. ``mol.GetBondWithIdx(i)``, corresponds to the **(2i)**-th and **(2i+1)**-th edges in the DGLGraph. **We assume the resulting DGLGraph will be created with :func:`smiles_to_bigraph` without self loops.** Parameters ---------- featurizer_funcs : dict Mapping feature name to the featurization function. Each function is of signature ``func(rdkit.Chem.rdchem.Bond) -> list or 1D numpy array``. feat_sizes : dict Mapping feature name to the size of the corresponding feature. If None, they will be computed when needed. Default: None. Examples -------- >>> from dgl.data.life_sci import BaseBondFeaturizer, bond_type_one_hot, bond_is_in_ring >>> from rdkit import Chem >>> mol = Chem.MolFromSmiles('CCO') >>> bond_featurizer = BaseBondFeaturizer({'bond_type': bond_type_one_hot, 'in_ring': bond_is_in_ring}) >>> bond_featurizer(mol) {'bond_type': tensor([[1., 0., 0., 0.], [1., 0., 0., 0.], [1., 0., 0., 0.], [1., 0., 0., 0.]]), 'in_ring': tensor([[0.], [0.], [0.], [0.]])} """ def __init__(self, featurizer_funcs, feat_sizes=None): self.featurizer_funcs = featurizer_funcs if feat_sizes is None: feat_sizes = dict() self._feat_sizes = feat_sizes def feat_size(self, feat_name): """Get the feature size for ``feat_name``. Returns ------- int Feature size for the feature with name ``feat_name``. """ if feat_name not in self.featurizer_funcs: return ValueError('Expect feat_name to be in {}, got {}'.format( list(self.featurizer_funcs.keys()), feat_name)) if feat_name not in self._feat_sizes: bond = Chem.MolFromSmiles('CO').GetBondWithIdx(0) self._feat_sizes[feat_name] = len(self.featurizer_funcs[feat_name](bond)) return self._feat_sizes[feat_name] def __call__(self, mol): """Featurize all bonds in a molecule. Parameters ---------- mol : rdkit.Chem.rdchem.Mol RDKit molecule instance. Returns ------- dict For each function in self.featurizer_funcs with the key ``k``, store the computed feature under the key ``k``. Each feature is a tensor of dtype float32 and shape (N, M), where N is the number of atoms in the molecule. """ num_bonds = mol.GetNumBonds() bond_features = defaultdict(list) # Compute features for each bond for i in range(num_bonds): bond = mol.GetBondWithIdx(i) for feat_name, feat_func in self.featurizer_funcs.items(): feat = feat_func(bond) bond_features[feat_name].extend([feat, feat.copy()]) # Stack the features and convert them to float arrays processed_features = dict() for feat_name, feat_list in bond_features.items(): feat = np.stack(feat_list) processed_features[feat_name] = F.zerocopy_from_numpy(feat.astype(np.float32)) return processed_features class CanonicalBondFeaturizer(BaseBondFeaturizer): """A default featurizer for bonds. The bond features include: * **One hot encoding of the bond type**. The supported bond types include ``SINGLE``, ``DOUBLE``, ``TRIPLE``, ``AROMATIC``. * **Whether the bond is conjugated.**. * **Whether the bond is in a ring of any size.** * **One hot encoding of the stereo configuration of a bond**. The supported bond stereo configurations include ``STEREONONE``, ``STEREOANY``, ``STEREOZ``, ``STEREOE``, ``STEREOCIS``, ``STEREOTRANS``. **We assume the resulting DGLGraph will be created with :func:`smiles_to_bigraph` without self loops.** """ def __init__(self, bond_data_field='e'): super(CanonicalBondFeaturizer, self).__init__( featurizer_funcs={bond_data_field: ConcatFeaturizer( [bond_type_one_hot, bond_is_conjugated, bond_is_in_ring, bond_stereo_one_hot] )})
33.228181
106
0.609051
8fd5390ed2abaa6fd89508263c284fcd63395ca6
41,707
py
Python
var/spack/repos/builtin/packages/py-tensorflow/package.py
lcnzg/spack
5b9f60f9bb159113bfd8a0c8f3f4a8a0c2f55d7e
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
2
2018-11-16T02:42:57.000Z
2019-06-06T19:18:50.000Z
var/spack/repos/builtin/packages/py-tensorflow/package.py
lcnzg/spack
5b9f60f9bb159113bfd8a0c8f3f4a8a0c2f55d7e
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
32
2020-12-15T17:29:20.000Z
2022-03-21T15:08:31.000Z
var/spack/repos/builtin/packages/py-tensorflow/package.py
hainest/spack
c592e17d49118f253b552ef6165745ded8ac0ea5
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
2
2021-07-19T20:31:27.000Z
2021-07-19T21:14:14.000Z
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import sys import tempfile class PyTensorflow(Package, CudaPackage): """TensorFlow is an Open Source Software Library for Machine Intelligence """ homepage = "https://www.tensorflow.org" url = "https://github.com/tensorflow/tensorflow/archive/v2.3.1.tar.gz" maintainers = ['adamjstewart', 'aweits'] import_modules = ['tensorflow'] version('2.4.1', sha256='f681331f8fc0800883761c7709d13cda11942d4ad5ff9f44ad855e9dc78387e0') version('2.4.0', sha256='26c833b7e1873936379e810a39d14700281125257ddda8cd822c89111db6f6ae') version('2.3.2', sha256='21a703d2e68cd0677f6f9ce329198c24fd8203125599d791af9f1de61aadf31f') version('2.3.1', sha256='ee534dd31a811f7a759453567257d1e643f216d8d55a25c32d2fbfff8153a1ac') version('2.3.0', sha256='2595a5c401521f20a2734c4e5d54120996f8391f00bb62a57267d930bce95350') version('2.2.2', sha256='fb4b5d26c5b983350f7ce8297b71176a86a69e91faf66e6ebb1e58538ad3bb51') version('2.2.1', sha256='e6a28e64236d729e598dbeaa02152219e67d0ac94d6ed22438606026a02e0f88') version('2.2.0', sha256='69cd836f87b8c53506c4f706f655d423270f5a563b76dc1cfa60fbc3184185a3') version('2.1.3', sha256='cfa66cce372f486e95a42beb1aacfefdaf0092c5efaaaa92459b381fde931fb8') version('2.1.2', sha256='3f941cda0ed12dfef5472e46f1d0238ea85da7583d73f1132d2ef050fda6e8ad') version('2.1.1', sha256='a200bc16e4b630db3ac7225bcb6f239a76841967b0aec1d7d7bbe44dc5661318') version('2.1.0', sha256='638e541a4981f52c69da4a311815f1e7989bf1d67a41d204511966e1daed14f7') version('2.0.4', sha256='6ca3ce1255da8d655080a89db10da03f72c361d7faecc9a35e6af26ff12c06e6') version('2.0.3', sha256='6314299a723441bd9892e5c2af182c2be7d2256e20e71026e1cb1264cb497f33') version('2.0.2', sha256='a548742bbafd302eec51e2794d7687674a64f6b10ce1414073858cb83c0cefc2') version('2.0.1', sha256='29197d30923b9670992ee4b9c6161f50c7452e9a4158c720746e846080ac245a') version('2.0.0', sha256='49b5f0495cd681cbcb5296a4476853d4aea19a43bdd9f179c928a977308a0617') version('1.15.5', sha256='4c4d23e311093ded2d2e287b18d7c45b07b5984ab88a1d2f91f8f13c886123db') version('1.15.4', sha256='e18c55e771ad136f9bf3a70ea8f0e2d36662b2ba7c890f9eaf7950554557c7fa') version('1.15.3', sha256='9ab1d92e58eb813922b040acc7622b32d73c2d8d971fe6491a06f9df4c778151') version('1.15.2', sha256='d95d75d26a298211b5e802842e87fda5b8b14f6ad83719377b391e5fb71b8746') version('1.15.1', sha256='19b6e72bc8675937f618cede364d7228a71c2eeaffc42801bcefd98dda7ca056') version('1.15.0', sha256='a5d49c00a175a61da7431a9b289747d62339be9cf37600330ad63b611f7f5dc9') version('1.14.0', sha256='aa2a6a1daafa3af66807cfe0bc77bfe1144a9a53df9a96bab52e3e575b3047ed') version('1.13.2', sha256='abe3bf0c47845a628b7df4c57646f41a10ee70f914f1b018a5c761be75e1f1a9') version('1.13.1', sha256='7cd19978e6bc7edc2c847bce19f95515a742b34ea5e28e4389dade35348f58ed') version('1.12.3', sha256='b9e5488e84f4a133ed20b18605f0cd6301f11d356bd959712db4e7b9301d0462') version('1.12.2', sha256='90ffc7cf1df5e4b8385c9108db18d5d5034ec423547c0e167d44f5746a20d06b') version('1.12.1', sha256='7b559a3ae56322b7a7e4307f45f9fce96022c533a98b32c18bfdff8c5838271d') version('1.12.0', sha256='3c87b81e37d4ed7f3da6200474fa5e656ffd20d8811068572f43610cae97ca92') version('1.11.0', sha256='f49ce3f1d04cee854bc9f74fa9696991140b34a2e2447f35f01391b72c8bfa9f') version('1.10.1', sha256='83092d709800e2d93d4d4b1bcacaeb74f2f328962ed764cb35bbee20402879c6') version('1.10.0', sha256='ee9cb98d9e0d8106f2f4ed52a38fe89399324af303e1401567e5b64a9f86744b') version('1.9.0', sha256='ffc3151b06823d57b4a408261ba8efe53601563dfe93af0866751d4f6ca5068c') version('1.8.0', sha256='47646952590fd213b747247e6870d89bb4a368a95ae3561513d6c76e44f92a75') version('1.7.1', sha256='3147f8c60d1f30da23a831bcf732e74b935dcee7c62e4b8b85f0f093030b52c8') version('1.7.0', sha256='c676a96fc8700722816b2b98c85578b2f99fac7a7b2484c9c7f0641484f8d50d') version('1.6.0', sha256='03cf1423446abbead6bd8c3cf6e6affa7d99746cd119691b012aac9a1795f4fb') version('1.5.1', sha256='cab2157783905e12a7a3baae3264edfb739dd92d5658019a131fff4b14190240') version('1.5.0', sha256='0642781c3a3a8c2c4834b91b86aec385f0b2ada7d721571458079478cc5b29c8') version('1.4.1', sha256='1f75e463318419a1b3ae076d5a92697c1d3a85e8377c946a5510b651ff5c0d60') version('1.4.0', sha256='8a0ad8d61f8f6c0282c548661994a5ab83ac531bac496c3041dedc1ab021107b') version('1.3.1', sha256='ded509c209f8a1d390df8a2f44be5b5c29963172b0e0f095304efb59765d0523') version('1.3.0', sha256='e1af1bb767b57c3416de0d43a5f74d174c42b85231dffd36f3630173534d4307') version('1.2.1', sha256='f2baf09b1a9a0500907b4d5cb5473070b3ecede06ed6e8d1096873c91922fb9e') version('1.2.0', sha256='03dbf7548d1fc1c11ed58da5fa68616f795c819f868f43478cbcaa26abed374f') version('1.1.0', sha256='aad4470f52fa59f54de7b9a2da727429e6755d91d756f245f952698c42a60027') version('1.0.1', sha256='deea3c65e0703da96d9c3f1162e464c51d37659dd129396af134e9e8f1ea8c05') version('1.0.0', sha256='db8b3b8f4134b7c9c1b4165492ad5d5bb78889fcd99ffdffc325e97da3e8c677') version('0.12.0', sha256='13a1d4e98c82eae7e26fe75384de1517d6126f63ba5d302392ec02ac3ae4b1b9') version('0.11.0', sha256='24242ff696234bb1e58d09d45169b148525ccb706f980a4a92ddd3b82c7546dc') version('0.10.0', sha256='f32df04e8f7186aaf6723fc5396733b2f6c2fd6fe4a53a54a68b80f3ec855680') version('0.9.0', sha256='3128c396af19518c642d3e590212291e1d93c5b047472a10cf3245b53adac9c9') version('0.8.0', sha256='f201ba7fb7609a6416968d4e1920d87d67be693b5bc7d34b6b4a79860a9a8a4e') version('0.7.1', sha256='ef34121432f7a522cf9f99a56cdd86e370cc5fa3ee31255ca7cb17f36b8dfc0d') version('0.7.0', sha256='43dd3051f947aa66e6fc09dac2f86a2efe2e019736bbd091c138544b86d717ce') version('0.6.0', sha256='f86ace45e99053b09749cd55ab79c57274d8c7460ae763c5e808d81ffbc3b657') variant('mkl', default=False, description='Build with MKL support') variant('jemalloc', default=False, description='Build with jemalloc as malloc support') variant('gcp', default=False, description='Build with Google Cloud Platform support') variant('hdfs', default=False, description='Build with Hadoop File System support') variant('aws', default=False, description='Build with Amazon AWS Platform support') variant('kafka', default=False, description='Build with Apache Kafka Platform support') variant('ignite', default=False, description='Build with Apache Ignite support') variant('xla', default=False, description='Build with XLA JIT support') variant('gdr', default=False, description='Build with GDR support') variant('verbs', default=False, description='Build with libverbs support') variant('ngraph', default=False, description='Build with Intel nGraph support') variant('opencl', default=False, description='Build with OpenCL SYCL support') variant('computecpp', default=False, description='Build with ComputeCPP support') variant('rocm', default=False, description='Build with ROCm support') variant('tensorrt', default=False, description='Build with TensorRT support') variant('cuda', default=sys.platform != 'darwin', description='Build with CUDA support') variant('nccl', default=sys.platform.startswith('linux'), description='Enable NVIDIA NCCL support') variant('mpi', default=False, description='Build with MPI support') variant('android', default=False, description='Configure for Android builds') variant('ios', default=False, description='Build with iOS support (macOS only)') variant('monolithic', default=False, description='Static monolithic build') variant('numa', default=False, description='Build with NUMA support') variant('dynamic_kernels', default=False, description='Build kernels into separate shared objects') extends('python') depends_on('python@3:', type=('build', 'run'), when='@2.1:') # python 3.8 support in tensorflow 2.2 # see tensorflow issue #33374 depends_on('python@:3.7', type=('build', 'run'), when='@:2.2') # TODO: Older versions of TensorFlow don't list the viable version range, # just the minimum version of bazel that will work. The latest version of # bazel doesn't seem to work, so for now we force them to use min version. # Need to investigate further. # See _TF_MIN_BAZEL_VERSION and _TF_MAX_BAZEL_VERSION in configure.py depends_on('bazel@3.1.0:3.99.0', type='build', when='@2.3:') depends_on('bazel@2.0.0', type='build', when='@2.2.0:2.2.999') depends_on('bazel@0.27.1:0.29.1', type='build', when='@2.1.0:2.1.999') depends_on('bazel@0.24.1:0.26.1', type='build', when='@1.15:2.0') # See call to check_bazel_version in configure.py depends_on('bazel@0.24.1:0.25.2', type='build', when='@1.14.0') depends_on('bazel@0.19.0:0.21.0', type='build', when='@1.13.0:1.13.2') depends_on('bazel@0.24.1:0.25.0', type='build', when='@1.12.1') depends_on('bazel@0.15.0', type='build', when='@1.10:1.12.0,1.12.2:1.12.3') depends_on('bazel@0.10.0', type='build', when='@1.7:1.9') # See call to check_version in tensorflow/workspace.bzl depends_on('bazel@0.5.4', type='build', when='@1.4:1.6') # See MIN_BAZEL_VERSION in configure depends_on('bazel@0.4.5', type='build', when='@1.2:1.3') # See call to check_version in WORKSPACE depends_on('bazel@0.4.2', type='build', when='@1.0:1.1') depends_on('bazel@0.3.2', type='build', when='@0.12.0:0.12.1') depends_on('bazel@0.3.0', type='build', when='@0.11.0') depends_on('bazel@0.2.0', type='build', when='@0.9:0.10') depends_on('bazel@0.1.4', type='build', when='@0.7:0.8') depends_on('bazel@0.1.1', type='build', when='@0.5:0.6') depends_on('swig', type='build') depends_on('py-setuptools', type='build') depends_on('py-future', type='build', when='^python@:2') # Listed under REQUIRED_PACKAGES in tensorflow/tools/pip_package/setup.py depends_on('py-absl-py@0.10:0.999', type=('build', 'run'), when='@2.4.0:') depends_on('py-absl-py@0.7.0:', type=('build', 'run'), when='@1.12.1,1.14:2.3') depends_on('py-absl-py@0.1.6:', type=('build', 'run'), when='@1.5:1.11') depends_on('py-astunparse@1.6.3:1.6.999', type=('build', 'run'), when='@2.4.0:') depends_on('py-astunparse@1.6.3', type=('build', 'run'), when='@2.2:2.3') depends_on('py-astor@0.6.0:', type=('build', 'run'), when='@1.6:2.1') depends_on('py-backports-weakref@1.0:', type=('build', 'run'), when='@1.3: ^python@:3.3') depends_on('py-backports-weakref@1.0rc1', type=('build', 'run'), when='@1.2.0:1.2.1') depends_on('py-enum34@1.1.6:', type=('build', 'run'), when='@1.5: ^python@:3.3') depends_on('py-enum34@1.1.6:', type=('build', 'run'), when='@1.4.0:1.4.1') depends_on('py-gast@0.3.3', type=('build', 'run'), when='@2.2:') depends_on('py-gast@0.2.2', type=('build', 'run'), when='@1.15:2.1') depends_on('py-gast@0.2.0:', type=('build', 'run'), when='@1.6:1.14') depends_on('py-google-pasta@0.2:0.999', type=('build', 'run'), when='@2.4.0:') depends_on('py-google-pasta@0.1.8:', type=('build', 'run'), when='@2.1:2.3') depends_on('py-google-pasta@0.1.6:', type=('build', 'run'), when='@1.14:2.0') depends_on('py-google-pasta@0.1.2:', type=('build', 'run'), when='@1.12.1') # propagate the mpi variant setting for h5py/hdf5 to avoid unexpected crashes depends_on('py-h5py@2.10.0:2.10.999+mpi', type=('build', 'run'), when='@2.2:+mpi') depends_on('py-h5py@2.10.0:2.10.999~mpi', type=('build', 'run'), when='@2.2:~mpi') depends_on('hdf5+mpi', type='build', when='@2.2:+mpi') depends_on('hdf5~mpi', type='build', when='@2.2:~mpi') depends_on('py-keras-applications@1.0.8:', type=('build', 'run'), when='@1.15:2.1') depends_on('py-keras-applications@1.0.6:', type=('build', 'run'), when='@1.12:1.14') depends_on('py-keras-applications@1.0.5:', type=('build', 'run'), when='@1.11.0:1.11.999') depends_on('py-keras-preprocessing@1.1.2:1.1.999', type=('build', 'run'), when='@2.4:') depends_on('py-keras-preprocessing@1.1.1:1.999', type=('build', 'run'), when='@2.3:2.3.999') depends_on('py-keras-preprocessing@1.1.0:', type=('build', 'run'), when='@2.1:2.2') depends_on('py-keras-preprocessing@1.0.5:', type=('build', 'run'), when='@1.12:2.0') depends_on('py-keras-preprocessing@1.0.3:', type=('build', 'run'), when='@1.11:1.11.999') # https://github.com/tensorflow/tensorflow/issues/40688 depends_on('py-numpy@1.19.2:1.19.999', type=('build', 'run'), when='@2.4.0:') depends_on('py-numpy@1.16.0:1.18', type=('build', 'run'), when='@1.13.2,1.15:2.3') depends_on('py-numpy@1.14.5:1.18', type=('build', 'run'), when='@1.12.1,1.14.0') depends_on('py-numpy@1.13.3:1.14.5', type=('build', 'run'), when='@1.10.0:1.10.1') depends_on('py-numpy@1.13.3:', type=('build', 'run'), when='@1.6:1.9') depends_on('py-numpy@1.12.1:', type=('build', 'run'), when='@1.4:1.5') depends_on('py-numpy@1.11.0:', type=('build', 'run'), when='@0.11:1.3') depends_on('py-numpy@1.10.1:', type=('build', 'run'), when='@0.7.1:0.7.999 platform=darwin') depends_on('py-numpy@1.8.2:', type=('build', 'run'), when='@0.6:0.10') depends_on('py-numpy@1.9.2:', type=('build', 'run'), when='@0.5.0') depends_on('py-opt-einsum@3.3.0:3.3.999', type=('build', 'run'), when='@2.4.0:') depends_on('py-opt-einsum@2.3.2:', type=('build', 'run'), when='@1.15:2.3') depends_on('py-protobuf@3.9.2:', type=('build', 'run'), when='@2.3:') depends_on('py-protobuf@3.8.0:', type=('build', 'run'), when='@2.1:2.2') depends_on('py-protobuf@3.6.1:', type=('build', 'run'), when='@1.12:2.0') depends_on('py-protobuf@3.6.0:', type=('build', 'run'), when='@1.10:1.11') depends_on('py-protobuf@3.4.0:', type=('build', 'run'), when='@1.5:1.9') depends_on('py-protobuf@3.3.0:', type=('build', 'run'), when='@1.3:1.4') depends_on('py-protobuf@3.2.0:', type=('build', 'run'), when='@1.1:1.2') depends_on('py-protobuf@3.1.0:', type=('build', 'run'), when='@0.12.1:1.0') depends_on('py-protobuf@3.1.0', type=('build', 'run'), when='@0.12.0') depends_on('py-protobuf@3.0.0', type=('build', 'run'), when='@0.11.0') depends_on('py-protobuf@3.0.0b2', type=('build', 'run'), when='@0.7.1:0.10') depends_on('py-protobuf@3.0.0a3', type=('build', 'run'), when='@0.6:0.7.0') depends_on('protobuf') depends_on('flatbuffers+python@1.12.0:1.12.999', type=('build', 'run'), when='@2.4.0:') # tensorboard # tensorflow-estimator depends_on('py-termcolor@1.1.0:1.1.999', type=('build', 'run'), when='@2.4.0:') depends_on('py-termcolor@1.1.0:', type=('build', 'run'), when='@1.6:2.3') depends_on('py-wrapt@1.12.1:1.12.999', type=('build', 'run'), when='@2.4.0:') depends_on('py-wrapt@1.11.1:', type=('build', 'run'), when='@1.12.1,1.14:2.3') depends_on('py-wheel', type=('build', 'run'), when='@0.6:2.3') depends_on('py-wheel@0.26:', type=('build', 'run'), when='@0.6:2.3 ^python@3:') depends_on('py-wheel@0.35:0.999', type=('build', 'run'), when='@2.4.0: ^python@3:') depends_on('py-mock@2.0.0:', type=('build', 'run'), when='@0.10: ^python@:2') depends_on('py-functools32@3.2.3:', type=('build', 'run'), when='@1.15: ^python@:2') depends_on('py-six@1.15.0:1.15.999', type=('build', 'run'), when='@2.4.0:') depends_on('py-six@1.12.0:', type=('build', 'run'), when='@2.1:2.3') depends_on('py-six@1.10.0:', type=('build', 'run'), when='@:2.0') depends_on('py-scipy@1.2.2', type=('build', 'run'), when='@2.1.0:2.1.1,2.2.0,2.3.0 ^python@:2') depends_on('py-scipy@1.4.1', type=('build', 'run'), when='@2.1.0:2.1.1,2.2.0,2.3.0 ^python@3:') depends_on('py-grpcio@1.8.6:', type=('build', 'run'), when='@1.6:1.7') depends_on('py-typing-extensions@3.7.4:3.7.999', type=('build', 'run'), when='@2.4.0:') if sys.byteorder == 'little': # Only builds correctly on little-endian machines depends_on('py-grpcio@1.8.6:', type=('build', 'run'), when='@1.8:2.3') depends_on('py-grpcio@1.32.0:1.32.999', type=('build', 'run'), when='@2.4:') # TODO: add packages for some of these dependencies depends_on('mkl', when='+mkl') depends_on('curl', when='+gcp') # depends_on('computecpp', when='+opencl+computecpp') # depends_on('trisycl', when='+opencl~computepp') depends_on('cuda@:10.2', when='+cuda @:2.3') depends_on('cuda@:11.1', when='+cuda @2.4.0:') depends_on('cudnn', when='+cuda') depends_on('cudnn@6.5', when='@0.5:0.6 +cuda') # depends_on('tensorrt', when='+tensorrt') depends_on('nccl', when='+nccl') depends_on('mpi', when='+mpi') # depends_on('android-ndk@10:18', when='+android') # depends_on('android-sdk', when='+android') # Check configure and configure.py to see when these variants are supported conflicts('+mkl', when='@:1.0') conflicts('+mkl', when='platform=darwin', msg='Darwin is not yet supported') conflicts('+jemalloc', when='@:0') conflicts('+jemalloc', when='platform=darwin', msg='Currently jemalloc is only support on Linux platform') conflicts('+jemalloc', when='platform=cray', msg='Currently jemalloc is only support on Linux platform') conflicts('+gcp', when='@:0.8') conflicts('+hdfs', when='@:0.10') conflicts('+aws', when='@:1.3') conflicts('+kafka', when='@:1.5,2.1:') conflicts('+ignite', when='@:1.11,2.1:') conflicts('+xla', when='@:0') conflicts('+gdr', when='@:1.3') conflicts('+verbs', when='@:1.1') conflicts('+ngraph', when='@:1.10') conflicts('+opencl', when='@:0.11') conflicts('+computecpp', when='@:0.11') conflicts('+computecpp', when='~opencl') conflicts('+rocm', when='@:1.11') conflicts('+cuda', when='platform=darwin', msg='There is no GPU support for macOS') conflicts('cuda_arch=none', when='+cuda', msg='Must specify CUDA compute capabilities of your GPU, see https://developer.nvidia.com/cuda-gpus') conflicts('cuda_arch=20', when='@1.12.1,1.14:', msg='TensorFlow only supports compute capabilities >= 3.5') conflicts('cuda_arch=30', when='@1.12.1,1.14:', msg='TensorFlow only supports compute capabilities >= 3.5') conflicts('cuda_arch=32', when='@1.12.1,1.14:', msg='TensorFlow only supports compute capabilities >= 3.5') conflicts('cuda_arch=20', when='@1.4:1.12.0,1.12.2:1.12.3', msg='Only compute capabilities 3.0 or higher are supported') conflicts('+tensorrt', when='@:1.5') conflicts('+tensorrt', when='~cuda') conflicts('+tensorrt', when='platform=darwin', msg='Currently TensorRT is only supported on Linux platform') conflicts('+tensorrt', when='platform=cray', msg='Currently TensorRT is only supported on Linux platform') conflicts('+nccl', when='@:1.7') conflicts('+nccl', when='~cuda') conflicts('+nccl', when='platform=darwin', msg='Currently NCCL is only supported on Linux platform') conflicts('+nccl', when='platform=cray', msg='Currently NCCL is only supported on Linux platform') conflicts('+mpi', when='@:1.2') conflicts('+android', when='@:1.4') conflicts('+ios', when='@:1.12.0,1.12.2:1.13') conflicts('+ios', when='platform=linux', msg='iOS support only available on macOS') conflicts('+ios', when='platform=cray', msg='iOS support only available on macOS') conflicts('+monolithic', when='@:1.3') conflicts('+numa', when='@:1.12.0,1.12.2:1.13') conflicts('+dynamic_kernels', when='@:1.12.0,1.12.2:1.12.3') # TODO: why is this needed? patch('url-zlib.patch', when='@0.10.0') # TODO: why is this needed? patch('crosstool.patch', when='@0.10.0+cuda') # Avoid build error: "no such package '@io_bazel_rules_docker..." patch('io_bazel_rules_docker2.patch', when='@1.15:2.0') # Avoide build error: "name 'new_http_archive' is not defined" patch('http_archive.patch', when='@1.12.3') # Backport of 837c8b6b upstream # "Remove contrib cloud bigtable and storage ops/kernels." # Allows 2.0.* releases to build with '--config=nogcp' patch('0001-Remove-contrib-cloud-bigtable-and-storage-ops-kernel.patch', when='@2.0.0:2.0.999') # for fcc patch('1-1_fcc_tf_patch.patch', when='@2.1.0:2.1.99%fj') # do not import contrib.cloud if not available patch('https://github.com/tensorflow/tensorflow/commit/ed62ac8203999513dfae03498e871ea35eb60cc4.patch', sha256='c37d14622a86b164e2411ea45a04f756ac61b2044d251f19ab17733c508e5305', when='@1.14.0') # import_contrib_cloud patch for older versions patch('contrib_cloud_1.10.patch', when='@1.10:1.13') patch('contrib_cloud_1.9.patch', when='@1.9') patch('contrib_cloud_1.4.patch', when='@1.4:1.8') patch('contrib_cloud_1.1.patch', when='@1.1:1.3') phases = ['configure', 'build', 'install'] # https://www.tensorflow.org/install/source def setup_build_environment(self, env): spec = self.spec # Please specify the location of python env.set('PYTHON_BIN_PATH', spec['python'].command.path) # Please input the desired Python library path to use env.set('PYTHON_LIB_PATH', site_packages_dir) # Ensure swig is in PATH or set SWIG_PATH env.set('SWIG_PATH', spec['swig'].prefix.bin.swig) # Do you wish to build TensorFlow with MKL support? if '+mkl' in spec: env.set('TF_NEED_MKL', '1') # Do you wish to download MKL LIB from the web? env.set('TF_DOWNLOAD_MKL', '0') # Please specify the location where MKL is installed env.set('MKL_INSTALL_PATH', spec['mkl'].prefix) else: env.set('TF_NEED_MKL', '0') # Do you wish to build TensorFlow with jemalloc as malloc support? if '+jemalloc' in spec: env.set('TF_NEED_JEMALLOC', '1') else: env.set('TF_NEED_JEMALLOC', '0') # Do you wish to build TensorFlow with Google Cloud Platform support? if '+gcp' in spec: env.set('TF_NEED_GCP', '1') else: env.set('TF_NEED_GCP', '0') # Do you wish to build TensorFlow with Hadoop File System support? if '+hdfs' in spec: env.set('TF_NEED_HDFS', '1') else: env.set('TF_NEED_HDFS', '0') # Do you wish to build TensorFlow with Amazon AWS Platform support? if '+aws' in spec: env.set('TF_NEED_AWS', '1') env.set('TF_NEED_S3', '1') else: env.set('TF_NEED_AWS', '0') env.set('TF_NEED_S3', '0') # Do you wish to build TensorFlow with Apache Kafka Platform support? if '+kafka' in spec: env.set('TF_NEED_KAFKA', '1') else: env.set('TF_NEED_KAFKA', '0') # Do you wish to build TensorFlow with Apache Ignite support? if '+ignite' in spec: env.set('TF_NEED_IGNITE', '1') else: env.set('TF_NEED_IGNITE', '0') # Do you wish to build TensorFlow with XLA JIT support? if '+xla' in spec: env.set('TF_ENABLE_XLA', '1') else: env.set('TF_ENABLE_XLA', '0') # Do you wish to build TensorFlow with GDR support? if '+gdr' in spec: env.set('TF_NEED_GDR', '1') else: env.set('TF_NEED_GDR', '0') # Do you wish to build TensorFlow with VERBS support? if '+verbs' in spec: env.set('TF_NEED_VERBS', '1') else: env.set('TF_NEED_VERBS', '0') # Do you wish to build TensorFlow with nGraph support? if '+ngraph' in spec: env.set('TF_NEED_NGRAPH', '1') else: env.set('TF_NEED_NGRAPH', '0') # Do you wish to build TensorFlow with OpenCL SYCL support? if '+opencl' in spec: env.set('TF_NEED_OPENCL_SYCL', '1') env.set('TF_NEED_OPENCL', '1') # Please specify which C++ compiler should be used as the host # C++ compiler env.set('HOST_CXX_COMPILER', spack_cxx) # Please specify which C compiler should be used as the host # C compiler env.set('HOST_C_COMPILER', spack_cc) # Do you wish to build TensorFlow with ComputeCPP support? if '+computecpp' in spec: env.set('TF_NEED_COMPUTECPP', '1') # Please specify the location where ComputeCpp is installed env.set('COMPUTECPP_TOOLKIT_PATH', spec['computecpp'].prefix) else: env.set('TF_NEED_COMPUTECPP', '0') # Please specify the location of the triSYCL include directory env.set('TRISYCL_INCLUDE_DIR', spec['trisycl'].prefix.include) else: env.set('TF_NEED_OPENCL_SYCL', '0') env.set('TF_NEED_OPENCL', '0') # Do you wish to build TensorFlow with ROCm support? if '+rocm' in spec: env.set('TF_NEED_ROCM', '1') else: env.set('TF_NEED_ROCM', '0') # Do you wish to build TensorFlow with CUDA support? if '+cuda' in spec: env.set('TF_NEED_CUDA', '1') # Do you want to use clang as CUDA compiler? env.set('TF_CUDA_CLANG', '0') # Please specify which gcc nvcc should use as the host compiler env.set('GCC_HOST_COMPILER_PATH', spack_cc) cuda_paths = [ spec['cuda'].prefix, spec['cudnn'].prefix, ] # Do you wish to build TensorFlow with TensorRT support? if '+tensorrt' in spec: env.set('TF_NEED_TENSORRT', '1') cuda_paths.append(spec['tensorrt'].prefix) # Please specify the TensorRT version you want to use env.set('TF_TENSORRT_VERSION', spec['tensorrt'].version.up_to(1)) # Please specify the location where TensorRT is installed env.set('TENSORRT_INSTALL_PATH', spec['tensorrt'].prefix) else: env.set('TF_NEED_TENSORRT', '0') env.unset('TF_TENSORRT_VERSION') # Please specify the CUDA SDK version you want to use env.set('TF_CUDA_VERSION', spec['cuda'].version.up_to(2)) # Please specify the cuDNN version you want to use env.set('TF_CUDNN_VERSION', spec['cudnn'].version.up_to(1)) if '+nccl' in spec: cuda_paths.append(spec['nccl'].prefix) # Please specify the locally installed NCCL version to use env.set('TF_NCCL_VERSION', spec['nccl'].version.up_to(1)) # Please specify the location where NCCL is installed env.set('NCCL_INSTALL_PATH', spec['nccl'].prefix) env.set('NCCL_HDR_PATH', spec['nccl'].prefix.include) else: env.unset('TF_NCCL_VERSION') # Please specify the comma-separated list of base paths to # look for CUDA libraries and headers env.set('TF_CUDA_PATHS', ','.join(cuda_paths)) # Please specify the location where CUDA toolkit is installed env.set('CUDA_TOOLKIT_PATH', spec['cuda'].prefix) # Please specify the location where CUDNN library is installed env.set('CUDNN_INSTALL_PATH', spec['cudnn'].prefix) # Please specify a list of comma-separated CUDA compute # capabilities you want to build with. You can find the compute # capability of your device at: # https://developer.nvidia.com/cuda-gpus. # Please note that each additional compute capability significantly # increases your build time and binary size, and that TensorFlow # only supports compute capabilities >= 3.5 capabilities = ','.join('{0:.1f}'.format( float(i) / 10.0) for i in spec.variants['cuda_arch'].value) env.set('TF_CUDA_COMPUTE_CAPABILITIES', capabilities) else: env.set('TF_NEED_CUDA', '0') # Do you wish to download a fresh release of clang? (Experimental) env.set('TF_DOWNLOAD_CLANG', '0') # Do you wish to build TensorFlow with MPI support? if '+mpi' in spec: env.set('TF_NEED_MPI', '1') # Please specify the MPI toolkit folder env.set('MPI_HOME', spec['mpi'].prefix) else: env.set('TF_NEED_MPI', '0') env.unset('MPI_HOME') # Please specify optimization flags to use during compilation when # bazel option '--config=opt' is specified env.set('CC_OPT_FLAGS', spec.target.optimization_flags( spec.compiler.name, spec.compiler.version)) # Would you like to interactively configure ./WORKSPACE for # Android builds? if '+android' in spec: env.set('TF_SET_ANDROID_WORKSPACE', '1') # Please specify the home path of the Android NDK to use env.set('ANDROID_NDK_HOME', spec['android-ndk'].prefix) env.set('ANDROID_NDK_API_LEVEL', spec['android-ndk'].version) # Please specify the home path of the Android SDK to use env.set('ANDROID_SDK_HOME', spec['android-sdk'].prefix) env.set('ANDROID_SDK_API_LEVEL', spec['android-sdk'].version) # Please specify the Android SDK API level to use env.set('ANDROID_API_LEVEL', spec['android-sdk'].version) # Please specify an Android build tools version to use env.set('ANDROID_BUILD_TOOLS_VERSION', spec['android-sdk'].version) else: env.set('TF_SET_ANDROID_WORKSPACE', '0') # Do you wish to build TensorFlow with iOS support? if '+ios' in spec: env.set('TF_CONFIGURE_IOS', '1') else: env.set('TF_CONFIGURE_IOS', '0') # set tmpdir to a non-NFS filesystem # (because bazel uses ~/.cache/bazel) # TODO: This should be checked for non-nfsy filesystem, but the current # best idea for it is to check # subprocess.call([ # 'stat', '--file-system', '--format=%T', tmp_path # ]) # to not be nfs. This is only valid for Linux and we'd like to # stay at least also OSX compatible tmp_path = tempfile.mkdtemp(prefix='spack') env.set('TEST_TMPDIR', tmp_path) env.set('TF_SYSTEM_LIBS', 'com_google_protobuf') # NOTE: INCLUDEDIR is not just relevant to protobuf # see third_party/systemlibs/jsoncpp.BUILD env.set('INCLUDEDIR', spec['protobuf'].prefix.include) def patch(self): if self.spec.satisfies('@2.3.0:'): filter_file('deps = protodeps + well_known_proto_libs(),', 'deps = protodeps,', 'tensorflow/core/platform/default/build_config.bzl', string=True) if self.spec.satisfies('@2.4.0:'): text = ''' def protobuf_deps(): pass ''' with open('third_party/systemlibs/protobuf_deps.bzl', 'w') as f: f.write(text) filter_file( '"//third_party/systemlibs:protobuf.bzl": "protobuf.bzl",', '"//third_party/systemlibs:protobuf.bzl": "protobuf.bzl",\n' '"//third_party/systemlibs:protobuf_deps.bzl": "protobuf_deps.bzl",', # noqa: E501 'tensorflow/workspace.bzl', string=True) def configure(self, spec, prefix): # NOTE: configure script is interactive. If you set the appropriate # environment variables, this interactivity is skipped. If you don't, # Spack hangs during the configure phase. Use `spack build-env` to # determine which environment variables must be set for a particular # version. configure() @run_after('configure') def post_configure_fixes(self): spec = self.spec # make sure xla is actually turned off if spec.satisfies('~xla'): filter_file(r'--define with_xla_support=true', r'--define with_xla_support=false', '.tf_configure.bazelrc') if spec.satisfies('@1.5.0: ~android'): # env variable is somehow ignored -> brute force # TODO: find a better solution filter_file(r'if workspace_has_any_android_rule\(\)', r'if True', 'configure.py') # version dependent fixes if spec.satisfies('@1.3.0:1.5.0'): # checksum for protobuf that bazel downloads (@github) changed filter_file(r'sha256 = "6d43b9d223ce09e5d4ce8b0060cb8a7513577a35a64c7e3dad10f0703bf3ad93"', r'sha256 = "e5fdeee6b28cf6c38d61243adff06628baa434a22b5ebb7432d2a7fbabbdb13d"', 'tensorflow/workspace.bzl') # starting with tensorflow 1.3, tensorboard becomes a dependency # (...but is not really needed? Tensorboard should depend on # tensorflow, not the other way!) # -> remove from list of required packages filter_file(r"'tensorflow-tensorboard", r"#'tensorflow-tensorboard", 'tensorflow/tools/pip_package/setup.py') if spec.satisfies('@1.5.0: ~gcp'): # google cloud support seems to be installed on default, leading # to boringssl error manually set the flag to false to avoid # installing gcp support # https://github.com/tensorflow/tensorflow/issues/20677#issuecomment-404634519 filter_file(r'--define with_gcp_support=true', r'--define with_gcp_support=false', '.tf_configure.bazelrc') if spec.satisfies('@1.6.0:'): # tensorboard name changed filter_file(r"'tensorboard >=", r"#'tensorboard >=", 'tensorflow/tools/pip_package/setup.py') if spec.satisfies('@1.8.0: ~opencl'): # 1.8.0 and 1.9.0 aborts with numpy import error during python_api # generation somehow the wrong PYTHONPATH is used... # set --distinct_host_configuration=false as a workaround # https://github.com/tensorflow/tensorflow/issues/22395#issuecomment-431229451 filter_file('build --action_env TF_NEED_OPENCL_SYCL="0"', 'build --action_env TF_NEED_OPENCL_SYCL="0"\n' 'build --distinct_host_configuration=false\n' 'build --action_env PYTHONPATH="{0}"'.format( env['PYTHONPATH']), '.tf_configure.bazelrc') if spec.satisfies('@1.13.1'): # tensorflow_estimator is an API for tensorflow # tensorflow-estimator imports tensorflow during build, so # tensorflow has to be set up first filter_file(r"'tensorflow_estimator >=", r"#'tensorflow_estimator >=", 'tensorflow/tools/pip_package/setup.py') if spec.satisfies('@2.0.0:'): # now it depends on the nightly versions... filter_file(r"'tf-estimator-nightly >=", r"#'tf-estimator-nightly >=", 'tensorflow/tools/pip_package/setup.py') filter_file(r"REQUIRED_PACKAGES\[i\] = 'tb-nightly >=", r"pass #REQUIRED_PACKAGES\[i\] = 'tb-nightly >=", 'tensorflow/tools/pip_package/setup.py') filter_file(r"'tb-nightly >=", r"#'tb-nightly >=", 'tensorflow/tools/pip_package/setup.py') if spec.satisfies('@1.13.1 +nccl'): filter_file( r'^build --action_env NCCL_INSTALL_PATH=.*', r'build --action_env NCCL_INSTALL_PATH="' + spec['nccl'].libs.directories[0] + '"', '.tf_configure.bazelrc') filter_file( r'^build --action_env NCCL_HDR_PATH=.*', r'build --action_env NCCL_HDR_PATH="' + spec['nccl'].prefix.include + '"', '.tf_configure.bazelrc') # see tensorflow issue #31187 on github if spec.satisfies('@2.0.0:2.0.999'): filter_file(r'\#define RUY_DONOTUSEDIRECTLY_AVX512 1', '#define RUY_DONOTUSEDIRECTLY_AVX512 0', 'tensorflow/lite/experimental/ruy/platform.h') if spec.satisfies('+cuda'): libs = spec['cuda'].libs.directories libs.extend(spec['cudnn'].libs.directories) if '+nccl' in spec: libs.extend(spec['nccl'].libs.directories) if '+tensorrt' in spec: libs.extend(spec['tensorrt'].libs.directories) slibs = ':'.join(libs) filter_file('build --action_env TF_NEED_OPENCL_SYCL="0"', 'build --action_env TF_NEED_OPENCL_SYCL="0"\n' 'build --action_env LD_LIBRARY_PATH="' + slibs + '"', '.tf_configure.bazelrc') filter_file('build:opt --copt=-march=native', '', '.tf_configure.bazelrc') filter_file('build:opt --host_copt=-march=native', '', '.tf_configure.bazelrc') def build(self, spec, prefix): tmp_path = env['TEST_TMPDIR'] # https://docs.bazel.build/versions/master/command-line-reference.html args = [ # Don't allow user or system .bazelrc to override build settings '--nohome_rc', '--nosystem_rc', # Bazel does not work properly on NFS, switch to /tmp '--output_user_root=' + tmp_path, 'build', # Spack logs don't handle colored output well '--color=no', '--jobs={0}'.format(make_jobs), '--config=opt', # Enable verbose output for failures '--verbose_failures', # Show (formatted) subcommands being executed '--subcommands=pretty_print', # Ask bazel to explain what it's up to # Needs a filename as argument '--explain=explainlogfile.txt', # Increase verbosity of explanation, '--verbose_explanations', ] if spec.satisfies('^bazel@:3.5'): # removed in bazel 3.6 args.append('--incompatible_no_support_tools_in_action_inputs=false') # See .bazelrc for when each config flag is supported if spec.satisfies('@1.12.1:'): if '+mkl' in spec: args.append('--config=mkl') if '+monolithic' in spec: args.append('--config=monolithic') if '+gdr' in spec: args.append('--config=gdr') if '+verbs' in spec: args.append('--config=verbs') if '+ngraph' in spec: args.append('--config=ngraph') if '+dynamic_kernels' in spec: args.append('--config=dynamic_kernels') if '+cuda' in spec: args.append('--config=cuda') if '~aws' in spec: args.append('--config=noaws') if '~gcp' in spec: args.append('--config=nogcp') if '~hdfs' in spec: args.append('--config=nohdfs') if '~nccl' in spec: args.append('--config=nonccl') if spec.satisfies('@1.12.1:2.0'): if '~ignite' in spec: args.append('--config=noignite') if '~kafka' in spec: args.append('--config=nokafka') if spec.satisfies('@1.12.1,1.14:'): if '+numa' in spec: args.append('--config=numa') if spec.satisfies('@2:'): args.append('--config=v2') args.append('//tensorflow/tools/pip_package:build_pip_package') bazel(*args) build_pip_package = Executable( 'bazel-bin/tensorflow/tools/pip_package/build_pip_package') buildpath = join_path(self.stage.source_path, 'spack-build') build_pip_package('--src', buildpath) def install(self, spec, prefix): tmp_path = env['TEST_TMPDIR'] buildpath = join_path(self.stage.source_path, 'spack-build') with working_dir(buildpath): setup_py('install', '--prefix={0}'.format(prefix), '--single-version-externally-managed', '--root=/') remove_linked_tree(tmp_path) def test(self): """Attempts to import modules of the installed package.""" # Make sure we are importing the installed modules, # not the ones in the source directory for module in self.import_modules: self.run_test(self.spec['python'].command.path, ['-c', 'import {0}'.format(module)], purpose='checking import of {0}'.format(module), work_dir='spack-test')
51.745658
147
0.61968
81e1e20ce65e2894ad2e497fa414faf67a68f00c
14,103
py
Python
tests/analyses/reaching_definitions/test_dep_graph.py
mikenawrocki/angr
57f5593e902f5ad58709bc8f4ce7859134300ffb
[ "BSD-2-Clause" ]
6,132
2015-08-06T23:24:47.000Z
2022-03-31T21:49:34.000Z
tests/analyses/reaching_definitions/test_dep_graph.py
mikenawrocki/angr
57f5593e902f5ad58709bc8f4ce7859134300ffb
[ "BSD-2-Clause" ]
2,272
2015-08-10T08:40:07.000Z
2022-03-31T23:46:44.000Z
tests/analyses/reaching_definitions/test_dep_graph.py
mikenawrocki/angr
57f5593e902f5ad58709bc8f4ce7859134300ffb
[ "BSD-2-Clause" ]
1,155
2015-08-06T23:37:39.000Z
2022-03-31T05:54:11.000Z
# pylint: disable=no-self-use from random import randrange from unittest import mock, TestCase import networkx import claripy from angr.code_location import CodeLocation from angr.knowledge_plugins.key_definitions.atoms import Atom, MemoryLocation, Register from angr.knowledge_plugins.key_definitions.definition import Definition from angr.analyses.reaching_definitions.dep_graph import DepGraph from angr.analyses.reaching_definitions.external_codeloc import ExternalCodeLocation _PAST_N = set() def unique_randrange(range_): n = randrange(range_) while n in _PAST_N: n = randrange(range_) _PAST_N.add(n) return n def _a_mock_definition(atom: Atom=None): # Randomise code locations to forcefully produce "different" <Definition>s. statement_index = unique_randrange(1000) code_location = CodeLocation(0x42, statement_index) return Definition(atom, code_location) class TestDepGraph(TestCase): class ArchMock: def __init__(self): pass @property def bits(self): return 32 class CFGMock: def __init__(self, memory_data): self._memory_data = memory_data @property def memory_data(self): return self._memory_data class MemoryDataMock: def __init__(self, address, content, size, sort): self._address = address self._content = content self._size = size self._sort = sort @property def address(self): return self._address @property def content(self): return self._content @property def size(self): return self._size @property def sort(self): return self._sort class SectionMock: def __init__(self, is_writable): self._is_writable = is_writable @property def is_writable(self): return self._is_writable class MainObjectMock: def __init__(self, section): self._section = section def find_section_containing(self, _): return self._section class LoaderMock: def __init__(self, main_object): self._main_object = main_object @property def main_object(self): return self._main_object def setUp(self): self.memory_address = 0x42424242 self.string_in_memory = 'some string of data in memory' self.string_in_memory_length = len(self.string_in_memory + '\x00') def test_dep_graph_has_a_default_graph(self): dep_graph = DepGraph() self.assertEqual(isinstance(dep_graph.graph, networkx.DiGraph), True) def test_dep_graph_refuses_to_instanciate_with_an_inadequate_graph(self): a_graph = networkx.DiGraph([(1, 2)]) self.assertRaises(TypeError, DepGraph, a_graph) def test_delegate_add_node_to_the_underlying_graph_object(self): with mock.patch.object(networkx.DiGraph, 'add_node') as digraph_add_node_mock: definition = _a_mock_definition() dep_graph = DepGraph() dep_graph.add_node(definition) digraph_add_node_mock.assert_called_once_with(definition) def test_delegate_nodes_to_the_underlying_graph_object(self): with mock.patch.object(networkx.DiGraph, 'nodes') as digraph_nodes_mock: dep_graph = DepGraph() dep_graph.nodes() digraph_nodes_mock.assert_called_once() def test_delegate_predecessors_to_the_underlying_graph_object(self): with mock.patch.object(networkx.DiGraph, 'predecessors') as digraph_predecessors_mock: definition = _a_mock_definition() dep_graph = DepGraph() dep_graph.predecessors(definition) digraph_predecessors_mock.assert_called_once_with(definition) def test_delegate_add_edge_to_the_underlying_graph_object(self): with mock.patch.object(networkx.DiGraph, 'add_edge') as digraph_add_edge_mock: use = (_a_mock_definition(), _a_mock_definition()) labels = { 'attribute1': 'value1', 'attribute2': 'value2' } dep_graph = DepGraph() dep_graph.add_edge(*use, **labels) digraph_add_edge_mock.assert_called_once_with(*use, **labels) def test_transitive_closure_of_a_node(self): dep_graph = DepGraph() # A -> B, B -> D, C -> D A = _a_mock_definition() B = _a_mock_definition() C = _a_mock_definition() D = _a_mock_definition() uses = [ (A, B), (B, D), (C, D), ] for use in uses: dep_graph.add_edge(*use) result = dep_graph.transitive_closure(D) result_nodes = set(result.nodes) result_edges = set(result.edges) self.assertSetEqual(result_nodes, {D, B, C, A}) self.assertSetEqual(result_edges, {(B, D), (C, D), (A, B)}) def test_transitive_closure_includes_beginning_node_with_memoized_content(self): dep_graph = DepGraph() # A -> B # B -> C # C -> D A = _a_mock_definition() B = _a_mock_definition() C = _a_mock_definition() D = _a_mock_definition() uses = [ (A, B), (B, C), (C, D) ] for use in uses: dep_graph.add_edge(*use) closure_0 = dep_graph.transitive_closure(C) self.assertNotIn(D, closure_0) closure_1 = dep_graph.transitive_closure(D) self.assertIn(D, closure_1) self.assertTrue(closure_1.has_edge(A, B)) self.assertTrue(closure_1.has_edge(B, C)) self.assertTrue(closure_1.has_edge(C, D)) def test_transitive_closure_of_a_node_should_copy_labels_from_original_graph(self): dep_graph = DepGraph() # A -> B A = _a_mock_definition() B = _a_mock_definition() uses = [(A, B)] for use in uses: dep_graph.add_edge(*use, label='some data') result = dep_graph.transitive_closure(B).get_edge_data(A, B)['label'] self.assertEqual(result, 'some data') def test_transitive_closure_of_a_node_on_a_graph_with_loops_should_still_terminate(self): dep_graph = DepGraph() # A -> B, B -> C, C -> D, D -> A A = _a_mock_definition() B = _a_mock_definition() C = _a_mock_definition() D = _a_mock_definition() uses = [ (A, B), (B, C), (C, D), (D, A), ] for use in uses: dep_graph.add_edge(*use) result = dep_graph.transitive_closure(C) result_nodes = set(result.nodes) result_edges = set(result.edges) self.assertSetEqual(result_nodes, {A, B, C, D}) self.assertSetEqual(result_edges, {(A, B), (B, C), (C, D), (D, A)}) def test_contains_atom_returns_true_if_the_dependency_graph_contains_a_definition_of_the_given_atom(self): dep_graph = DepGraph() r0 = Register(8, 4) # A -> B A = _a_mock_definition(r0) B = _a_mock_definition() uses = [ (A, B) ] for use in uses: dep_graph.add_edge(*use) result = dep_graph.contains_atom(r0) self.assertTrue(result) def test_contains_atom_returns_false_if_the_dependency_graph_does_not_contain_a_definition_of_the_given_atom(self): dep_graph = DepGraph() # A -> B A = _a_mock_definition() B = _a_mock_definition() uses = [ (A, B) ] for use in uses: dep_graph.add_edge(*use) result = dep_graph.contains_atom(Register(8, 4)) self.assertFalse(result) def test_add_dependencies_for_concrete_pointers_of_fails_if_the_given_definition_is_not_in_the_graph(self): dependency_graph = DepGraph() definition = Definition( Register(0, 4), CodeLocation(0x42, 0), ) with self.assertRaises(AssertionError) as cm: dependency_graph.add_dependencies_for_concrete_pointers_of([claripy.BVS('TOP', 32)], definition, None, None) ex = cm.exception self.assertEqual(str(ex), 'The given Definition must be present in the given graph.') def test_add_dependencies_for_concrete_pointers_of_adds_a_definition_for_data_pointed_to_by_given_definition(self): arch = self.ArchMock() loader = self.LoaderMock(self.MainObjectMock(self.SectionMock(True))) memory_datum = self.MemoryDataMock( self.memory_address, str.encode(self.string_in_memory), len(self.string_in_memory), 'string' ) cfg = self.CFGMock({ self.memory_address: memory_datum }) register_definition = Definition( Register(0, 4), None, ) dependency_graph = DepGraph() dependency_graph.add_node(register_definition) dependency_graph.add_dependencies_for_concrete_pointers_of([claripy.BVV(self.memory_address, arch.bits)], register_definition, cfg, loader) memory_definition = Definition( MemoryLocation(self.memory_address, self.string_in_memory_length), ExternalCodeLocation(), ) nodes = list(dependency_graph.nodes()) predecessors = list(dependency_graph.graph.predecessors(register_definition)) self.assertEqual(nodes, [register_definition, memory_definition]) self.assertListEqual(predecessors, [memory_definition]) def test_add_dependencies_for_concrete_pointers_of_does_nothing_if_data_pointed_to_by_definition_is_already_in_dependency_graph(self): arch = self.ArchMock() loader = self.LoaderMock(self.MainObjectMock(self.SectionMock(True))) memory_datum = self.MemoryDataMock( self.memory_address, str.encode(self.string_in_memory), len(self.string_in_memory), 'string' ) cfg = self.CFGMock({ self.memory_address: memory_datum }) memory_location_definition = Definition( MemoryLocation(self.memory_address, self.string_in_memory_length), CodeLocation(0, 0), ) register_definition = Definition( Register(0, 4), CodeLocation(0x42, 0), ) dependency_graph = DepGraph(networkx.DiGraph([ (memory_location_definition, register_definition) ])) nodes_before_call = dependency_graph.nodes() dependency_graph.add_dependencies_for_concrete_pointers_of( [claripy.BVV(self.memory_address, arch.bits)], register_definition, cfg, loader ) self.assertEqual(nodes_before_call, dependency_graph.nodes()) def test_add_dependencies_for_concrete_pointers_of_does_nothing_if_pointer_is_not_concrete(self): arch = self.ArchMock() cfg = self.CFGMock({}) loader = self.LoaderMock(self.MainObjectMock(self.SectionMock(True))) register_definition = Definition( Register(0, 4), CodeLocation(0x42, 0), ) dependency_graph = DepGraph() dependency_graph.add_node(register_definition) nodes_before_call = dependency_graph.nodes() dependency_graph.add_dependencies_for_concrete_pointers_of( [claripy.BVS("TOP", arch.bits)], register_definition, cfg, loader, ) self.assertEqual(nodes_before_call, dependency_graph.nodes()) def test_add_dependencies_for_concrete_pointers_of_create_memory_location_with_undefined_data_if_data_pointed_to_by_definition_is_not_known(self): arch = self.ArchMock() loader = self.LoaderMock(self.MainObjectMock(self.SectionMock(True))) datum_content = None datum_size = 0x4242 memory_datum = self.MemoryDataMock( self.memory_address, datum_content, datum_size, 'unknown' ) cfg = self.CFGMock({ self.memory_address: memory_datum }) memory_definition = Definition( MemoryLocation(self.memory_address, datum_size), ExternalCodeLocation(), ) register_definition = Definition( Register(0, 4), CodeLocation(0x42, 0), ) dependency_graph = DepGraph() dependency_graph.add_node(register_definition) dependency_graph.add_dependencies_for_concrete_pointers_of( [claripy.BVV(self.memory_address, arch.bits)], register_definition, cfg, loader, ) nodes = list(dependency_graph.nodes()) predecessors = list(dependency_graph.graph.predecessors(register_definition)) self.assertEqual(nodes, [register_definition, memory_definition]) self.assertListEqual(predecessors, [memory_definition]) def test_add_dependencies_for_concrete_pointers_of_adds_a_definition_with_codelocation_in_binary_if_data_in_readonly_memory(self): arch = self.ArchMock() writable = False loader = self.LoaderMock(self.MainObjectMock(self.SectionMock(writable))) memory_datum = self.MemoryDataMock( self.memory_address, str.encode(self.string_in_memory), len(self.string_in_memory), 'string' ) cfg = self.CFGMock({ self.memory_address: memory_datum }) register_definition = Definition( Register(0, 4), CodeLocation(0x42, 0), ) dependency_graph = DepGraph() dependency_graph.add_node(register_definition) dependency_graph.add_dependencies_for_concrete_pointers_of( [claripy.BVV(self.memory_address, arch.bits)], register_definition, cfg, loader, ) origin_codelocation = CodeLocation(0, 0, info={'readonly': True}) predecessor = list(dependency_graph.graph.predecessors(register_definition))[0] self.assertEqual(predecessor.codeloc, origin_codelocation)
33.739234
150
0.647735
96e125ec5aa02313a1615a9630dae1a661e5c4fd
2,339
py
Python
srgan_pytorch/utils/transform.py
nisargshah1999/SRGAN-PyTorch
093fba8ee4e571d71ac9644350bdd03a1a547765
[ "Apache-2.0" ]
2
2021-08-22T06:27:48.000Z
2021-08-22T06:36:43.000Z
srgan_pytorch/utils/transform.py
ekstra26/SRGAN-PyTorch
3cc4c034362070ba1e02549acca2088572fd7ec2
[ "Apache-2.0" ]
null
null
null
srgan_pytorch/utils/transform.py
ekstra26/SRGAN-PyTorch
3cc4c034362070ba1e02549acca2088572fd7ec2
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Dakewe Biotech Corporation. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import PIL.BmpImagePlugin import cv2 import numpy as np import torch import torchvision.transforms as transforms from PIL import Image __all__ = [ "opencv2pil", "opencv2tensor", "pil2opencv", "process_image" ] def opencv2pil(image: np.ndarray) -> PIL.BmpImagePlugin.BmpImageFile: """ OpenCV Convert to PIL.Image format. Returns: PIL.Image. """ image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) return image def opencv2tensor(image: np.ndarray, gpu: int) -> torch.Tensor: """ OpenCV Convert to torch.Tensor format. Returns: torch.Tensor. """ rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) nhwc_image = torch.from_numpy(rgb_image).div(255.0).unsqueeze(0) input_tensor = nhwc_image.permute(0, 3, 1, 2) if gpu is not None: input_tensor = input_tensor.cuda(gpu, non_blocking=True) return input_tensor def pil2opencv(image: PIL.BmpImagePlugin.BmpImageFile) -> np.ndarray: """ PIL.Image Convert to OpenCV format. Returns: np.ndarray. """ image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR) return image def process_image(image: PIL.BmpImagePlugin.BmpImageFile, gpu: int = None) -> torch.Tensor: """ PIL.Image Convert to PyTorch format. Args: image (PIL.BmpImagePlugin.BmpImageFile): File read by PIL.Image. gpu (int): Graphics card model. Returns: torch.Tensor. """ tensor = transforms.ToTensor()(image) input_tensor = tensor.unsqueeze(0) if gpu is not None: input_tensor = input_tensor.cuda(gpu, non_blocking=True) return input_tensor
30.376623
91
0.68106
90ce6b7b58ee0c317f2b5cda64d37a1a3c153449
9,068
py
Python
mail/api.py
mitodl/odl-video-service
9a292c88aa475f2ce720a93a769f7b46bcd8fa62
[ "BSD-3-Clause" ]
3
2017-08-19T02:00:28.000Z
2022-01-11T20:53:37.000Z
mail/api.py
mitodl/odl-video-service
9a292c88aa475f2ce720a93a769f7b46bcd8fa62
[ "BSD-3-Clause" ]
915
2017-04-18T15:46:40.000Z
2022-03-23T17:47:03.000Z
mail/api.py
mitodl/odl-video-service
9a292c88aa475f2ce720a93a769f7b46bcd8fa62
[ "BSD-3-Clause" ]
null
null
null
""" Provides functions for sending and retrieving data about in-app email """ import json import re from urllib.parse import urljoin import requests from bs4 import BeautifulSoup from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.template.loader import render_to_string from django.urls import reverse from rest_framework import status from mail.exceptions import SendBatchException from mail.utils import chunks from odl_video import logging log = logging.getLogger(__name__) class MailgunClient: """ Provides functions for communicating with the Mailgun REST API. """ _basic_auth_credentials = ("api", settings.MAILGUN_KEY) @staticmethod def default_params(): """ Default params for Mailgun request. This a method instead of an attribute to allow for the overriding of settings values. Returns: dict: A dict of default parameters for the Mailgun API """ return {"from": settings.EMAIL_SUPPORT} @classmethod def _mailgun_request( # pylint: disable=too-many-arguments cls, request_func, endpoint, params, sender_name=None, raise_for_status=True ): """ Sends a request to the Mailgun API Args: request_func (function): requests library HTTP function (get/post/etc.) endpoint (str): Mailgun endpoint (eg: 'messages', 'events') params (dict): Dict of params to add to the request as 'data' raise_for_status (bool): If true, check the status and raise for non-2xx statuses Returns: requests.Response: HTTP response """ mailgun_url = "{}/{}".format(settings.MAILGUN_URL, endpoint) email_params = cls.default_params() email_params.update(params) # Update 'from' address if sender_name was specified if sender_name is not None: email_params["from"] = "{sender_name} <{email}>".format( sender_name=sender_name, email=email_params["from"] ) response = request_func( mailgun_url, auth=cls._basic_auth_credentials, data=email_params ) if response.status_code == status.HTTP_401_UNAUTHORIZED: message = "Mailgun API keys not properly configured." log.error(message) raise ImproperlyConfigured(message) if raise_for_status: response.raise_for_status() return response @classmethod def send_batch( # pylint:disable=too-many-arguments,too-many-locals cls, subject, html_body, text_body, recipients, sender_address=None, sender_name=None, chunk_size=settings.MAILGUN_BATCH_CHUNK_SIZE, raise_for_status=True, ): """ Sends a text email to a list of recipients (one email per recipient) via batch. Args: subject (str): email subject html_body (str): email html body text_body (str): email text body recipients (iterable of (recipient, context)): A list where each tuple is: (recipient, context) Where the recipient is an email address and context is a dict of variables for templating sender_address (str): Sender email address sender_name (str): Sender name chunk_size (int): The maximum amount of emails to be sent at the same time raise_for_status (bool): If true, raise for non 2xx statuses Returns: list: List of responses which are HTTP responses from Mailgun. Raises: SendBatchException: If there is at least one exception, this exception is raised with all other exceptions in a list along with recipients we failed to send to. """ # Convert null contexts to empty dicts recipients = ((email, context or {}) for email, context in recipients) if settings.MAILGUN_RECIPIENT_OVERRIDE is not None: # This is used for debugging only recipients = [(settings.MAILGUN_RECIPIENT_OVERRIDE, {})] responses = [] exception_pairs = [] for chunk in chunks(recipients, chunk_size=chunk_size): chunk_dict = {email: context for email, context in chunk} emails = list(chunk_dict.keys()) params = { "to": emails, "subject": subject, "html": html_body, "text": text_body, "recipient-variables": json.dumps(chunk_dict), } if sender_address: params["from"] = sender_address try: response = cls._mailgun_request( requests.post, "messages", params, sender_name=sender_name, raise_for_status=raise_for_status, ) responses.append(response) except ImproperlyConfigured: raise except Exception as exception: # pylint: disable=broad-except exception_pairs.append((emails, exception)) if exception_pairs: raise SendBatchException(exception_pairs) return responses @classmethod def send_individual_email( # pylint:disable=too-many-arguments cls, subject, html_body, text_body, recipient, recipient_variables=None, sender_address=None, sender_name=None, raise_for_status=True, ): """ Sends a text email to a single recipient. Args: subject (str): email subject html_body (str): email text body text_body (str): email html body recipient (str): email recipient recipient_variables (dict): A dict of template variables to use (may be None for empty) sender_address (str): Sender email address sender_name (str): Sender name raise_for_status (bool): If true and a non-zero response was received, Returns: requests.Response: response from Mailgun """ # Since .send_batch() returns a list, we need to return the first in the list responses = cls.send_batch( subject, html_body, text_body, [(recipient, recipient_variables)], sender_address=sender_address, sender_name=sender_name, raise_for_status=raise_for_status, ) return responses[0] def render_email_templates(template_name, context): """ Renders the email templates for the email Args: template_name (str): name of the template, this should match a directory in mail/templates context (dict): context data for the email Returns: (str, str, str): tuple of the templates for subject, text_body, html_body """ subject_text = render_to_string( "{}/subject.txt".format(template_name), context ).rstrip() context.update({"subject": subject_text}) html_text = render_to_string("{}/body.html".format(template_name), context) # pynliner internally uses bs4, which we can now modify the inlined version into a plaintext version # this avoids parsing the body twice in bs4 soup = BeautifulSoup(html_text, "html5lib") for link in soup.find_all("a"): link.replace_with("{} ({})".format(link.string, link.attrs["href"])) # clear any surviving style and title tags, so their contents don't get printed for style in soup.find_all(["style", "title"]): style.clear() # clear contents, just removing the tag isn't enough fallback_text = soup.get_text().strip() # truncate more than 3 consecutive newlines fallback_text = re.sub(r"\n\s*\n", "\n\n\n", fallback_text) # ltrim the left side of all lines fallback_text = re.sub( r"^([ ]+)([\s\\X])", r"\2", fallback_text, flags=re.MULTILINE ) return subject_text, fallback_text, html_text def context_for_video(video): """ Returns an email context for the given video Args: video (Video): video this email is about Returns: dict: the context for this user """ context = { "video_url": urljoin( settings.ODL_VIDEO_BASE_URL, reverse("video-detail", kwargs={"video_key": video.hexkey}), ), "video_title": video.title, "collection_title": video.collection.title, "collection_url": urljoin( settings.ODL_VIDEO_BASE_URL, reverse( "collection-react-view", kwargs={"collection_key": video.collection.hexkey}, ), ), "support_email": settings.EMAIL_SUPPORT, "static_url": urljoin(settings.ODL_VIDEO_BASE_URL, settings.STATIC_URL), } return context
34.090226
111
0.615792
9fb7b4d0cad67db2d2d4b56e43d8837b8160cdb0
68,302
py
Python
python/paddle/fluid/layers/control_flow.py
skylarch/Paddle
d58d8df6f5f7aa6fd2f0780f87475055db57a80d
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/layers/control_flow.py
skylarch/Paddle
d58d8df6f5f7aa6fd2f0780f87475055db57a80d
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/layers/control_flow.py
skylarch/Paddle
d58d8df6f5f7aa6fd2f0780f87475055db57a80d
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib from .layer_function_generator import autodoc, templatedoc from .tensor import assign, fill_constant from .. import core from ..framework import Program, Variable, Operator from ..layer_helper import LayerHelper, unique_name from ..initializer import force_init_on_cpu from .ops import logical_and, logical_not, logical_or import numpy import warnings from functools import reduce __all__ = [ 'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than', 'equal', 'array_read', 'array_length', 'IfElse', 'DynamicRNN', 'StaticRNN', 'reorder_lod_tensor_by_rank', 'ParallelDo', 'Print', 'is_empty', ] def split_lod_tensor(input, mask, level=0): """ This function takes in an input that contains the complete lod information, and takes in a mask which is used to mask certain parts of the input. The output is the true branch and the false branch with the mask applied to the input at a certain level in the tensor. Mainly used in IfElse to split data into two parts. Args: input(tuple|list|None): The input tensor that contains complete lod information needed to construct the output. mask(list): A bool column vector which masks the input. level(int): The specific lod level to split. Returns: tuple(Variable, Variable): The true branch of tensor as per the mask applied to input. The false branch of tensor as per the mask applied to input. Examples: .. code-block:: python x = fluid.layers.data(name='x', shape=[1]) x.persistable = True y = fluid.layers.data(name='y', shape=[1]) y.persistable = True out_true, out_false = fluid.layers.split_lod_tensor( input=x, mask=y, level=level) """ helper = LayerHelper('split_lod_tensor', **locals()) out_true = helper.create_tmp_variable(dtype=input.dtype) out_false = helper.create_tmp_variable(dtype=input.dtype) helper.append_op( type='split_lod_tensor', inputs={ 'X': input, 'Mask': mask, }, outputs={'OutTrue': out_true, 'OutFalse': out_false}, attrs={'level': level}) return out_true, out_false def merge_lod_tensor(in_true, in_false, x, mask, level=0): """ **merge_lod_tensor** This function takes in an input :math:`x`, the True branch, the False branch and a binary :math:`mask`. Using this information, this function merges the True and False branches of the tensor into a single tensor as output at a certain lod level indicated by :math:`level`. Used in IfElse to merge the output if True block and False Block. Args: in_true(tuple|list|None): The True branch to be merged. in_false(tuple|list|None): The False branch to be merged. x(tuple|list|None): The input tensor that contains complete lod information needed to construct the output. mask(list): A bool column vector which masks the input. level(int): The specific lod level to merge. Returns: Variable: The merged output tensor. Examples: .. code-block:: python x = layers.data( name='x', shape=[1], dtype='float32', stop_gradient=False) y = layers.data( name='y', shape=[1], dtype='bool', stop_gradient=False) level = 0 out_true, out_false = layers.split_lod_tensor( input=x, mask=y, level=level) out = layers.merge_lod_tensor( in_true=out_true, in_false=out_false, mask=y, x=x, level=level) """ helper = LayerHelper('merge_lod_tensor', **locals()) out = helper.create_tmp_variable(dtype=in_true.dtype) helper.append_op( type='merge_lod_tensor', inputs={'X': x, 'Mask': mask, 'InTrue': in_true, 'InFalse': in_false}, outputs={'Out': out}, attrs={'level': level}) return out def Print(input, first_n=-1, message=None, summarize=-1, print_tensor_name=True, print_tensor_type=True, print_tensor_shape=True, print_tensor_lod=True, print_phase='both'): ''' **Print operator** This creates a print op that will print when a tensor is accessed. Wraps the tensor passed in so that whenever that a tensor is accessed, the message `message` is printed, along with the current value of the tensor `t`. Args: input (Variable): A Tensor to print. summarize (int): Print this number of elements in the tensor, will print all if left is negative. message (str): A string message to print as a prefix. first_n (int): Only log `first_n` number of times. print_tensor_name (bool): Print the tensor name. print_tensor_type (bool): Print the tensor type. print_tensor_shape (bool): Print the tensor shape. print_tensor_lod (bool): Print the tensor lod. print_phase (str): Which phase to displace, including 'forward', 'backward' and 'both'. If set to 'backward' or 'both', will print the gradients of input tensor. Returns: Variable: Output tensor, same data with input tensor. Examples: .. code-block:: python value = some_layer(...) Print(value, summarize=10, message="The content of some_layer: ") ''' helper = LayerHelper('print', **locals()) out = helper.create_tmp_variable(dtype=helper.input_dtype()) helper.append_op( type='print', inputs={'In': input}, attrs={ 'first_n': first_n, 'summarize': summarize, 'message': message or "", 'print_tensor_name': print_tensor_name, 'print_tensor_type': print_tensor_type, 'print_tensor_shape': print_tensor_shape, 'print_tensor_lod': print_tensor_lod, 'print_phase': print_phase.upper() }, outputs={'Out': out}) return out class BlockGuard(object): """ BlockGuard class. BlockGuard class is used to create a sub-block in a program by using the Python `with` keyword. """ def __init__(self, main_program): if not isinstance(main_program, Program): raise TypeError("BlockGuard takes a program") self.main_program = main_program def __enter__(self): self.main_program.create_block() def __exit__(self, exc_type, exc_val, exc_tb): self.main_program.rollback() if exc_type is not None: return False # re-raise exception return True class ParallelDo(object): """ ParallelDo is used to represent multi-thread data parallel processing. Its vanilla implementation can be shown as the following (:math:`|` means single thread and :math:`||||` means multiple threads) .. code-block:: text In the forward pass | Split input onto different devices | Copy parameter onto different devices |||| Compute forward pass in parallel | Merge output from different devices In the backward pass | Split output@grad onto different devices |||| Compute backward pass in parallel | accumulate param@grad from different devices to the first device | Merge input@grad from different devices | Copy param@grad to the place of parallel_do_op Examples: .. code-block:: python images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE) label = fluid.layers.data(name='label', shape=[1], dtype='int64') # ParallelDo version & Single-thread version if thread_num > 1: places = fluid.layers.get_places(thread_num) pd = fluid.layers.ParallelDo(places) with pd.do(): images = pd.read_input(images) label = pd.read_input(label) predict = cnn_model(images) cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) pd.write_output(avg_cost) avg_cost = pd() avg_cost = fluid.layers.mean(avg_cost) else: predict = cnn_model(images) cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) .. warning:: It will be soon deprecated, please use ParallelExecutor instead. """ def __init__(self, places, use_nccl=False, name=None): warnings.warn( "API ParallelDo is deprecated since 0.15.0. Please use ParallelExecutor instead.", Warning) self.helper = LayerHelper("parallel_do", name=name) self.inputs = [] self.places = places self.outputs = [] self.status = StaticRNN.BEFORE_RNN_BLOCK self.use_nccl = use_nccl def do(self): return BlockGuardWithCompletion(self) def parent_block(self): prog = self.helper.main_program parent_idx = prog.current_block().parent_idx assert parent_idx >= 0 parent_block = prog.block(parent_idx) return parent_block def __call__(self, *args, **kwargs): if self.status != StaticRNN.AFTER_RNN_BLOCK: raise ValueError("RNN output can only be retrieved after rnn block") if len(self.outputs) == 0: raise ValueError("RNN has no output") elif len(self.outputs) == 1: return self.outputs[0] else: return self.outputs def read_input(self, var): self.inputs.append(var) return var def write_output(self, var): self.outputs.append(var) def get_parameters(self): main_program = self.helper.main_program current_block = main_program.current_block() parent_block = self.parent_block() local_inputs = set() params = list() for var in self.inputs: local_inputs.add(var.name) for op in current_block.ops: for iname in op.input_names: for in_var_name in op.input(iname): if in_var_name not in local_inputs: params.append(in_var_name) for oname in op.output_names: for out_var_name in op.output(oname): local_inputs.add(out_var_name) params = list(set(params)) return [parent_block.var(name) for name in params] def _complete_op(self): main_program = self.helper.main_program current_block = main_program.current_block() parent_block = self.parent_block() step_scope = parent_block.create_var( type=core.VarDesc.VarType.STEP_SCOPES) self.outputs = [ parent_block.create_var( name=o.name, shape=o.shape, dtype=o.dtype, lod_level=o.lod_level, persistable=o.persistable, stop_gradient=o.stop_gradient) for o in self.outputs ] inputs = [parent_block.var(i.name) for i in self.inputs] outputs = [parent_block.var(o.name) for o in self.outputs] parent_block.append_op( type='parallel_do', inputs={ 'inputs': inputs, 'parameters': self.get_parameters(), 'places': self.places }, outputs={'outputs': outputs, 'parallel_scopes': [step_scope]}, attrs={'sub_block': current_block, 'use_nccl': self.use_nccl}) class BlockGuardWithCompletion(BlockGuard): """ BlockGuardWithCompletion class. BlockGuardWithCompletion class is used to create an op with a block in a program. """ def __init__(self, rnn): if not (isinstance(rnn, StaticRNN) or isinstance(rnn, ParallelDo)): raise TypeError( "BlockGuardWithCompletion takes a StaticRNN or ParallelDo") super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program) self.rnn = rnn def __enter__(self): self.rnn.status = StaticRNN.IN_RNN_BLOCK return super(BlockGuardWithCompletion, self).__enter__() def __exit__(self, exc_type, exc_val, exc_tb): if exc_type is not None: return False self.rnn.status = StaticRNN.AFTER_RNN_BLOCK self.rnn._complete_op() return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val, exc_tb) class StaticRNNMemoryLink(object): """ StaticRNNMemoryLink class. StaticRNNMemoryLink class is used to create a link between two memory cells of a StaticRNN. NOTE: This is a internal data structure of a very low-level API. Please use StaticRNN instead. Args: init(Variable): the initial variable for Memory. pre_mem(Variable): the memory variable in previous time step. mem(Variable): the memory variable in current time step. """ def __init__(self, init, pre_mem, mem=None): self.init = init self.pre_mem = pre_mem self.mem = mem class StaticRNN(object): """ StaticRNN class. StaticRNN class is used to create a StaticRNN. The RNN will have its own parameters like inputs, outputs, memories, status and length. """ BEFORE_RNN_BLOCK = 0 IN_RNN_BLOCK = 1 AFTER_RNN_BLOCK = 2 def __init__(self, name=None): self.helper = LayerHelper("static_rnn", name=name) self.memories = {} # memory map, from pre_mem.name --> MemoryLink self.inputs = [] # input variable list in current block self.outputs = [] # output variable list in parent block self.status = StaticRNN.BEFORE_RNN_BLOCK # status flag. # sequence length, since it is a static RNN, sequence length are fixed. self.seq_len = None def step(self): return BlockGuardWithCompletion(self) def _assert_in_rnn_block_(self, method): if self.status != StaticRNN.IN_RNN_BLOCK: raise ValueError("You must invoke {0} in rnn block".format(method)) def memory(self, init=None, shape=None, batch_ref=None, init_value=0.0, init_batch_dim_idx=0, ref_batch_dim_idx=1): """ Args: init: boot memory, if not set, a shape, batch_ref must be provided shape: shape of the boot memory batch_ref: batch size reference variable init_value: the init value of boot memory init_batch_dim_idx: the index of batch size in init's dimension ref_batch_dim_idx: the index of batch size in batch_ref's dimension """ self._assert_in_rnn_block_('memory') if init is None: if shape is None or batch_ref is None: raise ValueError( "if init is None, memory at least need shape and batch_ref") parent_block = self._parent_block() var_name = unique_name.generate("@".join( [self.helper.name, "memory_boot"])) boot_var = parent_block.create_var( name=var_name, shape=shape, dtype=batch_ref.dtype, persistable=False) parent_block.append_op( type="fill_constant_batch_size_like", inputs={'Input': [batch_ref]}, outputs={'Out': [boot_var]}, attrs={ 'value': init_value, 'shape': boot_var.shape, 'dtype': boot_var.dtype, 'input_dim_idx': ref_batch_dim_idx, 'output_dim_idx': init_batch_dim_idx }) return self.memory(init=boot_var) else: pre_mem = self.helper.create_variable( name=unique_name.generate("@".join([self.helper.name, "mem"])), dtype=init.dtype, shape=init.shape) self.memories[pre_mem.name] = StaticRNNMemoryLink( init=init, pre_mem=pre_mem) return pre_mem def step_input(self, x): self._assert_in_rnn_block_('step_input') if not isinstance(x, Variable): raise TypeError("step input takes a Variable") if self.seq_len is None: self.seq_len = x.shape[0] elif self.seq_len != x.shape[0]: raise ValueError("Static RNN only take fix seq_len input") ipt = self.helper.create_variable( name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type) self.inputs.append(ipt) return ipt def step_output(self, o): self._assert_in_rnn_block_('step_output') if not isinstance(o, Variable): raise TypeError("step output takes a Variable") tmp_o = self.helper.create_tmp_variable(dtype=o.dtype) self.helper.append_op( type='rnn_memory_helper', inputs={'X': [o]}, outputs={'Out': tmp_o}, attrs={'dtype': o.dtype}) out_var = self._parent_block().create_var( name=tmp_o.name, shape=[self.seq_len] + list(tmp_o.shape), dtype=tmp_o.dtype) self.outputs.append(out_var) def output(self, *outputs): for each in outputs: self.step_output(each) def update_memory(self, mem, var): if not isinstance(mem, Variable) or not isinstance(var, Variable): raise TypeError("update memory should take variables") self.memories[mem.name].mem = var def _parent_block(self): prog = self.helper.main_program parent_idx = prog.current_block().parent_idx assert parent_idx >= 0 parent_block = prog.block(parent_idx) return parent_block def __call__(self, *args, **kwargs): if self.status != StaticRNN.AFTER_RNN_BLOCK: raise ValueError("RNN output can only be retrieved after rnn block") if len(self.outputs) == 0: raise ValueError("RNN has no output") elif len(self.outputs) == 1: return self.outputs[0] else: return self.outputs def _complete_op(self): main_program = self.helper.main_program rnn_block = main_program.current_block() parent_block = self._parent_block() local_inputs = set() for op in rnn_block.ops: assert isinstance(op, Operator) for oname in op.output_names: for out_var_name in op.output(oname): local_inputs.add(out_var_name) for var in self.inputs: local_inputs.add(var.name) for m in self.memories: local_inputs.add(m) params = list() for op in rnn_block.ops: assert isinstance(op, Operator) for iname in op.input_names: for in_var_name in op.input(iname): if in_var_name not in local_inputs: params.append(in_var_name) parameters = [parent_block.var(name) for name in params] step_scope = parent_block.create_var( type=core.VarDesc.VarType.STEP_SCOPES) inlinks = [parent_block.var(i.name) for i in self.inputs] outlinks = self.outputs boot_memories = [] pre_memories = [] memories = [] for _, mem in list(self.memories.items()): boot_memories.append(mem.init) pre_memories.append(mem.pre_mem.name) mem_var = rnn_block.var(mem.mem.name) assert isinstance(mem_var, Variable) new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype) rnn_block.append_op( type='rnn_memory_helper', inputs={'X': [mem_var]}, outputs={'Out': [new_mem]}, attrs={'dtype': mem_var.dtype}) memories.append(new_mem.name) parent_block.append_op( type='recurrent', inputs={ 'inputs': inlinks, 'initial_states': boot_memories, 'parameters': parameters }, outputs={'outputs': outlinks, 'step_scopes': [step_scope]}, attrs={ 'ex_states': pre_memories, 'states': memories, 'sub_block': rnn_block }) class WhileGuard(BlockGuard): def __init__(self, while_op): if not isinstance(while_op, While): raise TypeError("WhileGuard takes a while op") super(WhileGuard, self).__init__(while_op.helper.main_program) self.while_op = while_op def __enter__(self): self.while_op.status = While.IN_WHILE_BLOCK return super(WhileGuard, self).__enter__() def __exit__(self, exc_type, exc_val, exc_tb): if exc_type is not None: return False self.while_op.status = While.AFTER_WHILE_BLOCK self.while_op._complete() return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb) class While(object): """ while loop control flow. Args: cond (Variable): condition used to compare. name (str): The name of this layer. Examples: .. code-block:: python d0 = layers.data("d0", shape=[10], dtype='float32') data_array = layers.array_write(x=d0, i=i) array_len = layers.fill_constant(shape=[1],dtype='int64', value=3) cond = layers.less_than(x=i, y=array_len) while_op = layers.While(cond=cond) with while_op.block(): d = layers.array_read(array=data_array, i=i) i = layers.increment(x=i, in_place=True) layers.array_write(result, i=i, array=d) layers.less_than(x=i, y=array_len, cond=cond) """ BEFORE_WHILE_BLOCK = 0 IN_WHILE_BLOCK = 1 AFTER_WHILE_BLOCK = 2 def __init__(self, cond, name=None): self.helper = LayerHelper("while", name=name) self.status = While.BEFORE_WHILE_BLOCK if not isinstance(cond, Variable): raise TypeError("condition should be a variable") assert isinstance(cond, Variable) if cond.dtype != core.VarDesc.VarType.BOOL: raise TypeError("condition should be a bool variable") if reduce(lambda a, b: a * b, cond.shape, 1) != 1: raise TypeError("condition should be a bool scalar") self.cond_var = cond def block(self): return WhileGuard(self) def _complete(self): main_program = self.helper.main_program while_block = main_program.current_block() parent_block = main_program.block(main_program.current_block() .parent_idx) inner_outputs = {self.cond_var.name} x_name_list = set() for op in while_block.ops: for iname in op.input_names: for in_var_name in op.input(iname): if in_var_name not in inner_outputs: x_name_list.add(in_var_name) for oname in op.output_names: for out_var_name in op.output(oname): inner_outputs.add(out_var_name) out_vars = [] for inner_out_name in inner_outputs: if inner_out_name in parent_block.vars: out_vars.append(parent_block.var(inner_out_name)) step_scope = parent_block.create_var( type=core.VarDesc.VarType.STEP_SCOPES) parent_block.append_op( type='while', inputs={ 'X': [ parent_block._var_recursive(x_name) for x_name in x_name_list ], 'Condition': [self.cond_var] }, outputs={'Out': out_vars, 'StepScopes': [step_scope]}, attrs={'sub_block': while_block}) def lod_rank_table(x, level=0): """LoD Rank Table Operator. Given an input variable **x** and a level number of LoD, this layer creates a LodRankTable object. A LoDRankTable object contains a list of bi-element tuples. Each tuple consists of an index and a length, both of which are int type. Refering to specified level of LoD, the index is the sequence index number and the length representes the sequence length. Please note that the list is ranked in descending order by the length. The following is an example: .. code-block:: text x is a LoDTensor: x.lod = [[2, 1], [5, 1, 1]] x.data = [a, b, c, d, e, f, g] 1. set level to 0: Create lod rank table: lod_rank_table_obj = lod_rank_table(x, level=0) Get: lod_rank_table_obj.items() = [(0, 2), (1, 1)] 2. set level to 1: Create lod rank table: lod_rank_table_obj = lod_rank_table(x, level=1) Get: lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)] Args: x (Variable): Input variable, a LoDTensor based which to create the lod rank table. level (int): Specify the LoD level, on which to create the lod rank table. Returns: Variable: The created LoDRankTable object. Examples: .. code-block:: python x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1) out = layers.lod_rank_table(x=x, level=0) """ helper = LayerHelper("lod_rank_table", **locals()) table = helper.create_variable( type=core.VarDesc.VarType.LOD_RANK_TABLE, name=unique_name.generate("lod_rank_table")) helper.append_op( type='lod_rank_table', inputs={'X': x}, outputs={'Out': table}, attrs={'level': level}) return table @templatedoc() def max_sequence_len(rank_table): """ ${comment} >>> import paddle.fluid as fluid >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32', >>> lod_level=1) >>> rank_table = layers.lod_rank_table(x=x, level=0) >>> max_seq_len = layers.max_sequence_len(rank_table) Args: rank_table(${rank_table_type}): ${rank_table_comment}. Returns: ${out_comment}. """ helper = LayerHelper("max_seqence_len", **locals()) res = helper.create_tmp_variable(dtype="int64") helper.append_op( type="max_sequence_len", inputs={"RankTable": rank_table}, outputs={"Out": res}) return res def lod_tensor_to_array(x, table): """ Convert a LoDTensor to a LoDTensorArray. This function split a LoDTesnor to a LoDTensorArray according to its LoD information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in PaddlePaddle. The generated LoDTensorArray of this function can be further read or written by `read_from_array()` and `write_to_array()` operators. However, this function is generally an internal component of PaddlePaddle `DynamicRNN`. Users should not use it directly. Args: x (Variable|list): The LoDTensor to be converted to a LoDTensorArray. table (ParamAttr|list): The variable that stores the level of lod which is ordered by sequence length in descending order. It is generally generated by `layers.lod_rank_table()` API. Returns: Variable: The LoDTensorArray that has been converted from the input tensor. Examples: .. code-block:: python x = fluid.layers.data(name='x', shape=[10]) table = fluid.layers.lod_rank_table(x, level=0) array = fluid.layers.lod_tensor_to_array(x, table) """ helper = LayerHelper("lod_tensor_to_array", **locals()) array = helper.create_variable( name=unique_name.generate("lod_tensor_to_array"), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=x.dtype) helper.append_op( type='lod_tensor_to_array', inputs={'X': x, 'RankTable': table}, outputs={'Out': array}) return array def array_to_lod_tensor(x, table): """Convert a LoD_Tensor_Aarry to an LoDTensor. Args: x (Variable|list): The lod tensor array to be converted to a tensor. table (ParamAttr|list): The variable that stores the level of lod which is ordered by sequence length in descending order. Returns: Variable: The variable of type tensor that has been converted from an array. Examples: .. code-block:: python x = fluid.layers.data(name='x', shape=[10]) table = fluid.layers.lod_rank_table(x, level=0) array = fluid.layers.lod_tensor_to_array(x, table) lod_tensor = fluid.layers.array_to_lod_tensor(array, table) """ helper = LayerHelper("array_to_lod_tensor", **locals()) tmp = helper.create_tmp_variable(dtype=x.dtype) helper.append_op( type="array_to_lod_tensor", inputs={'X': x, 'RankTable': table}, outputs={'Out': tmp}) return tmp def increment(x, value=1.0, in_place=True): """ This function performs an operation that increments each value in the input :math:`x` by an amount: :math:`value` as mentioned in the input parameter. This operation is performed in-place by default. Args: x (Variable|list): The tensor that has the input values. value (float): The amount by which the values should be incremented. in_place (bool): If the increment should be performed in-place. Returns: Variable: The elementwise-incremented object. Examples: .. code-block:: python data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32') data = fluid.layers.increment(x=data, value=3.0, in_place=True) """ helper = LayerHelper("increment", **locals()) if not in_place: out = helper.create_tmp_variable(dtype=x.dtype) else: out = x helper.append_op( type='increment', inputs={'X': [x]}, outputs={'Out': [out]}, attrs={'step': float(value)}) return out def array_write(x, i, array=None): """ This function writes the given input variable to the specified position indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the output LOD_TENSOR_ARRAY is not given(None), a new one will be created and returned. Args: x (Variable|list): The input tensor from which the data will be read. i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to the position to which the input tensor will be written. array (Variable|list): The output LOD_TENSOR_ARRAY to which the input tensor will be written. If this parameter is NONE, a new LOD_TENSOR_ARRAY will be created and returned. Returns: Variable: The output LOD_TENSOR_ARRAY where the input tensor is written. Examples: .. code-block:: python tmp = fluid.layers.zeros(shape=[10], dtype='int32') i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) arr = layers.array_write(tmp, i=i) """ helper = LayerHelper('array_write', **locals()) if array is None: array = helper.create_variable( name="{0}.out".format(helper.name), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=x.dtype) helper.append_op( type='write_to_array', inputs={'X': [x], 'I': [i]}, outputs={'Out': [array]}) return array def create_array(dtype): """ **Create LoDTensorArray** This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to implement RNN with array_write, array_read and While. Args: dtype (int|float): The data type of the elements in the lod_tensor_array. Returns: Variable: The lod_tensor_array variable storing the elements of data type. Examples: .. code-block:: python data = fluid.layers.create_array(dtype='float32') """ helper = LayerHelper("array", **locals()) return helper.create_variable( name="{0}.out".format(helper.name), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=dtype) @templatedoc() def less_than(x, y, force_cpu=None, cond=None, **ignored): """ ${comment} >>> import paddle.fluid as fluid >>> less = fluid.layers.less_than(x=label, y=limit) Args: x(${x_type}): ${x_comment}. y(${y_type}): ${y_comment}. force_cpu(${force_cpu_type}): ${force_cpu_comment}. cond(Variable|None): Optional output variable to store the result of *less_than* Returns: ${out_comment}. """ helper = LayerHelper("less_than", **locals()) if cond is None: cond = helper.create_tmp_variable(dtype='bool') cond.stop_gradient = True attrs = dict() if force_cpu is not None: attrs['force_cpu'] = force_cpu elif force_init_on_cpu(): attrs['force_cpu'] = force_init_on_cpu() helper.append_op( type='less_than', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}, attrs=attrs) return cond def equal(x, y, cond=None, **ignored): """ **equal** This layer returns the truth value of :math:`x == y` elementwise. Args: x(Variable): First operand of *equal* y(Variable): Second operand of *equal* cond(Variable|None): Optional output variable to store the result of *equal* Returns: Variable: The tensor variable storing the output of *equal*. Examples: .. code-block:: python less = fluid.layers.equal(x=label, y=limit) """ helper = LayerHelper("equal", **locals()) if cond is None: cond = helper.create_tmp_variable(dtype='bool') cond.stop_gradient = True helper.append_op( type='equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}) return cond def array_read(array, i): """ This function performs the operation to read the data in as an LOD_TENSOR_ARRAY. .. code-block:: text Given: array = [0.6, 0.1, 0.3, 0.1] And: i = 2 Then: output = 0.3 Args: array (Variable|list): The input tensor that store data to be read. i (Variable|list): The index of the data to be read from input array. Returns: Variable: The tensor type variable that has the data written to it. Examples: .. code-block:: python tmp = fluid.layers.zeros(shape=[10], dtype='int32') i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) arr = layers.array_read(tmp, i=i) """ helper = LayerHelper('array_read', **locals()) if not isinstance( array, Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY: raise TypeError("array should be tensor array vairable") out = helper.create_tmp_variable(dtype=array.dtype) helper.append_op( type='read_from_array', inputs={'X': [array], 'I': [i]}, outputs={'Out': [out]}) return out def shrink_memory(x, i, table): """ This function creates an operator to shrink rnn memory using the RankTable as mentioned in the input parameter. NOTE: This API is very low-level API. It is used by DynamicRNN only. Since the Dynamic RNN uses no-padding way to implement RNN. The sequence will be sorted by order, and the length of valid memory will be shrink after each time step. Args: x(Variable): The memory object in the previous time step. i(Variable): The step count variable. A int scalar as LoDTensor. table(Variable): The RNNRankTable object. Returns: the memory variable after shrink. Examples: Since this API is very low level API. The example is not provided. Please reference the implementation of class DynamicRNN for detail usage. """ helper = LayerHelper('shrink_memory', **locals()) out = helper.create_tmp_variable(dtype=x.dtype) helper.append_op( type='shrink_rnn_memory', inputs={'X': [x], 'I': [i], 'RankTable': [table]}, outputs={'Out': [out]}, attrs={}) return out def array_length(array): """ **Get the Length of Input LoDTensorArray** This function performs the operation to find the length of the input LOD_TENSOR_ARRAY. Related API: array_read, array_write, While. Args: array (LOD_TENSOR_ARRAY): The input array that will be used to compute the length. Returns: Variable: The length of the input LoDTensorArray. Examples: .. code-block:: python tmp = fluid.layers.zeros(shape=[10], dtype='int32') i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) arr = fluid.layers.array_write(tmp, i=i) arr_len = fluid.layers.array_length(arr) """ helper = LayerHelper('array_length', **locals()) tmp = helper.create_tmp_variable(dtype='int64') tmp.stop_gradient = True helper.append_op( type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]}) return tmp class ConditionalBlockGuard(BlockGuard): """ ConditionalBlockGuard is derived from BlockGuard. It is dedicated for holding a ConditionalBlock, and helping users entering and exiting the ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard is generally an internal component of IfElse, users should not use it directly. """ def __init__(self, block): if not isinstance(block, ConditionalBlock): raise TypeError("block should be conditional block") super(ConditionalBlockGuard, self).__init__(block.helper.main_program) self.block = block def __enter__(self): return super(ConditionalBlockGuard, self).__enter__() def __exit__(self, exc_type, exc_val, exc_tb): self.block.complete() return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val, exc_tb) class ConditionalBlock(object): ''' **ConditionalBlock** ConditionalBlock is an operator that bind a block to a specific condition, if the condition matches, the corresponding block will be executed. Args: inputs (Variable): bool conditions. is_scalar_condition (bool): whether the branch is controled by a scalar. name(str): name of this ConditionalBlock. Examples: .. code-block:: python cond = layers.less_than(x=label, y=limit) true_image, false_image = layers.split_lod_tensor( input=image, mask=cond) true_cond = layers.ConditionalBlock([true_image]) with true_cond.block(): ... with false_cond.block(): ... ''' def __init__(self, inputs, is_scalar_condition=False, name=None): for each_input in inputs: if not isinstance(each_input, Variable): raise TypeError("Each input should be variable") self.inputs = inputs self.is_scalar_condition = is_scalar_condition self.helper = LayerHelper('conditional_block', name=name) def block(self): return ConditionalBlockGuard(self) def complete(self): inside_block = self.helper.main_program.current_block() parent_block = self.helper.main_program.block(inside_block.parent_idx) intermediate = set() params = set() for each_op in inside_block.ops: assert isinstance(each_op, Operator) for iname in each_op.input_names: for in_var_name in each_op.input(iname): if in_var_name not in intermediate: params.add(in_var_name) for oname in each_op.output_names: for out_var_name in each_op.output(oname): intermediate.add(out_var_name) input_set = set([ipt.name for ipt in self.inputs]) param_list = [ parent_block._var_recursive(each_name) for each_name in params if each_name not in input_set ] out_list = [ parent_block.var(var_name) for var_name in parent_block.vars if var_name in intermediate ] step_scope = parent_block.create_var( type=core.VarDesc.VarType.STEP_SCOPES) parent_block.append_op( type='conditional_block', inputs={ 'X': self.inputs, 'Params': param_list, }, outputs={'Out': out_list, 'Scope': [step_scope]}, attrs={ 'sub_block': inside_block, 'is_scalar_condition': self.is_scalar_condition }) class Switch(object): """ Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler to modify learning rate The Semantics: 1. A `switch` control-flow checks cases one-by-one. 2. The condition of each case is a boolean value, which is a scalar Variable. 3. It runs the first matched case, or the default case if there is one. 4. Once it matches a case, it runs the corresponding branch and only that branch. Examples: .. code-block:: python lr = fluid.layers.tensor.create_global_var( shape=[1], value=0.0, dtype='float32', persistable=True, name="learning_rate") one_var = tensor.fill_constant( shape=[1], dtype='float32', value=1.0) two_var = tensor.fill_constant( shape=[1], dtype='float32', value=2.0) with fluid.layers.control_flow.Switch() as switch: with switch.case(global_step == zero_var): fluid.layers.tensor.assign(input=one_var, output=lr) with switch.default(): fluid.layers.tensor.assign(input=two_var, output=lr) """ def __init__(self, name=None): self.helper = LayerHelper('switch', name=name) self.inside_scope = False self.pre_not_conditions = [] def case(self, condition): """create a new block for this condition """ if not self.inside_scope: raise ValueError("case should be called inside with") if len(self.pre_not_conditions) == 0: cond_block = ConditionalBlock([condition], is_scalar_condition=True) not_cond = logical_not(x=condition) self.pre_not_conditions.append(not_cond) else: pre_cond_num = len(self.pre_not_conditions) pre_not_cond = self.pre_not_conditions[pre_cond_num - 1] new_not_cond = logical_and( x=pre_not_cond, y=logical_not(x=condition)) self.pre_not_conditions.append(new_not_cond) cond_block = ConditionalBlock( [logical_and( x=pre_not_cond, y=condition)], is_scalar_condition=True) return ConditionalBlockGuard(cond_block) def default(self): """ create a default case for this switch """ pre_cond_num = len(self.pre_not_conditions) if pre_cond_num == 0: raise ValueError("there should be at least one condition") cond_block = ConditionalBlock( [self.pre_not_conditions[pre_cond_num - 1]], is_scalar_condition=True) return ConditionalBlockGuard(cond_block) def __enter__(self): """ set flag that now is inside switch.block {} :return: """ self.inside_scope = True return self def __exit__(self, exc_type, exc_val, exc_tb): self.inside_scope = False if exc_type is not None: return False # re-raise exception return True class IfElseBlockGuard(object): def __init__(self, is_true, ifelse): if not isinstance(ifelse, IfElse): raise TypeError("ifelse must be an instance of IfElse class") if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS: raise ValueError("You cannot invoke IfElse.block() inside a block") self.is_true = is_true self.ie = ifelse if is_true: self.cond_block = ifelse.conditional_true_block else: self.cond_block = ifelse.conditional_false_block if not isinstance(self.cond_block, ConditionalBlock): raise TypeError("Unexpected situation") self.cond_block = self.cond_block.block() def __enter__(self): self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS self.cond_block.__enter__() def __exit__(self, exc_type, exc_val, exc_tb): if not self.cond_block.__exit__(exc_type, exc_val, exc_tb): # re-raise inside exception return False if len(self.ie.output_table[1 if self.is_true else 0]) == 0: raise ValueError("Must set output inside block") self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS class IfElse(object): """ if-else control flow. Args: cond (Variable): condition used to compare. name (str, default None): The name of this layer. Examples: .. code-block:: python limit = fluid.layers.fill_constant_batch_size_like( input=label, dtype='int64', shape=[1], value=5.0) cond = fluid.layers.less_than(x=label, y=limit) ie = fluid.layers.IfElse(cond) with ie.true_block(): true_image = ie.input(image) hidden = fluid.layers.fc(input=true_image, size=100, act='tanh') prob = fluid.layers.fc(input=hidden, size=10, act='softmax') ie.output(prob) with ie.false_block(): false_image = ie.input(image) hidden = fluid.layers.fc( input=false_image, size=200, act='tanh') prob = fluid.layers.fc(input=hidden, size=10, act='softmax') ie.output(prob) prob = ie() """ OUT_IF_ELSE_BLOCKS = 0 IN_IF_ELSE_TRUE_BLOCKS = 1 IN_IF_ELSE_FALSE_BLOCKS = 2 def __init__(self, cond, name=None): if not isinstance(cond, Variable): raise TypeError("cond must be a Variable") self.helper = LayerHelper('ifelse', name=name) self.cond = cond self.input_table = {} self.status = IfElse.OUT_IF_ELSE_BLOCKS self.conditional_true_block = ConditionalBlock(inputs=[self.cond]) self.conditional_false_block = ConditionalBlock(inputs=[self.cond]) self.output_table = ([], []) # (true_outs, false_outs) def input(self, x): if self.status == IfElse.OUT_IF_ELSE_BLOCKS: raise ValueError("input must in true/false blocks") if id(x) not in self.input_table: parent_block = self._parent_block() out_true = parent_block.create_var( name=unique_name.generate('ifelse_input' + self.helper.name), dtype=x.dtype) out_false = parent_block.create_var( name=unique_name.generate('ifelse_input' + self.helper.name), dtype=x.dtype) parent_block.append_op( type='split_lod_tensor', inputs={ 'X': x, 'Mask': self.cond, }, outputs={'OutTrue': out_true, 'OutFalse': out_false}, attrs={'level': 0}) self.input_table[id(x)] = (out_true, out_false) else: out_true, out_false = self.input_table[id(x)] if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS: return out_true else: return out_false def _parent_block(self): current_block = self.helper.main_program.current_block() return self.helper.main_program.block(current_block.parent_idx) def true_block(self): return IfElseBlockGuard(True, self) def false_block(self): return IfElseBlockGuard(False, self) def output(self, *outs): if self.status == self.OUT_IF_ELSE_BLOCKS: raise ValueError("output can only be invoked in the sub-block") out_table = self.output_table[1 if self.status == self.IN_IF_ELSE_TRUE_BLOCKS else 0] parent_block = self._parent_block() for each_out in outs: if not isinstance(each_out, Variable): raise TypeError("Each output should be a variable") # create outside tensor outside_out = parent_block.create_var( name=unique_name.generate("_".join( [self.helper.name, 'output'])), dtype=each_out.dtype) out_table.append(outside_out) # assign local var to outside assign(input=each_out, output=outside_out) def __call__(self): if self.status != self.OUT_IF_ELSE_BLOCKS: raise ValueError("IfElse::__call__ must be out of sub-block") false_len, true_len = list(map(len, self.output_table)) if false_len == 0 and true_len == 0: raise ValueError("Must invoke true_block/false_block before " "__call__") elif false_len != true_len and false_len != 0 and true_len != 0: raise ValueError("The output side must be same") elif false_len == 0 or true_len == 0: return self.output_table[0 if false_len != 0 else 1] # else none of false_len/true_len is zero # merge together rlist = [] for false_var, true_var in zip(*self.output_table): rlist.append( merge_lod_tensor( in_true=true_var, in_false=false_var, mask=self.cond, x=self.cond, level=0)) return rlist class DynamicRNN(object): """ The dynamic RNN can process a batch of sequence data. The length of each sample sequence can be different. This API automatically process them in batch. The input lod must be set. Please reference `lod_tensor` >>> import paddle.fluid as fluid >>> data = fluid.layers.data(name='sentence', dtype='int64', lod_level=1) >>> embedding = fluid.layers.embedding(input=data, size=[65535, 32], >>> is_sparse=True) >>> >>> drnn = fluid.layers.DynamicRNN() >>> with drnn.block(): >>> word = drnn.step_input(embedding) >>> prev = drnn.memory(shape=[200]) >>> hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu') >>> drnn.update_memory(prev, hidden) # set prev to hidden >>> drnn.output(hidden) >>> >>> # last is the last time step of rnn. It is the encoding result. >>> last = fluid.layers.sequence_last_step(drnn()) The dynamic RNN will unfold sequence into timesteps. Users need to define how to process each time step during the :code:`with` block. The `memory` is used staging data cross time step. The initial value of memory can be zero or another variable. The dynamic RNN can mark multiple variables as its output. Use `drnn()` to get the output sequence. """ BEFORE_RNN = 0 IN_RNN = 1 AFTER_RNN = 2 def __init__(self, name=None): self.helper = LayerHelper('dynamic_rnn', name=name) self.status = DynamicRNN.BEFORE_RNN self.lod_rank_table = None self.max_seq_len = None self.step_idx = None self.zero_idx = fill_constant( shape=[1], value=0, dtype='int64', force_cpu=True) self.mem_dict = dict() self.output_array = [] self.outputs = [] self.cond = self.helper.create_tmp_variable(dtype='bool') self.cond.stop_gradient = False self.while_op = While(self.cond) self.input_array = [] self.mem_link = [] def step_input(self, x): """ Mark a sequence as a dynamic RNN input. Args: x(Variable): The input sequence. Returns: The current timestep in the input sequence. """ self._assert_in_rnn_block_("step_input") if not isinstance(x, Variable): raise TypeError( "step_input() can only take a Variable as its input.") parent_block = self._parent_block_() if self.lod_rank_table is None: self.lod_rank_table = parent_block.create_var( name=unique_name.generate('lod_rank_table'), type=core.VarDesc.VarType.LOD_RANK_TABLE) self.lod_rank_table.stop_gradient = True parent_block.append_op( type='lod_rank_table', inputs={"X": x}, outputs={"Out": self.lod_rank_table}) self.max_seq_len = parent_block.create_var( name=unique_name.generate('dynamic_rnn_max_seq_len'), dtype='int64') self.max_seq_len.stop_gradient = False parent_block.append_op( type='max_sequence_len', inputs={'RankTable': self.lod_rank_table}, outputs={"Out": self.max_seq_len}) self.cond.stop_gradient = True parent_block.append_op( type='less_than', inputs={'X': self.step_idx, 'Y': self.max_seq_len}, outputs={'Out': self.cond}, attrs={'force_cpu': True}) input_array = parent_block.create_var( name=unique_name.generate('dynamic_rnn_input_array'), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=x.dtype) self.input_array.append((input_array, x.dtype)) parent_block.append_op( type='lod_tensor_to_array', inputs={'X': x, 'RankTable': self.lod_rank_table}, outputs={'Out': input_array}) return array_read(array=input_array, i=self.step_idx) def static_input(self, x): """ Mark a variable as a RNN input. The input will not be scattered into time steps. Args: x(Variable): The input variable. Returns: The input variable that can access in RNN. """ self._assert_in_rnn_block_("static_input") if not isinstance(x, Variable): raise TypeError( "static_input() can only take a Variable as its input") if self.lod_rank_table is None: raise RuntimeError( "static_input() must be called after step_input().") parent_block = self._parent_block_() x_reordered = parent_block.create_var( name=unique_name.generate("dynamic_rnn_static_input_reordered"), type=core.VarDesc.VarType.LOD_TENSOR, dtype=x.dtype) parent_block.append_op( type='reorder_lod_tensor_by_rank', inputs={'X': [x], 'RankTable': [self.lod_rank_table]}, outputs={'Out': [x_reordered]}) return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table) @contextlib.contextmanager def block(self): """ The block for user to define operators in RNN. See the class docstring for more details. """ if self.status != DynamicRNN.BEFORE_RNN: raise ValueError("rnn.block() can only be invoke once") self.step_idx = fill_constant( shape=[1], dtype='int64', value=0, force_cpu=True) self.step_idx.stop_gradient = False self.status = DynamicRNN.IN_RNN with self.while_op.block(): yield increment(x=self.step_idx, value=1.0, in_place=True) for new_mem, mem_array in self.mem_link: array_write(x=new_mem, i=self.step_idx, array=mem_array) less_than( x=self.step_idx, y=self.max_seq_len, force_cpu=True, cond=self.cond) self.status = DynamicRNN.AFTER_RNN for each_array in self.output_array: self.outputs.append( array_to_lod_tensor( x=each_array, table=self.lod_rank_table)) def __call__(self, *args, **kwargs): """ Get the output of RNN. This API should only be invoked after RNN.block() """ if self.status != DynamicRNN.AFTER_RNN: raise ValueError(("Output of the dynamic RNN can only be visited " "outside the rnn block.")) if len(self.outputs) == 1: return self.outputs[0] else: return self.outputs def memory(self, init=None, shape=None, value=0.0, need_reorder=False, dtype='float32'): """ Create a memory variable for dynamic rnn. If the :code:`init` is not None, :code:`memory` will be initialized by this variable. The :code:`need_reorder` is used to reorder the memory as the input variable. It should be set to true when the initialized memory depends on the input sample. For example, >>> import paddle.fluid as fluid >>> sentence = fluid.layers.data( >>> name='sentence', dtype='float32', shape=[32]) >>> boot_memory = fluid.layers.data( >>> name='boot', dtype='float32', shape=[10]) >>> >>> drnn = fluid.layers.DynamicRNN() >>> with drnn.block(): >>> word = drnn.step_input(sentence) >>> memory = drnn.memory(init=boot_memory, need_reorder=True) >>> hidden = fluid.layers.fc( >>> input=[word, memory], size=10, act='tanh') >>> drnn.update_memory(ex_mem=memory, new_mem=hidden) >>> drnn.output(hidden) >>> rnn_output = drnn() Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the :code:`memory` will be initialized by this :code:`value`. For example, >>> import paddle.fluid as fluid >>> sentence = fluid.layers.data( >>> name='sentence', dtype='float32', shape=[32]) >>> >>> drnn = fluid.layers.DynamicRNN() >>> with drnn.block(): >>> word = drnn.step_input(sentence) >>> memory = drnn.memory(shape=[10], dtype='float32', value=0) >>> hidden = fluid.layers.fc( >>> input=[word, memory], size=10, act='tanh') >>> drnn.update_memory(ex_mem=memory, new_mem=hidden) >>> drnn.output(hidden) >>> rnn_output = drnn() Args: init(Variable|None): The initialized variable. shape(list|tuple): The memory shape. NOTE the shape does not contain batch_size. value(float): the initalized value. need_reorder(bool): True if the initialized memory depends on the input sample. dtype(str|numpy.dtype): The data type of the initialized memory. Returns: the memory variable. """ self._assert_in_rnn_block_('memory') if init is not None: if not isinstance(init, Variable): raise TypeError( "The input arg `init` of memory() must be a Variable") parent_block = self._parent_block_() init_tensor = init if need_reorder == True: if self.lod_rank_table is None: raise ValueError( 'If set need_reorder to True, make sure step_input be ' 'invoked before ' 'memory(init=init, need_reordered=True, ...).') init_reordered = parent_block.create_var( name=unique_name.generate('dynamic_rnn_mem_init_reordered'), type=core.VarDesc.VarType.LOD_TENSOR, dtype=init.dtype) parent_block.append_op( type='reorder_lod_tensor_by_rank', inputs={ 'X': [init_tensor], 'RankTable': [self.lod_rank_table] }, outputs={'Out': [init_reordered]}) init_tensor = init_reordered mem_array = parent_block.create_var( name=unique_name.generate('dynamic_rnn_mem_array'), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=init.dtype) parent_block.append_op( type='write_to_array', inputs={'X': init_tensor, 'I': self.zero_idx}, outputs={'Out': mem_array}) retv = array_read(array=mem_array, i=self.step_idx) retv = shrink_memory( x=retv, i=self.step_idx, table=self.lod_rank_table) self.mem_dict[retv.name] = mem_array return retv else: if len(self.input_array) == 0: raise ValueError( "step_input should be invoked before memory(shape=..., value=...)" ) parent_block = self._parent_block_() init = parent_block.create_var( name=unique_name.generate('mem_init'), dtype=dtype) arr, dtype = self.input_array[0] in0 = parent_block.create_var( name=unique_name.generate('in0'), dtype=dtype) parent_block.append_op( type='read_from_array', inputs={'X': [arr], 'I': [self.zero_idx]}, outputs={'Out': [in0]}) parent_block.append_op( type='fill_constant_batch_size_like', inputs={'Input': [in0]}, outputs={'Out': [init]}, attrs={ 'shape': [-1] + shape, 'value': float(value), 'dtype': init.dtype }) return self.memory(init=init) def update_memory(self, ex_mem, new_mem): """ Update the memory from ex_mem to new_mem. NOTE that the shape and data type of :code:`ex_mem` and :code:`new_mem` must be same. Args: ex_mem(Variable): the memory variable. new_mem(Variable): the plain variable generated in RNN block. Returns: None """ self._assert_in_rnn_block_('update_memory') if not isinstance(ex_mem, Variable): raise TypeError("The input arg `ex_mem` of update_memory() must " "be a Variable") if not isinstance(new_mem, Variable): raise TypeError("The input arg `new_mem` of update_memory() must " "be a Variable") mem_array = self.mem_dict.get(ex_mem.name, None) if mem_array is None: raise ValueError("Please invoke memory before update_memory") if self.lod_rank_table is None: raise ValueError("Please invoke step_input before update_memory") self.mem_link.append((new_mem, mem_array)) def output(self, *outputs): """ mark the RNN output variables. Args: outputs: The output variables. Returns: None """ self._assert_in_rnn_block_('output') parent_block = self._parent_block_() for each in outputs: outside_array = parent_block.create_var( name=unique_name.generate("_".join( [self.helper.name, "output_array", each.name])), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=each.dtype) array_write(x=each, i=self.step_idx, array=outside_array) self.output_array.append(outside_array) def _parent_block_(self): prog = self.helper.main_program parent_idx = prog.current_block().parent_idx assert parent_idx >= 0 parent_block = prog.block(parent_idx) return parent_block def _assert_in_rnn_block_(self, method): if self.status != DynamicRNN.IN_RNN: raise ValueError("{0} can only be invoked inside rnn block.".format( method)) @autodoc() def reorder_lod_tensor_by_rank(x, rank_table): helper = LayerHelper('reorder_lod_tensor_by_rank', **locals()) helper.is_instance('x', Variable) helper.is_instance('rank_table', Variable) out = helper.create_tmp_variable(dtype=x.dtype) helper.append_op( type='reorder_lod_tensor_by_rank', inputs={'X': [x], 'RankTable': [rank_table]}, outputs={'Out': [out]}) return out def is_empty(x, cond=None, **ignored): """ Test whether a Variable is empty. Args: x (Variable): The Variable to be tested. cond (Variable|None): Output parameter. Returns the test result of given 'x'. Default: None Returns: Variable: A bool scalar. True if 'x' is an empty Variable. Raises: TypeError: If input cond is not a variable, or cond's dtype is not bool. Examples: .. code-block:: python res = fluid.layers.is_empty(x=input) # or: fluid.layers.is_empty(x=input, cond=res) """ helper = LayerHelper("is_empty", **locals()) if cond is None: cond = helper.create_tmp_variable(dtype='bool') cond.stop_gradient = True elif not isinstance(cond, Variable): raise TypeError("cond takes a variable") elif cond.dtype != 'bool': raise TypeError("The data type of cond must be bool") helper.append_op( type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]}) return cond
34.759288
106
0.589763
d3fdeec8165e84bf7a43059c3c5c541ee72ccb58
68,892
py
Python
lib/taurus/qt/qtgui/taurusgui/appsettingswizard.py
mrosanes/taurus_deb
119bf27193af0bbaaececf054eefb78beb6f117a
[ "CC-BY-3.0" ]
null
null
null
lib/taurus/qt/qtgui/taurusgui/appsettingswizard.py
mrosanes/taurus_deb
119bf27193af0bbaaececf054eefb78beb6f117a
[ "CC-BY-3.0" ]
null
null
null
lib/taurus/qt/qtgui/taurusgui/appsettingswizard.py
mrosanes/taurus_deb
119bf27193af0bbaaececf054eefb78beb6f117a
[ "CC-BY-3.0" ]
null
null
null
#!/usr/bin/env python ############################################################################# ## # This file is part of Taurus ## # http://taurus-scada.org ## # Copyright 2011 CELLS / ALBA Synchrotron, Bellaterra, Spain ## # Taurus is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. ## # Taurus is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. ## # You should have received a copy of the GNU Lesser General Public License # along with Taurus. If not, see <http://www.gnu.org/licenses/>. ## ########################################################################### """ This Wizard provide functionality for creating from scratch a configuration directory for a TaurusGUI based application. The files in the configuration dir determine the default, permanent, pre-defined contents of the GUI. While the user may add/remove more elements at run time and those customizations will also be stored, this file defines what a user will find when launching the GUI for the first time. """ __all__ = ["AppSettingsWizard", "ExternalAppEditor"] import os import re import sys import shutil import copy import datetime import glob from lxml import etree from taurus import tauruscustomsettings from taurus.external.qt import Qt import taurus.qt.qtgui.panel import taurus.qt.qtgui.taurusgui.paneldescriptionwizard import taurus.qt.qtgui.input from taurus.core.util.enumeration import Enumeration from taurus.qt.qtgui.util import ExternalAppAction class BooleanWidget(Qt.QWidget): """ This class represents the simple boolean widget with two RadioButtons true and false. The default value of the widget is true. It change the value by using getValue and setValue methods """ valueChangedSignal = Qt.pyqtSignal(bool, bool) def __init__(self, parent=None): Qt.QWidget.__init__(self, parent) self._formLayout = Qt.QHBoxLayout(self) self.trueButton = Qt.QRadioButton(self) self._formLayout.addWidget(self.trueButton) self.falseButton = Qt.QRadioButton(self) self._formLayout.addWidget(self.falseButton) self.trueButton.setText("Yes") self.falseButton.setText("No") self.trueButton.clicked.connect(self.valueChanged) self.falseButton.clicked.connect(self.valueChanged) self.setValue(self.getDefaultValue()) def valueChanged(self): if not (self.trueButton.isChecked() == self._actualValue): self.valueChangedSignal.emit(self._actualValue, not self._actualValue) self._actualValue = self.trueButton.isChecked() def setValue(self, value): if value is None: value = self.getDefaultValue() self.trueButton.setChecked(value) self.falseButton.setChecked(not value) self._actualValue = value def getValue(self): return self.trueButton.isChecked() @classmethod def getDefaultValue(self): return False class BasePage(Qt.QWizardPage): """ This class represents the base page for all of the pages in the wizard """ completeChanged = Qt.pyqtSignal() def __init__(self, parent=None): Qt.QWizardPage.__init__(self, parent) self._item_funcs = {} self._layout = Qt.QGridLayout() self.setLayout(self._layout) self._setupUI() def initializePage(self): Qt.QWizardPage.initializePage(self) self.checkData() def fromXml(self, xml): """ :param xml: (etree.Element) root node """ pass def _setupUI(self): pass def checkData(self): self._valid = True self.completeChanged.emit() def isComplete(self): return self._valid def _markRed(self, label): """ Set the color of the given label to red """ palette = label.palette() palette.setBrush(Qt.QPalette.WindowText, Qt.Qt.red) label.update() def _markBlack(self, label): """ Set the color of the given label to black """ palette = label.palette() palette.setBrush(Qt.QPalette.WindowText, Qt.Qt.black) label.update() def setStatusLabelPalette(self, label): """ Set the label look as as status label """ label.setAutoFillBackground(True) palette = label.palette() gradient = Qt.QLinearGradient(0, 0, 0, 15) gradient.setColorAt(0.0, Qt.QColor.fromRgb(60, 150, 255)) gradient.setColorAt(0.5, Qt.QColor.fromRgb(0, 85, 227)) gradient.setColorAt(1.0, Qt.QColor.fromRgb(60, 150, 255)) gradient.setSpread(Qt.QGradient.RepeatSpread) palette.setBrush(Qt.QPalette.Window, Qt.QBrush(gradient)) palette.setBrush(Qt.QPalette.WindowText, Qt.Qt.white) def __setitem__(self, name, value): self._item_funcs[name] = value def __getitem__(self, name): return self._item_funcs[name] def setNextPageId(self, id): self._nextPageId = id def nextId(self): return self._nextPageId class IntroPage(BasePage): """ Introduction page """ def __init__(self, parent=None): BasePage.__init__(self, parent) def _setupUI(self): self.setTitle('Introduction') self.setPixmap(Qt.QWizard.WatermarkPixmap, Qt.QIcon.fromTheme( "document-properties").pixmap(120, 120)) label = Qt.QLabel(self.getIntroText()) label.setWordWrap(True) self._layout.addWidget(label, 0, 0) self._spacerItem1 = Qt.QSpacerItem( 10, 200, Qt.QSizePolicy.Minimum, Qt.QSizePolicy.Fixed) self._layout.addItem(self._spacerItem1, 1, 0) self.setLayout(self._layout) def getIntroText(self): text = 'This wizard will guide you through the process of creating a ' + \ 'GUI based on TaurusGUI.\n' + \ 'TaurusGui-based applications are very customizable. The user can ' + \ 'add/remove elements at run time and store those customizations. So ' + \ 'with this wizard you will define just the default contents of the GUI.' return text def setNextPageId(self, id): self._nextPageId = id class ProjectPage(BasePage): def __init__(self, parent=None): BasePage.__init__(self, parent) self.setTitle('Project') self.setSubTitle( 'Choose a location for the application files (i.e., the "project directory")') self.__setitem__('projectDir', self._getProjectDir) def _setupUI(self): BasePage._setupUI(self) self._projectDirLabel = Qt.QLabel("Project Directory:") self._projectDirLE = Qt.QLineEdit(Qt.QDir.homePath()) self._projectDirLE.setMinimumSize(150, 30) self._projectDirLE.setToolTip( 'This directory will be used to store all files needed by the application.') self._projectDirBT = Qt.QPushButton(Qt.QIcon.fromTheme( "document-properties"), '...') self._layout.addWidget(self._projectDirLabel, 1, 0) self._layout.addWidget(self._projectDirLE, 1, 1) self._layout.addWidget(self._projectDirBT, 1, 2) self._projectDirBT.clicked.connect(self.onSelectDir) def onSelectDir(self): dirname = unicode(Qt.QFileDialog.getExistingDirectory( self, 'Choose the project directory', self._projectDirLE.text())) if not dirname: return self._projectDirLE.setText(dirname) def validatePage(self): dirname = unicode(self._projectDirLE.text()) if not os.path.exists(dirname): try: os.makedirs(dirname) except Exception, e: Qt.QMessageBox.warning(self, 'Error creating project directory', 'Could not create the project directory.\nReason:%s' % repr( e), Qt.QMessageBox.Cancel) return False configs_found = glob.glob(os.path.join(dirname, "tgconf_*", self.wizard().getXmlConfigFileName())) # fname = os.path.join(dirname, self.wizard().getXmlConfigFileName()) if len(configs_found) == 1: fname = configs_found[0] option = Qt.QMessageBox.question(self, 'Overwrite project?', 'The "%s" file already exists in the project directory.\n Do you want to edit the existing project?' % ( os.path.basename(fname)), Qt.QMessageBox.Yes | Qt.QMessageBox.Cancel) if option == Qt.QMessageBox.Yes: try: self.wizard().loadXml(fname) except Exception, e: Qt.QMessageBox.warning(self, 'Error loading project configuration', 'Could not load the existing configuration.\nReason:%s' % repr( e), Qt.QMessageBox.Cancel) return False else: return False elif len(os.listdir(dirname)): option = Qt.QMessageBox.question(self, 'Non empty project dir', 'The project directory ("%s") is not empty.\nAre you sure you want to use it?' % ( os.path.basename(dirname)), Qt.QMessageBox.Yes | Qt.QMessageBox.No) if option != Qt.QMessageBox.Yes: return False # if all went ok... return True def _getProjectDir(self): return unicode(self._projectDirLE.text()) class GeneralSettings(BasePage): def __init__(self, parent=None): BasePage.__init__(self, parent) self.setTitle('General settings') def initializePage(self): BasePage.initializePage(self) self.wizard().__setitem__("guiName", self._getGUIName) self.wizard().__setitem__("organizationName", self._getOrganizationName) def fromXml(self, xml): self._guiNameLineEdit.setText( AppSettingsWizard.getValueFromNode(xml, "GUI_NAME", '')) self._organizationCombo.setEditText( AppSettingsWizard.getValueFromNode(xml, "ORGANIZATION", default='Taurus')) def _getGUIName(self): return str(self._guiNameLineEdit.text()) def _getOrganizationName(self): if len(self._organizationCombo.currentText()) > 0: return str(self._organizationCombo.currentText()) else: return None def _setupUI(self): BasePage._setupUI(self) self._guiNameLabel = Qt.QLabel("GUI name:") font = Qt.QFont() # set bigger font font.setPointSize(14) self._label = Qt.QLabel() self._layout.addWidget(self._label, 0, 0, 1, 2, Qt.Qt.AlignRight) self._guiNameLineEdit = Qt.QLineEdit() self._guiNameLineEdit.setFont(font) self._guiNameLineEdit.setMinimumSize(150, 30) self._layout.addWidget(self._guiNameLabel, 1, 0, 1, 1, Qt.Qt.AlignRight) self._layout.addWidget(self._guiNameLineEdit, 1, 1, 1, 1, Qt.Qt.AlignRight) self._organizationNameLabel = Qt.QLabel("Organization name:") self._organizationCombo = Qt.QComboBox() self._organizationCombo.addItems(self._getOrganizationNames()) self._organizationCombo.setMinimumSize(150, 25) self._organizationCombo.setEditable(True) self._layout.addWidget(self._organizationNameLabel, 2, 0, 1, 1, Qt.Qt.AlignRight) self._layout.addWidget(self._organizationCombo, 2, 1, 1, 1, Qt.Qt.AlignRight) self._spacerItem1 = Qt.QSpacerItem( 10, 0, Qt.QSizePolicy.Fixed, Qt.QSizePolicy.Expanding) self._layout.addItem(self._spacerItem1, 8, 0, 1, 1, Qt.Qt.AlignCenter) self._status_label = Qt.QLabel() self.setStatusLabelPalette(self._status_label) self._layout.addWidget(self._status_label, 9, 0, 1, 3) self._guiNameLineEdit.textChanged.connect(self.checkData) self._organizationCombo.editTextChanged.connect(self.checkData) self._organizationCombo.currentIndexChanged.connect(self.checkData) def _getOrganizationNames(self): return ["TAURUS", "ALBA", "DESY", "Elettra", "ESRF", "MAX-lab", "SOLEIL", "XFEL"] def checkData(self): self._valid = True if not len(self._guiNameLineEdit.text()): self._valid = False self._markRed(self._guiNameLabel) else: self._markBlack(self._guiNameLabel) self.completeChanged.emit() if not self._valid: self._setStatus("Please type the name of the GUI") else: self._setStatus("Press next button to continue") def _setStatus(self, text): self._status_label.setText(text) class CustomLogoPage(BasePage): def __init__(self, parent=None): BasePage.__init__(self, parent) self._customLogoDefaultPath = getattr(tauruscustomsettings, "ORGANIZATION_LOGO", "logos:taurus.png") self._customLogoPath = self._customLogoDefaultPath def initializePage(self): BasePage.initializePage(self) self.wizard().__setitem__("customLogo", self._getCustomLogo) self._changeImage() def _setupUI(self): BasePage._setupUI(self) self.setTitle('Custom logo') self._label = Qt.QLabel( "\nIf you want to have a custom logo inside your application panel, please select the image file. \n") self._label.setWordWrap(True) self._layout.addWidget(self._label, 0, 0, 1, 4) self._customLogoLabel = Qt.QLabel("Custom logo:") self._customLogoLineEdit = Qt.QLineEdit() self._customLogoLineEdit.setMinimumSize(250, 25) self._customLogoLineEdit.setReadOnly(False) self._customLogoButton = Qt.QPushButton() self._customLogoButton.setToolTip("Browse...") self._customLogoButton.setIcon(Qt.QIcon.fromTheme("folder-open")) self._customLogoButton.setMaximumSize(80, 25) self._spacerItem1 = Qt.QSpacerItem( 30, 30, Qt.QSizePolicy.Fixed, Qt.QSizePolicy.Fixed) self._customLogo = Qt.QLabel(self) self._customLogo.setAlignment(Qt.Qt.AlignCenter) self._customLogo.setMinimumSize(120, 120) self._customLogoDefaultButton = Qt.QPushButton() self._customLogoDefaultButton.setToolTip("Default") self._customLogoDefaultButton.setMaximumSize(80, 25) self._customLogoDefaultButton.setIcon(Qt.QIcon("actions:edit-undo.svg")) self._customLogoRemoveButton = Qt.QPushButton() self._customLogoRemoveButton.setToolTip("Remove") self._customLogoRemoveButton.setMaximumSize(80, 25) self._customLogoRemoveButton.setIcon( Qt.QIcon("emblems:emblem-unreadable.svg")) self._spacerItem2 = Qt.QSpacerItem( 30, 30, Qt.QSizePolicy.Expanding, Qt.QSizePolicy.Fixed) self._layout.addWidget(self._customLogoLabel, 2, 0, Qt.Qt.AlignRight) self._layout.addWidget(self._customLogoLineEdit, 2, 1, Qt.Qt.AlignRight) self._layout.addWidget(self._customLogoButton, 2, 2, Qt.Qt.AlignLeft) self._layout.addWidget( self._customLogoDefaultButton, 2, 3, Qt.Qt.AlignLeft) self._layout.addWidget( self._customLogoRemoveButton, 2, 4, Qt.Qt.AlignLeft) self._layout.addItem(self._spacerItem2, 2, 5) self._layout.addItem(self._spacerItem1, 3, 2) self._layout.addWidget(self._customLogo, 4, 1, 1, 1, Qt.Qt.AlignHCenter) self._customLogoButton.clicked.connect(self._selectImage) self._customLogoDefaultButton.clicked.connect(self._setDefaultImage) self._customLogoRemoveButton.clicked.connect(self._removeImage) self._customLogoLineEdit.textChanged.connect(self._changeImage) self._spacerItem1 = Qt.QSpacerItem( 10, 0, Qt.QSizePolicy.Fixed, Qt.QSizePolicy.Expanding) self._layout.addItem(self._spacerItem1, 8, 0, 1, 1, Qt.Qt.AlignCenter) self._status_label = Qt.QLabel("Press next button to continue") self.setStatusLabelPalette(self._status_label) self._layout.addWidget(self._status_label, 9, 0, 1, 6) self._setNoImage() def fromXml(self, xml): customLogo = AppSettingsWizard.getValueFromNode( xml, "CUSTOM_LOGO", None) if customLogo is None: self._setDefaultImage() else: self._customLogoLineEdit.setText(customLogo) def _setDefaultImage(self): self._customLogoLineEdit.setText(self._customLogoDefaultPath) def _setNoImage(self): self._customLogo.setPixmap( Qt.QIcon.fromTheme("image-missing").pixmap(50, 50)) self._customLogoPath = None self._customLogoRemoveButton.hide() def _removeImage(self): self._customLogoLineEdit.setText("") self._setNoImage() def _getCustomLogo(self): if (self._customLogoPath is not None): return str(self._customLogoPath) else: return None def _selectImage(self): fileName = Qt.QFileDialog.getOpenFileName(self, self.tr( "Open File"), Qt.QDir.homePath(), self.tr("Images (*.png *.xpm *.jpg *.jpeg *.svg)")) self._customLogoLineEdit.setText(fileName) self._changeImage() def _changeImage(self): fileName = str(self._customLogoLineEdit.text()) if len(fileName): if (os.path.exists(fileName)): image = Qt.QImage() if image.load(fileName): self._setImage(image) self._customLogoPath = fileName self._setStatus("Press next button to continue") self._customLogoRemoveButton.show() else: self._setNoImage() self._setStatus("The file is invalid") else: self._setNoImage() self._setStatus("The file does not exist") else: self._setNoImage() self._setStatus("No image") def _setImage(self, image): if type(image) == Qt.QPixmap: self._customLogo.setPixmap( image.scaled(60, 200, Qt.Qt.KeepAspectRatio)) elif type(image) == Qt.QImage: self._customLogo.setPixmap(Qt.QPixmap().fromImage( image).scaled(60, 200, Qt.Qt.KeepAspectRatio)) else: self._customLogo.setPixmap( Qt.QPixmap("image-missing").scaled(50, 50)) self._customLogoPath = None def _setStatus(self, text): self._status_label.setText(text) class SynopticPage(BasePage): def __init__(self, parent=None): BasePage.__init__(self, parent) self._synoptics = [] def fromXml(self, xml): self._synoptics = [] synopticNodes = AppSettingsWizard.getArrayFromNode( xml, "SYNOPTIC", default=[]) for child in synopticNodes: if child.get("str") is not None and len(child.get("str")): self._synoptics.append(child.get("str")) def initializePage(self): BasePage.initializePage(self) self.wizard().__setitem__("synoptics", self._getSynoptics) self._refreshSynopticList() def _setupUI(self): BasePage._setupUI(self) self.setTitle('Synoptics') self._label = Qt.QLabel( "If you want to add one or more synoptic panels (graphical views of instruments) select the corresponding JDRAW files here\n") self._label.setWordWrap(True) self._layout.addWidget(self._label, 0, 0) self.setLayout(self._layout) self._synopticGroupBox = Qt.QGroupBox() self._synopticGroupBox.setCheckable(False) self._synopticGroupBox.setAlignment(Qt.Qt.AlignLeft) self._synopticGroupBox.setStyleSheet( " QGroupBox::title { subcontrol-position: top left; padding: 5 5px; }") self._layout.addWidget(self._synopticGroupBox, 2, 0, 1, 1) self._horizontalLayout = Qt.QHBoxLayout(self._synopticGroupBox) self._synopticList = Qt.QListWidget(self._synopticGroupBox) self._horizontalLayout.addWidget(self._synopticList) self._verticalLayout = Qt.QVBoxLayout() self._addButton = Qt.QPushButton("Add Synoptic") self._addButton.setStyleSheet("text-align: left;") self._verticalLayout.addWidget(self._addButton) self._removeButton = Qt.QPushButton("Remove Synoptic") self._removeButton.setStyleSheet("text-align: left;") self._verticalLayout.addWidget(self._removeButton) self._upButton = Qt.QPushButton("Move Up") self._upButton.setStyleSheet("text-align: left;") self._verticalLayout.addWidget(self._upButton) self._downButton = Qt.QPushButton("Move Down") self._downButton.setStyleSheet("text-align: left;") self._verticalLayout.addWidget(self._downButton) self._horizontalLayout.addLayout(self._verticalLayout) self._addButton.setIcon(Qt.QIcon.fromTheme("list-add")) self._removeButton.setIcon(Qt.QIcon.fromTheme("list-remove")) self._upButton.setIcon(Qt.QIcon.fromTheme("go-up")) self._downButton.setIcon(Qt.QIcon.fromTheme("go-down")) self._addButton.clicked.connect(self._addSynoptic) self._removeButton.clicked.connect(self._removeSynoptic) self._upButton.clicked.connect(self._moveUp) self._downButton.clicked.connect(self._moveDown) #self._synopticList.itemDoubleClicked.connect(self._editSynoptic) self._spacerItem1 = Qt.QSpacerItem( 10, 0, Qt.QSizePolicy.Fixed, Qt.QSizePolicy.Expanding) self._layout.addItem(self._spacerItem1, 8, 0, 1, 1, Qt.Qt.AlignCenter) self._status_label = Qt.QLabel("Press next button to continue") self.setStatusLabelPalette(self._status_label) self._layout.addWidget(self._status_label, 9, 0, 1, 1) def _addSynoptic(self): pdir = self.wizard().__getitem__('projectDir') fileNames = Qt.QFileDialog.getOpenFileNames(self, self.tr( "Open File"), pdir, self.tr("JDW (*.jdw );; All files (*)")) for fileName in fileNames: fileName = unicode(fileName) if fileName not in self._synoptics: self._synoptics.append(fileName) self._refreshSynopticList() def _editSynoptic(self): # edit self._refreshSynopticList() def _removeSynoptic(self): if len(self._synopticList.selectedIndexes()) > 0: self._synoptic_id = self._synopticList.selectedIndexes()[0].row() self._synoptics.remove(self._synoptics[self._synoptic_id]) self._refreshSynopticList() def _moveUp(self): if len(self._synopticList.selectedIndexes()) > 0: self._synoptic_id = self._synopticList.selectedIndexes()[0].row() if self._synoptic_id > 0: tmp = self._synoptics[self._synoptic_id] self._synoptics[self._synoptic_id] = self._synoptics[ self._synoptic_id - 1] self._synoptics[self._synoptic_id - 1] = tmp self._refreshSynopticList() self._synopticList.setCurrentIndex(self._synopticList.indexFromItem( self._synopticList.item(self._synoptic_id - 1))) def _moveDown(self): if len(self._synopticList.selectedIndexes()) > 0: self._synoptic_id = self._synopticList.selectedIndexes()[0].row() if self._synoptic_id < self._synopticList.count() - 1: tmp = self._synoptics[self._synoptic_id] self._synoptics[self._synoptic_id] = self._synoptics[ self._synoptic_id + 1] self._synoptics[self._synoptic_id + 1] = tmp self._refreshSynopticList() self._synopticList.setCurrentIndex(self._synopticList.indexFromItem( self._synopticList.item(self._synoptic_id + 1))) def _refreshSynopticList(self): self._synopticList.clear() for name in self._synoptics: self._synopticList.addItem(name) def _getSynoptics(self): if len(self._synoptics) <= 0: return None else: return self._synoptics def checkData(self): BasePage.checkData(self) self._valid = True def _setStatus(self, text): self._status_label.setText(text) class MacroServerInfoPage(BasePage): def __init__(self, parent=None): BasePage.__init__(self, parent) def initializePage(self): BasePage.initializePage(self) self._label.setText("\n <b>%s</b> can communicate with a Sardana's Macro Server and Pool.\nYou can enable and configure them here:\n" % self.wizard().__getitem__("guiName")) self.wizard().__setitem__("macroServerName", self._getMacroServerName) self.wizard().__setitem__("doorName", self._getDoorName) def _setupUI(self): BasePage._setupUI(self) self.setTitle('Macro Server Info') self._label = Qt.QLabel() self._label.setWordWrap(True) self._macroGroupBox = Qt.QGroupBox() self._macroGroupBox.setTitle("Enable Sardana communication") self._macroGroupBox.setCheckable(True) self._macroGroupBox.setChecked(False) self._macroGroupBox.setAlignment(Qt.Qt.AlignLeft) self._macroGroupBox.setStyleSheet( " QGroupBox::title { subcontrol-position: top left; padding: 5 5px; }") self._horizontalLayout = Qt.QHBoxLayout(self._macroGroupBox) from sardana.taurus.qt.qtgui.extra_macroexecutor.common import \ TaurusMacroConfigurationDialog self._confWidget = TaurusMacroConfigurationDialog(self) self._confWidget.setWindowFlags(Qt.Qt.Widget) self._confWidget.setModal(False) self._confWidget.setVisible(True) self._confWidget.buttonBox.setVisible(False) self._horizontalLayout.addWidget(self._confWidget) self._layout.addWidget(self._label, 0, 0, 1, 1) self._layout.addWidget(self._macroGroupBox, 1, 0, 1, 1) self._spacerItem1 = Qt.QSpacerItem( 10, 0, Qt.QSizePolicy.Fixed, Qt.QSizePolicy.Expanding) self._layout.addItem(self._spacerItem1, 8, 0, 1, 1, Qt.Qt.AlignCenter) self._status_label = Qt.QLabel("Press next button to continue") self.setStatusLabelPalette(self._status_label) self._layout.addWidget(self._status_label, 9, 0, 1, 1) self._confWidget.macroServerComboBox.currentIndexChanged.connect( self.checkData) self._confWidget.doorComboBox.currentIndexChanged.connect( self.checkData) self._macroGroupBox.toggled.connect(self.checkData) def fromXml(self, xml): macroserverName = AppSettingsWizard.getValueFromNode( xml, "MACROSERVER_NAME", default="") doorName = AppSettingsWizard.getValueFromNode( xml, "DOOR_NAME", default="") macroEditorsPath = AppSettingsWizard.getValueFromNode( xml, "MACROEDITORS_PATH", default="") id = self._confWidget.macroServerComboBox.findText( macroserverName, Qt.Qt.MatchExactly) if id >= 0: self._confWidget.macroServerComboBox.setCurrentIndex(id) self._macroGroupBox.setChecked(True) else: self._macroGroupBox.setChecked(False) return id = self._confWidget.doorComboBox.findText( doorName, Qt.Qt.MatchExactly) if id >= 0: self._confWidget.doorComboBox.setCurrentIndex(id) def checkData(self): BasePage.checkData(self) if (self._macroGroupBox.isChecked()) and len(self._confWidget.macroServerComboBox.currentText()): self.setNextPageId(self.wizard().currentId() + 1) else: self.setNextPageId(self.wizard().currentId() + 2) def _getMacroServerName(self): if (self._macroGroupBox.isChecked()) and len(self._confWidget.macroServerComboBox.currentText()): return str(self._confWidget.macroServerComboBox.currentText()) else: return None def _getDoorName(self): if (self._macroGroupBox.isChecked()) and len(self._confWidget.macroServerComboBox.currentText()): return str(self._confWidget.doorComboBox.currentText()) else: return None def _setStatus(self, text): self._status_label.setText(text) class InstrumentsPage(BasePage): def __init__(self, parent=None): BasePage.__init__(self, parent) def initializePage(self): BasePage.initializePage(self) self.wizard().__setitem__("instruments", self._getInstruments) self._label.setText("<b>%s</b> can use instrument information stored in the Sardana's Pool to create instrument panels." % self.wizard().__getitem__("guiName")) def _setupUI(self): BasePage._setupUI(self) self.setTitle('Instruments from Pool:') self._label = Qt.QLabel() self._label.setWordWrap(True) self._layout.addWidget(self._label, 0, 0, 1, 3) self._instrumentsLabel = Qt.QLabel("Generate panels from Pool Info?") self._intstrumentsBoolean = BooleanWidget() self._intstrumentsBoolean.setMinimumSize(150, 25) self._layout.addWidget(self._instrumentsLabel, 5, 0, 1, 1, Qt.Qt.AlignRight) self._layout.addWidget(self._intstrumentsBoolean, 5, 1, 1, 1, Qt.Qt.AlignRight) self._spacerItem1 = Qt.QSpacerItem( 10, 0, Qt.QSizePolicy.Fixed, Qt.QSizePolicy.Expanding) self._layout.addItem(self._spacerItem1, 8, 0, 1, 1, Qt.Qt.AlignCenter) self._status_label = Qt.QLabel("Press next button to continue") self.setStatusLabelPalette(self._status_label) self._layout.addWidget(self._status_label, 9, 0, 1, 3) def fromXml(self, xml): instruments = AppSettingsWizard.getValueFromNode( xml, "INSTRUMENTS_FROM_POOL", default="False") if str(instruments).lower() == "true": self._intstrumentsBoolean.setValue(True) else: self._intstrumentsBoolean.setValue(False) def _getInstruments(self): return str(self._intstrumentsBoolean.getValue()) def checkData(self): self._valid = True def _setStatus(self, text): self._status_label.setText(text) class PanelsPage(BasePage): def __init__(self, parent=None): BasePage.__init__(self, parent) self._panels = [] def initializePage(self): BasePage.initializePage(self) self.wizard().__setitem__("panels", self._getPanels) self._refreshPanelList() def _setupUI(self): BasePage._setupUI(self) self.setTitle('Panels editor') self._label = Qt.QLabel( "If you want extra panels add them to this list\n") self._layout.addWidget(self._label, 0, 0) self.setLayout(self._layout) self._panelGroupBox = Qt.QGroupBox() self._panelGroupBox.setCheckable(False) self._panelGroupBox.setAlignment(Qt.Qt.AlignLeft) self._panelGroupBox.setStyleSheet( " QGroupBox::title { subcontrol-position: top left; padding: 5 5px; }") self._layout.addWidget(self._panelGroupBox, 2, 0, 1, 1) self._horizontalLayout = Qt.QHBoxLayout(self._panelGroupBox) self._panelList = Qt.QListWidget(self._panelGroupBox) self._horizontalLayout.addWidget(self._panelList) self._verticalLayout = Qt.QVBoxLayout() self._addButton = Qt.QPushButton("Add Panel") self._addButton.setStyleSheet("text-align: left;") self._verticalLayout.addWidget(self._addButton) self._removeButton = Qt.QPushButton("Remove Panel") self._removeButton.setStyleSheet("text-align: left;") self._verticalLayout.addWidget(self._removeButton) self._upButton = Qt.QPushButton("Move Up") self._upButton.setStyleSheet("text-align: left;") self._verticalLayout.addWidget(self._upButton) self._downButton = Qt.QPushButton("Move Down") self._downButton.setStyleSheet("text-align: left;") self._verticalLayout.addWidget(self._downButton) self._horizontalLayout.addLayout(self._verticalLayout) self._addButton.setIcon(Qt.QIcon.fromTheme("list-add")) self._removeButton.setIcon(Qt.QIcon.fromTheme("list-remove")) self._upButton.setIcon(Qt.QIcon.fromTheme("go-up")) self._downButton.setIcon(Qt.QIcon.fromTheme("go-down")) self._addButton.clicked.connect(self._addPanel) self._removeButton.clicked.connect(self._removePanel) self._upButton.clicked.connect(self._moveUp) self._downButton.clicked.connect(self._moveDown) self._panelList.itemDoubleClicked.connect(self._editPanel) self._spacerItem1 = Qt.QSpacerItem( 10, 0, Qt.QSizePolicy.Fixed, Qt.QSizePolicy.Expanding) self._layout.addItem(self._spacerItem1, 8, 0, 1, 1, Qt.Qt.AlignCenter) self._status_label = Qt.QLabel("Press next button to continue") self.setStatusLabelPalette(self._status_label) self._layout.addWidget(self._status_label, 9, 0, 1, 1) def fromXml(self, xml): self._panels = [] panelNodes = AppSettingsWizard.getArrayFromNode( xml, "PanelDescriptions", default=[]) for child in panelNodes: name = AppSettingsWizard.getValueFromNode( child, "name", default=None) if name: self._panels.append((name, etree.tostring(child))) def _addPanel(self): paneldesc, ok = taurus.qt.qtgui.taurusgui.paneldescriptionwizard.PanelDescriptionWizard.getDialog( self) if ok: w = paneldesc.getWidget() self._panels.append((paneldesc.name, paneldesc.toXml())) self._refreshPanelList() def _editPanel(self): # edit self._refreshPanelList() def _removePanel(self): if len(self._panelList.selectedIndexes()) > 0: self._panel_id = self._panelList.selectedIndexes()[0].row() self._panels.remove(self._panels[self._panel_id]) self._refreshPanelList() def _moveUp(self): if len(self._panelList.selectedIndexes()) > 0: self._panel_id = self._panelList.selectedIndexes()[0].row() if self._panel_id > 0: tmp = self._panels[self._panel_id] self._panels[self._panel_id] = self._panels[self._panel_id - 1] self._panels[self._panel_id - 1] = tmp self._refreshPanelList() self._panelList.setCurrentIndex(self._panelList.indexFromItem( self._panelList.item(self._panel_id - 1))) def _moveDown(self): if len(self._panelList.selectedIndexes()) > 0: self._panel_id = self._panelList.selectedIndexes()[0].row() if self._panel_id < self._panelList.count() - 1: tmp = self._panels[self._panel_id] self._panels[self._panel_id] = self._panels[self._panel_id + 1] self._panels[self._panel_id + 1] = tmp self._refreshPanelList() self._panelList.setCurrentIndex(self._panelList.indexFromItem( self._panelList.item(self._panel_id + 1))) def _refreshPanelList(self): self._panelList.clear() for panel in self._panels: name, xml = panel self._panelList.addItem(name) def _getPanels(self): if len(self._panels) <= 0: return None else: return self._panels def checkData(self): BasePage.checkData(self) self._valid = True def _setStatus(self, text): self._status_label.setText(text) class ExternalAppEditor(Qt.QDialog): ''' A dialog for configuring an external appaction for a TaurusMainWindow. ''' #@todo: this class should be made more generic (e.g. provide a getter for an ExternalAppAction) and then moved elsewhere def __init__(self, parent=None): Qt.QDialog.__init__(self, parent) self.setModal(True) self.setWindowTitle('External Application Editor') self._dlgBox = Qt.QDialogButtonBox( Qt.QDialogButtonBox.Ok | Qt.QDialogButtonBox.Cancel) self._layout = Qt.QVBoxLayout() self._layout1 = Qt.QGridLayout() self._layout2 = Qt.QHBoxLayout() self._layout.addLayout(self._layout1) self._layout.addLayout(self._layout2) self._layout.addWidget(self._dlgBox) self.setLayout(self._layout) self._icon = None self._label = Qt.QLabel( "\n On this page you can define an external application. \n") self._label.setWordWrap(True) self._layout1.addWidget(self._label, 0, 0, 1, 4) self._execFileLabel = Qt.QLabel("Command:") self._execFileLineEdit = Qt.QLineEdit() self._execFileLineEdit.setMinimumSize(150, 25) # self._execFileLineEdit.setReadOnly(True) self._execFileButton = Qt.QPushButton() self._execFileButton.setIcon(Qt.QIcon.fromTheme("folder-open")) self._execFileButton.setToolTip("Browse...") self._execFileButton.setMaximumSize(80, 25) self._layout1.addWidget(self._execFileLabel, 2, 0, Qt.Qt.AlignRight) self._layout1.addWidget(self._execFileLineEdit, 2, 1, Qt.Qt.AlignRight) self._layout1.addWidget(self._execFileButton, 2, 2, Qt.Qt.AlignLeft) self._paramsLabel = Qt.QLabel("Parameters:") self._paramsLineEdit = Qt.QLineEdit() self._paramsLineEdit.setMinimumSize(150, 25) self._layout1.addWidget(self._paramsLabel, 3, 0, Qt.Qt.AlignRight) self._layout1.addWidget(self._paramsLineEdit, 3, 1, Qt.Qt.AlignRight) self._textLabel = Qt.QLabel("Text:") self._textLineEdit = Qt.QLineEdit() self._textLineEdit.setMinimumSize(150, 25) self._layout1.addWidget(self._textLabel, 4, 0, Qt.Qt.AlignRight) self._layout1.addWidget(self._textLineEdit, 4, 1, Qt.Qt.AlignRight) self._iconLabel = Qt.QLabel("Icon:") self._iconLogo = Qt.QPushButton() self._iconLogo.setIcon(Qt.QIcon("status:image-missing.svg")) self._iconLogo.setIconSize(Qt.QSize(60, 60)) self._layout1.addWidget(self._iconLabel, 5, 0, Qt.Qt.AlignRight) self._layout1.addWidget(self._iconLogo, 5, 1, Qt.Qt.AlignCenter) self._spacerItem1 = Qt.QSpacerItem( 10, 0, Qt.QSizePolicy.Fixed, Qt.QSizePolicy.Expanding) self._layout1.addItem(self._spacerItem1, 8, 0, 1, 1, Qt.Qt.AlignCenter) # connections self._execFileButton.clicked.connect(self._selectExecFile) self._execFileLineEdit.textChanged.connect(self._setDefaultText) self._iconLogo.clicked.connect(self._selectIcon) self._dlgBox.accepted.connect(self.accept) self._dlgBox.rejected.connect(self.reject) self.checkData() self._setIcon(ExternalAppAction.DEFAULT_ICON_NAME) def checkData(self): if len(self._execFileLineEdit.text()) > 0: self._dlgBox.button(Qt.QDialogButtonBox.Ok).setEnabled(True) else: self._dlgBox.button(Qt.QDialogButtonBox.Ok).setEnabled(False) def _setDefaultText(self): fileName = self._execFileLineEdit.text().split('/')[-1] index = str(fileName).rfind(".") if (index > 0): self._textLineEdit.setText(str(fileName)[0:index]) else: self._textLineEdit.setText(fileName) self.checkData() def _selectExecFile(self): filePath = Qt.QFileDialog.getOpenFileName(self, self.tr( "Open File"), Qt.QDir.homePath(), self.tr("All files (*)")) if len(filePath): self._execFileLineEdit.setText(filePath) self._setDefaultText() def _getExecFile(self): return str(self._execFileLineEdit.text()) def _selectIcon(self): from taurus.qt.qtgui.icon import QIconCatalog catalog = QIconCatalog() dlg = Qt.QDialog(self) dlg.setLayout(Qt.QVBoxLayout()) dlg.layout().addWidget(catalog) dlg.setWindowTitle('Icon Catalog') catalog.iconSelected.connect(self._setIcon) catalog.iconSelected.connect(dlg.accept) dlg.exec_() def _setIcon(self, name): self._iconLogo.setIcon(Qt.QIcon(name)) self._iconLogo.setIconSize(Qt.QSize(60, 60)) self._iconLogo.setText("") self._icon = name def _getParams(self): return str(self._paramsLineEdit.text()) # return str(self._paramsLineEdit.text()).split() def _getText(self): return str(self._textLineEdit.text()) def _getIcon(self): return str(self._icon) def _toXml(self): root = etree.Element("ExternalApp") command = etree.SubElement(root, "command") command.text = self._getExecFile() params = etree.SubElement(root, "params") params.text = self._getParams() text = etree.SubElement(root, "text") text.text = self._getText() icon = etree.SubElement(root, "icon") icon.text = self._getIcon() return etree.tostring(root) @staticmethod def getDialog(): dlg = ExternalAppEditor() dlg.exec_() return dlg._getExecFile(), dlg._toXml(), (dlg.result() == dlg.Accepted) class ExternalAppPage(BasePage): def __init__(self, parent=None): BasePage.__init__(self, parent) self._externalApps = [] def initializePage(self): BasePage.initializePage(self) self.wizard().__setitem__("externalApps", self._getExternalApps) self._refreshApplicationList() def _setupUI(self): BasePage._setupUI(self) self.setTitle('External Applications') self._label = Qt.QLabel( "The GUI may include shortcuts to external applications. You can add them now.\n") self._layout.addWidget(self._label, 0, 0) self.setLayout(self._layout) self._externalAppGroupBox = Qt.QGroupBox() self._externalAppGroupBox.setCheckable(False) self._externalAppGroupBox.setAlignment(Qt.Qt.AlignLeft) self._externalAppGroupBox.setStyleSheet( " QGroupBox::title { subcontrol-position: top left; padding: 5 5px; }") self._layout.addWidget(self._externalAppGroupBox, 2, 0, 1, 1) self._horizontalLayout = Qt.QHBoxLayout(self._externalAppGroupBox) self._externalAppList = Qt.QListWidget(self._externalAppGroupBox) self._horizontalLayout.addWidget(self._externalAppList) self._verticalLayout = Qt.QVBoxLayout() self._addButton = Qt.QPushButton("Add Application") self._addButton.setStyleSheet("text-align: left;") self._verticalLayout.addWidget(self._addButton) self._removeButton = Qt.QPushButton("Remove Application") self._removeButton.setStyleSheet("text-align: left;") self._verticalLayout.addWidget(self._removeButton) self._upButton = Qt.QPushButton("Move Up") self._upButton.setStyleSheet("text-align: left;") self._verticalLayout.addWidget(self._upButton) self._downButton = Qt.QPushButton("Move Down") self._downButton.setStyleSheet("text-align: left;") self._verticalLayout.addWidget(self._downButton) self._horizontalLayout.addLayout(self._verticalLayout) self._addButton.setIcon(Qt.QIcon.fromTheme("list-add")) self._removeButton.setIcon(Qt.QIcon.fromTheme("list-remove")) self._upButton.setIcon(Qt.QIcon.fromTheme("go-up")) self._downButton.setIcon(Qt.QIcon.fromTheme("go-down")) self._addButton.clicked.connect(self._addApplication) self._removeButton.clicked.connect(self._removeApplication) self._upButton.clicked.connect(self._moveUp) self._downButton.clicked.connect(self._moveDown) self._externalAppList.itemDoubleClicked.connect(self._editApplication) self._spacerItem1 = Qt.QSpacerItem( 10, 0, Qt.QSizePolicy.Fixed, Qt.QSizePolicy.Expanding) self._layout.addItem(self._spacerItem1, 8, 0, 1, 1, Qt.Qt.AlignCenter) self._status_label = Qt.QLabel("Press next button to continue") self.setStatusLabelPalette(self._status_label) self._layout.addWidget(self._status_label, 9, 0, 1, 1) def fromXml(self, xml): self._externalApps = [] panelNodes = AppSettingsWizard.getArrayFromNode( xml, "ExternalApps", default=[]) for child in panelNodes: name = AppSettingsWizard.getValueFromNode( child, "command", default=None) if name: self._externalApps.append((name, etree.tostring(child))) def _addApplication(self): name, xml, ok = ExternalAppEditor.getDialog() if ok: self._externalApps.append((name, xml)) self._refreshApplicationList() def _editApplication(self): # edit self._refreshApplicationList() def _removeApplication(self): if len(self._externalAppList.selectedIndexes()) > 0: self._app_id = self._externalAppList.selectedIndexes()[0].row() self._externalApps.remove(self._externalApps[self._app_id]) self._refreshApplicationList() def _moveUp(self): if len(self._externalAppList.selectedIndexes()) > 0: self._app_id = self._externalAppList.selectedIndexes()[0].row() if self._app_id > 0: tmp = self._externalApps[self._app_id] self._externalApps[self._app_id] = self._externalApps[ self._app_id - 1] self._externalApps[self._app_id - 1] = tmp self._refreshApplicationList() self._externalAppList.setCurrentIndex(self._externalAppList.indexFromItem( self._externalAppList.item(self._app_id - 1))) def _moveDown(self): if len(self._externalAppList.selectedIndexes()) > 0: self._app_id = self._externalAppList.selectedIndexes()[0].row() if self._app_id < self._externalAppList.count() - 1: tmp = self._externalApps[self._app_id] self._externalApps[self._app_id] = self._externalApps[ self._app_id + 1] self._externalApps[self._app_id + 1] = tmp self._refreshApplicationList() self._externalAppList.setCurrentIndex(self._externalAppList.indexFromItem( self._externalAppList.item(self._app_id + 1))) def _refreshApplicationList(self): self._externalAppList.clear() for panel in self._externalApps: name, xml = panel self._externalAppList.addItem(name) def _getExternalApps(self): if len(self._externalApps) <= 0: return None else: return self._externalApps def checkData(self): BasePage.checkData(self) self._valid = True def _setStatus(self, text): self._status_label.setText(text) class MonitorPage(BasePage): def __init__(self, parent=None): BasePage.__init__(self, parent) def initializePage(self): BasePage.initializePage(self) self.wizard().__setitem__("monitor", self._getMonitor) def _setupUI(self): BasePage._setupUI(self) self.setTitle('Monitor List') self._label = Qt.QLabel( "\nIf you want to monitor some attributes, add them to the monitor list. \n") self._label.setWordWrap(True) self._layout.addWidget(self._label, 0, 0, 1, 4) self._monitorLabel = Qt.QLabel("Monitor List:") self._monitorLineEdit = Qt.QLineEdit() self._monitorLineEdit.setToolTip( "Comma-separated list of attribute names") self._monitorLineEdit.setMinimumSize(400, 25) self._monitorLineEdit.setReadOnly(False) self._monitorButton = Qt.QPushButton() self._monitorButton.setToolTip("Browse...") # self._monitorButton.setIcon(Qt.QIcon.fromTheme("system-search")) self._monitorButton.setIcon(Qt.QIcon("designer:devs_tree.png")) self._monitorButton.setMaximumSize(80, 25) self._monitorClearButton = Qt.QPushButton() self._monitorClearButton.setToolTip("Clear") self._monitorClearButton.setMaximumSize(80, 25) self._monitorClearButton.setIcon(Qt.QIcon("actions:edit-clear.svg")) self._layout.addWidget(self._monitorLabel, 2, 0, Qt.Qt.AlignRight) self._layout.addWidget(self._monitorLineEdit, 2, 1, Qt.Qt.AlignRight) self._layout.addWidget(self._monitorButton, 2, 2, Qt.Qt.AlignLeft) self._layout.addWidget(self._monitorClearButton, 2, 3, Qt.Qt.AlignLeft) self._monitorButton.clicked.connect(self._selectMonitor) self._monitorClearButton.clicked.connect(self._clearMonitor) # self._synopticClear.hide() self._spacerItem1 = Qt.QSpacerItem( 10, 0, Qt.QSizePolicy.Fixed, Qt.QSizePolicy.Expanding) self._layout.addItem(self._spacerItem1, 8, 0, 1, 1, Qt.Qt.AlignCenter) self._status_label = Qt.QLabel("Press next button to continue") self.setStatusLabelPalette(self._status_label) self._layout.addWidget(self._status_label, 9, 0, 1, 4) def fromXml(self, xml): self._monitorLineEdit.setText( AppSettingsWizard.getValueFromNode(xml, "MONITOR", default="")) def _clearMonitor(self): self._monitorLineEdit.clear() # self._monitorClearButton.hide() def _getMonitor(self): return str(self._monitorLineEdit.text()) def _selectMonitor(self): models, ok = taurus.qt.qtgui.panel.TaurusModelChooser.modelChooserDlg( host=None) if ok: self._monitorLineEdit.setText(",".join(models)) self.checkData() def _setStatus(self, text): self._status_label.setText(text) class OutroPage(BasePage): def __init__(self, parent=None): BasePage.__init__(self, parent) self._valid = True self.setTitle('Confirmation Page') self._label1 = Qt.QLabel("XML configuration file:") self._layout.addWidget(self._label1, 0, 0) self._xml = Qt.QTextEdit() self._xml.setSizePolicy(Qt.QSizePolicy( Qt.QSizePolicy.Expanding, Qt.QSizePolicy.Expanding)) self._layout.addWidget(self._xml, 1, 0) self._label2 = Qt.QLabel("Files copied") self._layout.addWidget(self._label2, 2, 0) self._substTable = Qt.QTableWidget() self._substTable.setColumnCount(2) self._substTable.setEditTriggers(self._substTable.NoEditTriggers) self._substTable.setHorizontalHeaderLabels( ('Original file', 'File in Project dir')) self._substTable.setSizePolicy(Qt.QSizePolicy( Qt.QSizePolicy.Expanding, Qt.QSizePolicy.Expanding)) self._layout.addWidget(self._substTable, 3, 0) def _getXml(self): return str(self._xml.toPlainText()) def saveFile(self, fileName): file = Qt.QFile(fileName) if not file.open(Qt.QFile.WriteOnly | Qt.QFile.Text): Qt.QMessageBox.warning(self, self.tr("Saving XML..."), self.tr("Cannot write file %1:\n%2.") .arg(fileName) .arg(file.errorString())) return False file.write(str(self._xml.toPlainText())) self._valid = True self.checkData() file.close() return True def initializePage(self): xml, substitutions = self.wizard().generateXml() self._xml.setText(xml) self.wizard().__setitem__("xml", self._getXml) self._substTable.clearContents() self._substTable.setRowCount(len(substitutions)) for i, (dst, src) in enumerate(substitutions.items()): item0, item1 = Qt.QTableWidgetItem(src), Qt.QTableWidgetItem(dst) self._substTable.setItem(i, 0, item0) self._substTable.setItem(i, 1, item1) self._substTable.resizeColumnsToContents() def validatePage(self): try: self.createProject() except Exception, e: Qt.QMessageBox.warning(self, 'Error creating project', 'Could not create project files. \nReason:%s' % repr( e), Qt.QMessageBox.Cancel) import traceback traceback.print_exc() return False return True def createProject(self): # prepare a log file pdir = self.wizard().__getitem__('projectDir') gui_name = self.wizard().__getitem__("guiName") install_dir = os.path.join(pdir, "tgconf_{0}".format(gui_name)) if not os.path.exists(install_dir): os.makedirs(install_dir) logfilename = os.path.join(pdir, 'wizard.log') logfile = open(logfilename, 'w') logfile.write('Project created by AppSettingsWizard on %s\n' % datetime.datetime.now().isoformat()) # copy files for i in range(self._substTable.rowCount()): src = unicode(self._substTable.item(i, 0).text()) dst = os.path.join(install_dir, unicode( self._substTable.item(i, 1).text())) if os.path.normpath(src) != os.path.normpath(dst): shutil.copy(src, dst) logfile.write('File copied: %s --> %s\n' % (src, dst)) # write xml config file xmlcfgfilename = os.path.join(install_dir, self.wizard().getXmlConfigFileName()) f = open(xmlcfgfilename, 'w') f.write(unicode(self._xml.toPlainText())) f.close() logfile.write('XML Config file created: "%s"\n' % xmlcfgfilename) # write python config file pycfgfilename = os.path.join(install_dir, '%s.py' % self.wizard().getConfigFilePrefix()) f = open(pycfgfilename, 'w') f.write("XML_CONFIG = '%s'" % self.wizard().getXmlConfigFileName()) f.close() logfile.write('Python config file created: "%s"\n' % pycfgfilename) # write __init__.py config file init_template = os.path.join( os.path.dirname(os.path.abspath(__file__)), 'res', 'init.template') f = open(init_template, 'r') template = f.read() f.close() initfilename = os.path.join(install_dir, '__init__.py') f = open(initfilename, 'w') template = template.format(name=gui_name) f.write(template) f.close() logfile.write('python init file created: "%s"\n' % initfilename) # write setup file setup_template = os.path.join( os.path.dirname(os.path.abspath(__file__)), 'res', 'setup.template') f = open(setup_template, 'r') template = f.read() f.close() setup = os.path.join(pdir, "setup.py") f = open(setup, 'w') template = template.format(name=gui_name) f.write(template) f.close() # write MANIFEST.in file manifest_template = os.path.join( os.path.dirname(os.path.abspath(__file__)), 'res', 'manifest.template') f = open(manifest_template, 'r') template = f.read() f.close() manifestfile = os.path.join(pdir, "MANIFEST.in") f = open(manifestfile, 'w') template = template.format(name=gui_name) f.write(template) f.close() # if all went ok... msg = 'Application project was successfully created.' +\ 'You can find the files in: "%s"' % pdir msg += '\nTip: You can install it with:\n\tpip install %s' % pdir msg += '\nTip: And then run the application with:\n\t %s' % gui_name details = '' warnings = self.wizard().getProjectWarnings() if warnings: msg += '\n\nHowever, some fine-tuning may be needed. Please check the details:\n' for short, long in warnings: details += '- %s: %s\n\n' % (short, long) logfile.write(msg + details) logfile.close() dlg = Qt.QMessageBox(Qt.QMessageBox.Information, 'Application project created', msg, Qt.QMessageBox.Ok, self) dlg.setDetailedText(details) dlg.exec_() print print msg + details print class AppSettingsWizard(Qt.QWizard): """ This Wizard provide functionality for creating from scratch a configuration directory for a TaurusGUI based application. The files in the configuration dir determine the default, permanent, pre-defined contents of the GUI. While the user may add/remove more elements at run time and those customizations will also be stored, this file defines what a user will find when launching the GUI for the first time. """ Pages = Enumeration('Pages', ('IntroPage', 'ProjectPage', 'GeneralSettings', 'CustomLogoPage', 'SynopticPage', 'MacroServerInfo', 'InstrumentsPage', 'PanelsPage', 'ExternalAppPage', 'MonitorPage', 'OutroPage')) SARDANA_INSTALLED = False def __init__(self, parent=None, jdrawCommand='jdraw', configFilePrefix='config'): Qt.QWizard.__init__(self, parent) self.installEventFilter(self) self._item_funcs = {} self._pages = {} self._jdrawCommand = jdrawCommand self._configFilePrefix = configFilePrefix self._loadPages() self._substitutions = {} self._projectWarnings = [] def getProjectWarnings(self): return self._projectWarnings def getConfigFilePrefix(self): return self._configFilePrefix def getXmlConfigFileName(self): return "%s.xml" % self._configFilePrefix @staticmethod def getValueFromNode(rootNode, nodeName, default=None): ''' returns a value from given Node :param rootNode: (etree.Element) root node :param nodeName: the name of node to find :param default: returned value if node is None or contains empty string ''' node = rootNode.find(nodeName) if (node is not None) and (node.text is not None): return node.text else: return default @staticmethod def getArrayFromNode(rootNode, nodeName, default=None): ''' returns an array contained by given Node :param rootNode: (etree.Element) root node :param nodeName: the name of node to find :param default: returned value if node is None or contains empty string ''' array = [] node = rootNode.find(nodeName) if (node is not None) and (node.text is not None): for child in node: array.append(child) return array else: return default def loadXml(self, fname): ''' parses xml code and sets all pages according to its contents. It raises an exception if something could not be processed :param fname: (unicode) path to file containing xml code ''' projectDir, cfgfile = os.path.split(fname) f = open(fname, 'r') xml = f.read() root = etree.fromstring(xml) # print self.Pages for pageNumber in range(len(self.Pages.keys())): self.page(pageNumber).fromXml(root) def getXml(self): try: return self.__getitem__("xml") except Exception, e: return None def __setitem__(self, name, value): self._item_funcs[name] = value def __getitem__(self, name): for id in self.getPages(): p = self.page(id) if isinstance(p, BasePage): try: return p[name]() except Exception, e: pass return self._item_funcs[name]() def addPage(self, page): id = Qt.QWizard.addPage(self, page) self._pages[id] = page def setPage(self, id, page): Qt.QWizard.setPage(self, id, page) self._pages[id] = page def getPages(self): return self._pages def _loadPages(self): intro = IntroPage() self.setPage(self.Pages.IntroPage, intro) intro.setNextPageId(self.Pages.ProjectPage) project_page = ProjectPage() self.setPage(self.Pages.ProjectPage, project_page) project_page.setNextPageId(self.Pages.GeneralSettings) general_settings_page = GeneralSettings() self.setPage(self.Pages.GeneralSettings, general_settings_page) general_settings_page.setNextPageId(self.Pages.CustomLogoPage) custom_logo_page = CustomLogoPage() self.setPage(self.Pages.CustomLogoPage, custom_logo_page) custom_logo_page.setNextPageId(self.Pages.SynopticPage) synoptic_page = SynopticPage() self.setPage(self.Pages.SynopticPage, synoptic_page) try: from sardana.taurus.qt.qtgui.extra_macroexecutor.common import \ TaurusMacroConfigurationDialog self.SARDANA_INSTALLED = True except: self.SARDANA_INSTALLED = False if self.SARDANA_INSTALLED: synoptic_page.setNextPageId(self.Pages.MacroServerInfo) macroserver_page = MacroServerInfoPage() self.setPage(self.Pages.MacroServerInfo, macroserver_page) macroserver_page.setNextPageId(self.Pages.InstrumentsPage) instruments_page = InstrumentsPage() self.setPage(self.Pages.InstrumentsPage, instruments_page) instruments_page.setNextPageId(self.Pages.PanelsPage) else: synoptic_page.setNextPageId(self.Pages.PanelsPage) panels_page = PanelsPage() self.setPage(self.Pages.PanelsPage, panels_page) panels_page.setNextPageId(self.Pages.ExternalAppPage) external_app_page = ExternalAppPage() self.setPage(self.Pages.ExternalAppPage, external_app_page) external_app_page.setNextPageId(self.Pages.MonitorPage) monitor_page = MonitorPage() self.setPage(self.Pages.MonitorPage, monitor_page) monitor_page.setNextPageId(self.Pages.OutroPage) outro_page = OutroPage() self.setPage(self.Pages.OutroPage, outro_page) outro_page.setNextPageId(-1) self.setOption(Qt.QWizard.CancelButtonOnLeft, True) def generateXml(self): '''returns the xml code corresponding to the options selected in the wizard and a dictionary representing the paths that have been substituted. :return: (str, dict<str,str>) The return value is a tuple whose first element is the xml code and the second element is a dict where the keys are the destination files and the values are the original paths. ''' root = etree.Element("taurusgui_config") # general settings page guiName = etree.SubElement(root, "GUI_NAME") guiName.text = self.__getitem__("guiName") organizationName = etree.SubElement(root, "ORGANIZATION") organizationName.text = self.__getitem__("organizationName") # custom logo page customLogo = etree.SubElement(root, "CUSTOM_LOGO") src = self.__getitem__("customLogo") mod_dir = os.path.join(self.__getitem__('projectDir'), 'tgconf_' + guiName.text) mod_dir = os.path.abspath(mod_dir) # make sure mod_dir is absolute if src is None or ":" in src: # using registered paths # TODO: what if they use windows paths such as "C:\foo" ? dst = src else: # if src is absolute, it stays so, and if it is relative, we assume # mod_dir as the root dir src = os.path.join(mod_dir, src) dst = os.path.basename(self.substitutionName(src, mod_dir)) customLogo.text = dst # synoptic page synopticList = self.__getitem__("synoptics") if synopticList: synoptics = etree.SubElement(root, "SYNOPTIC") for src in synopticList: src = os.path.join(mod_dir, src) dst = self.substitutionName(src, mod_dir) child = etree.SubElement(synoptics, "synoptic", str=os.path.basename(dst)) # substitute any referenced files within the jdrawfiles f = open(src, 'r') contents = f.read() f.close() for ref in re.findall(r'file_name:\"(.+?)\"', contents): # this is ok for both relative and absolute references refsrc = os.path.join(os.path.dirname(src), ref) refdst = self.substitutionName(refsrc, mod_dir) if ref != refdst: short = 'Manual editing needed in "%s"' % dst long = ('The synoptic file "%s" references a file that ' 'has been copied to the project dir in order to make the project portable. ' 'Please edit "%s" and replace "%s" by "%s"') % (dst, dst, ref, refdst) self._projectWarnings.append((short, long)) # macroserver page if self.SARDANA_INSTALLED and self.__getitem__("macroServerName"): macroServerName = etree.SubElement(root, "MACROSERVER_NAME") macroServerName.text = self.__getitem__("macroServerName") doorName = etree.SubElement(root, "DOOR_NAME") doorName.text = self.__getitem__("doorName") instruments = etree.SubElement(root, "INSTRUMENTS_FROM_POOL") instruments.text = str(self.__getitem__("instruments")) # panels page panelList = self.__getitem__("panels") if panelList: panels = etree.SubElement(root, "PanelDescriptions") for panel in panelList: name, xml = panel item = etree.fromstring(xml) panels.append(item) # external apps page externalAppList = self.__getitem__("externalApps") if externalAppList: externalApps = etree.SubElement(root, "ExternalApps") for externalApp in externalAppList: name, xml = externalApp item = etree.fromstring(xml) externalApps.append(item) # monitor page monitor = etree.SubElement(root, "MONITOR") monitor.text = self.__getitem__("monitor") return etree.tostring(root, pretty_print=True), copy.copy(self._substitutions) def substitutionName(self, src, mod_dir): name = os.path.basename(src) i = 2 if os.path.dirname(os.path.abspath(src)) != os.path.abspath(mod_dir): # do not change the name if it is the same dir! while name in self._substitutions: root, ext = os.path.splitext(name) name = "%s_%i%s" % (root, i, ext) i += 1 self._substitutions[name] = src return name def main(): app = Qt.QApplication([]) wizard = AppSettingsWizard() wizard.show() sys.exit(app.exec_()) if __name__ == "__main__": main()
41.007143
149
0.631321
0711b5ccedf98d759098fcf4ca4eadbc4df04e09
4,869
py
Python
measures/validation/accuracy.py
ryuzakyl/data-bloodhound
ae0413e748e55a0d2dbae35bbe96a672f313a64b
[ "Apache-2.0" ]
3
2019-03-18T03:22:06.000Z
2021-04-06T07:53:51.000Z
measures/validation/accuracy.py
ryuzakyl/data-bloodhound
ae0413e748e55a0d2dbae35bbe96a672f313a64b
[ "Apache-2.0" ]
null
null
null
measures/validation/accuracy.py
ryuzakyl/data-bloodhound
ae0413e748e55a0d2dbae35bbe96a672f313a64b
[ "Apache-2.0" ]
2
2020-10-05T08:22:25.000Z
2020-10-05T08:24:02.000Z
#!/usr/bin/env # -*- coding: utf-8 -*- # Copyright (C) Victor M. Mendiola Lau - All Rights Reserved # Unauthorized copying of this file, via any medium is strictly prohibited # Proprietary and confidential # Written by Victor M. Mendiola Lau <ryuzakyl@gmail.com>, February 2017 from classification.validation import knn as knn_val from classification.validation import svm as svm_val # --------------------------------------------------------------- def knn_accuracy_in_euc_space(X, labels, folds=3): """KNN classifier accuracy in an Euclidean Space. Args: X (np.ndarray): The data array. labels (list, np.ndarray): The data labels. folds (int): Amount of folds for validation. Returns: The result of the grid search procedure in an euclidean space. Notes: * The result is a list if `_CVScoreTuple` instances. If needed, the user should iterate over it and use relevant values for his/hers analysis. """ return knn_val.grid_search_in_euc_space(X, labels, folds) def knn_accuracy_in_pretopological_space(X, labels, measure, folds=3): """KNN classifier accuracy in a Pretopological Space. Args: X (np.ndarray): The data array. labels (list, np.ndarray): The data labels. measure (int): The type of dissimilarity to use as metric (see 'measures' module). folds (int): Amount of folds for validation. Returns: The result of the grid search procedure in a pretopological space. Notes: * The result is a list if `_CVScoreTuple` instances. If needed, the user should iterate over it and use relevant values for his/hers analysis. """ return knn_val.grid_search_in_pretopological_space(X, labels, measure, folds) def knn_accuracy_in_dis_space(X, labels, measure, folds=3): """KNN classifier accuracy in a Dissimilarity Space. Args: X (np.ndarray): The data array. labels (list, np.ndarray): The data labels. measure (int): The type of dissimilarity to use as metric (see 'measures' module). folds (int): Amount of folds for validation. Returns: The result of the grid search procedure in a dissimilarity space. Notes: * The result is a list if `_CVScoreTuple` instances. If needed, the user should iterate over it and use relevant values for his/hers analysis. """ return knn_val.grid_search_in_dis_space(X, labels, measure, folds) def svm_accuracy_in_euc_space(X, labels, folds=3): """SVM classifier accuracy in an Euclidean Space. Args: X (np.ndarray): The data array. labels (list, np.ndarray): The data labels. folds (int): Amount of folds for validation. Returns: The result of the grid search procedure in an euclidean space. Notes: * The result is a list if `_CVScoreTuple` instances. If needed, the user should iterate over it and use relevant values for his/hers analysis. """ return svm_val.grid_search_in_euc_space(X, labels, folds) def svm_accuracy_in_euc_space_params(X, labels, params, folds=3): """SVM classifier accuracy in an Euclidean Space. Args: X (np.ndarray): The data array. labels (list, np.ndarray): The data labels. params (dict): Dictionary of parameters and its values. folds (int): Amount of folds for validation. Returns: The result of the grid search procedure in an euclidean space. Notes: * The result is a list if `_CVScoreTuple` instances. If needed, the user should iterate over it and use relevant values for his/hers analysis. """ return svm_val.grid_search_in_euc_space_params(X, labels, params, folds) def svm_accuracy_in_dis_space(X, labels, measure, folds=3): """Grid search for SVM classifier in a Dissimilarity Space. Args: X (np.ndarray): The data array. labels (list, np.ndarray): The data labels. measure (int): The type of dissimilarity to use as metric (see 'measures' module). folds (int): Amount of folds for validation Returns: The Grid search results for the given data and labels. """ return svm_val.grid_search_in_dis_space(X, labels, measure, folds) def svm_accuracy_in_dis_space_params(X, labels, measure, params, folds=3): """Grid search for SVM classifier in a Dissimilarity Space. Args: X (np.ndarray): The data array. labels (list, np.ndarray): The data labels. measure (int): The type of dissimilarity to use as metric (see 'measures' module). params (dict): Dictionary of parameters and its values. folds (int): Amount of folds for validation Returns: The Grid search results for the given data and labels. """ return svm_val.grid_search_in_dis_space_params(X, labels, measure, params, folds)
33.57931
150
0.681454
c289200558db6ebbacced9ff2a6427b372f8cdb6
498
py
Python
calendertest.py
Soonyeon-Kim/TheShadowTree_in_Seoul
3de33c7c9b4ce85b5fe927423b2356f2d34f1e33
[ "Unlicense" ]
1
2019-07-08T07:11:58.000Z
2019-07-08T07:11:58.000Z
calendertest.py
Soonyeon-Kim/TheShadowTree_in_Seoul
3de33c7c9b4ce85b5fe927423b2356f2d34f1e33
[ "Unlicense" ]
null
null
null
calendertest.py
Soonyeon-Kim/TheShadowTree_in_Seoul
3de33c7c9b4ce85b5fe927423b2356f2d34f1e33
[ "Unlicense" ]
null
null
null
from datetime import date, timedelta def date_cal(start_date, end_date): d1 = date(int(start_date.split('-')[0]),int(start_date.split('-')[1]),int(start_date.split('-')[2])) d2 = date(int(end_date.split('-')[0]),int(end_date.split('-')[1]),int(end_date.split('-')[2])) delta = d2 - d1 datelist = [] for i in range(delta.days + 1): a = str(d1+timedelta(days=i)) a = a.replace('-','.') datelist.append(a) return datelist
27.666667
105
0.554217
40b769d8ab499e8451b5f892c5a33fccc467d18c
15,384
py
Python
env/Lib/site-packages/colorzero/tables.py
Nitinsd96/Air-Pollution-Monitoring-System
4870223ce7b40b4ea465620a4c3d39cf617c6eff
[ "MIT" ]
10
2018-10-16T15:53:09.000Z
2020-08-19T06:06:23.000Z
env/Lib/site-packages/colorzero/tables.py
Nitinsd96/Air-Pollution-Monitoring-System
4870223ce7b40b4ea465620a4c3d39cf617c6eff
[ "MIT" ]
23
2018-10-13T16:00:43.000Z
2019-04-27T19:08:58.000Z
env/Lib/site-packages/colorzero/tables.py
Nitinsd96/Air-Pollution-Monitoring-System
4870223ce7b40b4ea465620a4c3d39cf617c6eff
[ "MIT" ]
2
2018-11-04T17:55:53.000Z
2018-11-18T17:33:27.000Z
# vim: set et sw=4 sts=4 fileencoding=utf-8: # # The colorzero color library # Copyright (c) 2016-2018 Dave Jones <dave@waveform.org.uk> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ Defines the available color names, derived from the `CSS Color Module`_ Level 3 Specification, section 4.3, along with tables for the original DOS colors, and XTerm colors (for :func:`format` output). .. _CSS Color Module: http://www.w3.org/TR/css3-color/#svg-color """ from __future__ import ( unicode_literals, print_function, division, absolute_import, ) def _transpose(table): # Swap keys and values in a dict, but in the case of duplicated keys, use # the first encountered instead of the last result = {} for k, v in table.items(): result.setdefault(v, k) return result DOS_COLORS = _transpose({ # Bold, Index: (R, G, B), (False, 0): (0, 0, 0), (False, 1): (128, 0, 0), (False, 2): (0, 128, 0), (False, 3): (128, 128, 0), (False, 4): (0, 0, 128), (False, 5): (128, 0, 128), (False, 6): (0, 128, 128), (False, 7): (192, 192, 192), (True, 0): (128, 128, 128), (True, 1): (255, 0, 0), (True, 2): (0, 255, 0), (True, 3): (255, 255, 0), (True, 4): (0, 0, 255), (True, 5): (255, 0, 255), (True, 6): (0, 255, 255), (True, 7): (255, 255, 255), }) XTERM_COLORS = _transpose({ # Index: (R, G, B) 0: (0, 0, 0), 1: (128, 0, 0), 2: (0, 128, 0), 3: (128, 128, 0), 4: (0, 0, 128), 5: (128, 0, 128), 6: (0, 128, 128), 7: (192, 192, 192), 8: (128, 128, 128), 9: (255, 0, 0), 10: (0, 255, 0), 11: (255, 255, 0), 12: (0, 0, 255), 13: (255, 0, 255), 14: (0, 255, 255), 15: (255, 255, 255), 16: (0, 0, 0), 17: (0, 0, 95), 18: (0, 0, 135), 19: (0, 0, 175), 20: (0, 0, 215), 21: (0, 0, 255), 22: (0, 95, 0), 23: (0, 95, 95), 24: (0, 95, 135), 25: (0, 95, 175), 26: (0, 95, 215), 27: (0, 95, 255), 28: (0, 135, 0), 29: (0, 135, 95), 30: (0, 135, 135), 31: (0, 135, 175), 32: (0, 135, 215), 33: (0, 135, 255), 34: (0, 175, 0), 35: (0, 175, 95), 36: (0, 175, 135), 37: (0, 175, 175), 38: (0, 175, 215), 39: (0, 175, 255), 40: (0, 215, 0), 41: (0, 215, 95), 42: (0, 215, 135), 43: (0, 215, 175), 44: (0, 215, 215), 45: (0, 215, 255), 46: (0, 255, 0), 47: (0, 255, 95), 48: (0, 255, 135), 49: (0, 255, 175), 50: (0, 255, 215), 51: (0, 255, 255), 52: (95, 0, 0), 53: (95, 0, 95), 54: (95, 0, 135), 55: (95, 0, 175), 56: (95, 0, 215), 57: (95, 0, 255), 58: (95, 95, 0), 59: (95, 95, 95), 60: (95, 95, 135), 61: (95, 95, 175), 62: (95, 95, 215), 63: (95, 95, 255), 64: (95, 135, 0), 65: (95, 135, 95), 66: (95, 135, 135), 67: (95, 135, 175), 68: (95, 135, 215), 69: (95, 135, 255), 70: (95, 175, 0), 71: (95, 175, 95), 72: (95, 175, 135), 73: (95, 175, 175), 74: (95, 175, 215), 75: (95, 175, 255), 76: (95, 215, 0), 77: (95, 215, 95), 78: (95, 215, 135), 79: (95, 215, 175), 80: (95, 215, 215), 81: (95, 215, 255), 82: (95, 255, 0), 83: (95, 255, 95), 84: (95, 255, 135), 85: (95, 255, 175), 86: (95, 255, 215), 87: (95, 255, 255), 88: (135, 0, 0), 89: (135, 0, 95), 90: (135, 0, 135), 91: (135, 0, 175), 92: (135, 0, 215), 93: (135, 0, 255), 94: (135, 95, 0), 95: (135, 95, 95), 96: (135, 95, 135), 97: (135, 95, 175), 98: (135, 95, 215), 99: (135, 95, 255), 100: (135, 135, 0), 101: (135, 135, 95), 102: (135, 135, 135), 103: (135, 135, 175), 104: (135, 135, 215), 105: (135, 135, 255), 106: (135, 175, 0), 107: (135, 175, 95), 108: (135, 175, 135), 109: (135, 175, 175), 110: (135, 175, 215), 111: (135, 175, 255), 112: (135, 215, 0), 113: (135, 215, 95), 114: (135, 215, 135), 115: (135, 215, 175), 116: (135, 215, 215), 117: (135, 215, 255), 118: (135, 255, 0), 119: (135, 255, 95), 120: (135, 255, 135), 121: (135, 255, 175), 122: (135, 255, 215), 123: (135, 255, 255), 124: (175, 0, 0), 125: (175, 0, 95), 126: (175, 0, 135), 127: (175, 0, 175), 128: (175, 0, 215), 129: (175, 0, 255), 130: (175, 95, 0), 131: (175, 95, 95), 132: (175, 95, 135), 133: (175, 95, 175), 134: (175, 95, 215), 135: (175, 95, 255), 136: (175, 135, 0), 137: (175, 135, 95), 138: (175, 135, 135), 139: (175, 135, 175), 140: (175, 135, 215), 141: (175, 135, 255), 142: (175, 175, 0), 143: (175, 175, 95), 144: (175, 175, 135), 145: (175, 175, 175), 146: (175, 175, 215), 147: (175, 175, 255), 148: (175, 215, 0), 149: (175, 215, 95), 150: (175, 215, 135), 151: (175, 215, 175), 152: (175, 215, 215), 153: (175, 215, 255), 154: (175, 255, 0), 155: (175, 255, 95), 156: (175, 255, 135), 157: (175, 255, 175), 158: (175, 255, 215), 159: (175, 255, 255), 160: (215, 0, 0), 161: (215, 0, 95), 162: (215, 0, 135), 163: (215, 0, 175), 164: (215, 0, 215), 165: (215, 0, 255), 166: (215, 95, 0), 167: (215, 95, 95), 168: (215, 95, 135), 169: (215, 95, 175), 170: (215, 95, 215), 171: (215, 95, 255), 172: (215, 135, 0), 173: (215, 135, 95), 174: (215, 135, 135), 175: (215, 135, 175), 176: (215, 135, 215), 177: (215, 135, 255), 178: (215, 175, 0), 179: (215, 175, 95), 180: (215, 175, 135), 181: (215, 175, 175), 182: (215, 175, 215), 183: (215, 175, 255), 184: (215, 215, 0), 185: (215, 215, 95), 186: (215, 215, 135), 187: (215, 215, 175), 188: (215, 215, 215), 189: (215, 215, 255), 190: (215, 255, 0), 191: (215, 255, 95), 192: (215, 255, 135), 193: (215, 255, 175), 194: (215, 255, 215), 195: (215, 255, 255), 196: (255, 0, 0), 197: (255, 0, 95), 198: (255, 0, 135), 199: (255, 0, 175), 200: (255, 0, 215), 201: (255, 0, 255), 202: (255, 95, 0), 203: (255, 95, 95), 204: (255, 95, 135), 205: (255, 95, 175), 206: (255, 95, 215), 207: (255, 95, 255), 208: (255, 135, 0), 209: (255, 135, 95), 210: (255, 135, 135), 211: (255, 135, 175), 212: (255, 135, 215), 213: (255, 135, 255), 214: (255, 175, 0), 215: (255, 175, 95), 216: (255, 175, 135), 217: (255, 175, 175), 218: (255, 175, 215), 219: (255, 175, 255), 220: (255, 215, 0), 221: (255, 215, 95), 222: (255, 215, 135), 223: (255, 215, 175), 224: (255, 215, 215), 225: (255, 215, 255), 226: (255, 255, 0), 227: (255, 255, 95), 228: (255, 255, 135), 229: (255, 255, 175), 230: (255, 255, 215), 231: (255, 255, 255), 232: (8, 8, 8), 233: (18, 18, 18), 234: (28, 28, 28), 235: (38, 38, 38), 236: (48, 48, 48), 237: (58, 58, 58), 238: (68, 68, 68), 239: (78, 78, 78), 240: (88, 88, 88), 241: (98, 98, 98), 242: (108, 108, 108), 243: (118, 118, 118), 244: (128, 128, 128), 245: (138, 138, 138), 246: (148, 148, 148), 247: (158, 158, 158), 248: (168, 168, 168), 249: (178, 178, 178), 250: (188, 188, 188), 251: (198, 198, 198), 252: (208, 208, 208), 253: (218, 218, 218), 254: (228, 228, 228), 255: (238, 238, 238), }) NAMED_COLORS = { 'aliceblue': '#f0f8ff', 'antiquewhite': '#faebd7', 'aqua': '#00ffff', 'aquamarine': '#7fffd4', 'azure': '#f0ffff', 'beige': '#f5f5dc', 'bisque': '#ffe4c4', 'black': '#000000', 'blanchedalmond': '#ffebcd', 'blue': '#0000ff', 'blueviolet': '#8a2be2', 'brown': '#a52a2a', 'burlywood': '#deb887', 'cadetblue': '#5f9ea0', 'chartreuse': '#7fff00', 'chocolate': '#d2691e', 'coral': '#ff7f50', 'cornflowerblue': '#6495ed', 'cornsilk': '#fff8dc', 'crimson': '#dc143c', 'cyan': '#00ffff', 'darkblue': '#00008b', 'darkcyan': '#008b8b', 'darkgoldenrod': '#b8860b', 'darkgray': '#a9a9a9', 'darkgreen': '#006400', 'darkgrey': '#a9a9a9', 'darkkhaki': '#bdb76b', 'darkmagenta': '#8b008b', 'darkolivegreen': '#556b2f', 'darkorange': '#ff8c00', 'darkorchid': '#9932cc', 'darkred': '#8b0000', 'darksalmon': '#e9967a', 'darkseagreen': '#8fbc8f', 'darkslateblue': '#483d8b', 'darkslategray': '#2f4f4f', 'darkslategrey': '#2f4f4f', 'darkturquoise': '#00ced1', 'darkviolet': '#9400d3', 'deeppink': '#ff1493', 'deepskyblue': '#00bfff', 'dimgray': '#696969', 'dimgrey': '#696969', 'dodgerblue': '#1e90ff', 'firebrick': '#b22222', 'floralwhite': '#fffaf0', 'forestgreen': '#228b22', 'fuchsia': '#ff00ff', 'gainsboro': '#dcdcdc', 'ghostwhite': '#f8f8ff', 'gold': '#ffd700', 'goldenrod': '#daa520', 'gray': '#808080', 'green': '#008000', 'greenyellow': '#adff2f', 'grey': '#808080', 'honeydew': '#f0fff0', 'hotpink': '#ff69b4', 'indianred': '#cd5c5c', 'indigo': '#4b0082', 'ivory': '#fffff0', 'khaki': '#f0e68c', 'lavender': '#e6e6fa', 'lavenderblush': '#fff0f5', 'lawngreen': '#7cfc00', 'lemonchiffon': '#fffacd', 'lightblue': '#add8e6', 'lightcoral': '#f08080', 'lightcyan': '#e0ffff', 'lightgoldenrodyellow': '#fafad2', 'lightgray': '#d3d3d3', 'lightgreen': '#90ee90', 'lightgrey': '#d3d3d3', 'lightpink': '#ffb6c1', 'lightsalmon': '#ffa07a', 'lightseagreen': '#20b2aa', 'lightskyblue': '#87cefa', 'lightslategray': '#778899', 'lightslategrey': '#778899', 'lightsteelblue': '#b0c4de', 'lightyellow': '#ffffe0', 'lime': '#00ff00', 'limegreen': '#32cd32', 'linen': '#faf0e6', 'magenta': '#ff00ff', 'maroon': '#800000', 'mediumaquamarine': '#66cdaa', 'mediumblue': '#0000cd', 'mediumorchid': '#ba55d3', 'mediumpurple': '#9370db', 'mediumseagreen': '#3cb371', 'mediumslateblue': '#7b68ee', 'mediumspringgreen': '#00fa9a', 'mediumturquoise': '#48d1cc', 'mediumvioletred': '#c71585', 'midnightblue': '#191970', 'mintcream': '#f5fffa', 'mistyrose': '#ffe4e1', 'moccasin': '#ffe4b5', 'navajowhite': '#ffdead', 'navy': '#000080', 'oldlace': '#fdf5e6', 'olive': '#808000', 'olivedrab': '#6b8e23', 'orange': '#ffa500', 'orangered': '#ff4500', 'orchid': '#da70d6', 'palegoldenrod': '#eee8aa', 'palegreen': '#98fb98', 'paleturquoise': '#afeeee', 'palevioletred': '#db7093', 'papayawhip': '#ffefd5', 'peachpuff': '#ffdab9', 'peru': '#cd853f', 'pink': '#ffc0cb', 'plum': '#dda0dd', 'powderblue': '#b0e0e6', 'purple': '#800080', 'red': '#ff0000', 'rosybrown': '#bc8f8f', 'royalblue': '#4169e1', 'saddlebrown': '#8b4513', 'salmon': '#fa8072', 'sandybrown': '#f4a460', 'seagreen': '#2e8b57', 'seashell': '#fff5ee', 'sienna': '#a0522d', 'silver': '#c0c0c0', 'skyblue': '#87ceeb', 'slateblue': '#6a5acd', 'slategray': '#708090', 'slategrey': '#708090', 'snow': '#fffafa', 'springgreen': '#00ff7f', 'steelblue': '#4682b4', 'tan': '#d2b48c', 'teal': '#008080', 'thistle': '#d8bfd8', 'tomato': '#ff6347', 'turquoise': '#40e0d0', 'violet': '#ee82ee', 'wheat': '#f5deb3', 'white': '#ffffff', 'whitesmoke': '#f5f5f5', 'yellow': '#ffff00', 'yellowgreen': '#9acd32', }
31.654321
79
0.436882
0afb7609845a8aa4c47e7e7ac28415afba56b4a1
555
py
Python
examples/cnn_specs.py
edessa/RLKit
de257a56b7d3d1990f66c6156a127d2038940f47
[ "MIT" ]
null
null
null
examples/cnn_specs.py
edessa/RLKit
de257a56b7d3d1990f66c6156a127d2038940f47
[ "MIT" ]
null
null
null
examples/cnn_specs.py
edessa/RLKit
de257a56b7d3d1990f66c6156a127d2038940f47
[ "MIT" ]
null
null
null
""" padding is for image size (104, 80) (obtained by downsample=2, crop_last_row=True) """ cnn_specs = dict() # Too slow, ~150 seconds training per epoch # Used on 84x84 size images spec = dict( kernel_sizes=[5,3,3,3,3], strides=[3,1,1,2,1], paddings=[0,1,1,1,1], hidden_sizes=[64,64], n_channels=[32,64,64,128,128], ) cnn_specs["0"] = cnn_specs[0] = spec spec = dict( kernel_sizes=[5,3,3], strides=[3,1,1], paddings=[0,0,0], hidden_sizes=[64,64], n_channels=[32,64,64], ) cnn_specs["1"] = cnn_specs[1] = spec
19.137931
46
0.618018
92d787e99b8532361b94928245d8a65521b3b100
972
py
Python
isi_sdk_8_2_1/test/test_job_statistics_job_node_cpu.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
24
2018-06-22T14:13:23.000Z
2022-03-23T01:21:26.000Z
isi_sdk_8_2_1/test/test_job_statistics_job_node_cpu.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
46
2018-04-30T13:28:22.000Z
2022-03-21T21:11:07.000Z
isi_sdk_8_2_1/test/test_job_statistics_job_node_cpu.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
29
2018-06-19T00:14:04.000Z
2022-02-08T17:51:19.000Z
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 8 Contact: sdk@isilon.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import isi_sdk_8_2_1 from isi_sdk_8_2_1.models.job_statistics_job_node_cpu import JobStatisticsJobNodeCpu # noqa: E501 from isi_sdk_8_2_1.rest import ApiException class TestJobStatisticsJobNodeCpu(unittest.TestCase): """JobStatisticsJobNodeCpu unit test stubs""" def setUp(self): pass def tearDown(self): pass def testJobStatisticsJobNodeCpu(self): """Test JobStatisticsJobNodeCpu""" # FIXME: construct object with mandatory attributes with example values # model = isi_sdk_8_2_1.models.job_statistics_job_node_cpu.JobStatisticsJobNodeCpu() # noqa: E501 pass if __name__ == '__main__': unittest.main()
23.707317
106
0.726337
de7bfe38580a3c5ddb60cc0cbabe4897095738e3
1,514
py
Python
tests/2d_gaussian.py
DimitriMisiak/mcmc-red
caae0ce39d082e578176a5078a9184980b0851c3
[ "MIT" ]
null
null
null
tests/2d_gaussian.py
DimitriMisiak/mcmc-red
caae0ce39d082e578176a5078a9184980b0851c3
[ "MIT" ]
null
null
null
tests/2d_gaussian.py
DimitriMisiak/mcmc-red
caae0ce39d082e578176a5078a9184980b0851c3
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Handy MCMC scripts. Test for the different fit method (mcmc, ptmcmc, minimizer). Author: Dimitri Misiak (misiak@ipnl.in2p3.fr) """ import numpy as np import matplotlib.pyplot as plt import sys import scipy.signal as sgl from os import path import scipy.optimize as op import mcmc_red as mcr # close all plots plt.close('all') nsample = 100 #mu1, sigma1 = 1., 1. mu1 = np.random.uniform(-10, 10) sigma1 = np.random.uniform(0, 10) #mu2, sigma2 = 2., 5. mu2 = np.random.uniform(-10, 10) sigma2 = np.random.uniform(0, 10) print ("Generating blob at (mu1, mu2)=({0:.2f}, {1:.2f})" " and (sigma1, sigma2)=({2:.2f}, {3:.2f})".format(mu1, mu2, sigma1, sigma2)) blob = np.random.normal((mu1, mu2), (sigma1, sigma2), (nsample,2)) print("Checking") print("mean =", np.mean(blob, axis=0)) print("std =", np.std(blob, axis=0)) def chi2(param): return mcr.chi2_simple(blob, param, (sigma1, sigma2)) # XXX MCMC # save directory sampler_path = 'mcmc_sampler/autosave' # running the mcmc analysis bounds = ((-20, 20),(-20, 20)) sampler = mcr.mcmc_sampler(chi2, bounds, nsteps=1000, path=sampler_path) # # loading the mcmc results logd, chain, lnprob, acc = mcr.get_mcmc_sampler(sampler_path) # LAB = ('$log\ a$', '$log\ t$', '$log\ s$') #LAB = ('$log\ a1$', '$log\ a2$', '$log\ t1$', '$log\ t2$', '$log\ s$') lab = ('$\mu1$','$\mu2$') dim = int(logd['dim']) xopt, inf, sup = mcr.mcmc_results(dim, chain, lnprob, acc, lab) print(xopt, inf, sup)
24.031746
83
0.64531
b07e8827a295ac6401ec38dd567dd15bdf4fe7a6
64,385
py
Python
pytorch/pytorchcv/models/common.py
sahilparekh/imgclsmob
74d52457b4bf00c82d063b3f4a1a73fb6ba3863a
[ "MIT" ]
1
2020-12-04T11:58:50.000Z
2020-12-04T11:58:50.000Z
pytorch/pytorchcv/models/common.py
sahilparekh/imgclsmob
74d52457b4bf00c82d063b3f4a1a73fb6ba3863a
[ "MIT" ]
null
null
null
pytorch/pytorchcv/models/common.py
sahilparekh/imgclsmob
74d52457b4bf00c82d063b3f4a1a73fb6ba3863a
[ "MIT" ]
null
null
null
""" Common routines for models in PyTorch. """ __all__ = ['round_channels', 'Identity', 'Swish', 'HSigmoid', 'HSwish', 'get_activation_layer', 'SelectableDense', 'DenseBlock', 'ConvBlock1d', 'conv1x1', 'conv3x3', 'depthwise_conv3x3', 'ConvBlock', 'conv1x1_block', 'conv3x3_block', 'conv7x7_block', 'dwconv_block', 'dwconv3x3_block', 'dwconv5x5_block', 'dwsconv3x3_block', 'PreConvBlock', 'pre_conv1x1_block', 'pre_conv3x3_block', 'DeconvBlock', 'NormActivation', 'InterpolationBlock', 'ChannelShuffle', 'ChannelShuffle2', 'SEBlock', 'SABlock', 'SAConvBlock', 'saconv3x3_block', 'DucBlock', 'IBN', 'DualPathSequential', 'Concurrent', 'SequentialConcurrent', 'ParametricSequential', 'ParametricConcurrent', 'Hourglass', 'SesquialteralHourglass', 'MultiOutputSequential', 'ParallelConcurent', 'Flatten', 'HeatmapMaxDetBlock'] import math from inspect import isfunction import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter def round_channels(channels, divisor=8): """ Round weighted channel number (make divisible operation). Parameters: ---------- channels : int or float Original number of channels. divisor : int, default 8 Alignment value. Returns ------- int Weighted number of channels. """ rounded_channels = max(int(channels + divisor / 2.0) // divisor * divisor, divisor) if float(rounded_channels) < 0.9 * channels: rounded_channels += divisor return rounded_channels class Identity(nn.Module): """ Identity block. """ def __init__(self): super(Identity, self).__init__() def forward(self, x): return x class Swish(nn.Module): """ Swish activation function from 'Searching for Activation Functions,' https://arxiv.org/abs/1710.05941. """ def forward(self, x): return x * torch.sigmoid(x) class HSigmoid(nn.Module): """ Approximated sigmoid function, so-called hard-version of sigmoid from 'Searching for MobileNetV3,' https://arxiv.org/abs/1905.02244. """ def forward(self, x): return F.relu6(x + 3.0, inplace=True) / 6.0 class HSwish(nn.Module): """ H-Swish activation function from 'Searching for MobileNetV3,' https://arxiv.org/abs/1905.02244. Parameters: ---------- inplace : bool Whether to use inplace version of the module. """ def __init__(self, inplace=False): super(HSwish, self).__init__() self.inplace = inplace def forward(self, x): return x * F.relu6(x + 3.0, inplace=self.inplace) / 6.0 def get_activation_layer(activation): """ Create activation layer from string/function. Parameters: ---------- activation : function, or str, or nn.Module Activation function or name of activation function. Returns ------- nn.Module Activation layer. """ assert (activation is not None) if isfunction(activation): return activation() elif isinstance(activation, str): if activation == "relu": return nn.ReLU(inplace=True) elif activation == "relu6": return nn.ReLU6(inplace=True) elif activation == "swish": return Swish() elif activation == "hswish": return HSwish(inplace=True) elif activation == "sigmoid": return nn.Sigmoid() elif activation == "hsigmoid": return HSigmoid() elif activation == "identity": return Identity() else: raise NotImplementedError() else: assert (isinstance(activation, nn.Module)) return activation class SelectableDense(nn.Module): """ Selectable dense layer. Parameters: ---------- in_features : int Number of input features. out_features : int Number of output features. bias : bool, default False Whether the layer uses a bias vector. num_options : int, default 1 Number of selectable options. """ def __init__(self, in_features, out_features, bias=False, num_options=1): super(SelectableDense, self).__init__() self.in_features = in_features self.out_features = out_features self.use_bias = bias self.num_options = num_options self.weight = Parameter(torch.Tensor(num_options, out_features, in_features)) if bias: self.bias = Parameter(torch.Tensor(num_options, out_features)) else: self.register_parameter("bias", None) def forward(self, x, indices): weight = torch.index_select(self.weight, dim=0, index=indices) x = x.unsqueeze(-1) x = weight.bmm(x) x = x.squeeze(dim=-1) if self.use_bias: bias = torch.index_select(self.bias, dim=0, index=indices) x += bias return x def extra_repr(self): return "in_features={}, out_features={}, bias={}, num_options={}".format( self.in_features, self.out_features, self.use_bias, self.num_options) class DenseBlock(nn.Module): """ Standard dense block with Batch normalization and activation. Parameters: ---------- in_features : int Number of input features. out_features : int Number of output features. bias : bool, default False Whether the layer uses a bias vector. use_bn : bool, default True Whether to use BatchNorm layer. bn_eps : float, default 1e-5 Small float added to variance in Batch norm. activation : function or str or None, default nn.ReLU(inplace=True) Activation function or name of activation function. """ def __init__(self, in_features, out_features, bias=False, use_bn=True, bn_eps=1e-5, activation=(lambda: nn.ReLU(inplace=True))): super(DenseBlock, self).__init__() self.activate = (activation is not None) self.use_bn = use_bn self.fc = nn.Linear( in_features=in_features, out_features=out_features, bias=bias) if self.use_bn: self.bn = nn.BatchNorm1d( num_features=out_features, eps=bn_eps) if self.activate: self.activ = get_activation_layer(activation) def forward(self, x): x = self.fc(x) if self.use_bn: x = self.bn(x) if self.activate: x = self.activ(x) return x class ConvBlock1d(nn.Module): """ Standard 1D convolution block with Batch normalization and activation. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. kernel_size : int Convolution window size. stride : int Strides of the convolution. padding : int Padding value for convolution layer. dilation : int Dilation value for convolution layer. groups : int, default 1 Number of groups. bias : bool, default False Whether the layer uses a bias vector. use_bn : bool, default True Whether to use BatchNorm layer. bn_eps : float, default 1e-5 Small float added to variance in Batch norm. activation : function or str or None, default nn.ReLU(inplace=True) Activation function or name of activation function. """ def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation=1, groups=1, bias=False, use_bn=True, bn_eps=1e-5, activation=(lambda: nn.ReLU(inplace=True))): super(ConvBlock1d, self).__init__() self.activate = (activation is not None) self.use_bn = use_bn self.conv = nn.Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) if self.use_bn: self.bn = nn.BatchNorm1d( num_features=out_channels, eps=bn_eps) if self.activate: self.activ = get_activation_layer(activation) def forward(self, x): x = self.conv(x) if self.use_bn: x = self.bn(x) if self.activate: x = self.activ(x) return x def conv1x1(in_channels, out_channels, stride=1, groups=1, bias=False): """ Convolution 1x1 layer. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. groups : int, default 1 Number of groups. bias : bool, default False Whether the layer uses a bias vector. """ return nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, groups=groups, bias=bias) def conv3x3(in_channels, out_channels, stride=1, padding=1, dilation=1, groups=1, bias=False): """ Convolution 3x3 layer. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. padding : int or tuple/list of 2 int, default 1 Padding value for convolution layer. groups : int, default 1 Number of groups. bias : bool, default False Whether the layer uses a bias vector. """ return nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) def depthwise_conv3x3(channels, stride): """ Depthwise convolution 3x3 layer. Parameters: ---------- channels : int Number of input/output channels. strides : int or tuple/list of 2 int Strides of the convolution. """ return nn.Conv2d( in_channels=channels, out_channels=channels, kernel_size=3, stride=stride, padding=1, groups=channels, bias=False) class ConvBlock(nn.Module): """ Standard convolution block with Batch normalization and activation. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. kernel_size : int or tuple/list of 2 int Convolution window size. stride : int or tuple/list of 2 int Strides of the convolution. padding : int, or tuple/list of 2 int, or tuple/list of 4 int Padding value for convolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. groups : int, default 1 Number of groups. bias : bool, default False Whether the layer uses a bias vector. use_bn : bool, default True Whether to use BatchNorm layer. bn_eps : float, default 1e-5 Small float added to variance in Batch norm. activation : function or str or None, default nn.ReLU(inplace=True) Activation function or name of activation function. """ def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation=1, groups=1, bias=False, use_bn=True, bn_eps=1e-5, activation=(lambda: nn.ReLU(inplace=True))): super(ConvBlock, self).__init__() self.activate = (activation is not None) self.use_bn = use_bn self.use_pad = (isinstance(padding, (list, tuple)) and (len(padding) == 4)) if self.use_pad: self.pad = nn.ZeroPad2d(padding=padding) padding = 0 self.conv = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) if self.use_bn: self.bn = nn.BatchNorm2d( num_features=out_channels, eps=bn_eps) if self.activate: self.activ = get_activation_layer(activation) def forward(self, x): if self.use_pad: x = self.pad(x) x = self.conv(x) if self.use_bn: x = self.bn(x) if self.activate: x = self.activ(x) return x def conv1x1_block(in_channels, out_channels, stride=1, padding=0, groups=1, bias=False, use_bn=True, bn_eps=1e-5, activation=(lambda: nn.ReLU(inplace=True))): """ 1x1 version of the standard convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. padding : int, or tuple/list of 2 int, or tuple/list of 4 int, default 0 Padding value for convolution layer. groups : int, default 1 Number of groups. bias : bool, default False Whether the layer uses a bias vector. use_bn : bool, default True Whether to use BatchNorm layer. bn_eps : float, default 1e-5 Small float added to variance in Batch norm. activation : function or str or None, default nn.ReLU(inplace=True) Activation function or name of activation function. """ return ConvBlock( in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, padding=padding, groups=groups, bias=bias, use_bn=use_bn, bn_eps=bn_eps, activation=activation) def conv3x3_block(in_channels, out_channels, stride=1, padding=1, dilation=1, groups=1, bias=False, use_bn=True, bn_eps=1e-5, activation=(lambda: nn.ReLU(inplace=True))): """ 3x3 version of the standard convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. padding : int, or tuple/list of 2 int, or tuple/list of 4 int, default 1 Padding value for convolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. groups : int, default 1 Number of groups. bias : bool, default False Whether the layer uses a bias vector. use_bn : bool, default True Whether to use BatchNorm layer. bn_eps : float, default 1e-5 Small float added to variance in Batch norm. activation : function or str or None, default nn.ReLU(inplace=True) Activation function or name of activation function. """ return ConvBlock( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, use_bn=use_bn, bn_eps=bn_eps, activation=activation) def conv5x5_block(in_channels, out_channels, stride=1, padding=2, dilation=1, groups=1, bias=False, bn_eps=1e-5, activation=(lambda: nn.ReLU(inplace=True))): """ 5x5 version of the standard convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. padding : int, or tuple/list of 2 int, or tuple/list of 4 int, default 2 Padding value for convolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. groups : int, default 1 Number of groups. bias : bool, default False Whether the layer uses a bias vector. bn_eps : float, default 1e-5 Small float added to variance in Batch norm. activation : function or str or None, default nn.ReLU(inplace=True) Activation function or name of activation function. """ return ConvBlock( in_channels=in_channels, out_channels=out_channels, kernel_size=5, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, bn_eps=bn_eps, activation=activation) def conv7x7_block(in_channels, out_channels, stride=1, padding=3, bias=False, use_bn=True, activation=(lambda: nn.ReLU(inplace=True))): """ 7x7 version of the standard convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. padding : int, or tuple/list of 2 int, or tuple/list of 4 int, default 1 Strides of the convolution. padding : int or tuple/list of 2 int, default 3 Padding value for convolution layer. bias : bool, default False Whether the layer uses a bias vector. use_bn : bool, default True Whether to use BatchNorm layer. activation : function or str or None, default nn.ReLU(inplace=True) Activation function or name of activation function. """ return ConvBlock( in_channels=in_channels, out_channels=out_channels, kernel_size=7, stride=stride, padding=padding, bias=bias, use_bn=use_bn, activation=activation) def dwconv_block(in_channels, out_channels, kernel_size, stride=1, padding=1, dilation=1, bias=False, use_bn=True, bn_eps=1e-5, activation=(lambda: nn.ReLU(inplace=True))): """ Depthwise version of the standard convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. kernel_size : int or tuple/list of 2 int Convolution window size. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. padding : int, or tuple/list of 2 int, or tuple/list of 4 int, default 1 Padding value for convolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. bias : bool, default False Whether the layer uses a bias vector. use_bn : bool, default True Whether to use BatchNorm layer. bn_eps : float, default 1e-5 Small float added to variance in Batch norm. activation : function or str or None, default nn.ReLU(inplace=True) Activation function or name of activation function. """ return ConvBlock( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=out_channels, bias=bias, use_bn=use_bn, bn_eps=bn_eps, activation=activation) def dwconv3x3_block(in_channels, out_channels, stride=1, padding=1, dilation=1, bias=False, bn_eps=1e-5, activation=(lambda: nn.ReLU(inplace=True))): """ 3x3 depthwise version of the standard convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. padding : int, or tuple/list of 2 int, or tuple/list of 4 int, default 1 Padding value for convolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. bias : bool, default False Whether the layer uses a bias vector. bn_eps : float, default 1e-5 Small float added to variance in Batch norm. activation : function or str or None, default nn.ReLU(inplace=True) Activation function or name of activation function. """ return dwconv_block( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, padding=padding, dilation=dilation, bias=bias, bn_eps=bn_eps, activation=activation) def dwconv5x5_block(in_channels, out_channels, stride=1, padding=2, dilation=1, bias=False, bn_eps=1e-5, activation=(lambda: nn.ReLU(inplace=True))): """ 5x5 depthwise version of the standard convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. padding : int, or tuple/list of 2 int, or tuple/list of 4 int, default 2 Padding value for convolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. bias : bool, default False Whether the layer uses a bias vector. bn_eps : float, default 1e-5 Small float added to variance in Batch norm. activation : function or str or None, default nn.ReLU(inplace=True) Activation function or name of activation function. """ return dwconv_block( in_channels=in_channels, out_channels=out_channels, kernel_size=5, stride=stride, padding=padding, dilation=dilation, bias=bias, bn_eps=bn_eps, activation=activation) class DwsConvBlock(nn.Module): """ Depthwise separable convolution block with BatchNorms and activations at each convolution layers. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. kernel_size : int or tuple/list of 2 int Convolution window size. stride : int or tuple/list of 2 int Strides of the convolution. padding : int, or tuple/list of 2 int, or tuple/list of 4 int Padding value for convolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. bias : bool, default False Whether the layer uses a bias vector. dw_use_bn : bool, default True Whether to use BatchNorm layer (depthwise convolution block). pw_use_bn : bool, default True Whether to use BatchNorm layer (pointwise convolution block). bn_eps : float, default 1e-5 Small float added to variance in Batch norm. dw_activation : function or str or None, default nn.ReLU(inplace=True) Activation function after the depthwise convolution block. pw_activation : function or str or None, default nn.ReLU(inplace=True) Activation function after the pointwise convolution block. """ def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation=1, bias=False, dw_use_bn=True, pw_use_bn=True, bn_eps=1e-5, dw_activation=(lambda: nn.ReLU(inplace=True)), pw_activation=(lambda: nn.ReLU(inplace=True))): super(DwsConvBlock, self).__init__() self.dw_conv = dwconv_block( in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, use_bn=dw_use_bn, bn_eps=bn_eps, activation=dw_activation) self.pw_conv = conv1x1_block( in_channels=in_channels, out_channels=out_channels, bias=bias, use_bn=pw_use_bn, bn_eps=bn_eps, activation=pw_activation) def forward(self, x): x = self.dw_conv(x) x = self.pw_conv(x) return x def dwsconv3x3_block(in_channels, out_channels, stride=1, padding=1, dilation=1, bias=False, bn_eps=1e-5, dw_activation=(lambda: nn.ReLU(inplace=True)), pw_activation=(lambda: nn.ReLU(inplace=True)), **kwargs): """ 3x3 depthwise separable version of the standard convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. padding : int, or tuple/list of 2 int, or tuple/list of 4 int, default 1 Padding value for convolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. bias : bool, default False Whether the layer uses a bias vector. bn_eps : float, default 1e-5 Small float added to variance in Batch norm. dw_activation : function or str or None, default nn.ReLU(inplace=True) Activation function after the depthwise convolution block. pw_activation : function or str or None, default nn.ReLU(inplace=True) Activation function after the pointwise convolution block. """ return DwsConvBlock( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, padding=padding, dilation=dilation, bias=bias, bn_eps=bn_eps, dw_activation=dw_activation, pw_activation=pw_activation, **kwargs) class PreConvBlock(nn.Module): """ Convolution block with Batch normalization and ReLU pre-activation. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. kernel_size : int or tuple/list of 2 int Convolution window size. stride : int or tuple/list of 2 int Strides of the convolution. padding : int or tuple/list of 2 int Padding value for convolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. bias : bool, default False Whether the layer uses a bias vector. use_bn : bool, default True Whether to use BatchNorm layer. return_preact : bool, default False Whether return pre-activation. It's used by PreResNet. activate : bool, default True Whether activate the convolution block. """ def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation=1, bias=False, use_bn=True, return_preact=False, activate=True): super(PreConvBlock, self).__init__() self.return_preact = return_preact self.activate = activate self.use_bn = use_bn if self.use_bn: self.bn = nn.BatchNorm2d(num_features=in_channels) if self.activate: self.activ = nn.ReLU(inplace=True) self.conv = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias) def forward(self, x): if self.use_bn: x = self.bn(x) if self.activate: x = self.activ(x) if self.return_preact: x_pre_activ = x x = self.conv(x) if self.return_preact: return x, x_pre_activ else: return x def pre_conv1x1_block(in_channels, out_channels, stride=1, bias=False, use_bn=True, return_preact=False, activate=True): """ 1x1 version of the pre-activated convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. bias : bool, default False Whether the layer uses a bias vector. use_bn : bool, default True Whether to use BatchNorm layer. return_preact : bool, default False Whether return pre-activation. activate : bool, default True Whether activate the convolution block. """ return PreConvBlock( in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, padding=0, bias=bias, use_bn=use_bn, return_preact=return_preact, activate=activate) def pre_conv3x3_block(in_channels, out_channels, stride=1, padding=1, dilation=1, bias=False, use_bn=True, return_preact=False, activate=True): """ 3x3 version of the pre-activated convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. padding : int or tuple/list of 2 int, default 1 Padding value for convolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. bias : bool, default False Whether the layer uses a bias vector. use_bn : bool, default True Whether to use BatchNorm layer. return_preact : bool, default False Whether return pre-activation. activate : bool, default True Whether activate the convolution block. """ return PreConvBlock( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, padding=padding, dilation=dilation, bias=bias, use_bn=use_bn, return_preact=return_preact, activate=activate) class DeconvBlock(nn.Module): """ Deconvolution block with batch normalization and activation. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. kernel_size : int or tuple/list of 2 int Convolution window size. stride : int or tuple/list of 2 int Strides of the deconvolution. padding : int or tuple/list of 2 int Padding value for deconvolution layer. ext_padding : tuple/list of 4 int, default None Extra padding value for deconvolution layer. out_padding : int or tuple/list of 2 int Output padding value for deconvolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for deconvolution layer. groups : int, default 1 Number of groups. bias : bool, default False Whether the layer uses a bias vector. use_bn : bool, default True Whether to use BatchNorm layer. bn_eps : float, default 1e-5 Small float added to variance in Batch norm. activation : function or str or None, default nn.ReLU(inplace=True) Activation function or name of activation function. """ def __init__(self, in_channels, out_channels, kernel_size, stride, padding, ext_padding=None, out_padding=0, dilation=1, groups=1, bias=False, use_bn=True, bn_eps=1e-5, activation=(lambda: nn.ReLU(inplace=True))): super(DeconvBlock, self).__init__() self.activate = (activation is not None) self.use_bn = use_bn self.use_pad = (ext_padding is not None) if self.use_pad: self.pad = nn.ZeroPad2d(padding=ext_padding) self.conv = nn.ConvTranspose2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, output_padding=out_padding, dilation=dilation, groups=groups, bias=bias) if self.use_bn: self.bn = nn.BatchNorm2d( num_features=out_channels, eps=bn_eps) if self.activate: self.activ = get_activation_layer(activation) def forward(self, x): if self.use_pad: x = self.pad(x) x = self.conv(x) if self.use_bn: x = self.bn(x) if self.activate: x = self.activ(x) return x class NormActivation(nn.Module): """ Activation block with preliminary batch normalization. It's used by itself as the final block in PreResNet. Parameters: ---------- in_channels : int Number of input channels. bn_eps : float, default 1e-5 Small float added to variance in Batch norm. """ def __init__(self, in_channels, bn_eps=1e-5): super(NormActivation, self).__init__() self.bn = nn.BatchNorm2d( num_features=in_channels, eps=bn_eps) self.activ = nn.ReLU(inplace=True) def forward(self, x): x = self.bn(x) x = self.activ(x) return x class InterpolationBlock(nn.Module): """ Interpolation upsampling block. Parameters: ---------- scale_factor : float Multiplier for spatial size. out_size : tuple of 2 int, default None Spatial size of the output tensor for the bilinear interpolation operation. mode : str, default 'bilinear' Algorithm used for upsampling. align_corners : bool, default True Whether to align the corner pixels of the input and output tensors. up : bool, default True Whether to upsample or downsample. """ def __init__(self, scale_factor, out_size=None, mode="bilinear", align_corners=True, up=True): super(InterpolationBlock, self).__init__() self.scale_factor = scale_factor self.out_size = out_size self.mode = mode self.align_corners = align_corners self.up = up def forward(self, x, size=None): if (self.mode == "bilinear") or (size is not None): out_size = self.calc_out_size(x) if size is None else size return F.interpolate( input=x, size=out_size, mode=self.mode, align_corners=self.align_corners) else: return F.interpolate( input=x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners) def calc_out_size(self, x): if self.out_size is not None: return self.out_size if self.up: return tuple(s * self.scale_factor for s in x.shape[2:]) else: return tuple(s // self.scale_factor for s in x.shape[2:]) def __repr__(self): s = '{name}(scale_factor={scale_factor}, out_size={out_size}, mode={mode}, align_corners={align_corners}, up={up})' # noqa return s.format( name=self.__class__.__name__, scale_factor=self.scale_factor, out_size=self.out_size, mode=self.mode, align_corners=self.align_corners, up=self.up) def calc_flops(self, x): assert (x.shape[0] == 1) if self.mode == "bilinear": num_flops = 9 * x.numel() else: num_flops = 4 * x.numel() num_macs = 0 return num_flops, num_macs def channel_shuffle(x, groups): """ Channel shuffle operation from 'ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,' https://arxiv.org/abs/1707.01083. Parameters: ---------- x : Tensor Input tensor. groups : int Number of groups. Returns ------- Tensor Resulted tensor. """ batch, channels, height, width = x.size() # assert (channels % groups == 0) channels_per_group = channels // groups x = x.view(batch, groups, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() x = x.view(batch, channels, height, width) return x class ChannelShuffle(nn.Module): """ Channel shuffle layer. This is a wrapper over the same operation. It is designed to save the number of groups. Parameters: ---------- channels : int Number of channels. groups : int Number of groups. """ def __init__(self, channels, groups): super(ChannelShuffle, self).__init__() # assert (channels % groups == 0) if channels % groups != 0: raise ValueError('channels must be divisible by groups') self.groups = groups def forward(self, x): return channel_shuffle(x, self.groups) def channel_shuffle2(x, groups): """ Channel shuffle operation from 'ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,' https://arxiv.org/abs/1707.01083. The alternative version. Parameters: ---------- x : Tensor Input tensor. groups : int Number of groups. Returns ------- Tensor Resulted tensor. """ batch, channels, height, width = x.size() # assert (channels % groups == 0) channels_per_group = channels // groups x = x.view(batch, channels_per_group, groups, height, width) x = torch.transpose(x, 1, 2).contiguous() x = x.view(batch, channels, height, width) return x class ChannelShuffle2(nn.Module): """ Channel shuffle layer. This is a wrapper over the same operation. It is designed to save the number of groups. The alternative version. Parameters: ---------- channels : int Number of channels. groups : int Number of groups. """ def __init__(self, channels, groups): super(ChannelShuffle2, self).__init__() # assert (channels % groups == 0) if channels % groups != 0: raise ValueError('channels must be divisible by groups') self.groups = groups def forward(self, x): return channel_shuffle2(x, self.groups) class SEBlock(nn.Module): """ Squeeze-and-Excitation block from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- channels : int Number of channels. reduction : int, default 16 Squeeze reduction value. mid_channels : int or None, default None Number of middle channels. round_mid : bool, default False Whether to round middle channel number (make divisible by 8). use_conv : bool, default True Whether to convolutional layers instead of fully-connected ones. activation : function, or str, or nn.Module, default 'relu' Activation function after the first convolution. out_activation : function, or str, or nn.Module, default 'sigmoid' Activation function after the last convolution. """ def __init__(self, channels, reduction=16, mid_channels=None, round_mid=False, use_conv=True, mid_activation=(lambda: nn.ReLU(inplace=True)), out_activation=(lambda: nn.Sigmoid())): super(SEBlock, self).__init__() self.use_conv = use_conv if mid_channels is None: mid_channels = channels // reduction if not round_mid else round_channels(float(channels) / reduction) self.pool = nn.AdaptiveAvgPool2d(output_size=1) if use_conv: self.conv1 = conv1x1( in_channels=channels, out_channels=mid_channels, bias=True) else: self.fc1 = nn.Linear( in_features=channels, out_features=mid_channels) self.activ = get_activation_layer(mid_activation) if use_conv: self.conv2 = conv1x1( in_channels=mid_channels, out_channels=channels, bias=True) else: self.fc2 = nn.Linear( in_features=mid_channels, out_features=channels) self.sigmoid = get_activation_layer(out_activation) def forward(self, x): w = self.pool(x) if not self.use_conv: w = w.view(x.size(0), -1) w = self.conv1(w) if self.use_conv else self.fc1(w) w = self.activ(w) w = self.conv2(w) if self.use_conv else self.fc2(w) w = self.sigmoid(w) if not self.use_conv: w = w.unsqueeze(2).unsqueeze(3) x = x * w return x class SABlock(nn.Module): """ Split-Attention block from 'ResNeSt: Split-Attention Networks,' https://arxiv.org/abs/2004.08955. Parameters: ---------- out_channels : int Number of output channels. groups : int Number of channel groups (cardinality, without radix). radix : int Number of splits within a cardinal group. reduction : int, default 4 Squeeze reduction value. min_channels : int, default 32 Minimal number of squeezed channels. use_conv : bool, default True Whether to convolutional layers instead of fully-connected ones. bn_eps : float, default 1e-5 Small float added to variance in Batch norm. """ def __init__(self, out_channels, groups, radix, reduction=4, min_channels=32, use_conv=True, bn_eps=1e-5): super(SABlock, self).__init__() self.groups = groups self.radix = radix self.use_conv = use_conv in_channels = out_channels * radix mid_channels = max(in_channels // reduction, min_channels) self.pool = nn.AdaptiveAvgPool2d(output_size=1) if use_conv: self.conv1 = conv1x1( in_channels=out_channels, out_channels=mid_channels, bias=True) else: self.fc1 = nn.Linear( in_features=out_channels, out_features=mid_channels) self.bn = nn.BatchNorm2d( num_features=mid_channels, eps=bn_eps) self.activ = nn.ReLU(inplace=True) if use_conv: self.conv2 = conv1x1( in_channels=mid_channels, out_channels=in_channels, bias=True) else: self.fc2 = nn.Linear( in_features=mid_channels, out_features=in_channels) self.softmax = nn.Softmax(dim=1) def forward(self, x): batch, channels, height, width = x.size() x = x.view(batch, self.radix, channels // self.radix, height, width) w = x.sum(dim=1) w = self.pool(w) if not self.use_conv: w = w.view(x.size(0), -1) w = self.conv1(w) if self.use_conv else self.fc1(w) w = self.bn(w) w = self.activ(w) w = self.conv2(w) if self.use_conv else self.fc2(w) w = w.view(batch, self.groups, self.radix, -1) w = torch.transpose(w, 1, 2).contiguous() w = self.softmax(w) w = w.view(batch, self.radix, -1, 1, 1) x = x * w x = x.sum(dim=1) return x class SAConvBlock(nn.Module): """ Split-Attention convolution block from 'ResNeSt: Split-Attention Networks,' https://arxiv.org/abs/2004.08955. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. kernel_size : int or tuple/list of 2 int Convolution window size. stride : int or tuple/list of 2 int Strides of the convolution. padding : int, or tuple/list of 2 int, or tuple/list of 4 int Padding value for convolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. groups : int, default 1 Number of groups. bias : bool, default False Whether the layer uses a bias vector. use_bn : bool, default True Whether to use BatchNorm layer. bn_eps : float, default 1e-5 Small float added to variance in Batch norm. activation : function or str or None, default nn.ReLU(inplace=True) Activation function or name of activation function. radix : int, default 2 Number of splits within a cardinal group. reduction : int, default 4 Squeeze reduction value. min_channels : int, default 32 Minimal number of squeezed channels. use_conv : bool, default True Whether to convolutional layers instead of fully-connected ones. """ def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation=1, groups=1, bias=False, use_bn=True, bn_eps=1e-5, activation=(lambda: nn.ReLU(inplace=True)), radix=2, reduction=4, min_channels=32, use_conv=True): super(SAConvBlock, self).__init__() self.conv = ConvBlock( in_channels=in_channels, out_channels=(out_channels * radix), kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=(groups * radix), bias=bias, use_bn=use_bn, bn_eps=bn_eps, activation=activation) self.att = SABlock( out_channels=out_channels, groups=groups, radix=radix, reduction=reduction, min_channels=min_channels, use_conv=use_conv, bn_eps=bn_eps) def forward(self, x): x = self.conv(x) x = self.att(x) return x def saconv3x3_block(in_channels, out_channels, stride=1, padding=1, **kwargs): """ 3x3 version of the Split-Attention convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Strides of the convolution. padding : int or tuple/list of 2 int, default 1 Padding value for convolution layer. """ return SAConvBlock( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, padding=padding, **kwargs) class DucBlock(nn.Module): """ Dense Upsampling Convolution (DUC) block from 'Understanding Convolution for Semantic Segmentation,' https://arxiv.org/abs/1702.08502. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. scale_factor : int Multiplier for spatial size. """ def __init__(self, in_channels, out_channels, scale_factor): super(DucBlock, self).__init__() mid_channels = (scale_factor * scale_factor) * out_channels self.conv = conv3x3_block( in_channels=in_channels, out_channels=mid_channels) self.pix_shuffle = nn.PixelShuffle(upscale_factor=scale_factor) def forward(self, x): x = self.conv(x) x = self.pix_shuffle(x) return x class IBN(nn.Module): """ Instance-Batch Normalization block from 'Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net,' https://arxiv.org/abs/1807.09441. Parameters: ---------- channels : int Number of channels. inst_fraction : float, default 0.5 The first fraction of channels for normalization. inst_first : bool, default True Whether instance normalization be on the first part of channels. """ def __init__(self, channels, first_fraction=0.5, inst_first=True): super(IBN, self).__init__() self.inst_first = inst_first h1_channels = int(math.floor(channels * first_fraction)) h2_channels = channels - h1_channels self.split_sections = [h1_channels, h2_channels] if self.inst_first: self.inst_norm = nn.InstanceNorm2d( num_features=h1_channels, affine=True) self.batch_norm = nn.BatchNorm2d(num_features=h2_channels) else: self.batch_norm = nn.BatchNorm2d(num_features=h1_channels) self.inst_norm = nn.InstanceNorm2d( num_features=h2_channels, affine=True) def forward(self, x): x1, x2 = torch.split(x, split_size_or_sections=self.split_sections, dim=1) if self.inst_first: x1 = self.inst_norm(x1.contiguous()) x2 = self.batch_norm(x2.contiguous()) else: x1 = self.batch_norm(x1.contiguous()) x2 = self.inst_norm(x2.contiguous()) x = torch.cat((x1, x2), dim=1) return x class DualPathSequential(nn.Sequential): """ A sequential container for modules with dual inputs/outputs. Modules will be executed in the order they are added. Parameters: ---------- return_two : bool, default True Whether to return two output after execution. first_ordinals : int, default 0 Number of the first modules with single input/output. last_ordinals : int, default 0 Number of the final modules with single input/output. dual_path_scheme : function Scheme of dual path response for a module. dual_path_scheme_ordinal : function Scheme of dual path response for an ordinal module. """ def __init__(self, return_two=True, first_ordinals=0, last_ordinals=0, dual_path_scheme=(lambda module, x1, x2: module(x1, x2)), dual_path_scheme_ordinal=(lambda module, x1, x2: (module(x1), x2))): super(DualPathSequential, self).__init__() self.return_two = return_two self.first_ordinals = first_ordinals self.last_ordinals = last_ordinals self.dual_path_scheme = dual_path_scheme self.dual_path_scheme_ordinal = dual_path_scheme_ordinal def forward(self, x1, x2=None): length = len(self._modules.values()) for i, module in enumerate(self._modules.values()): if (i < self.first_ordinals) or (i >= length - self.last_ordinals): x1, x2 = self.dual_path_scheme_ordinal(module, x1, x2) else: x1, x2 = self.dual_path_scheme(module, x1, x2) if self.return_two: return x1, x2 else: return x1 class Concurrent(nn.Sequential): """ A container for concatenation of modules on the base of the sequential container. Parameters: ---------- axis : int, default 1 The axis on which to concatenate the outputs. stack : bool, default False Whether to concatenate tensors along a new dimension. """ def __init__(self, axis=1, stack=False): super(Concurrent, self).__init__() self.axis = axis self.stack = stack def forward(self, x): out = [] for module in self._modules.values(): out.append(module(x)) if self.stack: out = torch.stack(tuple(out), dim=self.axis) else: out = torch.cat(tuple(out), dim=self.axis) return out class SequentialConcurrent(nn.Sequential): """ A sequential container with concatenated outputs. Modules will be executed in the order they are added. Parameters: ---------- axis : int, default 1 The axis on which to concatenate the outputs. stack : bool, default False Whether to concatenate tensors along a new dimension. cat_input : bool, default True Whether to concatenate input tensor. """ def __init__(self, axis=1, stack=False, cat_input=True): super(SequentialConcurrent, self).__init__() self.axis = axis self.stack = stack self.cat_input = cat_input def forward(self, x): out = [x] if self.cat_input else [] for module in self._modules.values(): x = module(x) out.append(x) if self.stack: out = torch.stack(tuple(out), dim=self.axis) else: out = torch.cat(tuple(out), dim=self.axis) return out class ParametricSequential(nn.Sequential): """ A sequential container for modules with parameters. Modules will be executed in the order they are added. """ def __init__(self, *args): super(ParametricSequential, self).__init__(*args) def forward(self, x, **kwargs): for module in self._modules.values(): x = module(x, **kwargs) return x class ParametricConcurrent(nn.Sequential): """ A container for concatenation of modules with parameters. Parameters: ---------- axis : int, default 1 The axis on which to concatenate the outputs. """ def __init__(self, axis=1): super(ParametricConcurrent, self).__init__() self.axis = axis def forward(self, x, **kwargs): out = [] for module in self._modules.values(): out.append(module(x, **kwargs)) out = torch.cat(tuple(out), dim=self.axis) return out class Hourglass(nn.Module): """ A hourglass block. Parameters: ---------- down_seq : nn.Sequential Down modules as sequential. up_seq : nn.Sequential Up modules as sequential. skip_seq : nn.Sequential Skip connection modules as sequential. merge_type : str, default 'add' Type of concatenation of up and skip outputs. return_first_skip : bool, default False Whether return the first skip connection output. Used in ResAttNet. """ def __init__(self, down_seq, up_seq, skip_seq, merge_type="add", return_first_skip=False): super(Hourglass, self).__init__() self.depth = len(down_seq) assert (merge_type in ["add"]) assert (len(up_seq) == self.depth) assert (len(skip_seq) in (self.depth, self.depth + 1)) self.merge_type = merge_type self.return_first_skip = return_first_skip self.extra_skip = (len(skip_seq) == self.depth + 1) self.down_seq = down_seq self.up_seq = up_seq self.skip_seq = skip_seq def forward(self, x, **kwargs): y = None down_outs = [x] for down_module in self.down_seq._modules.values(): x = down_module(x) down_outs.append(x) for i in range(len(down_outs)): if i != 0: y = down_outs[self.depth - i] skip_module = self.skip_seq[self.depth - i] y = skip_module(y) if (y is not None) and (self.merge_type == "add"): x = x + y if i != len(down_outs) - 1: if (i == 0) and self.extra_skip: skip_module = self.skip_seq[self.depth] x = skip_module(x) up_module = self.up_seq[self.depth - 1 - i] x = up_module(x) if self.return_first_skip: return x, y else: return x class SesquialteralHourglass(nn.Module): """ A sesquialteral hourglass block. Parameters: ---------- down1_seq : nn.Sequential The first down modules as sequential. skip1_seq : nn.Sequential The first skip connection modules as sequential. up_seq : nn.Sequential Up modules as sequential. skip2_seq : nn.Sequential The second skip connection modules as sequential. down2_seq : nn.Sequential The second down modules as sequential. merge_type : str, default 'cat' Type of concatenation of up and skip outputs. """ def __init__(self, down1_seq, skip1_seq, up_seq, skip2_seq, down2_seq, merge_type="cat"): super(SesquialteralHourglass, self).__init__() assert (len(down1_seq) == len(up_seq)) assert (len(down1_seq) == len(down2_seq)) assert (len(skip1_seq) == len(skip2_seq)) assert (len(down1_seq) == len(skip1_seq) - 1) assert (merge_type in ["cat", "add"]) self.merge_type = merge_type self.depth = len(down1_seq) self.down1_seq = down1_seq self.skip1_seq = skip1_seq self.up_seq = up_seq self.skip2_seq = skip2_seq self.down2_seq = down2_seq def _merge(self, x, y): if y is not None: if self.merge_type == "cat": x = torch.cat((x, y), dim=1) elif self.merge_type == "add": x = x + y return x def forward(self, x, **kwargs): y = self.skip1_seq[0](x) skip1_outs = [y] for i in range(self.depth): x = self.down1_seq[i](x) y = self.skip1_seq[i + 1](x) skip1_outs.append(y) x = skip1_outs[self.depth] y = self.skip2_seq[0](x) skip2_outs = [y] for i in range(self.depth): x = self.up_seq[i](x) y = skip1_outs[self.depth - 1 - i] x = self._merge(x, y) y = self.skip2_seq[i + 1](x) skip2_outs.append(y) x = self.skip2_seq[self.depth](x) for i in range(self.depth): x = self.down2_seq[i](x) y = skip2_outs[self.depth - 1 - i] x = self._merge(x, y) return x class MultiOutputSequential(nn.Sequential): """ A sequential container with multiple outputs. Modules will be executed in the order they are added. Parameters: ---------- multi_output : bool, default True Whether to return multiple output. dual_output : bool, default False Whether to return dual output. return_last : bool, default True Whether to forcibly return last value. """ def __init__(self, multi_output=True, dual_output=False, return_last=True): super(MultiOutputSequential, self).__init__() self.multi_output = multi_output self.dual_output = dual_output self.return_last = return_last def forward(self, x): outs = [] for module in self._modules.values(): x = module(x) if hasattr(module, "do_output") and module.do_output: outs.append(x) elif hasattr(module, "do_output2") and module.do_output2: assert (type(x) == tuple) outs.extend(x[1]) x = x[0] if self.multi_output: return [x] + outs if self.return_last else outs elif self.dual_output: return x, outs else: return x class ParallelConcurent(nn.Sequential): """ A sequential container with multiple inputs and multiple outputs. Modules will be executed in the order they are added. """ def __init__(self): super(ParallelConcurent, self).__init__() def forward(self, x): out = [] for module, xi in zip(self._modules.values(), x): out.append(module(xi)) return out class Flatten(nn.Module): """ Simple flatten module. """ def forward(self, x): return x.view(x.size(0), -1) class HeatmapMaxDetBlock(nn.Module): """ Heatmap maximum detector block (for human pose estimation task). """ def __init__(self): super(HeatmapMaxDetBlock, self).__init__() def forward(self, x): heatmap = x vector_dim = 2 batch = heatmap.shape[0] channels = heatmap.shape[1] in_size = x.shape[2:] heatmap_vector = heatmap.view(batch, channels, -1) scores, indices = heatmap_vector.max(dim=vector_dim, keepdims=True) scores_mask = (scores > 0.0).float() pts_x = (indices % in_size[1]) * scores_mask pts_y = (indices // in_size[1]) * scores_mask pts = torch.cat((pts_x, pts_y, scores), dim=vector_dim) for b in range(batch): for k in range(channels): hm = heatmap[b, k, :, :] px = int(pts[b, k, 0]) py = int(pts[b, k, 1]) if (0 < px < in_size[1] - 1) and (0 < py < in_size[0] - 1): pts[b, k, 0] += (hm[py, px + 1] - hm[py, px - 1]).sign() * 0.25 pts[b, k, 1] += (hm[py + 1, px] - hm[py - 1, px]).sign() * 0.25 return pts @staticmethod def calc_flops(x): assert (x.shape[0] == 1) num_flops = x.numel() + 26 * x.shape[1] num_macs = 0 return num_flops, num_macs
31.468719
130
0.577262
92b83c2702b1993bd3da2408e821dd3a7aad14c4
2,807
py
Python
mybot/lebowski/actions.py
osboo/sharegood
76cca0fa8a65256d6694de66929dca9f21ebdbf9
[ "MIT" ]
null
null
null
mybot/lebowski/actions.py
osboo/sharegood
76cca0fa8a65256d6694de66929dca9f21ebdbf9
[ "MIT" ]
22
2021-08-08T15:33:50.000Z
2021-09-24T01:12:54.000Z
mybot/lebowski/actions.py
osboo/sharegood
76cca0fa8a65256d6694de66929dca9f21ebdbf9
[ "MIT" ]
null
null
null
import logging from azure.storage.table import TableService from lebowski.azure_connections import AKVConnector from lebowski.db import DBHelper from lebowski.enums import CCY, Tables from lebowski.external_api import get_eur_rates, get_gas_quotes from lebowski.stat import convert_spendings_to_eur, get_total_mileage, get_total_spending_eur def add_gas_action(args: list, storage: TableService, user_id: int, akv: AKVConnector) -> str: [amount, ccy, volume] = args db = DBHelper(storage) if volume is None: try: price_eur = get_gas_quotes(akv.get_gas_quotes_api_token()) if ccy != CCY.EUR: rate = get_eur_rates(akv.get_fx_quotes_api_token())[ccy] else: rate = 1.0 volume = amount / rate / price_eur except Exception as e: logging.error(e) volume = None return db.add_gas_record(user_id, amount, ccy, volume) def add_mileage_action(args: list, storage: TableService, user_id: int, akv: AKVConnector) -> str: [mileage] = args db = DBHelper(storage) adding_mileage_report = db.add_mileage_record(user_id, mileage) result_list = [] result_list.append(adding_mileage_report) reminders = db.list_reminders(user_id) for r in reminders: if "Уже наступило" in r: result_list.append(r) return "\n".join(result_list) def add_car_goods_action(args: list, storage: TableService, user_id, akv: AKVConnector) -> str: [amount, ccy, description] = args db = DBHelper(storage) return db.add_car_goods_record(user_id, amount, ccy, description) def add_car_repair_action(args: list, storage: TableService, user_id, akv: AKVConnector) -> str: [amount, ccy, description] = args db = DBHelper(storage) return db.add_car_repair_record(user_id, amount, ccy, description) def add_mileage_reminder_action(args: list, storage: TableService, user_id: int, akv: AKVConnector) -> str: [target_mileage, description] = args db = DBHelper(storage) return db.add_mileage_reminder_record(user_id, target_mileage, description) def compute_stat_action(dataset: dict, akv: AKVConnector) -> dict: result = {} result['total_mileage'] = get_total_mileage(dataset[Tables.MILEAGE]) try: rates = get_eur_rates(akv.get_fx_quotes_api_token()) except Exception as e: logging.error(e) rates = { CCY.BYN: 2.93, CCY.RUB: 85.30, CCY.USD: 1.17 } df_spendings_eur = convert_spendings_to_eur(dataset[Tables.SPENDINGS], rates) result['total_spending'] = get_total_spending_eur(df_spendings_eur) result['km_cost'] = result['total_spending'] / result['total_mileage'] if result['total_mileage'] > 0 else 0.0 return result
35.0875
114
0.694336
305af257e6d6ffba6ff0ed6653fa408f2830507f
4,451
py
Python
dynaconf/vendor_src/ruamel/yaml/scalarint.py
sephiartlist/dynaconf
9c5f60b289c1f0fa3f899f1962a8fe5712c74eab
[ "MIT" ]
2,293
2015-08-14T22:39:31.000Z
2022-03-31T12:44:49.000Z
dynaconf/vendor_src/ruamel/yaml/scalarint.py
sephiartlist/dynaconf
9c5f60b289c1f0fa3f899f1962a8fe5712c74eab
[ "MIT" ]
676
2015-08-20T19:29:56.000Z
2022-03-31T13:45:51.000Z
dynaconf/vendor_src/ruamel/yaml/scalarint.py
sephiartlist/dynaconf
9c5f60b289c1f0fa3f899f1962a8fe5712c74eab
[ "MIT" ]
255
2015-12-02T21:16:33.000Z
2022-03-20T22:03:46.000Z
# coding: utf-8 from __future__ import print_function, absolute_import, division, unicode_literals from .compat import no_limit_int # NOQA from .anchor import Anchor if False: # MYPY from typing import Text, Any, Dict, List # NOQA __all__ = ['ScalarInt', 'BinaryInt', 'OctalInt', 'HexInt', 'HexCapsInt', 'DecimalInt'] class ScalarInt(no_limit_int): def __new__(cls, *args, **kw): # type: (Any, Any, Any) -> Any width = kw.pop('width', None) # type: ignore underscore = kw.pop('underscore', None) # type: ignore anchor = kw.pop('anchor', None) # type: ignore v = no_limit_int.__new__(cls, *args, **kw) # type: ignore v._width = width v._underscore = underscore if anchor is not None: v.yaml_set_anchor(anchor, always_dump=True) return v def __iadd__(self, a): # type: ignore # type: (Any) -> Any x = type(self)(self + a) x._width = self._width # type: ignore x._underscore = ( # type: ignore self._underscore[:] if self._underscore is not None else None # type: ignore ) # NOQA return x def __ifloordiv__(self, a): # type: ignore # type: (Any) -> Any x = type(self)(self // a) x._width = self._width # type: ignore x._underscore = ( # type: ignore self._underscore[:] if self._underscore is not None else None # type: ignore ) # NOQA return x def __imul__(self, a): # type: ignore # type: (Any) -> Any x = type(self)(self * a) x._width = self._width # type: ignore x._underscore = ( # type: ignore self._underscore[:] if self._underscore is not None else None # type: ignore ) # NOQA return x def __ipow__(self, a): # type: ignore # type: (Any) -> Any x = type(self)(self ** a) x._width = self._width # type: ignore x._underscore = ( # type: ignore self._underscore[:] if self._underscore is not None else None # type: ignore ) # NOQA return x def __isub__(self, a): # type: ignore # type: (Any) -> Any x = type(self)(self - a) x._width = self._width # type: ignore x._underscore = ( # type: ignore self._underscore[:] if self._underscore is not None else None # type: ignore ) # NOQA return x @property def anchor(self): # type: () -> Any if not hasattr(self, Anchor.attrib): setattr(self, Anchor.attrib, Anchor()) return getattr(self, Anchor.attrib) def yaml_anchor(self, any=False): # type: (bool) -> Any if not hasattr(self, Anchor.attrib): return None if any or self.anchor.always_dump: return self.anchor return None def yaml_set_anchor(self, value, always_dump=False): # type: (Any, bool) -> None self.anchor.value = value self.anchor.always_dump = always_dump class BinaryInt(ScalarInt): def __new__(cls, value, width=None, underscore=None, anchor=None): # type: (Any, Any, Any, Any) -> Any return ScalarInt.__new__(cls, value, width=width, underscore=underscore, anchor=anchor) class OctalInt(ScalarInt): def __new__(cls, value, width=None, underscore=None, anchor=None): # type: (Any, Any, Any, Any) -> Any return ScalarInt.__new__(cls, value, width=width, underscore=underscore, anchor=anchor) # mixed casing of A-F is not supported, when loading the first non digit # determines the case class HexInt(ScalarInt): """uses lower case (a-f)""" def __new__(cls, value, width=None, underscore=None, anchor=None): # type: (Any, Any, Any, Any) -> Any return ScalarInt.__new__(cls, value, width=width, underscore=underscore, anchor=anchor) class HexCapsInt(ScalarInt): """uses upper case (A-F)""" def __new__(cls, value, width=None, underscore=None, anchor=None): # type: (Any, Any, Any, Any) -> Any return ScalarInt.__new__(cls, value, width=width, underscore=underscore, anchor=anchor) class DecimalInt(ScalarInt): """needed if anchor""" def __new__(cls, value, width=None, underscore=None, anchor=None): # type: (Any, Any, Any, Any) -> Any return ScalarInt.__new__(cls, value, width=width, underscore=underscore, anchor=anchor)
33.977099
95
0.601887
9f0fea9c716565cd883bbca9fbb3b0d1e0a72301
1,123
py
Python
setup.py
liorcohen5/replay-monitor
086ec57ccdd446b56da92fb4e735186e9e639f15
[ "MIT" ]
null
null
null
setup.py
liorcohen5/replay-monitor
086ec57ccdd446b56da92fb4e735186e9e639f15
[ "MIT" ]
null
null
null
setup.py
liorcohen5/replay-monitor
086ec57ccdd446b56da92fb4e735186e9e639f15
[ "MIT" ]
null
null
null
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="replay-monitor", # Replace with your own username version="0.0.5", author="Leor Cohen", author_email="liorcohen5@gmail.com", description="A tool for easy data exploration in reinforcement learning environments.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/liorcohen5/replay-monitor", download_url="https://github.com/liorcohen5/replay-monitor/archive/0.0.5.tar.gz", keywords=['reinforcement learning', 'tool', 'data exploration', 'replay', 'monitor', 'analytical tool'], packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], install_requires=['gym', 'bokeh', 'tensorflow', 'numpy', 'tables'], entry_points={ 'console_scripts': ['replay-monitor=replay_monitor.server:start_server'], }, python_requires='>=3.6', )
40.107143
108
0.682992
7c4a7567c47a098a5987f328ba3ed4ed5a6f2bb5
2,685
py
Python
tests/random_expression.py
Dobatymo/quepy
d56a5ae1310ef7c3e6e292a03a84ef922f192788
[ "BSD-3-Clause" ]
null
null
null
tests/random_expression.py
Dobatymo/quepy
d56a5ae1310ef7c3e6e292a03a84ef922f192788
[ "BSD-3-Clause" ]
null
null
null
tests/random_expression.py
Dobatymo/quepy
d56a5ae1310ef7c3e6e292a03a84ef922f192788
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, unicode_literals from builtins import chr from future.utils import python_2_unicode_compatible import random from quepy.expression import Expression def get_random_unichar(): # returns only encodable unicode chars while True: x = random.random() if 0.1 > x: c = random.choice(" ./\n") elif 0.50 > x: c = chr(random.randint(65, 122)) elif 0.85 > x: c = chr(random.randint(0, 127)) else: c = chr(random.randint(0, 65535)) try: c.encode("utf-8") return c except UnicodeEncodeError: pass def random_data(only_ascii=False): data = [] first = True while first or 1 / 20 < random.random(): first = False if only_ascii: c = chr(random.randint(33, 126)) data.append(c) else: c = get_random_unichar() data.append(c) return "".join(data) def random_relation(only_ascii=False): data = random_data(only_ascii) data = data.replace(" ", "") if random.random() > 0.05: return data @python_2_unicode_compatible class UnicodeableDummy(object): def __str__(self): return data return UnicodeableDummy() def random_expression(only_ascii=False): """ operations: new node, add data, decapitate, merge """ mean_size = 20 xs = [40, 30, 50, 20] xs = [x * (1 - random.random()) for x in xs] assert all(x != 0. for x in xs) new_node, add_data, decapitate, _ = [x / sum(xs) for x in xs] expressions = [Expression(), Expression(), Expression(), Expression()] while len(expressions) != 1: if (1 / mean_size) < random.random(): # Will start to merge more and will not create new nodes new_node = 0. # Choose action r = random.random() if r < new_node: # New expression expressions.append(Expression()) elif r < add_data + new_node: # Add data e = random.choice(expressions) e.add_data(random_relation(only_ascii), random_data(only_ascii)) elif r < decapitate + add_data + new_node: # Decapitate e = random.choice(expressions) e.decapitate(random_relation(only_ascii), reverse=(0.25 < random.random())) elif len(expressions) != 1: # Merge random.shuffle(expressions) e2 = expressions.pop() e1 = expressions[-1] e1 += e2 return expressions[0]
28.56383
76
0.565736
a71189bbc184432881e09cba8270d1a57eece967
1,536
py
Python
exp/python_c3_class_mro/python_c3_mro_anler_run.py
nicolasessisbreton/fython
988f5a94cee8b16b0000501a22239195c73424a1
[ "Apache-2.0" ]
41
2016-01-21T05:14:45.000Z
2021-11-24T20:37:21.000Z
exp/python_c3_class_mro/python_c3_mro_anler_run.py
nicolasessisbreton/fython
988f5a94cee8b16b0000501a22239195c73424a1
[ "Apache-2.0" ]
5
2016-01-21T05:36:37.000Z
2016-08-22T19:26:51.000Z
exp/python_c3_class_mro/python_c3_mro_anler_run.py
nicolasessisbreton/fython
988f5a94cee8b16b0000501a22239195c73424a1
[ "Apache-2.0" ]
3
2016-01-23T04:03:44.000Z
2016-08-21T15:58:38.000Z
import itertools cls = 'd' mro_lists = [ ['d', 'c'], ['c', 'b'], ['b', 'a'], ['a', 'o'] ] # Make a copy so we don't change existing content mro_lists = [list(mro_list[:]) for mro_list in mro_lists] print(1, mro_lists) # Set up the new MRO with the class itself mro = [] print(2, cls) # The real algorithm goes here while True: # Reset for the next round of tests candidate_found = False for mro_list in mro_lists: print(3, mro_list) if not len(mro_list): # Any empty lists are of no use to the algorithm continue # Get the first item as a potential candidate for the MRO candidate = mro_list[0] if candidate_found: # Candidates promoted to the MRO are no longer of use if candidate in mro: mro_list.pop(0) # Don't bother checking any more candidates if one was found continue # See if it's in any position other than fist in any of the other lists print(4, list(itertools.chain(*(x[1:] for x in mro_lists)))) if candidate in itertools.chain(*(x[1:] for x in mro_lists)): # Isn't a valid candidate yet and we need to move on to the first class # in the next list continue else: # The candidate is valid and should be promoted to the MRO mro.append(candidate) mro_list.pop(0) candidate_found = True if not sum(len(mro_list) for mro_list in mro_lists): # There are no MROs to cycle through, so we're all done break if not candidate_found: # No valid candidate was available, so we have to bail out raise TypeError("Inconsistent MRO") print(mro)
27.428571
74
0.690755
94ec6bb8a553e341c64bb05758629ca5d89785fd
1,397
py
Python
misc/python/materialize/feature_benchmark/executor.py
bobbyiliev/materialize
44e3bcae151179075232ad436ae72f5883361fd1
[ "MIT" ]
1
2022-03-19T21:08:19.000Z
2022-03-19T21:08:19.000Z
misc/python/materialize/feature_benchmark/executor.py
bobbyiliev/materialize
44e3bcae151179075232ad436ae72f5883361fd1
[ "MIT" ]
203
2022-01-04T00:16:23.000Z
2022-03-30T17:34:01.000Z
misc/python/materialize/feature_benchmark/executor.py
guswynn/materialize
f433173ed71f511d91311769ec58c2d427dd6c3b
[ "MIT" ]
null
null
null
# Copyright Materialize, Inc. and contributors. All rights reserved. # # Use of this software is governed by the Business Source License # included in the LICENSE file at the root of this repository. # # As of the Change Date specified in that file, in accordance with # the Business Source License, use of this software will be governed # by the Apache License, Version 2.0. from typing import Any, Callable, List from materialize.mzcompose import Composition class Executor: def Lambda(self, _lambda: Callable[["Executor"], float]) -> float: return _lambda(self) class Docker(Executor): def __init__( self, composition: Composition, seed: int, ) -> None: self._composition = composition self._seed = seed def RestartMz(self) -> None: self._composition.kill("materialized") self._composition.up("materialized") return None def Td(self, input: str) -> Any: return self._composition.exec( "testdrive", "--no-reset", f"--seed={self._seed}", "--initial-backoff=10ms", "--backoff-factor=0", stdin=input, capture=True, ).stdout def Kgen(self, topic: str, args: List[str]) -> Any: return self._composition.run( "kgen", f"--topic=testdrive-{topic}-{self._seed}", *args )
28.510204
70
0.621331
757c7481f4c6d15b2fe5ea28f08116ae8ebbd7dd
3,774
py
Python
ci/appveyor-download.py
metrasynth/sunvosc
65ccd1015d55e6e91e6ac3d33ca7677ce4fbeb15
[ "MIT" ]
2
2017-02-27T06:05:50.000Z
2017-07-31T12:14:35.000Z
ci/appveyor-download.py
metrasynth/SunVOSC
65ccd1015d55e6e91e6ac3d33ca7677ce4fbeb15
[ "MIT" ]
1
2016-10-22T17:37:05.000Z
2016-10-22T17:37:05.000Z
ci/appveyor-download.py
metrasynth/sunvosc
65ccd1015d55e6e91e6ac3d33ca7677ce4fbeb15
[ "MIT" ]
null
null
null
#!/usr/bin/env python """ Use the AppVeyor API to download Windows artifacts. Taken from: https://bitbucket.org/ned/coveragepy/src/tip/ci/download_appveyor.py # Licensed under the Apache License: http://www.apache.org/licenses/LICENSE-2.0 # For details: https://bitbucket.org/ned/coveragepy/src/default/NOTICE.txt """ import argparse import os import zipfile import requests def make_auth_headers(): """Make the authentication headers needed to use the Appveyor API.""" path = os.path.expanduser("~/.appveyor.token") if not os.path.exists(path): raise RuntimeError( "Please create a file named `.appveyor.token` in your home directory. " "You can get the token from https://ci.appveyor.com/api-token" ) with open(path) as f: token = f.read().strip() headers = { 'Authorization': 'Bearer {}'.format(token), } return headers def download_latest_artifacts(account_project, build_id): """Download all the artifacts from the latest build.""" if build_id is None: url = "https://ci.appveyor.com/api/projects/{}".format(account_project) else: url = "https://ci.appveyor.com/api/projects/{}/build/{}".format(account_project, build_id) build = requests.get(url, headers=make_auth_headers()).json() jobs = build['build']['jobs'] print(u"Build {0[build][version]}, {1} jobs: {0[build][message]}".format(build, len(jobs))) for job in jobs: name = job['name'] print(u" {0}: {1[status]}, {1[artifactsCount]} artifacts".format(name, job)) url = "https://ci.appveyor.com/api/buildjobs/{}/artifacts".format(job['jobId']) response = requests.get(url, headers=make_auth_headers()) artifacts = response.json() for artifact in artifacts: is_zip = artifact['type'] == "Zip" filename = artifact['fileName'] print(u" {0}, {1} bytes".format(filename, artifact['size'])) url = "https://ci.appveyor.com/api/buildjobs/{}/artifacts/{}".format(job['jobId'], filename) download_url(url, filename, make_auth_headers()) if is_zip: unpack_zipfile(filename) os.remove(filename) def ensure_dirs(filename): """Make sure the directories exist for `filename`.""" dirname = os.path.dirname(filename) if dirname and not os.path.exists(dirname): os.makedirs(dirname) def download_url(url, filename, headers): """Download a file from `url` to `filename`.""" ensure_dirs(filename) response = requests.get(url, headers=headers, stream=True) if response.status_code == 200: with open(filename, 'wb') as f: for chunk in response.iter_content(16 * 1024): f.write(chunk) else: print(u" Error downloading {}: {}".format(url, response)) def unpack_zipfile(filename): """Unpack a zipfile, using the names in the zip.""" with open(filename, 'rb') as fzip: z = zipfile.ZipFile(fzip) for name in z.namelist(): print(u" extracting {}".format(name)) ensure_dirs(name) z.extract(name) parser = argparse.ArgumentParser(description='Download artifacts from AppVeyor.') parser.add_argument('--id', metavar='PROJECT_ID', default='metrasynth/sunvosc', help='Project ID in AppVeyor.') parser.add_argument('build', nargs='?', metavar='BUILD_ID', help='Build ID in AppVeyor. Eg: master-123') if __name__ == "__main__": # import logging # logging.basicConfig(level="DEBUG") args = parser.parse_args() download_latest_artifacts(args.id, args.build)
34.944444
104
0.622682
a26eb550098198378abf34ad7d980227fc486a8b
2,332
py
Python
pythonprog/code/13/13.2/table.py
davidyshuang/python3
5200638f6c4450998d97a9ac24bcba0872786fb2
[ "Unlicense" ]
null
null
null
pythonprog/code/13/13.2/table.py
davidyshuang/python3
5200638f6c4450998d97a9ac24bcba0872786fb2
[ "Unlicense" ]
null
null
null
pythonprog/code/13/13.2/table.py
davidyshuang/python3
5200638f6c4450998d97a9ac24bcba0872786fb2
[ "Unlicense" ]
null
null
null
# table.py import sys from abc import ABCMeta, abstractmethod def print_table(objects, colnames, formatter): ''' Make a nicely formatted table showing attributes from a list of objects ''' if not isinstance(formatter, TableFormatter): raise TypeError('formatter must be a TableFormatter') formatter.headings(colnames) for obj in objects: rowdata = [str(getattr(obj, colname)) for colname in colnames ] formatter.row(rowdata) _formatters = { } class TableMeta(ABCMeta): def __init__(cls, clsname, bases, methods): super().__init__(clsname, bases, methods) if hasattr(cls, 'name'): _formatters[cls.name] = cls class TableFormatter(metaclass=TableMeta): def __init__(self, outfile=None): if outfile == None: outfile = sys.stdout self.outfile = outfile # Serves a design spec for making tables (use inheritance to customize) @abstractmethod def headings(self, headers): pass @abstractmethod def row(self, rowdata): pass class TextTableFormatter(TableFormatter): name = 'text' def __init__(self, outfile=None, width=10): super().__init__(outfile) # Initialize parent self.width = width def headings(self, headers): for header in headers: print('{:>{}s}'.format(header, self.width), end=' ', file=self.outfile) print(file=self.outfile) def row(self, rowdata): for item in rowdata: print('{:>{}s}'.format(item, self.width), end=' ', file=self.outfile) print(file=self.outfile) class CSVTableFormatter(TableFormatter): name = 'csv' def headings(self, headers): print(','.join(headers)) def row(self, rowdata): print(','.join(rowdata)) class HTMLTableFormatter(TableFormatter): name = 'html' def headings(self, headers): print('<tr>', end='') for h in headers: print('<th>{}</th>'.format(h), end='') print('</tr>') def row(self, rowdata): print('<tr>', end='') for d in rowdata: print('<td>{}</td>'.format(d), end='') print('</tr>') class QuotedMixin(object): def row(self, rowdata): quoted = [ '"{}"'.format(d) for d in rowdata ] super().row(quoted)
28.096386
83
0.607204
6cd0c96185ad106f0b0f0bc9cddd05e459c2d191
914
py
Python
Libraries/matrix.py
tonko2/AtCoder
5d617072517881d226d7c8af09cb88684d41af7e
[ "Xnet", "X11", "CECILL-B" ]
2
2022-01-22T07:56:58.000Z
2022-01-24T00:29:37.000Z
Libraries/matrix.py
tonko2/AtCoder
5d617072517881d226d7c8af09cb88684d41af7e
[ "Xnet", "X11", "CECILL-B" ]
null
null
null
Libraries/matrix.py
tonko2/AtCoder
5d617072517881d226d7c8af09cb88684d41af7e
[ "Xnet", "X11", "CECILL-B" ]
null
null
null
from copy import deepcopy MOD = 1000000000 # 2x2行列 A * B def multiply(A, B): global MOD C = [[0, 0], [0, 0]] for i in range(2): for j in range(2): for k in range(2): C[i][j] += A[i][k] * B[k][j] C[i][j] %= MOD return C # Aのn乗 def power(A, n): P = deepcopy(A) Q = [[0, 0], [0, 0]] flag = False for i in range(60): if n & 1 << i != 0: if flag == False: Q = deepcopy(P) flag = True else: Q = deepcopy(multiply(Q, P)) P = deepcopy(multiply(P, P)) return Q def main(): # 入力 → 累乗の計算(N が 2 以上でなければ正しく動作しないので注意) N = int(input()) A = [[1, 1], [1, 0]] B = power(A, N - 1) # 答えの計算 → 出力(下から 9 桁目が 0 の場合、最初に 0 を含まない形で出力していることに注意) answer = (B[1][0] + B[1][1]) % MOD print(answer) if __name__ == '__main__': main()
21.255814
58
0.447484
dd5afae3f3e7fad9b3722ff3288cf2e11d34de11
5,683
py
Python
CPG_core/controllers/CPG_controller_snake_sin.py
Jerryxiaoyu/maml_rl_v2
6091f996ff1be8e80d80331e510087868461b8e6
[ "MIT" ]
null
null
null
CPG_core/controllers/CPG_controller_snake_sin.py
Jerryxiaoyu/maml_rl_v2
6091f996ff1be8e80d80331e510087868461b8e6
[ "MIT" ]
null
null
null
CPG_core/controllers/CPG_controller_snake_sin.py
Jerryxiaoyu/maml_rl_v2
6091f996ff1be8e80d80331e510087868461b8e6
[ "MIT" ]
null
null
null
from CPG_core.CPG_Sin_osillator import sin_oscillator from CPG_core.CPG_Sin_osillator import CPG_Sinneutron import math class CPG_network(object): def __init__(self, CPG_node_num, position_vector): kf = position_vector[0] self.CPG_node_num = CPG_node_num # 不包括placemarker if len(position_vector) != self.CPG_node_num *3+1: assert "Position vector out of range!" GAIN,BIAS,PHASE = [],[],[] for i in range(self.CPG_node_num): GAIN.append(position_vector[i+1]) BIAS.append(position_vector[self.CPG_node_num+i+1]) PHASE.append(position_vector[2 * self.CPG_node_num+i+1]) parm_list = { 0: [0.0, 0.0, 0.0, 1.0, 0.0, 0], } for i in range(self.CPG_node_num): parm ={i+1:[0.0, 0.0, 0.0, GAIN[i], BIAS[i], PHASE[i]]} parm_list.update(parm) #print(parm_list) self.kf = position_vector[0] self.num_CPG = len(parm_list) self.CPG_list =[] self.w_ms_list = [None, 1,1,1, 1, 1, 1, 1, 1, 1, ] self.master_list = [None, 0,1,2,3,4,5,6,7,8 ] for i in range(self.num_CPG): if i == 0: self.CPG_list.append(CPG_Sinneutron(0, master_nuron = None, param=parm_list[0] ,kf= self.kf, w_ms = 0)) else: self.CPG_list.append(CPG_Sinneutron(i, master_nuron=self.CPG_list[self.master_list[i]], param=parm_list[i], kf=self.kf, w_ms= self.w_ms_list[i])) def output(self, state): output_list = [] for cpg_n in self.CPG_list: cpg_n.next_output(f1=0, f2=0) output_list.append(cpg_n.parm['o']) return output_list # import numpy as np # position_vector = np.zeros(40) # position_vector[0]=1 # for i in range(1,14): # position_vector[i] = 1 # CPG_network(position_vector) class CPG_network5(object): def __init__(self, CPG_node_num, position_vector): kf = position_vector[0] self.CPG_node_num = CPG_node_num # 不包括placemarker if len(position_vector) != self.CPG_node_num * 4 + 1: assert "Position vector out of range!" GAIN, BIAS, PHASE , WEIGHT= [], [], [], [] for i in range(self.CPG_node_num): GAIN.append(position_vector[i + 1]) BIAS.append(position_vector[self.CPG_node_num + i + 1]) PHASE.append(position_vector[2 * self.CPG_node_num + i + 1]) WEIGHT.append(position_vector[3 * self.CPG_node_num + i + 1]) parm_list = { 0: [0.0, 0.0, 0.0, 1.0, 0.0, 0], } for i in range(self.CPG_node_num): parm = {i + 1: [0.0, 0.0, 0.0, GAIN[i], BIAS[i], PHASE[i]]} parm_list.update(parm) # print(parm_list) self.kf = position_vector[0] self.num_CPG = len(parm_list) self.CPG_list = [] self.w_ms_list = [None, WEIGHT[0], WEIGHT[1], WEIGHT[2], WEIGHT[3], WEIGHT[4], WEIGHT[5], WEIGHT[6], WEIGHT[7], WEIGHT[8], ] self.master_list = [None, 0, 1, 2, 3, 4, 5, 6, 7, 8] for i in range(self.num_CPG): if i == 0: self.CPG_list.append(CPG_Sinneutron(0, master_nuron=None, param=parm_list[0], kf=self.kf, w_ms=0)) else: self.CPG_list.append(CPG_Sinneutron(i, master_nuron=self.CPG_list[self.master_list[i]], param=parm_list[i], kf=self.kf, w_ms=self.w_ms_list[i])) def output(self, state): output_list = [] for cpg_n in self.CPG_list: cpg_n.next_output(f1=0, f2=0) output_list.append(cpg_n.parm['o']) return output_list class CPG_network_2gb(object): def __init__(self, CPG_node_num, position_vector): kf = position_vector[0] N = 2 self.CPG_node_num = CPG_node_num # 不包括placemarker if len(position_vector) != self.CPG_node_num * 2 + 1: assert "Position vector out of range!" GAIN, BIAS, PHASE = [], [], [] for i in range(self.CPG_node_num): GAIN.append(position_vector[i + 1]) BIAS.append(position_vector[self.CPG_node_num + i + 1]) PHASE.append(2*math.pi*N/float(self.CPG_node_num)) parm_list = { 0: [0.0, 0.0, 0.0, 1.0, 0.0, 0], } for i in range(self.CPG_node_num): parm = {i + 1: [0.0, 0.0, 0.0, GAIN[i], BIAS[i], PHASE[i]]} parm_list.update(parm) # print(parm_list) self.kf = position_vector[0] self.num_CPG = len(parm_list) self.CPG_list = [] self.w_ms_list = [None, 1, 1, 1, 1, 1, 1, 1, 1, 1, ] self.master_list = [None, 0, 1, 2, 3, 4, 5, 6, 7, 8] for i in range(self.num_CPG): if i == 0: self.CPG_list.append(CPG_Sinneutron(0, master_nuron=None, param=parm_list[0], kf=self.kf, w_ms=0)) else: self.CPG_list.append(CPG_Sinneutron(i, master_nuron=self.CPG_list[self.master_list[i]], param=parm_list[i], kf=self.kf, w_ms=self.w_ms_list[i])) def output(self, state): output_list = [] for cpg_n in self.CPG_list: cpg_n.next_output(f1=0, f2=0) output_list.append(cpg_n.parm['o']) return output_list
36.197452
132
0.535633
892abbd826ef8c71aafc1bac57eb09f0cf32c912
12,691
py
Python
packages/pytea/pytest/benchmarks/transformers/missing_idx/src/transformers/tokenization_xlm_roberta.py
lego0901/pytea
8ede650def2e68f4610ba816451d8b9e28f09f76
[ "MIT" ]
96
2021-06-16T09:06:52.000Z
2022-03-26T09:56:32.000Z
packages/pytea/pytest/benchmarks/transformers/missing_idx/src/transformers/tokenization_xlm_roberta.py
lego0901/pytea
8ede650def2e68f4610ba816451d8b9e28f09f76
[ "MIT" ]
16
2021-07-01T05:34:48.000Z
2022-03-28T09:40:15.000Z
packages/pytea/pytest/benchmarks/transformers/missing_idx/src/transformers/tokenization_xlm_roberta.py
lego0901/pytea
8ede650def2e68f4610ba816451d8b9e28f09f76
[ "MIT" ]
24
2021-06-19T15:58:31.000Z
2022-03-14T09:17:19.000Z
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """ Tokenization classes for XLM-RoBERTa model.""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from .tokenization_utils import PreTrainedTokenizer from .utils import logging logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-spanish": "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll03-english": "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll03-german": "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class XLMRobertaTokenizer(PreTrainedTokenizer): """ Adapted from :class:`~transfomers.RobertaTokenizer` and class:`~transfomers.XLNetTokenizer`. Based on `SentencePiece <https://github.com/google/sentencepiece>`__. This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (:obj:`str`): Path to the vocabulary file. bos_token (:obj:`str`, `optional`, defaults to :obj:`"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. .. note:: When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the :obj:`cls_token`. eos_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`): The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the :obj:`sep_token`. sep_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (:obj:`str`, `optional`, defaults to :obj:`"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (:obj:`str`, `optional`, defaults to :obj:`"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (:obj:`List[str]`, `optional`, defaults to :obj:`["<s>NOTUSED", "</s>NOTUSED"]`): Additional special tokens used by the tokenizer. Attributes: sp_model (:obj:`SentencePieceProcessor`): The `SentencePiece` processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["attention_mask"] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", **kwargs ): super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, **kwargs, ) self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(str(vocab_file)) self.vocab_file = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab self.fairseq_offset = 1 self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + self.fairseq_offset self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLM-RoBERTa sequence has the following format: - single sequence: ``<s> X </s>`` - pair of sequences: ``<s> A </s></s> B </s>`` Args: token_ids_0 (:obj:`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer ``prepare_for_model`` method. Args: token_ids_0 (:obj:`List[int]`): List of IDs. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not the token list is already formatted with special tokens for the model. Returns: :obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0)) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (:obj:`List[int]`): List of IDs. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] @property def vocab_size(self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text): return self.sp_model.EncodeAsPieces(text) def _convert_token_to_id(self, token): """ Converts a token (str) in an id using the vocab. """ if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] spm_id = self.sp_model.PieceToId(token) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
44.529825
161
0.635332
a4edb60df9d6b652f3452c195cf7213519056769
4,672
py
Python
tests/bugs/core_4484_test.py
reevespaul/firebird-qa
98f16f425aa9ab8ee63b86172f959d63a2d76f21
[ "MIT" ]
null
null
null
tests/bugs/core_4484_test.py
reevespaul/firebird-qa
98f16f425aa9ab8ee63b86172f959d63a2d76f21
[ "MIT" ]
null
null
null
tests/bugs/core_4484_test.py
reevespaul/firebird-qa
98f16f425aa9ab8ee63b86172f959d63a2d76f21
[ "MIT" ]
null
null
null
#coding:utf-8 # # id: bugs.core_4484 # title: Description (COMMENT ON) for package procedures and functions, and its parameters # decription: Test verifies ability to store comments and also to encode them in UTF8 # tracker_id: CORE-4484 # min_versions: ['3.0'] # versions: 3.0 # qmid: import pytest from firebird.qa import db_factory, isql_act, Action # version: 3.0 # resources: None substitutions_1 = [('TEXT_BLOB.*', '')] init_script_1 = """""" db_1 = db_factory(charset='UTF8', sql_dialect=3, init=init_script_1) test_script_1 = """ set term ^; create or alter package pg_test as begin procedure sp_test(i_x int) returns (o_z int); function fn_test(i_x int) returns int; end ^ recreate package body pg_test as begin procedure sp_test(i_x int) returns (o_z int) as begin o_z = i_x * 2; end function fn_test(i_x int) returns int as begin return i_x * 2; end end ^ set term ;^ commit; comment on package pg_test is 'MITÄ TÄMÄN'; comment on procedure pg_test.sp_test is 'ÁÉÍÓÚÝ'; comment on function pg_test.fn_test is 'ÂÊÎÔÛ'; comment on procedure parameter pg_test.sp_test.i_x is 'ÃÑÕ ÄËÏÖÜŸ'; comment on procedure parameter pg_test.sp_test.o_z is 'ÇŠ ΔΘΛΞΣΨΩ'; comment on function parameter pg_test.fn_test.i_x is 'ĄĘŁŹŻ ЙЁ ЊЋЏ ĂŞŢ'; commit; set list on; set blob all; select 'package itself' descr_for_what,rp.rdb$package_name obj_name, rp.rdb$description text_blob from rdb$packages rp where rp.rdb$package_name=upper('pg_test') union all select * from ( select 'package proc' descr_for_what, pp.rdb$procedure_name, pp.rdb$description from rdb$procedures pp where pp.rdb$package_name=upper('pg_test') order by pp.rdb$procedure_name ) union all select * from ( select 'package func' descr_for_what, pf.rdb$function_name, pf.rdb$description from rdb$functions pf where pf.rdb$package_name = upper('pg_test') order by pf.rdb$function_name ) union all select 'package proc pars' descr_for_what, p_name, p_memo from ( select p2.rdb$parameter_name p_name, p2.rdb$description p_memo from rdb$procedure_parameters p2 where p2.rdb$package_name = upper('pg_test') order by p2.rdb$parameter_name ) union all select 'package func args', a_name, f_memo from ( select f2.rdb$argument_name a_name, f2.rdb$description f_memo from rdb$function_arguments f2 where f2.rdb$package_name = upper('pg_test') and f2.rdb$argument_name is not null order by f2.rdb$argument_name ) ; """ act_1 = isql_act('db_1', test_script_1, substitutions=substitutions_1) expected_stdout_1 = """ DESCR_FOR_WHAT package itself OBJ_NAME PG_TEST TEXT_BLOB 0:3 MITÄ TÄMÄN DESCR_FOR_WHAT package proc OBJ_NAME SP_TEST TEXT_BLOB 0:6 ÁÉÍÓÚÝ DESCR_FOR_WHAT package func OBJ_NAME FN_TEST TEXT_BLOB 0:9 ÂÊÎÔÛ DESCR_FOR_WHAT package proc pars OBJ_NAME I_X TEXT_BLOB 0:c ÃÑÕ ÄËÏÖÜŸ DESCR_FOR_WHAT package proc pars OBJ_NAME O_Z TEXT_BLOB 0:f ÇŠ ΔΘΛΞΣΨΩ DESCR_FOR_WHAT package func args OBJ_NAME I_X TEXT_BLOB 0:12 ĄĘŁŹŻ ЙЁ ЊЋЏ ĂŞŢ """ @pytest.mark.version('>=3.0') def test_1(act_1: Action): act_1.expected_stdout = expected_stdout_1 act_1.execute() assert act_1.clean_expected_stdout == act_1.clean_stdout
31.782313
157
0.514769
fe144ee6367fc8208f408c8ed22d2e081abcda47
1,039
py
Python
leetcode/054-Spiral-Matrix/SpiralMatrix_001.py
cc13ny/all-in
bc0b01e44e121ea68724da16f25f7e24386c53de
[ "MIT" ]
1
2015-12-16T04:01:03.000Z
2015-12-16T04:01:03.000Z
leetcode/054-Spiral-Matrix/SpiralMatrix_001.py
cc13ny/all-in
bc0b01e44e121ea68724da16f25f7e24386c53de
[ "MIT" ]
1
2016-02-09T06:00:07.000Z
2016-02-09T07:20:13.000Z
leetcode/054-Spiral-Matrix/SpiralMatrix_001.py
cc13ny/all-in
bc0b01e44e121ea68724da16f25f7e24386c53de
[ "MIT" ]
2
2019-06-27T09:07:26.000Z
2019-07-01T04:40:13.000Z
class Solution: # @param {integer[][]} matrix # @return {integer[]} def spiralOrder(self, matrix): if len(matrix) == 0 or len(matrix[0]) == 0: return [] res = [] top, bottom = 0, len(matrix) - 1 left, right = 0, len(matrix[0]) - 1 while left < right and top < bottom: for j in range(left, right + 1): res.append(matrix[top][j]) for i in range(top + 1, bottom): res.append(matrix[i][right]) for j in range(right, left - 1, -1): res.append(matrix[bottom][j]) for i in range(bottom - 1, top, -1): res.append(matrix[i][left]) left += 1 right -= 1 top += 1 bottom -= 1 if top == bottom: for j in range(left, right + 1): res.append(matrix[top][j]) elif left == right: for i in range(top, bottom + 1): res.append(matrix[i][left]) return res
33.516129
51
0.455245
4ae91a99e63fd655034f5d722e78c72c3992e260
894
py
Python
ultron8/api/resource.py
bossjones/ultron8
45db73d32542a844570d44bc83defa935e15803f
[ "Apache-2.0", "MIT" ]
null
null
null
ultron8/api/resource.py
bossjones/ultron8
45db73d32542a844570d44bc83defa935e15803f
[ "Apache-2.0", "MIT" ]
43
2019-06-01T23:08:32.000Z
2022-02-07T22:24:53.000Z
ultron8/api/resource.py
bossjones/ultron8
45db73d32542a844570d44bc83defa935e15803f
[ "Apache-2.0", "MIT" ]
null
null
null
""" Web Services Interface used by command-line clients and web frontend to view current state, event history and send commands to trond. """ import collections import datetime import logging import ujson as json log = logging.getLogger(__name__) class LogAdapter(object): def __init__(self, logger): self.logger = logger def write(self, line): self.logger.info(line.rstrip(b"\n")) def close(self): pass def UltronSite(): """Web server""" class JSONEncoder(json.JSONEncoder): """Custom JSON for certain objects""" def default(self, o): if isinstance(o, datetime.datetime): return o.strftime("%Y-%m-%d %H:%M:%S") if isinstance(o, datetime.date): return o.isoformat() if isinstance(o, collections.KeysView): return list(o) return super(JSONEncoder, self).default(o)
20.790698
71
0.645414
9cc282306f9cf31c6751620ab290c5227ba792d2
1,186
py
Python
pyMacID.py
pudquick/pyMacID
d55a18fc30398813d9ed22411c573b80d1ffc3b0
[ "MIT", "Unlicense" ]
1
2021-04-16T12:09:29.000Z
2021-04-16T12:09:29.000Z
pyMacID.py
pudquick/pyMacID
d55a18fc30398813d9ed22411c573b80d1ffc3b0
[ "MIT", "Unlicense" ]
null
null
null
pyMacID.py
pudquick/pyMacID
d55a18fc30398813d9ed22411c573b80d1ffc3b0
[ "MIT", "Unlicense" ]
null
null
null
# Get the Computer Name from System Preferences -> Sharing from SystemConfiguration import SCDynamicStoreCopyComputerName try: computer_name = SCDynamicStoreCopyComputerName(None, None)[0].encode('utf-8') except: computer_name = None # Get the Bonjour .local name from socket import gethostname try: bonjour_name = gethostname() except: bonjour_name = None # Get detailed hardware information from subprocess import Popen, PIPE from plistlib import readPlistFromString system_profiler_xml = Popen(["/usr/sbin/system_profiler", "-xml", "SPHardwareDataType", "SPNetworkDataType"], stdout= PIPE).communicate()[0] cpu_info, net_info = readPlistFromString(system_profiler_xml) # System serial number mac_serial = cpu_info._items[0].serial_number # Machine model mac_model = cpu_info._items[0].machine_model # Interface names (in ifconfig), excluding localhost net_interface_names = [interface.interface for interface in net_info._items] # Interface names (in System Preferences -> Network) net_interface_snames = [interface._name for interface in net_info._items] # IPv4 addresses net_interface_ipv4s = [interface.IPv4.Addresses[0] for interface in net_info._items]
32.054054
140
0.79511
ef21e0efeaca211c3e46a7442f24a21bff6835a0
2,788
py
Python
CIM15/IEC61970/Informative/InfGMLSupport/GmlFeatureType.py
MaximeBaudette/PyCIM
d68ee5ccfc1d32d44c5cd09fb173142fb5ff4f14
[ "MIT" ]
58
2015-04-22T10:41:03.000Z
2022-03-29T16:04:34.000Z
CIM15/IEC61970/Informative/InfGMLSupport/GmlFeatureType.py
MaximeBaudette/PyCIM
d68ee5ccfc1d32d44c5cd09fb173142fb5ff4f14
[ "MIT" ]
12
2015-08-26T03:57:23.000Z
2020-12-11T20:14:42.000Z
CIM15/IEC61970/Informative/InfGMLSupport/GmlFeatureType.py
MaximeBaudette/PyCIM
d68ee5ccfc1d32d44c5cd09fb173142fb5ff4f14
[ "MIT" ]
35
2015-01-10T12:21:03.000Z
2020-09-09T08:18:16.000Z
# Copyright (C) 2010-2011 Richard Lincoln # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. from CIM15.IEC61970.Core.IdentifiedObject import IdentifiedObject class GmlFeatureType(IdentifiedObject): """Type classification of feature.Type classification of feature. """ def __init__(self, GmlFeatureStyles=None, *args, **kw_args): """Initialises a new 'GmlFeatureType' instance. @param GmlFeatureStyles: """ self._GmlFeatureStyles = [] self.GmlFeatureStyles = [] if GmlFeatureStyles is None else GmlFeatureStyles super(GmlFeatureType, self).__init__(*args, **kw_args) _attrs = [] _attr_types = {} _defaults = {} _enums = {} _refs = ["GmlFeatureStyles"] _many_refs = ["GmlFeatureStyles"] def getGmlFeatureStyles(self): return self._GmlFeatureStyles def setGmlFeatureStyles(self, value): for p in self._GmlFeatureStyles: filtered = [q for q in p.GmlFeatureTypes if q != self] self._GmlFeatureStyles._GmlFeatureTypes = filtered for r in value: if self not in r._GmlFeatureTypes: r._GmlFeatureTypes.append(self) self._GmlFeatureStyles = value GmlFeatureStyles = property(getGmlFeatureStyles, setGmlFeatureStyles) def addGmlFeatureStyles(self, *GmlFeatureStyles): for obj in GmlFeatureStyles: if self not in obj._GmlFeatureTypes: obj._GmlFeatureTypes.append(self) self._GmlFeatureStyles.append(obj) def removeGmlFeatureStyles(self, *GmlFeatureStyles): for obj in GmlFeatureStyles: if self in obj._GmlFeatureTypes: obj._GmlFeatureTypes.remove(self) self._GmlFeatureStyles.remove(obj)
39.267606
84
0.708034
36fe3b35dfaf120d17288c8dc1d14a96a1fb9707
37,111
py
Python
libcxx/utils/generate_feature_test_macro_components.py
keryell/llvm-2
4dc23a26d1bd6ced23969c0525dedbddf8c6fddc
[ "Apache-2.0" ]
null
null
null
libcxx/utils/generate_feature_test_macro_components.py
keryell/llvm-2
4dc23a26d1bd6ced23969c0525dedbddf8c6fddc
[ "Apache-2.0" ]
null
null
null
libcxx/utils/generate_feature_test_macro_components.py
keryell/llvm-2
4dc23a26d1bd6ced23969c0525dedbddf8c6fddc
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import os from builtins import range from functools import reduce def get_libcxx_paths(): utils_path = os.path.dirname(os.path.abspath(__file__)) script_name = os.path.basename(__file__) assert os.path.exists(utils_path) src_root = os.path.dirname(utils_path) include_path = os.path.join(src_root, 'include') assert os.path.exists(include_path) docs_path = os.path.join(src_root, 'docs') assert os.path.exists(docs_path) macro_test_path = os.path.join(src_root, 'test', 'std', 'language.support', 'support.limits', 'support.limits.general') assert os.path.exists(macro_test_path) assert os.path.exists(os.path.join(macro_test_path, 'version.version.pass.cpp')) return script_name, src_root, include_path, docs_path, macro_test_path script_name, source_root, include_path, docs_path, macro_test_path = get_libcxx_paths() def has_header(h): h_path = os.path.join(include_path, h) return os.path.exists(h_path) def add_version_header(tc): tc["headers"].append("version") return tc # ================ ============================================================ # Field Description # ================ ============================================================ # name The name of the feature-test macro. # values A dict whose keys are C++ versions and whose values are the # value of the feature-test macro for that C++ version. # (TODO: This isn't a very clean model for feature-test # macros affected by multiple papers.) # headers An array with the headers that should provide the # feature-test macro. # test_suite_guard An optional string field. When this field is provided, # `libcxx_guard` must also be provided. This field is used # only to generate the unit tests for the feature-test macros. # It can't depend on macros defined in <__config> because the # `test/std/` parts of the test suite are intended to be # portable to any C++ standard library implementation, not # just libc++. It may depend on # * macros defined by the compiler itself, or # * macros generated by CMake. # In some cases we add # `&& !defined(_LIBCPP_AVAILABILITY_DISABLE_FTM_...)` # in order to make libc++ pass the tests on OSX; see D94983. # libcxx_guard An optional string field. When this field is provided, # `test_suite_guard` must also be provided. This field is used # only to guard the feature-test macro in <version>. It may # be the same as `test_suite_guard`, or it may depend on # macros defined in <__config>. # unimplemented An optional Boolean field with the value `True`. This field # is only used when a feature isn't fully implemented. Once # you've fully implemented the feature, you should remove # this field. # ================ ============================================================ feature_test_macros = [ add_version_header(x) for x in [ { "name": "__cpp_lib_addressof_constexpr", "values": { "c++17": 201603 }, "headers": ["memory"], "test_suite_guard": "TEST_HAS_BUILTIN(__builtin_addressof) || TEST_GCC_VER >= 700", "libcxx_guard": "!defined(_LIBCPP_HAS_NO_BUILTIN_ADDRESSOF)", }, { "name": "__cpp_lib_allocator_traits_is_always_equal", "values": { "c++17": 201411 }, "headers": ["deque", "forward_list", "list", "map", "memory", "scoped_allocator", "set", "string", "unordered_map", "unordered_set", "vector"], }, { "name": "__cpp_lib_any", "values": { "c++17": 201606 }, "headers": ["any"], }, { "name": "__cpp_lib_apply", "values": { "c++17": 201603 }, "headers": ["tuple"], }, { "name": "__cpp_lib_array_constexpr", "values": { "c++17": 201603, "c++20": 201811 }, "headers": ["array", "iterator"], }, { "name": "__cpp_lib_as_const", "values": { "c++17": 201510 }, "headers": ["utility"], }, { "name": "__cpp_lib_assume_aligned", "values": { "c++20": 201811 }, "headers": ["memory"], "unimplemented": True, }, { "name": "__cpp_lib_atomic_flag_test", "values": { "c++20": 201907 }, "headers": ["atomic"], "test_suite_guard": "!defined(_LIBCPP_HAS_NO_THREADS)", "libcxx_guard": "!defined(_LIBCPP_HAS_NO_THREADS)", }, { "name": "__cpp_lib_atomic_float", "values": { "c++20": 201711 }, "headers": ["atomic"], "test_suite_guard": "!defined(_LIBCPP_HAS_NO_THREADS)", "libcxx_guard": "!defined(_LIBCPP_HAS_NO_THREADS)", "unimplemented": True, }, { "name": "__cpp_lib_atomic_is_always_lock_free", "values": { "c++17": 201603 }, "headers": ["atomic"], "test_suite_guard": "!defined(_LIBCPP_HAS_NO_THREADS)", "libcxx_guard": "!defined(_LIBCPP_HAS_NO_THREADS)", }, { "name": "__cpp_lib_atomic_lock_free_type_aliases", "values": { "c++20": 201907 }, "headers": ["atomic"], "test_suite_guard": "!defined(_LIBCPP_HAS_NO_THREADS)", "libcxx_guard": "!defined(_LIBCPP_HAS_NO_THREADS)", }, { "name": "__cpp_lib_atomic_ref", "values": { "c++20": 201806 }, "headers": ["atomic"], "test_suite_guard": "!defined(_LIBCPP_HAS_NO_THREADS)", "libcxx_guard": "!defined(_LIBCPP_HAS_NO_THREADS)", "unimplemented": True, }, { "name": "__cpp_lib_atomic_shared_ptr", "values": { "c++20": 201711 }, "headers": ["atomic"], "test_suite_guard": "!defined(_LIBCPP_HAS_NO_THREADS)", "libcxx_guard": "!defined(_LIBCPP_HAS_NO_THREADS)", "unimplemented": True, }, { "name": "__cpp_lib_atomic_value_initialization", "values": { "c++20": 201911 }, "headers": ["atomic", "memory"], "test_suite_guard": "!defined(_LIBCPP_HAS_NO_THREADS)", "libcxx_guard": "!defined(_LIBCPP_HAS_NO_THREADS)", "unimplemented": True, }, { "name": "__cpp_lib_atomic_wait", "values": { "c++20": 201907 }, "headers": ["atomic"], "test_suite_guard": "!defined(_LIBCPP_HAS_NO_THREADS) && !defined(_LIBCPP_AVAILABILITY_DISABLE_FTM___cpp_lib_atomic_wait)", "libcxx_guard": "!defined(_LIBCPP_HAS_NO_THREADS) && !defined(_LIBCPP_AVAILABILITY_DISABLE_FTM___cpp_lib_atomic_wait)", }, { "name": "__cpp_lib_barrier", "values": { "c++20": 201907 }, "headers": ["barrier"], "test_suite_guard": "!defined(_LIBCPP_HAS_NO_THREADS) && !defined(_LIBCPP_AVAILABILITY_DISABLE_FTM___cpp_lib_barrier)", "libcxx_guard": "!defined(_LIBCPP_HAS_NO_THREADS) && !defined(_LIBCPP_AVAILABILITY_DISABLE_FTM___cpp_lib_barrier)", }, { "name": "__cpp_lib_bind_front", "values": { "c++20": 201907 }, "headers": ["functional"], }, { "name": "__cpp_lib_bit_cast", "values": { "c++20": 201806 }, "headers": ["bit"], "unimplemented": True, }, { "name": "__cpp_lib_bitops", "values": { "c++20": 201907 }, "headers": ["bit"], "unimplemented": True, }, { "name": "__cpp_lib_bool_constant", "values": { "c++17": 201505 }, "headers": ["type_traits"], }, { "name": "__cpp_lib_bounded_array_traits", "values": { "c++20": 201902 }, "headers": ["type_traits"], }, { "name": "__cpp_lib_boyer_moore_searcher", "values": { "c++17": 201603 }, "headers": ["functional"], "unimplemented": True, }, { "name": "__cpp_lib_byte", "values": { "c++17": 201603 }, "headers": ["cstddef"], }, { "name": "__cpp_lib_char8_t", "values": { "c++20": 201811 }, "headers": ["atomic", "filesystem", "istream", "limits", "locale", "ostream", "string", "string_view"], "test_suite_guard": "defined(__cpp_char8_t)", "libcxx_guard": "!defined(_LIBCPP_HAS_NO_CHAR8_T)", }, { "name": "__cpp_lib_chrono", "values": { "c++17": 201611 }, "headers": ["chrono"], }, { "name": "__cpp_lib_chrono_udls", "values": { "c++14": 201304 }, "headers": ["chrono"], }, { "name": "__cpp_lib_clamp", "values": { "c++17": 201603 }, "headers": ["algorithm"], }, { "name": "__cpp_lib_complex_udls", "values": { "c++14": 201309 }, "headers": ["complex"], }, { "name": "__cpp_lib_concepts", "values": { "c++20": 202002 }, "headers": ["concepts"], }, { "name": "__cpp_lib_constexpr_algorithms", "values": { "c++20": 201806 }, "headers": ["algorithm"], }, { "name": "__cpp_lib_constexpr_complex", "values": { "c++20": 201711 }, "headers": ["complex"], "unimplemented": True, }, { "name": "__cpp_lib_constexpr_dynamic_alloc", "values": { "c++20": 201907 }, "headers": ["memory"], }, { "name": "__cpp_lib_constexpr_functional", "values": { "c++20": 201907 }, "headers": ["functional"], }, { "name": "__cpp_lib_constexpr_iterator", "values": { "c++20": 201811 }, "headers": ["iterator"], }, { "name": "__cpp_lib_constexpr_memory", "values": { "c++20": 201811 }, "headers": ["memory"], }, { "name": "__cpp_lib_constexpr_numeric", "values": { "c++20": 201911 }, "headers": ["numeric"], }, { "name": "__cpp_lib_constexpr_string", "values": { "c++20": 201811 }, # because P1032R1 is implemented; but should become 201907 after P0980R1 "headers": ["string"], }, { "name": "__cpp_lib_constexpr_string_view", "values": { "c++20": 201811 }, "headers": ["string_view"], }, { "name": "__cpp_lib_constexpr_tuple", "values": { "c++20": 201811 }, "headers": ["tuple"], }, { "name": "__cpp_lib_constexpr_utility", "values": { "c++20": 201811 }, "headers": ["utility"], }, { "name": "__cpp_lib_constexpr_vector", "values": { "c++20": 201907 }, "headers": ["vector"], "unimplemented": True, }, { "name": "__cpp_lib_coroutine", "values": { "c++20": 201902 }, "headers": ["coroutine"], "unimplemented": True, }, { "name": "__cpp_lib_destroying_delete", "values": { "c++20": 201806 }, "headers": ["new"], "test_suite_guard": "TEST_STD_VER > 17 && defined(__cpp_impl_destroying_delete) && __cpp_impl_destroying_delete >= 201806L", "libcxx_guard": "_LIBCPP_STD_VER > 17 && defined(__cpp_impl_destroying_delete) && __cpp_impl_destroying_delete >= 201806L", }, { "name": "__cpp_lib_enable_shared_from_this", "values": { "c++17": 201603 }, "headers": ["memory"], }, { "name": "__cpp_lib_endian", "values": { "c++20": 201907 }, "headers": ["bit"], }, { "name": "__cpp_lib_erase_if", "values": { "c++20": 202002 }, "headers": ["deque", "forward_list", "list", "map", "set", "string", "unordered_map", "unordered_set", "vector"], }, { "name": "__cpp_lib_exchange_function", "values": { "c++14": 201304 }, "headers": ["utility"], }, { "name": "__cpp_lib_execution", "values": { "c++17": 201603, "c++20": 201902 }, "headers": ["execution"], "unimplemented": True, }, { "name": "__cpp_lib_filesystem", "values": { "c++17": 201703 }, "headers": ["filesystem"], "test_suite_guard": "!defined(_LIBCPP_AVAILABILITY_DISABLE_FTM___cpp_lib_filesystem)", "libcxx_guard": "!defined(_LIBCPP_AVAILABILITY_DISABLE_FTM___cpp_lib_filesystem)" }, { "name": "__cpp_lib_format", "values": { "c++20": 201907 }, "headers": ["format"], "unimplemented": True, }, { "name": "__cpp_lib_gcd_lcm", "values": { "c++17": 201606 }, "headers": ["numeric"], }, { "name": "__cpp_lib_generic_associative_lookup", "values": { "c++14": 201304 }, "headers": ["map", "set"], }, { "name": "__cpp_lib_generic_unordered_lookup", "values": { "c++20": 201811 }, "headers": ["unordered_map", "unordered_set"], }, { "name": "__cpp_lib_hardware_interference_size", "values": { "c++17": 201703 }, "headers": ["new"], "unimplemented": True, }, { "name": "__cpp_lib_has_unique_object_representations", "values": { "c++17": 201606 }, "headers": ["type_traits"], "test_suite_guard": "TEST_HAS_BUILTIN_IDENTIFIER(__has_unique_object_representations) || TEST_GCC_VER >= 700", "libcxx_guard": "defined(_LIBCPP_HAS_UNIQUE_OBJECT_REPRESENTATIONS)", }, { "name": "__cpp_lib_hypot", "values": { "c++17": 201603 }, "headers": ["cmath"], }, { "name": "__cpp_lib_incomplete_container_elements", "values": { "c++17": 201505 }, "headers": ["forward_list", "list", "vector"], }, { "name": "__cpp_lib_int_pow2", "values": { "c++20": 202002 }, "headers": ["bit"], }, { "name": "__cpp_lib_integer_comparison_functions", "values": { "c++20": 202002 }, "headers": ["utility"], "test_suite_guard": "defined(__cpp_concepts) && __cpp_concepts >= 201907L", "libcxx_guard": "!defined(_LIBCPP_HAS_NO_CONCEPTS)", }, { "name": "__cpp_lib_integer_sequence", "values": { "c++14": 201304 }, "headers": ["utility"], }, { "name": "__cpp_lib_integral_constant_callable", "values": { "c++14": 201304 }, "headers": ["type_traits"], }, { "name": "__cpp_lib_interpolate", "values": { "c++20": 201902 }, "headers": ["cmath", "numeric"], }, { "name": "__cpp_lib_invoke", "values": { "c++17": 201411 }, "headers": ["functional"], }, { "name": "__cpp_lib_is_aggregate", "values": { "c++17": 201703 }, "headers": ["type_traits"], "test_suite_guard": "TEST_HAS_BUILTIN_IDENTIFIER(__is_aggregate) || TEST_GCC_VER_NEW >= 7001", "libcxx_guard": "!defined(_LIBCPP_HAS_NO_IS_AGGREGATE)", }, { "name": "__cpp_lib_is_constant_evaluated", "values": { "c++20": 201811 }, "headers": ["type_traits"], "test_suite_guard": "TEST_HAS_BUILTIN(__builtin_is_constant_evaluated) || TEST_GCC_VER >= 900", "libcxx_guard": "!defined(_LIBCPP_HAS_NO_BUILTIN_IS_CONSTANT_EVALUATED)", }, { "name": "__cpp_lib_is_final", "values": { "c++14": 201402 }, "headers": ["type_traits"], }, { "name": "__cpp_lib_is_invocable", "values": { "c++17": 201703 }, "headers": ["type_traits"], }, { "name": "__cpp_lib_is_layout_compatible", "values": { "c++20": 201907 }, "headers": ["type_traits"], "unimplemented": True, }, { "name": "__cpp_lib_is_nothrow_convertible", "values": { "c++20": 201806 }, "headers": ["type_traits"], }, { "name": "__cpp_lib_is_null_pointer", "values": { "c++14": 201309 }, "headers": ["type_traits"], }, { "name": "__cpp_lib_is_pointer_interconvertible", "values": { "c++20": 201907 }, "headers": ["type_traits"], "unimplemented": True, }, { "name": "__cpp_lib_is_scoped_enum", "values": { "c++2b": 202011 }, "headers": ["type_traits"], }, { "name": "__cpp_lib_is_swappable", "values": { "c++17": 201603 }, "headers": ["type_traits"], }, { "name": "__cpp_lib_jthread", "values": { "c++20": 201911 }, "headers": ["stop_token", "thread"], "test_suite_guard": "!defined(_LIBCPP_HAS_NO_THREADS)", "libcxx_guard": "!defined(_LIBCPP_HAS_NO_THREADS)", "unimplemented": True, }, { "name": "__cpp_lib_latch", "values": { "c++20": 201907 }, "headers": ["latch"], "test_suite_guard": "!defined(_LIBCPP_HAS_NO_THREADS) && !defined(_LIBCPP_AVAILABILITY_DISABLE_FTM___cpp_lib_latch)", "libcxx_guard": "!defined(_LIBCPP_HAS_NO_THREADS) && !defined(_LIBCPP_AVAILABILITY_DISABLE_FTM___cpp_lib_latch)", }, { "name": "__cpp_lib_launder", "values": { "c++17": 201606 }, "headers": ["new"], }, { "name": "__cpp_lib_list_remove_return_type", "values": { "c++20": 201806 }, "headers": ["forward_list", "list"], }, { "name": "__cpp_lib_logical_traits", "values": { "c++17": 201510 }, "headers": ["type_traits"], }, { "name": "__cpp_lib_make_from_tuple", "values": { "c++17": 201606 }, "headers": ["tuple"], }, { "name": "__cpp_lib_make_reverse_iterator", "values": { "c++14": 201402 }, "headers": ["iterator"], }, { "name": "__cpp_lib_make_unique", "values": { "c++14": 201304 }, "headers": ["memory"], }, { "name": "__cpp_lib_map_try_emplace", "values": { "c++17": 201411 }, "headers": ["map"], }, { "name": "__cpp_lib_math_constants", "values": { "c++20": 201907 }, "headers": ["numbers"], "test_suite_guard": "defined(__cpp_concepts) && __cpp_concepts >= 201907L", "libcxx_guard": "!defined(_LIBCPP_HAS_NO_CONCEPTS)", }, { "name": "__cpp_lib_math_special_functions", "values": { "c++17": 201603 }, "headers": ["cmath"], "unimplemented": True, }, { "name": "__cpp_lib_memory_resource", "values": { "c++17": 201603 }, "headers": ["memory_resource"], "unimplemented": True, }, { "name": "__cpp_lib_node_extract", "values": { "c++17": 201606 }, "headers": ["map", "set", "unordered_map", "unordered_set"], }, { "name": "__cpp_lib_nonmember_container_access", "values": { "c++17": 201411 }, "headers": ["array", "deque", "forward_list", "iterator", "list", "map", "regex", "set", "string", "unordered_map", "unordered_set", "vector"], }, { "name": "__cpp_lib_not_fn", "values": { "c++17": 201603 }, "headers": ["functional"], }, { "name": "__cpp_lib_null_iterators", "values": { "c++14": 201304 }, "headers": ["iterator"], }, { "name": "__cpp_lib_optional", "values": { "c++17": 201606 }, "headers": ["optional"], }, { "name": "__cpp_lib_parallel_algorithm", "values": { "c++17": 201603 }, "headers": ["algorithm", "numeric"], "unimplemented": True, }, { "name": "__cpp_lib_polymorphic_allocator", "values": { "c++20": 201902 }, "headers": ["memory"], "unimplemented": True, }, { "name": "__cpp_lib_quoted_string_io", "values": { "c++14": 201304 }, "headers": ["iomanip"], }, { "name": "__cpp_lib_ranges", "values": { "c++20": 201811 }, "headers": ["algorithm", "functional", "iterator", "memory", "ranges"], "unimplemented": True, }, { "name": "__cpp_lib_raw_memory_algorithms", "values": { "c++17": 201606 }, "headers": ["memory"], }, { "name": "__cpp_lib_remove_cvref", "values": { "c++20": 201711 }, "headers": ["type_traits"], }, { "name": "__cpp_lib_result_of_sfinae", "values": { "c++14": 201210 }, "headers": ["functional", "type_traits"], }, { "name": "__cpp_lib_robust_nonmodifying_seq_ops", "values": { "c++14": 201304 }, "headers": ["algorithm"], }, { "name": "__cpp_lib_sample", "values": { "c++17": 201603 }, "headers": ["algorithm"], }, { "name": "__cpp_lib_scoped_lock", "values": { "c++17": 201703 }, "headers": ["mutex"], }, { "name": "__cpp_lib_semaphore", "values": { "c++20": 201907 }, "headers": ["semaphore"], "test_suite_guard": "!defined(_LIBCPP_HAS_NO_THREADS) && !defined(_LIBCPP_AVAILABILITY_DISABLE_FTM___cpp_lib_semaphore)", "libcxx_guard": "!defined(_LIBCPP_HAS_NO_THREADS) && !defined(_LIBCPP_AVAILABILITY_DISABLE_FTM___cpp_lib_semaphore)", }, { "name": "__cpp_lib_shared_mutex", "values": { "c++17": 201505 }, "headers": ["shared_mutex"], "test_suite_guard": "!defined(_LIBCPP_HAS_NO_THREADS) && !defined(_LIBCPP_AVAILABILITY_DISABLE_FTM___cpp_lib_shared_mutex)", "libcxx_guard": "!defined(_LIBCPP_HAS_NO_THREADS) && !defined(_LIBCPP_AVAILABILITY_DISABLE_FTM___cpp_lib_shared_mutex)", }, { "name": "__cpp_lib_shared_ptr_arrays", "values": { "c++17": 201611 }, "headers": ["memory"], }, { "name": "__cpp_lib_shared_ptr_weak_type", "values": { "c++17": 201606 }, "headers": ["memory"], }, { "name": "__cpp_lib_shared_timed_mutex", "values": { "c++14": 201402 }, "headers": ["shared_mutex"], "test_suite_guard": "!defined(_LIBCPP_HAS_NO_THREADS) && !defined(_LIBCPP_AVAILABILITY_DISABLE_FTM___cpp_lib_shared_timed_mutex)", "libcxx_guard": "!defined(_LIBCPP_HAS_NO_THREADS) && !defined(_LIBCPP_AVAILABILITY_DISABLE_FTM___cpp_lib_shared_timed_mutex)", }, { "name": "__cpp_lib_shift", "values": { "c++20": 201806 }, "headers": ["algorithm"], }, { "name": "__cpp_lib_smart_ptr_for_overwrite", "values": { "c++20": 202002 }, "headers": ["memory"], "unimplemented": True, }, { "name": "__cpp_lib_source_location", "values": { "c++20": 201907 }, "headers": ["source_location"], "unimplemented": True, }, { "name": "__cpp_lib_span", "values": { "c++20": 202002 }, "headers": ["span"], }, { "name": "__cpp_lib_ssize", "values": { "c++20": 201902 }, "headers": ["iterator"], }, { "name": "__cpp_lib_stacktrace", "values": { "c++2b": 202011 }, "headers": ["stacktrace"], "unimplemented": True, }, { "name": "__cpp_lib_starts_ends_with", "values": { "c++20": 201711 }, "headers": ["string", "string_view"], }, { "name": "__cpp_lib_stdatomic_h", "values": { "c++2b": 202011 }, "headers": ["stdatomic.h"], "unimplemented": True, }, { "name": "__cpp_lib_string_contains", "values": { "c++2b": 202011 }, "headers": ["string", "string_view"], }, { "name": "__cpp_lib_string_udls", "values": { "c++14": 201304 }, "headers": ["string"], }, { "name": "__cpp_lib_string_view", "values": { "c++17": 201606, "c++20": 201803 }, "headers": ["string", "string_view"], }, { "name": "__cpp_lib_syncbuf", "values": { "c++20": 201803 }, "headers": ["syncstream"], "unimplemented": True, }, { "name": "__cpp_lib_three_way_comparison", "values": { "c++20": 201907 }, "headers": ["compare"], "unimplemented": True, }, { "name": "__cpp_lib_to_address", "values": { "c++20": 201711 }, "headers": ["memory"], }, { "name": "__cpp_lib_to_array", "values": { "c++20": 201907 }, "headers": ["array"], }, { "name": "__cpp_lib_to_chars", "values": { "c++17": 201611 }, "headers": ["utility"], "unimplemented": True, }, { "name": "__cpp_lib_to_underlying", "values": { "c++2b": 202102 }, "headers": ["utility"], }, { "name": "__cpp_lib_transformation_trait_aliases", "values": { "c++14": 201304 }, "headers": ["type_traits"], }, { "name": "__cpp_lib_transparent_operators", "values": { "c++14": 201210, "c++17": 201510 }, "headers": ["functional", "memory"], }, { "name": "__cpp_lib_tuple_element_t", "values": { "c++14": 201402 }, "headers": ["tuple"], }, { "name": "__cpp_lib_tuples_by_type", "values": { "c++14": 201304 }, "headers": ["tuple", "utility"], }, { "name": "__cpp_lib_type_trait_variable_templates", "values": { "c++17": 201510 }, "headers": ["type_traits"], }, { "name": "__cpp_lib_uncaught_exceptions", "values": { "c++17": 201411 }, "headers": ["exception"], }, { "name": "__cpp_lib_unordered_map_try_emplace", "values": { "c++17": 201411 }, "headers": ["unordered_map"], }, { "name": "__cpp_lib_unwrap_ref", "values": { "c++20": 201811 }, "headers": ["functional"], }, { "name": "__cpp_lib_variant", "values": { "c++17": 202102 }, "headers": ["variant"], }, { "name": "__cpp_lib_void_t", "values": { "c++17": 201411 }, "headers": ["type_traits"], } ]] assert feature_test_macros == sorted(feature_test_macros, key=lambda tc: tc["name"]) assert all(tc["headers"] == sorted(tc["headers"]) for tc in feature_test_macros) assert all(("libcxx_guard" in tc) == ("test_suite_guard" in tc) for tc in feature_test_macros) assert all(all(key in ["name", "values", "headers", "libcxx_guard", "test_suite_guard", "unimplemented"] for key in tc.keys()) for tc in feature_test_macros) # Map from each header to the Lit annotations that should be used for # tests that include that header. # # For example, when threads are not supported, any feature-test-macro test # that includes <thread> should be marked as UNSUPPORTED, because including # <thread> is a hard error in that case. lit_markup = { "atomic": ["UNSUPPORTED: libcpp-has-no-threads"], "barrier": ["UNSUPPORTED: libcpp-has-no-threads"], "filesystem": ["UNSUPPORTED: libcpp-has-no-filesystem-library"], "iomanip": ["UNSUPPORTED: libcpp-has-no-localization"], "istream": ["UNSUPPORTED: libcpp-has-no-localization"], "latch": ["UNSUPPORTED: libcpp-has-no-threads"], "locale": ["UNSUPPORTED: libcpp-has-no-localization"], "ostream": ["UNSUPPORTED: libcpp-has-no-localization"], "regex": ["UNSUPPORTED: libcpp-has-no-localization"], "semaphore": ["UNSUPPORTED: libcpp-has-no-threads"], "shared_mutex": ["UNSUPPORTED: libcpp-has-no-threads"], "thread": ["UNSUPPORTED: libcpp-has-no-threads"], } def get_std_dialects(): std_dialects = ['c++14', 'c++17', 'c++20', 'c++2b'] return list(std_dialects) def get_first_std(d): for s in get_std_dialects(): if s in d.keys(): return s return None def get_last_std(d): rev_dialects = get_std_dialects() rev_dialects.reverse() for s in rev_dialects: if s in d.keys(): return s return None def get_std_before(d, std): std_dialects = get_std_dialects() candidates = std_dialects[0:std_dialects.index(std)] candidates.reverse() for cand in candidates: if cand in d.keys(): return cand return None def get_value_before(d, std): new_std = get_std_before(d, std) if new_std is None: return None return d[new_std] def get_for_std(d, std): # This catches the C++11 case for which there should be no defined feature # test macros. std_dialects = get_std_dialects() if std not in std_dialects: return None # Find the value for the newest C++ dialect between C++14 and std std_list = list(std_dialects[0:std_dialects.index(std)+1]) std_list.reverse() for s in std_list: if s in d.keys(): return d[s] return None def get_std_number(std): return std.replace('c++', '') """ Functions to produce the <version> header """ def produce_macros_definition_for_std(std): result = "" indent = 55 for tc in feature_test_macros: if std not in tc["values"]: continue inner_indent = 1 if 'test_suite_guard' in tc.keys(): result += "# if %s\n" % tc["libcxx_guard"] inner_indent += 2 if get_value_before(tc["values"], std) is not None: assert 'test_suite_guard' not in tc.keys() result += "# undef %s\n" % tc["name"] line = "#%sdefine %s" % ((" " * inner_indent), tc["name"]) line += " " * (indent - len(line)) line += " %sL" % tc["values"][std] if 'unimplemented' in tc.keys(): line = "// " + line result += line result += "\n" if 'test_suite_guard' in tc.keys(): result += "# endif\n" return result.strip() def produce_macros_definitions(): macro_definition_template = """#if _LIBCPP_STD_VER > {previous_std_number} {macro_definition} #endif""" macros_definitions = [] previous_std_number = '11' for std in get_std_dialects(): macros_definitions.append( macro_definition_template.format(previous_std_number=previous_std_number, macro_definition=produce_macros_definition_for_std(std))) previous_std_number = get_std_number(std) return '\n\n'.join(macros_definitions) def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i + n] def produce_version_synopsis(): indent = 56 header_indent = 56 + len("20XXYYL ") result = "" def indent_to(s, val): if len(s) >= val: return s s += " " * (val - len(s)) return s line = indent_to("Macro name", indent) + "Value" line = indent_to(line, header_indent) + "Headers" result += line + "\n" for tc in feature_test_macros: prev_defined_std = get_last_std(tc["values"]) line = "{name: <{indent}}{value}L ".format(name=tc['name'], indent=indent, value=tc["values"][prev_defined_std]) headers = list(tc["headers"]) headers.remove("version") for chunk in chunks(headers, 3): line = indent_to(line, header_indent) chunk = ['<%s>' % header for header in chunk] line += ' '.join(chunk) result += line result += "\n" line = "" while True: prev_defined_std = get_std_before(tc["values"], prev_defined_std) if prev_defined_std is None: break result += "%s%sL // %s\n" % (indent_to("", indent), tc["values"][prev_defined_std], prev_defined_std.replace("c++", "C++")) return result def produce_version_header(): template="""// -*- C++ -*- //===--------------------------- version ----------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef _LIBCPP_VERSIONH #define _LIBCPP_VERSIONH /* version synopsis {synopsis} */ #include <__config> #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER) #pragma GCC system_header #endif // clang-format off {cxx_macros} // clang-format on #endif // _LIBCPP_VERSIONH """ version_str = template.format( synopsis=produce_version_synopsis().strip(), cxx_macros=produce_macros_definitions()) version_header_path = os.path.join(include_path, 'version') with open(version_header_path, 'w', newline='\n') as f: f.write(version_str) """ Functions to produce test files """ test_types = { "undefined": """ # ifdef {name} # error "{name} should not be defined before {std_first}" # endif """, "test_suite_guard": """ # if {test_suite_guard} # ifndef {name} # error "{name} should be defined in {std}" # endif # if {name} != {value} # error "{name} should have the value {value} in {std}" # endif # else # ifdef {name} # error "{name} should not be defined when {test_suite_guard} is not defined!" # endif # endif """, "unimplemented": """ # if !defined(_LIBCPP_VERSION) # ifndef {name} # error "{name} should be defined in {std}" # endif # if {name} != {value} # error "{name} should have the value {value} in {std}" # endif # else // _LIBCPP_VERSION # ifdef {name} # error "{name} should not be defined because it is unimplemented in libc++!" # endif # endif """, "defined": """ # ifndef {name} # error "{name} should be defined in {std}" # endif # if {name} != {value} # error "{name} should have the value {value} in {std}" # endif """ } def generate_std_test(test_list, std): result = "" for tc in test_list: val = get_for_std(tc["values"], std) if val is not None: val = "%sL" % val if val is None: result += test_types["undefined"].format(name=tc["name"], std_first=get_first_std(tc["values"])) elif 'unimplemented' in tc.keys(): result += test_types["unimplemented"].format(name=tc["name"], value=val, std=std) elif "test_suite_guard" in tc.keys(): result += test_types["test_suite_guard"].format(name=tc["name"], value=val, std=std, test_suite_guard=tc["test_suite_guard"]) else: result += test_types["defined"].format(name=tc["name"], value=val, std=std) return result.strip() def generate_std_tests(test_list): std_tests_template = """#if TEST_STD_VER < {first_std_number} {pre_std_test} {other_std_tests} #elif TEST_STD_VER > {penultimate_std_number} {last_std_test} #endif // TEST_STD_VER > {penultimate_std_number}""" std_dialects = get_std_dialects() assert not get_std_number(std_dialects[-1]).isnumeric() other_std_tests = [] for std in std_dialects[:-1]: other_std_tests.append('#elif TEST_STD_VER == ' + get_std_number(std)) other_std_tests.append(generate_std_test(test_list, std)) std_tests = std_tests_template.format(first_std_number=get_std_number(std_dialects[0]), pre_std_test=generate_std_test(test_list, 'c++11'), other_std_tests='\n\n'.join(other_std_tests), penultimate_std_number=get_std_number(std_dialects[-2]), last_std_test=generate_std_test(test_list, std_dialects[-1])) return std_tests def generate_synopsis(test_list): max_name_len = max([len(tc["name"]) for tc in test_list]) indent = max_name_len + 8 def mk_line(prefix, suffix): return "{prefix: <{max_len}}{suffix}\n".format(prefix=prefix, suffix=suffix, max_len=indent) result = "" result += mk_line("/* Constant", "Value") for tc in test_list: prefix = " %s" % tc["name"] for std in [s for s in get_std_dialects() if s in tc["values"].keys()]: result += mk_line(prefix, "%sL [%s]" % (tc["values"][std], std.replace("c++", "C++"))) prefix = "" result += "*/" return result def produce_tests(): headers = set([h for tc in feature_test_macros for h in tc["headers"]]) for h in headers: test_list = [tc for tc in feature_test_macros if h in tc["headers"]] if not has_header(h): for tc in test_list: assert 'unimplemented' in tc.keys() continue markup = '\n'.join('// ' + tag for tag in lit_markup.get(h, [])) test_body = \ """//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // WARNING: This test was generated by {script_name} // and should not be edited manually. // // clang-format off {markup} // <{header}> // Test the feature test macros defined by <{header}> {synopsis} #include <{header}> #include "test_macros.h" {cxx_tests} int main(int, char**) {{ return 0; }} """.format(script_name=script_name, header=h, markup=('\n{}\n'.format(markup) if markup else ''), synopsis=generate_synopsis(test_list), cxx_tests=generate_std_tests(test_list)) test_name = "{header}.version.pass.cpp".format(header=h) out_path = os.path.join(macro_test_path, test_name) with open(out_path, 'w', newline='\n') as f: f.write(test_body) """ Produce documentation for the feature test macros """ def make_widths(grid): widths = [] for i in range(0, len(grid[0])): cell_width = 2 + max(reduce(lambda x,y: x+y, [[len(row[i])] for row in grid], [])) widths += [cell_width] return widths def create_table(grid, indent): indent_str = ' '*indent col_widths = make_widths(grid) result = [indent_str + add_divider(col_widths, 2)] header_flag = 2 for row_i in range(0, len(grid)): row = grid[row_i] line = indent_str + ' '.join([pad_cell(row[i], col_widths[i]) for i in range(0, len(row))]) result.append(line.rstrip()) is_cxx_header = row[0].startswith('**') if row_i == len(grid) - 1: header_flag = 2 separator = indent_str + add_divider(col_widths, 1 if is_cxx_header else header_flag) result.append(separator.rstrip()) header_flag = 0 return '\n'.join(result) def add_divider(widths, header_flag): if header_flag == 2: return ' '.join(['='*w for w in widths]) if header_flag == 1: return '-'.join(['-'*w for w in widths]) else: return ' '.join(['-'*w for w in widths]) def pad_cell(s, length, left_align=True): padding = ((length - len(s)) * ' ') return s + padding def get_status_table(): table = [["Macro Name", "Value"]] for std in get_std_dialects(): table += [["**" + std.replace("c++", "C++ ") + "**", ""]] for tc in feature_test_macros: if std not in tc["values"].keys(): continue value = "``%sL``" % tc["values"][std] if 'unimplemented' in tc.keys(): value = '*unimplemented*' table += [["``%s``" % tc["name"], value]] return table def produce_docs(): doc_str = """.. _FeatureTestMacroTable: ========================== Feature Test Macro Support ========================== .. contents:: :local: Overview ======== This file documents the feature test macros currently supported by libc++. .. _feature-status: Status ====== .. table:: Current Status :name: feature-status-table :widths: auto {status_tables} """.format(status_tables=create_table(get_status_table(), 4)) table_doc_path = os.path.join(docs_path, 'FeatureTestMacroTable.rst') with open(table_doc_path, 'w', newline='\n') as f: f.write(doc_str) def main(): produce_version_header() produce_tests() produce_docs() if __name__ == '__main__': main()
33.046305
157
0.600711
b21ff581e97c70c0597fce0531d0c489d93d54b7
13
py
Python
semiempy/integrals/__init__.py
amandadumi/semiempy
2f8ed7e9fb033772f2c34381de3c3faa3a05e3ab
[ "BSD-3-Clause" ]
6
2019-01-14T15:50:10.000Z
2019-03-26T07:08:33.000Z
semiempy/integrals/__init__.py
amandadumi/semiempy
2f8ed7e9fb033772f2c34381de3c3faa3a05e3ab
[ "BSD-3-Clause" ]
4
2019-01-14T15:45:08.000Z
2019-03-04T15:26:15.000Z
semiempy/integrals/__init__.py
amandadumi/semiempy
2f8ed7e9fb033772f2c34381de3c3faa3a05e3ab
[ "BSD-3-Clause" ]
2
2019-01-14T15:23:44.000Z
2019-01-14T15:51:07.000Z
# Integrals
4.333333
11
0.692308
d251fe1da26e9b2d6bfd5387933a05b68272f3cc
924
py
Python
src/reformat-axiomata.py
mac389/sudo
470dc2506bfed51c166ba8c13c818261ece32d56
[ "MIT" ]
null
null
null
src/reformat-axiomata.py
mac389/sudo
470dc2506bfed51c166ba8c13c818261ece32d56
[ "MIT" ]
null
null
null
src/reformat-axiomata.py
mac389/sudo
470dc2506bfed51c166ba8c13c818261ece32d56
[ "MIT" ]
null
null
null
import csv, os from tqdm import tqdm from pprint import pprint filename = os.path.join('..','jamia-axiomata.csv') contents = list(csv.DictReader(open(filename,'r'),delimiter='\t',skipinitialspace=True)) PATH = os.path.join('..','problog','could-create-mln-file') translation_table = {item['original']:item['converted'] for item in contents} amalgamated_axiomata = [] for name in tqdm(os.listdir(PATH),'Formatting axiomata'): if os.path.isdir(os.path.join(PATH,name)): axioms = open(os.path.join(PATH,name,'abstract.logic'),'r').read() for string in contents: for string in translation_table: if string in axioms: axioms = axioms.replace(string,translation_table[string]) with open(os.path.join(PATH,name,'formatted.logic'), 'w') as out: out.write(axioms) amalgamated_axiomata += [axioms] with open(os.path.join('..','amalgamated.axiomata'),'w') as out: out.write(''.join(amalgamated_axiomata))
36.96
88
0.718615
8f3b186461d7c89f3b467d6376307b510711df82
1,854
py
Python
WOTS.py
lothar1998/XMSS-tree
3e491d6d4b82de1934f7a9b405730ec1ac7d2e54
[ "MIT" ]
1
2021-08-13T08:24:23.000Z
2021-08-13T08:24:23.000Z
WOTS.py
lothar1998/XMSS-tree
3e491d6d4b82de1934f7a9b405730ec1ac7d2e54
[ "MIT" ]
null
null
null
WOTS.py
lothar1998/XMSS-tree
3e491d6d4b82de1934f7a9b405730ec1ac7d2e54
[ "MIT" ]
null
null
null
from utils import * def WOTS_genSK(length, n): secret_key = [bytes()] * length for i in range(length): SEED = generate_random_value(length) secret_key[i] = pseudorandom_function(SEED, n) return secret_key def WOTS_genPK(private_key: [bytes], length: int, w: int in {4, 16}, SEED, address): public_key = [bytes()] * length for i in range(length): address.setChainAddress(i) public_key[i] = chain(private_key[i], 0, w - 1, SEED, address, w) return public_key def WOTS_sign(message: bytes, private_key: [bytes], w: int in {4, 16}, SEED, address): checksum = 0 n = len(message) // 2 len_1, len_2, len_all = compute_lengths(n, w) msg = base_w(message, w, len_1) for i in range(0, len_1): checksum += w - 1 - msg[i] checksum = checksum << int(8 - ((len_2 * log2(w)) % 8)) len_2_bytes = compute_needed_bytes(checksum) msg.extend(base_w(to_byte(checksum, len_2_bytes), w, len_2)) signature = [bytes()] * len_all for i in range(0, len_all): address.setChainAddress(i) signature[i] = chain(private_key[i], 0, msg[i], SEED, address, w) return signature def WOTS_pkFromSig(message: bytes, signature: [bytes], w: int in {4, 16}, address, SEED): checksum = 0 n = len(message) // 2 len_1, len_2, len_all = compute_lengths(n, w) msg = base_w(message, w, len_1) for i in range(0, len_1): checksum += w - 1 - msg[i] checksum = checksum << int(8 - ((len_2 * log2(w)) % 8)) len_2_bytes = compute_needed_bytes(checksum) msg.extend(base_w(to_byte(checksum, len_2_bytes), w, len_2)) tmp_pk = [bytes()] * len_all for i in range(0, len_all): address.setChainAddress(i) tmp_pk[i] = chain(signature[i], msg[i], w - 1 - msg[i], SEED, address, w) return tmp_pk
25.054054
89
0.618123
542bfdb8541c35e42a35caff1ee698791a97cc51
2,215
py
Python
cpurger.py
updatedenis5300/compact-purger
311daae1037e2bf3786f2e882732919586799e55
[ "MIT" ]
null
null
null
cpurger.py
updatedenis5300/compact-purger
311daae1037e2bf3786f2e882732919586799e55
[ "MIT" ]
null
null
null
cpurger.py
updatedenis5300/compact-purger
311daae1037e2bf3786f2e882732919586799e55
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # -*- coding: utf-8 -*- import sys import argparse import os import glob # Defualt path dir_path = os.path.dirname(os.path.realpath(__file__)) def create_parser (): parser = argparse.ArgumentParser(description='Tool for revoming useless files') parser.add_argument('file_types', metavar='T', type=str, nargs='+', help='Types of files for the removing') parser.add_argument ('-s', '--show', action='store_true', help='Show information') parser.add_argument ('-r', '--recursion', action='store_true', help='Enable recursion') parser.add_argument ('-p', '--path', nargs='?', default=dir_path, help='Path to search') parser.add_argument ('-f', '--force', action='store_true', help='Disable confirmation') return parser def get_files(types, recurse, dir_path): files = [] try: if recurse: for type_search in types: files.extend(glob.glob(dir_path+'/**/*.'+type_search, recursive=True)) else: for type_search in types: files.extend(glob.glob(dir_path+'/*.'+type_search)) except Exception as e: raise sys.exit() return files def smart_purge(file_types, show=False, recursion=False, path=dir_path, force=True): files=get_files(file_types, recursion, path) if len(files) == 0: print("Not found") return if show: print("Found files in", dir_path) for file_type in namespace.file_types: files_filtered = [x for x in files if (x.endswith('.'+file_type))] print('\t' + file_type + ':', len(files_filtered)) if force: for file in files: os.remove(file) print('Successful', len(files), 'was deleted') else: if input('Deletion '+str(len(files))+' files. Are you sure? [Y/N] ').upper() != 'N': for file in files: os.remove(file) print('Successful', len(files), 'files was deleted') else: print('Operation was canceled') def smart_purge_muted(file_types, path=dir_path, recursion=False): files=get_files(file_types, recursion, path) if len(files) == 0: return for file in files: os.remove(file) if __name__ == "__main__": parser = create_parser() namespace = parser.parse_args(sys.argv[1:]) smart_purge(namespace.file_types, namespace.show, namespace.recursion, namespace.path, namespace.force)
30.342466
111
0.695711
741097e99387db61805ca827d093de1d0e28b8f6
119
py
Python
gitlean/urls.py
franck-roland/GitPlan
76260186d2d78bbe5ba3b2c6222a437d6d535d7e
[ "Apache-2.0" ]
null
null
null
gitlean/urls.py
franck-roland/GitPlan
76260186d2d78bbe5ba3b2c6222a437d6d535d7e
[ "Apache-2.0" ]
null
null
null
gitlean/urls.py
franck-roland/GitPlan
76260186d2d78bbe5ba3b2c6222a437d6d535d7e
[ "Apache-2.0" ]
null
null
null
from django.conf.urls import url from . import views urlpatterns = [ url(r'^$', views.githook, name='githook'), ]
17
46
0.672269
4b366472b0401abeaa53135e4e8e7222e70f5dcc
785
py
Python
src/pyxltab/pyxltab.py
blakeNaccarato/pyxltab
55963598cf70cebe3c5939e6f227f4e487839012
[ "MIT" ]
null
null
null
src/pyxltab/pyxltab.py
blakeNaccarato/pyxltab
55963598cf70cebe3c5939e6f227f4e487839012
[ "MIT" ]
null
null
null
src/pyxltab/pyxltab.py
blakeNaccarato/pyxltab
55963598cf70cebe3c5939e6f227f4e487839012
[ "MIT" ]
null
null
null
""" Extends `openpyxl` classes for easier operation on Excel tables. """ __all__ = ["attach", "get_tables"] from typing import Dict, Union from pyxltab import classes def attach(openpyxl_book: classes.openpyxl_Workbook) -> classes.Book: """ Attach to an `openpyxl` workbook, allowing other operations to be performed. """ book = classes.Book(openpyxl_book) return book def get_tables( book: Union[classes.Book, classes.openpyxl_Workbook] ) -> Dict[str, classes.Table]: """ Get all tables in the workbook. """ if isinstance(book, classes.openpyxl_Workbook): book = attach(book) tables = { table_name: table for sheet in book.values() for (table_name, table) in sheet.items() } return tables
20.657895
80
0.66242
ae5a7020d43f3c0f2ab84412f5f95e076a73ae58
11,028
py
Python
third_party/pybind11/tests/test_numpy_dtypes.py
gautamkmr/caffe2
cde7f21d1e34ec714bc08dbfab945a1ad30e92ff
[ "MIT" ]
29
2019-11-27T00:43:07.000Z
2020-02-25T14:35:54.000Z
third_party/pybind11/tests/test_numpy_dtypes.py
gautamkmr/caffe2
cde7f21d1e34ec714bc08dbfab945a1ad30e92ff
[ "MIT" ]
7
2019-07-22T21:10:03.000Z
2021-12-14T16:53:27.000Z
third_party/pybind11/tests/test_numpy_dtypes.py
gautamkmr/caffe2
cde7f21d1e34ec714bc08dbfab945a1ad30e92ff
[ "MIT" ]
13
2019-07-31T09:16:58.000Z
2022-03-29T15:12:40.000Z
import re import pytest from pybind11_tests import numpy_dtypes as m pytestmark = pytest.requires_numpy with pytest.suppress(ImportError): import numpy as np @pytest.fixture(scope='module') def simple_dtype(): ld = np.dtype('longdouble') return np.dtype({'names': ['bool_', 'uint_', 'float_', 'ldbl_'], 'formats': ['?', 'u4', 'f4', 'f{}'.format(ld.itemsize)], 'offsets': [0, 4, 8, (16 if ld.alignment > 4 else 12)]}) @pytest.fixture(scope='module') def packed_dtype(): return np.dtype([('bool_', '?'), ('uint_', 'u4'), ('float_', 'f4'), ('ldbl_', 'g')]) def dt_fmt(): from sys import byteorder e = '<' if byteorder == 'little' else '>' return ("{{'names':['bool_','uint_','float_','ldbl_']," " 'formats':['?','" + e + "u4','" + e + "f4','" + e + "f{}']," " 'offsets':[0,4,8,{}], 'itemsize':{}}}") def simple_dtype_fmt(): ld = np.dtype('longdouble') simple_ld_off = 12 + 4 * (ld.alignment > 4) return dt_fmt().format(ld.itemsize, simple_ld_off, simple_ld_off + ld.itemsize) def packed_dtype_fmt(): from sys import byteorder return "[('bool_', '?'), ('uint_', '{e}u4'), ('float_', '{e}f4'), ('ldbl_', '{e}f{}')]".format( np.dtype('longdouble').itemsize, e='<' if byteorder == 'little' else '>') def partial_ld_offset(): return 12 + 4 * (np.dtype('uint64').alignment > 4) + 8 + 8 * ( np.dtype('longdouble').alignment > 8) def partial_dtype_fmt(): ld = np.dtype('longdouble') partial_ld_off = partial_ld_offset() return dt_fmt().format(ld.itemsize, partial_ld_off, partial_ld_off + ld.itemsize) def partial_nested_fmt(): ld = np.dtype('longdouble') partial_nested_off = 8 + 8 * (ld.alignment > 8) partial_ld_off = partial_ld_offset() partial_nested_size = partial_nested_off * 2 + partial_ld_off + ld.itemsize return "{{'names':['a'], 'formats':[{}], 'offsets':[{}], 'itemsize':{}}}".format( partial_dtype_fmt(), partial_nested_off, partial_nested_size) def assert_equal(actual, expected_data, expected_dtype): np.testing.assert_equal(actual, np.array(expected_data, dtype=expected_dtype)) def test_format_descriptors(): with pytest.raises(RuntimeError) as excinfo: m.get_format_unbound() assert re.match('^NumPy type info missing for .*UnboundStruct.*$', str(excinfo.value)) ld = np.dtype('longdouble') ldbl_fmt = ('4x' if ld.alignment > 4 else '') + ld.char ss_fmt = "^T{?:bool_:3xI:uint_:f:float_:" + ldbl_fmt + ":ldbl_:}" dbl = np.dtype('double') partial_fmt = ("^T{?:bool_:3xI:uint_:f:float_:" + str(4 * (dbl.alignment > 4) + dbl.itemsize + 8 * (ld.alignment > 8)) + "xg:ldbl_:}") nested_extra = str(max(8, ld.alignment)) assert m.print_format_descriptors() == [ ss_fmt, "^T{?:bool_:I:uint_:f:float_:g:ldbl_:}", "^T{" + ss_fmt + ":a:^T{?:bool_:I:uint_:f:float_:g:ldbl_:}:b:}", partial_fmt, "^T{" + nested_extra + "x" + partial_fmt + ":a:" + nested_extra + "x}", "^T{3s:a:3s:b:}", "^T{(3)4s:a:(2)i:b:(3)B:c:1x(4, 2)f:d:}", '^T{q:e1:B:e2:}', '^T{Zf:cflt:Zd:cdbl:}' ] def test_dtype(simple_dtype): from sys import byteorder e = '<' if byteorder == 'little' else '>' assert m.print_dtypes() == [ simple_dtype_fmt(), packed_dtype_fmt(), "[('a', {}), ('b', {})]".format(simple_dtype_fmt(), packed_dtype_fmt()), partial_dtype_fmt(), partial_nested_fmt(), "[('a', 'S3'), ('b', 'S3')]", ("{{'names':['a','b','c','d'], " + "'formats':[('S4', (3,)),('<i4', (2,)),('u1', (3,)),('<f4', (4, 2))], " + "'offsets':[0,12,20,24], 'itemsize':56}}").format(e=e), "[('e1', '" + e + "i8'), ('e2', 'u1')]", "[('x', 'i1'), ('y', '" + e + "u8')]", "[('cflt', '" + e + "c8'), ('cdbl', '" + e + "c16')]" ] d1 = np.dtype({'names': ['a', 'b'], 'formats': ['int32', 'float64'], 'offsets': [1, 10], 'itemsize': 20}) d2 = np.dtype([('a', 'i4'), ('b', 'f4')]) assert m.test_dtype_ctors() == [np.dtype('int32'), np.dtype('float64'), np.dtype('bool'), d1, d1, np.dtype('uint32'), d2] assert m.test_dtype_methods() == [np.dtype('int32'), simple_dtype, False, True, np.dtype('int32').itemsize, simple_dtype.itemsize] assert m.trailing_padding_dtype() == m.buffer_to_dtype(np.zeros(1, m.trailing_padding_dtype())) def test_recarray(simple_dtype, packed_dtype): elements = [(False, 0, 0.0, -0.0), (True, 1, 1.5, -2.5), (False, 2, 3.0, -5.0)] for func, dtype in [(m.create_rec_simple, simple_dtype), (m.create_rec_packed, packed_dtype)]: arr = func(0) assert arr.dtype == dtype assert_equal(arr, [], simple_dtype) assert_equal(arr, [], packed_dtype) arr = func(3) assert arr.dtype == dtype assert_equal(arr, elements, simple_dtype) assert_equal(arr, elements, packed_dtype) if dtype == simple_dtype: assert m.print_rec_simple(arr) == [ "s:0,0,0,-0", "s:1,1,1.5,-2.5", "s:0,2,3,-5" ] else: assert m.print_rec_packed(arr) == [ "p:0,0,0,-0", "p:1,1,1.5,-2.5", "p:0,2,3,-5" ] nested_dtype = np.dtype([('a', simple_dtype), ('b', packed_dtype)]) arr = m.create_rec_nested(0) assert arr.dtype == nested_dtype assert_equal(arr, [], nested_dtype) arr = m.create_rec_nested(3) assert arr.dtype == nested_dtype assert_equal(arr, [((False, 0, 0.0, -0.0), (True, 1, 1.5, -2.5)), ((True, 1, 1.5, -2.5), (False, 2, 3.0, -5.0)), ((False, 2, 3.0, -5.0), (True, 3, 4.5, -7.5))], nested_dtype) assert m.print_rec_nested(arr) == [ "n:a=s:0,0,0,-0;b=p:1,1,1.5,-2.5", "n:a=s:1,1,1.5,-2.5;b=p:0,2,3,-5", "n:a=s:0,2,3,-5;b=p:1,3,4.5,-7.5" ] arr = m.create_rec_partial(3) assert str(arr.dtype) == partial_dtype_fmt() partial_dtype = arr.dtype assert '' not in arr.dtype.fields assert partial_dtype.itemsize > simple_dtype.itemsize assert_equal(arr, elements, simple_dtype) assert_equal(arr, elements, packed_dtype) arr = m.create_rec_partial_nested(3) assert str(arr.dtype) == partial_nested_fmt() assert '' not in arr.dtype.fields assert '' not in arr.dtype.fields['a'][0].fields assert arr.dtype.itemsize > partial_dtype.itemsize np.testing.assert_equal(arr['a'], m.create_rec_partial(3)) def test_array_constructors(): data = np.arange(1, 7, dtype='int32') for i in range(8): np.testing.assert_array_equal(m.test_array_ctors(10 + i), data.reshape((3, 2))) np.testing.assert_array_equal(m.test_array_ctors(20 + i), data.reshape((3, 2))) for i in range(5): np.testing.assert_array_equal(m.test_array_ctors(30 + i), data) np.testing.assert_array_equal(m.test_array_ctors(40 + i), data) def test_string_array(): arr = m.create_string_array(True) assert str(arr.dtype) == "[('a', 'S3'), ('b', 'S3')]" assert m.print_string_array(arr) == [ "a='',b=''", "a='a',b='a'", "a='ab',b='ab'", "a='abc',b='abc'" ] dtype = arr.dtype assert arr['a'].tolist() == [b'', b'a', b'ab', b'abc'] assert arr['b'].tolist() == [b'', b'a', b'ab', b'abc'] arr = m.create_string_array(False) assert dtype == arr.dtype def test_array_array(): from sys import byteorder e = '<' if byteorder == 'little' else '>' arr = m.create_array_array(3) assert str(arr.dtype) == ( "{{'names':['a','b','c','d'], " + "'formats':[('S4', (3,)),('<i4', (2,)),('u1', (3,)),('{e}f4', (4, 2))], " + "'offsets':[0,12,20,24], 'itemsize':56}}").format(e=e) assert m.print_array_array(arr) == [ "a={{A,B,C,D},{K,L,M,N},{U,V,W,X}},b={0,1}," + "c={0,1,2},d={{0,1},{10,11},{20,21},{30,31}}", "a={{W,X,Y,Z},{G,H,I,J},{Q,R,S,T}},b={1000,1001}," + "c={10,11,12},d={{100,101},{110,111},{120,121},{130,131}}", "a={{S,T,U,V},{C,D,E,F},{M,N,O,P}},b={2000,2001}," + "c={20,21,22},d={{200,201},{210,211},{220,221},{230,231}}", ] assert arr['a'].tolist() == [[b'ABCD', b'KLMN', b'UVWX'], [b'WXYZ', b'GHIJ', b'QRST'], [b'STUV', b'CDEF', b'MNOP']] assert arr['b'].tolist() == [[0, 1], [1000, 1001], [2000, 2001]] assert m.create_array_array(0).dtype == arr.dtype def test_enum_array(): from sys import byteorder e = '<' if byteorder == 'little' else '>' arr = m.create_enum_array(3) dtype = arr.dtype assert dtype == np.dtype([('e1', e + 'i8'), ('e2', 'u1')]) assert m.print_enum_array(arr) == [ "e1=A,e2=X", "e1=B,e2=Y", "e1=A,e2=X" ] assert arr['e1'].tolist() == [-1, 1, -1] assert arr['e2'].tolist() == [1, 2, 1] assert m.create_enum_array(0).dtype == dtype def test_complex_array(): from sys import byteorder e = '<' if byteorder == 'little' else '>' arr = m.create_complex_array(3) dtype = arr.dtype assert dtype == np.dtype([('cflt', e + 'c8'), ('cdbl', e + 'c16')]) assert m.print_complex_array(arr) == [ "c:(0,0.25),(0.5,0.75)", "c:(1,1.25),(1.5,1.75)", "c:(2,2.25),(2.5,2.75)" ] assert arr['cflt'].tolist() == [0.0 + 0.25j, 1.0 + 1.25j, 2.0 + 2.25j] assert arr['cdbl'].tolist() == [0.5 + 0.75j, 1.5 + 1.75j, 2.5 + 2.75j] assert m.create_complex_array(0).dtype == dtype def test_signature(doc): assert doc(m.create_rec_nested) == \ "create_rec_nested(arg0: int) -> numpy.ndarray[NestedStruct]" def test_scalar_conversion(): n = 3 arrays = [m.create_rec_simple(n), m.create_rec_packed(n), m.create_rec_nested(n), m.create_enum_array(n)] funcs = [m.f_simple, m.f_packed, m.f_nested] for i, func in enumerate(funcs): for j, arr in enumerate(arrays): if i == j and i < 2: assert [func(arr[k]) for k in range(n)] == [k * 10 for k in range(n)] else: with pytest.raises(TypeError) as excinfo: func(arr[0]) assert 'incompatible function arguments' in str(excinfo.value) def test_register_dtype(): with pytest.raises(RuntimeError) as excinfo: m.register_dtype() assert 'dtype is already registered' in str(excinfo.value) @pytest.unsupported_on_pypy def test_str_leak(): from sys import getrefcount fmt = "f4" pytest.gc_collect() start = getrefcount(fmt) d = m.dtype_wrapper(fmt) assert d is np.dtype("f4") del d pytest.gc_collect() assert getrefcount(fmt) == start def test_compare_buffer_info(): assert all(m.compare_buffer_info())
35.459807
99
0.547515
a3e37f377f172410daab48a533fc8797664db7ab
549
py
Python
Caller.py
Jemeni11/Lyric-Translator_
622e1e49e1af46d2d8bf6ecf3063a63dabddfcf1
[ "MIT" ]
null
null
null
Caller.py
Jemeni11/Lyric-Translator_
622e1e49e1af46d2d8bf6ecf3063a63dabddfcf1
[ "MIT" ]
null
null
null
Caller.py
Jemeni11/Lyric-Translator_
622e1e49e1af46d2d8bf6ecf3063a63dabddfcf1
[ "MIT" ]
null
null
null
from translathor import translator from apicalls import * def caller(): intention = input( "To get songs by an artist use (F)\nTo get music lyrics use(G)\nUse (H) to get lyrics and translate -->") if intention.lower() not in ['f', 'g', 'h'] : exit("Lmao, get serious abeg") elif intention.lower() == "g": for text in get_lyrics(): print(text) elif intention.lower() == "f": get_songsby() else: print(translator(get_lyrics())) if __name__ == "__main__": print(caller())
26.142857
113
0.593807
a79bed0c1856db5840981f989df3afe66885e31a
521
py
Python
pagetools/widgets/tests/test_commands.py
theithec/pagetools
f5fba7213864555275bddcc1882122f3be843f19
[ "MIT" ]
null
null
null
pagetools/widgets/tests/test_commands.py
theithec/pagetools
f5fba7213864555275bddcc1882122f3be843f19
[ "MIT" ]
null
null
null
pagetools/widgets/tests/test_commands.py
theithec/pagetools
f5fba7213864555275bddcc1882122f3be843f19
[ "MIT" ]
null
null
null
from django.core.management import call_command from django.test import TestCase from pagetools.widgets.models import TemplateTagWidget from pagetools.widgets.settings import TEMPLATETAG_WIDGETS class CommandsTestCase(TestCase): def test_mycommand(self): "Test my custom command." args = [] opts = {} call_command("mk_templatetagwidgets", *args, **opts) widgetobjects = TemplateTagWidget.objects.all() self.assertEqual(len(TEMPLATETAG_WIDGETS), len(widgetobjects))
30.647059
70
0.735125
d4c3ddd4fa3aa1f990f31ec2b2c50d9e5288b3a2
37,320
py
Python
tensorflow_tts/models/tacotron2.py
krisk84/TensorFlowTTS
4fe289cd0d6aca79bf2501271f048800a5071cd0
[ "Apache-2.0" ]
3
2020-12-09T11:29:22.000Z
2021-07-23T07:53:56.000Z
tensorflow_tts/models/tacotron2.py
krisk84/TensorFlowTTS
4fe289cd0d6aca79bf2501271f048800a5071cd0
[ "Apache-2.0" ]
null
null
null
tensorflow_tts/models/tacotron2.py
krisk84/TensorFlowTTS
4fe289cd0d6aca79bf2501271f048800a5071cd0
[ "Apache-2.0" ]
1
2021-01-27T08:54:48.000Z
2021-01-27T08:54:48.000Z
# -*- coding: utf-8 -*- # Copyright 2020 The Tacotron-2 Authors, Minh Nguyen (@dathudeptrai), Eren Gölge (@erogol) and Jae Yoo (@jaeyoo) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tacotron-2 Modules.""" import collections import numpy as np import tensorflow as tf # TODO: once https://github.com/tensorflow/addons/pull/1964 is fixed, # uncomment this line. # from tensorflow_addons.seq2seq import dynamic_decode from tensorflow_addons.seq2seq import BahdanauAttention, Decoder, Sampler from tensorflow_tts.utils import dynamic_decode def get_initializer(initializer_range=0.02): """Creates a `tf.initializers.truncated_normal` with the given range. Args: initializer_range: float, initializer range for stddev. Returns: TruncatedNormal initializer with stddev = `initializer_range`. """ return tf.keras.initializers.TruncatedNormal(stddev=initializer_range) def gelu(x): """Gaussian Error Linear unit.""" cdf = 0.5 * (1.0 + tf.math.erf(x / tf.math.sqrt(2.0))) return x * cdf def gelu_new(x): """Smoother gaussian Error Linear Unit.""" cdf = 0.5 * (1.0 + tf.tanh((np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3))))) return x * cdf def swish(x): """Swish activation function.""" return tf.nn.swish(x) def mish(x): return x * tf.math.tanh(tf.math.softplus(x)) ACT2FN = { "identity": tf.keras.layers.Activation("linear"), "tanh": tf.keras.layers.Activation("tanh"), "gelu": tf.keras.layers.Activation(gelu), "relu": tf.keras.activations.relu, "swish": tf.keras.layers.Activation(swish), "gelu_new": tf.keras.layers.Activation(gelu_new), "mish": tf.keras.layers.Activation(mish), } class TFEmbedding(tf.keras.layers.Embedding): """Faster version of embedding.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def call(self, inputs): inputs = tf.cast(tf.expand_dims(inputs, -1), tf.int32) outputs = tf.gather_nd(self.embeddings, inputs) return outputs class TFTacotronConvBatchNorm(tf.keras.layers.Layer): """Tacotron-2 Convolutional Batchnorm module.""" def __init__( self, filters, kernel_size, dropout_rate, activation=None, name_idx=None ): super().__init__() self.conv1d = tf.keras.layers.Conv1D( filters, kernel_size, kernel_initializer=get_initializer(0.02), padding="same", name="conv_._{}".format(name_idx), ) self.norm = tf.keras.layers.experimental.SyncBatchNormalization( axis=-1, name="batch_norm_._{}".format(name_idx) ) self.dropout = tf.keras.layers.Dropout( rate=dropout_rate, name="dropout_._{}".format(name_idx) ) self.act = ACT2FN[activation] def call(self, inputs, training=False): outputs = self.conv1d(inputs) outputs = self.norm(outputs, training=training) outputs = self.act(outputs) outputs = self.dropout(outputs, training=training) return outputs class TFTacotronEmbeddings(tf.keras.layers.Layer): """Construct character/phoneme/positional/speaker embeddings.""" def __init__(self, config, **kwargs): """Init variables.""" super().__init__(**kwargs) self.vocab_size = config.vocab_size self.embedding_hidden_size = config.embedding_hidden_size self.initializer_range = config.initializer_range self.config = config if config.n_speakers > 1: self.speaker_embeddings = TFEmbedding( config.n_speakers, config.embedding_hidden_size, embeddings_initializer=get_initializer(self.initializer_range), name="speaker_embeddings", ) self.speaker_fc = tf.keras.layers.Dense( units=config.embedding_hidden_size, name="speaker_fc" ) self.LayerNorm = tf.keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, name="LayerNorm" ) self.dropout = tf.keras.layers.Dropout(config.embedding_dropout_prob) def build(self, input_shape): """Build shared character/phoneme embedding layers.""" with tf.name_scope("character_embeddings"): self.character_embeddings = self.add_weight( "weight", shape=[self.vocab_size, self.embedding_hidden_size], initializer=get_initializer(self.initializer_range), ) super().build(input_shape) def call(self, inputs, training=False): """Get character embeddings of inputs. Args: 1. character, Tensor (int32) shape [batch_size, length]. 2. speaker_id, Tensor (int32) shape [batch_size] Returns: Tensor (float32) shape [batch_size, length, embedding_size]. """ return self._embedding(inputs, training=training) def _embedding(self, inputs, training=False): """Applies embedding based on inputs tensor.""" input_ids, speaker_ids = inputs # create embeddings inputs_embeds = tf.gather(self.character_embeddings, input_ids) embeddings = inputs_embeds if self.config.n_speakers > 1: speaker_embeddings = self.speaker_embeddings(speaker_ids) speaker_features = tf.math.softplus(self.speaker_fc(speaker_embeddings)) # extended speaker embeddings extended_speaker_features = speaker_features[:, tf.newaxis, :] # sum all embedding embeddings += extended_speaker_features # apply layer-norm and dropout for embeddings. embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings, training=training) return embeddings class TFTacotronEncoderConvs(tf.keras.layers.Layer): """Tacotron-2 Encoder Convolutional Batchnorm module.""" def __init__(self, config, **kwargs): """Init variables.""" super().__init__(**kwargs) self.conv_batch_norm = [] for i in range(config.n_conv_encoder): conv = TFTacotronConvBatchNorm( filters=config.encoder_conv_filters, kernel_size=config.encoder_conv_kernel_sizes, activation=config.encoder_conv_activation, dropout_rate=config.encoder_conv_dropout_rate, name_idx=i, ) self.conv_batch_norm.append(conv) def call(self, inputs, training=False): """Call logic.""" outputs = inputs for conv in self.conv_batch_norm: outputs = conv(outputs, training=training) return outputs class TFTacotronEncoder(tf.keras.layers.Layer): """Tacotron-2 Encoder.""" def __init__(self, config, **kwargs): """Init variables.""" super().__init__(**kwargs) self.embeddings = TFTacotronEmbeddings(config, name="embeddings") self.convbn = TFTacotronEncoderConvs(config, name="conv_batch_norm") self.bilstm = tf.keras.layers.Bidirectional( tf.keras.layers.LSTM( units=config.encoder_lstm_units, return_sequences=True ), name="bilstm", ) if config.n_speakers > 1: self.encoder_speaker_embeddings = TFEmbedding( config.n_speakers, config.embedding_hidden_size, embeddings_initializer=get_initializer(config.initializer_range), name="encoder_speaker_embeddings", ) self.encoder_speaker_fc = tf.keras.layers.Dense( units=config.encoder_lstm_units * 2, name="encoder_speaker_fc" ) self.config = config def call(self, inputs, training=False): """Call logic.""" input_ids, speaker_ids, input_mask = inputs # create embedding and mask them since we sum # speaker embedding to all character embedding. input_embeddings = self.embeddings([input_ids, speaker_ids], training=training) # pass embeddings to convolution batch norm conv_outputs = self.convbn(input_embeddings, training=training) # bi-lstm. outputs = self.bilstm(conv_outputs, mask=input_mask) if self.config.n_speakers > 1: encoder_speaker_embeddings = self.encoder_speaker_embeddings(speaker_ids) encoder_speaker_features = tf.math.softplus( self.encoder_speaker_fc(encoder_speaker_embeddings) ) # extended encoderspeaker embeddings extended_encoder_speaker_features = encoder_speaker_features[ :, tf.newaxis, : ] # sum to encoder outputs outputs += extended_encoder_speaker_features return outputs class TrainingSampler(Sampler): """Training sampler for Seq2Seq training.""" def __init__( self, config, ): super().__init__() self.config = config # create schedule factor. # the input of a next decoder cell is calculated by formular: # next_inputs = ratio * prev_groundtruth_outputs + (1.0 - ratio) * prev_predicted_outputs. self._ratio = tf.constant(1.0, dtype=tf.float32) self._reduction_factor = self.config.reduction_factor def setup_target(self, targets, mel_lengths): """Setup ground-truth mel outputs for decoder.""" self.mel_lengths = mel_lengths self.set_batch_size(tf.shape(targets)[0]) self.targets = targets[ :, self._reduction_factor - 1 :: self._reduction_factor, : ] self.max_lengths = tf.tile([tf.shape(self.targets)[1]], [self._batch_size]) @property def batch_size(self): return self._batch_size @property def sample_ids_shape(self): return tf.TensorShape([]) @property def sample_ids_dtype(self): return tf.int32 @property def reduction_factor(self): return self._reduction_factor def initialize(self): """Return (Finished, next_inputs).""" return ( tf.tile([False], [self._batch_size]), tf.tile([[0.0]], [self._batch_size, self.config.n_mels]), ) def sample(self, time, outputs, state): return tf.tile([0], [self._batch_size]) def next_inputs(self, time, outputs, state, sample_ids, **kwargs): finished = time + 1 >= self.max_lengths next_inputs = ( self._ratio * self.targets[:, time, :] + (1.0 - self._ratio) * outputs[:, -self.config.n_mels :] ) next_state = state return (finished, next_inputs, next_state) def set_batch_size(self, batch_size): self._batch_size = batch_size class TestingSampler(TrainingSampler): """Testing sampler for Seq2Seq training.""" def __init__( self, config, ): super().__init__(config) def next_inputs(self, time, outputs, state, sample_ids, **kwargs): stop_token_prediction = kwargs.get("stop_token_prediction") stop_token_prediction = tf.nn.sigmoid(stop_token_prediction) finished = tf.cast(tf.round(stop_token_prediction), tf.bool) finished = tf.reduce_all(finished) next_inputs = outputs[:, -self.config.n_mels :] next_state = state return (finished, next_inputs, next_state) class TFTacotronLocationSensitiveAttention(BahdanauAttention): """Tacotron-2 Location Sensitive Attention module.""" def __init__( self, config, memory, mask_encoder=True, memory_sequence_length=None, is_cumulate=True, ): """Init variables.""" memory_length = memory_sequence_length if (mask_encoder is True) else None super().__init__( units=config.attention_dim, memory=memory, memory_sequence_length=memory_length, probability_fn="softmax", name="LocationSensitiveAttention", ) self.location_convolution = tf.keras.layers.Conv1D( filters=config.attention_filters, kernel_size=config.attention_kernel, padding="same", use_bias=False, name="location_conv", ) self.location_layer = tf.keras.layers.Dense( units=config.attention_dim, use_bias=False, name="location_layer" ) self.v = tf.keras.layers.Dense(1, use_bias=True, name="scores_attention") self.config = config self.is_cumulate = is_cumulate self.use_window = False def setup_window(self, win_front=2, win_back=4): self.win_front = tf.constant(win_front, tf.int32) self.win_back = tf.constant(win_back, tf.int32) self._indices = tf.expand_dims(tf.range(tf.shape(self.keys)[1]), 0) self._indices = tf.tile( self._indices, [tf.shape(self.keys)[0], 1] ) # [batch_size, max_time] self.use_window = True def _compute_window_mask(self, max_alignments): """Compute window mask for inference. Args: max_alignments (int): [batch_size] """ expanded_max_alignments = tf.expand_dims(max_alignments, 1) # [batch_size, 1] low = expanded_max_alignments - self.win_front high = expanded_max_alignments + self.win_back mlow = tf.cast((self._indices < low), tf.float32) mhigh = tf.cast((self._indices > high), tf.float32) mask = mlow + mhigh return mask # [batch_size, max_length] def __call__(self, inputs, training=False): query, state, prev_max_alignments = inputs processed_query = self.query_layer(query) if self.query_layer else query processed_query = tf.expand_dims(processed_query, 1) expanded_alignments = tf.expand_dims(state, axis=2) f = self.location_convolution(expanded_alignments) processed_location_features = self.location_layer(f) energy = self._location_sensitive_score( processed_query, processed_location_features, self.keys ) # mask energy on inference steps. if self.use_window is True: window_mask = self._compute_window_mask(prev_max_alignments) energy = energy + window_mask * -1e20 alignments = self.probability_fn(energy, state) if self.is_cumulate: state = alignments + state else: state = alignments expanded_alignments = tf.expand_dims(alignments, 2) context = tf.reduce_sum(expanded_alignments * self.values, 1) return context, alignments, state def _location_sensitive_score(self, W_query, W_fil, W_keys): """Calculate location sensitive energy.""" return tf.squeeze(self.v(tf.nn.tanh(W_keys + W_query + W_fil)), -1) def get_initial_state(self, batch_size, size): """Get initial alignments.""" return tf.zeros(shape=[batch_size, size], dtype=tf.float32) def get_initial_context(self, batch_size): """Get initial attention.""" return tf.zeros( shape=[batch_size, self.config.encoder_lstm_units * 2], dtype=tf.float32 ) class TFTacotronPrenet(tf.keras.layers.Layer): """Tacotron-2 prenet.""" def __init__(self, config, **kwargs): """Init variables.""" super().__init__(**kwargs) self.prenet_dense = [ tf.keras.layers.Dense( units=config.prenet_units, activation=ACT2FN[config.prenet_activation], name="dense_._{}".format(i), ) for i in range(config.n_prenet_layers) ] self.dropout = tf.keras.layers.Dropout( rate=config.prenet_dropout_rate, name="dropout" ) def call(self, inputs, training=False): """Call logic.""" outputs = inputs for layer in self.prenet_dense: outputs = layer(outputs) outputs = self.dropout(outputs, training=True) return outputs class TFTacotronPostnet(tf.keras.layers.Layer): """Tacotron-2 postnet.""" def __init__(self, config, **kwargs): """Init variables.""" super().__init__(**kwargs) self.conv_batch_norm = [] for i in range(config.n_conv_postnet): conv = TFTacotronConvBatchNorm( filters=config.postnet_conv_filters, kernel_size=config.postnet_conv_kernel_sizes, dropout_rate=config.postnet_dropout_rate, activation="identity" if i + 1 == config.n_conv_postnet else "tanh", name_idx=i, ) self.conv_batch_norm.append(conv) def call(self, inputs, training=False): """Call logic.""" outputs = inputs for _, conv in enumerate(self.conv_batch_norm): outputs = conv(outputs, training=training) return outputs TFTacotronDecoderCellState = collections.namedtuple( "TFTacotronDecoderCellState", [ "attention_lstm_state", "decoder_lstms_state", "context", "time", "state", "alignment_history", "max_alignments", ], ) TFDecoderOutput = collections.namedtuple( "TFDecoderOutput", ("mel_output", "token_output", "sample_id") ) class TFTacotronDecoderCell(tf.keras.layers.AbstractRNNCell): """Tacotron-2 custom decoder cell.""" def __init__(self, config, training, enable_tflite_convertible=False, **kwargs): """Init variables.""" super().__init__(**kwargs) self.training = training self.enable_tflite_convertible = enable_tflite_convertible self.prenet = TFTacotronPrenet(config, name="prenet") # define lstm cell on decoder. # TODO(@dathudeptrai) switch to zone-out lstm. self.attention_lstm = tf.keras.layers.LSTMCell( units=config.decoder_lstm_units, name="attention_lstm_cell" ) lstm_cells = [] for i in range(config.n_lstm_decoder): lstm_cell = tf.keras.layers.LSTMCell( units=config.decoder_lstm_units, name="lstm_cell_._{}".format(i) ) lstm_cells.append(lstm_cell) self.decoder_lstms = tf.keras.layers.StackedRNNCells( lstm_cells, name="decoder_lstms" ) # define attention layer. if config.attention_type == "lsa": # create location-sensitive attention. self.attention_layer = TFTacotronLocationSensitiveAttention( config, memory=None, mask_encoder=True, memory_sequence_length=None, is_cumulate=True, ) else: raise ValueError("Only lsa (location-sensitive attention) is supported") # frame, stop projection layer. self.frame_projection = tf.keras.layers.Dense( units=config.n_mels * config.reduction_factor, name="frame_projection" ) self.stop_projection = tf.keras.layers.Dense( units=config.reduction_factor, name="stop_projection" ) self.config = config def set_alignment_size(self, alignment_size): self.alignment_size = alignment_size @property def output_size(self): """Return output (mel) size.""" return self.frame_projection.units @property def state_size(self): """Return hidden state size.""" return TFTacotronDecoderCellState( attention_lstm_state=self.attention_lstm.state_size, decoder_lstms_state=self.decoder_lstms.state_size, time=tf.TensorShape([]), attention=self.config.attention_dim, state=self.alignment_size, alignment_history=(), max_alignments=tf.TensorShape([1]), ) def get_initial_state(self, batch_size): """Get initial states.""" initial_attention_lstm_cell_states = self.attention_lstm.get_initial_state( None, batch_size, dtype=tf.float32 ) initial_decoder_lstms_cell_states = self.decoder_lstms.get_initial_state( None, batch_size, dtype=tf.float32 ) initial_context = tf.zeros( shape=[batch_size, self.config.encoder_lstm_units * 2], dtype=tf.float32 ) initial_state = self.attention_layer.get_initial_state( batch_size, size=self.alignment_size ) if self.enable_tflite_convertible: initial_alignment_history = () else: initial_alignment_history = tf.TensorArray( dtype=tf.float32, size=0, dynamic_size=True ) return TFTacotronDecoderCellState( attention_lstm_state=initial_attention_lstm_cell_states, decoder_lstms_state=initial_decoder_lstms_cell_states, time=tf.zeros([], dtype=tf.int32), context=initial_context, state=initial_state, alignment_history=initial_alignment_history, max_alignments=tf.zeros([batch_size], dtype=tf.int32), ) def call(self, inputs, states): """Call logic.""" decoder_input = inputs # 1. apply prenet for decoder_input. prenet_out = self.prenet( decoder_input, training=self.training ) # [batch_size, dim] # 2. concat prenet_out and prev context vector # then use it as input of attention lstm layer. attention_lstm_input = tf.concat([prenet_out, states.context], axis=-1) attention_lstm_output, next_attention_lstm_state = self.attention_lstm( attention_lstm_input, states.attention_lstm_state ) # 3. compute context, alignment and cumulative alignment. prev_state = states.state if not self.enable_tflite_convertible: prev_alignment_history = states.alignment_history prev_max_alignments = states.max_alignments context, alignments, state = self.attention_layer( [attention_lstm_output, prev_state, prev_max_alignments], training=self.training, ) # 4. run decoder lstm(s) decoder_lstms_input = tf.concat([attention_lstm_output, context], axis=-1) decoder_lstms_output, next_decoder_lstms_state = self.decoder_lstms( decoder_lstms_input, states.decoder_lstms_state ) # 5. compute frame feature and stop token. projection_inputs = tf.concat([decoder_lstms_output, context], axis=-1) decoder_outputs = self.frame_projection(projection_inputs) stop_inputs = tf.concat([decoder_lstms_output, decoder_outputs], axis=-1) stop_tokens = self.stop_projection(stop_inputs) # 6. save alignment history to visualize. if self.enable_tflite_convertible: alignment_history = () else: alignment_history = prev_alignment_history.write(states.time, alignments) # 7. return new states. new_states = TFTacotronDecoderCellState( attention_lstm_state=next_attention_lstm_state, decoder_lstms_state=next_decoder_lstms_state, time=states.time + 1, context=context, state=state, alignment_history=alignment_history, max_alignments=tf.argmax(alignments, -1, output_type=tf.int32), ) return (decoder_outputs, stop_tokens), new_states class TFTacotronDecoder(Decoder): """Tacotron-2 Decoder.""" def __init__( self, decoder_cell, decoder_sampler, output_layer=None, enable_tflite_convertible=False, ): """Initial variables.""" self.cell = decoder_cell self.sampler = decoder_sampler self.output_layer = output_layer self.enable_tflite_convertible = enable_tflite_convertible def setup_decoder_init_state(self, decoder_init_state): self.initial_state = decoder_init_state def initialize(self, **kwargs): return self.sampler.initialize() + (self.initial_state,) @property def output_size(self): return TFDecoderOutput( mel_output=tf.nest.map_structure( lambda shape: tf.TensorShape(shape), self.cell.output_size ), token_output=tf.TensorShape(self.sampler.reduction_factor), sample_id=tf.TensorShape([1]) if self.enable_tflite_convertible else self.sampler.sample_ids_shape, # tf.TensorShape([]) ) @property def output_dtype(self): return TFDecoderOutput(tf.float32, tf.float32, self.sampler.sample_ids_dtype) @property def batch_size(self): return self.sampler._batch_size def step(self, time, inputs, state, training=False): (mel_outputs, stop_tokens), cell_state = self.cell( inputs, state, training=training ) if self.output_layer is not None: mel_outputs = self.output_layer(mel_outputs) sample_ids = self.sampler.sample( time=time, outputs=mel_outputs, state=cell_state ) (finished, next_inputs, next_state) = self.sampler.next_inputs( time=time, outputs=mel_outputs, state=cell_state, sample_ids=sample_ids, stop_token_prediction=stop_tokens, ) outputs = TFDecoderOutput(mel_outputs, stop_tokens, sample_ids) return (outputs, next_state, next_inputs, finished) class TFTacotron2(tf.keras.Model): """Tensorflow tacotron-2 model.""" def __init__(self, config, **kwargs): """Initalize tacotron-2 layers.""" training = kwargs.pop("training", False) enable_tflite_convertible = kwargs.pop("enable_tflite_convertible", False) super().__init__(self, **kwargs) self.encoder = TFTacotronEncoder(config, name="encoder") self.decoder_cell = TFTacotronDecoderCell( config, training=training, name="decoder_cell", enable_tflite_convertible=enable_tflite_convertible, ) self.decoder = TFTacotronDecoder( self.decoder_cell, TrainingSampler(config) if training is True else TestingSampler(config), enable_tflite_convertible=enable_tflite_convertible, ) self.postnet = TFTacotronPostnet(config, name="post_net") self.post_projection = tf.keras.layers.Dense( units=config.n_mels, name="residual_projection" ) self.config = config self.use_window_mask = False self.maximum_iterations = 4000 self.enable_tflite_convertible = enable_tflite_convertible def setup_window(self, win_front, win_back): """Call only for inference.""" self.use_window_mask = True self.win_front = win_front self.win_back = win_back def setup_maximum_iterations(self, maximum_iterations): """Call only for inference.""" self.maximum_iterations = maximum_iterations def _build(self): input_ids = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9]]) input_lengths = np.array([9]) speaker_ids = np.array([0]) mel_outputs = np.random.normal(size=(1, 50, 80)).astype(np.float32) mel_lengths = np.array([50]) self( input_ids, input_lengths, speaker_ids, mel_outputs, mel_lengths, 10, training=True, ) def call( self, input_ids, input_lengths, speaker_ids, mel_gts, mel_lengths, maximum_iterations=2000, use_window_mask=False, win_front=2, win_back=3, training=False, **kwargs, ): """Call logic.""" # create input-mask based on input_lengths input_mask = tf.sequence_mask( input_lengths, maxlen=tf.reduce_max(input_lengths), name="input_sequence_masks", ) # Encoder Step. encoder_hidden_states = self.encoder( [input_ids, speaker_ids, input_mask], training=training ) batch_size = tf.shape(encoder_hidden_states)[0] alignment_size = tf.shape(encoder_hidden_states)[1] # Setup some initial placeholders for decoder step. Include: # 1. mel_gts, mel_lengths for teacher forcing mode. # 2. alignment_size for attention size. # 3. initial state for decoder cell. # 4. memory (encoder hidden state) for attention mechanism. self.decoder.sampler.setup_target(targets=mel_gts, mel_lengths=mel_lengths) self.decoder.cell.set_alignment_size(alignment_size) self.decoder.setup_decoder_init_state( self.decoder.cell.get_initial_state(batch_size) ) self.decoder.cell.attention_layer.setup_memory( memory=encoder_hidden_states, memory_sequence_length=input_lengths, # use for mask attention. ) if use_window_mask: self.decoder.cell.attention_layer.setup_window( win_front=win_front, win_back=win_back ) # run decode step. ( (frames_prediction, stop_token_prediction, _), final_decoder_state, _, ) = dynamic_decode( self.decoder, maximum_iterations=maximum_iterations, enable_tflite_convertible=self.enable_tflite_convertible, ) decoder_outputs = tf.reshape( frames_prediction, [batch_size, -1, self.config.n_mels] ) stop_token_prediction = tf.reshape(stop_token_prediction, [batch_size, -1]) residual = self.postnet(decoder_outputs, training=training) residual_projection = self.post_projection(residual) mel_outputs = decoder_outputs + residual_projection if self.enable_tflite_convertible: mask = tf.math.not_equal( tf.cast( tf.reduce_sum(tf.abs(decoder_outputs), axis=-1), dtype=tf.int32 ), 0, ) decoder_outputs = tf.expand_dims( tf.boolean_mask(decoder_outputs, mask), axis=0 ) mel_outputs = tf.expand_dims(tf.boolean_mask(mel_outputs, mask), axis=0) alignment_history = () else: alignment_history = tf.transpose( final_decoder_state.alignment_history.stack(), [1, 2, 0] ) return decoder_outputs, mel_outputs, stop_token_prediction, alignment_history @tf.function( experimental_relax_shapes=True, input_signature=[ tf.TensorSpec([None, None], dtype=tf.int32, name="input_ids"), tf.TensorSpec([None,], dtype=tf.int32, name="input_lengths"), tf.TensorSpec([None,], dtype=tf.int32, name="speaker_ids"), ], ) def inference(self, input_ids, input_lengths, speaker_ids, **kwargs): """Call logic.""" # create input-mask based on input_lengths input_mask = tf.sequence_mask( input_lengths, maxlen=tf.reduce_max(input_lengths), name="input_sequence_masks", ) # Encoder Step. encoder_hidden_states = self.encoder( [input_ids, speaker_ids, input_mask], training=False ) batch_size = tf.shape(encoder_hidden_states)[0] alignment_size = tf.shape(encoder_hidden_states)[1] # Setup some initial placeholders for decoder step. Include: # 1. batch_size for inference. # 2. alignment_size for attention size. # 3. initial state for decoder cell. # 4. memory (encoder hidden state) for attention mechanism. # 5. window front/back to solve long sentence synthesize problems. (call after setup memory.) self.decoder.sampler.set_batch_size(batch_size) self.decoder.cell.set_alignment_size(alignment_size) self.decoder.setup_decoder_init_state( self.decoder.cell.get_initial_state(batch_size) ) self.decoder.cell.attention_layer.setup_memory( memory=encoder_hidden_states, memory_sequence_length=input_lengths, # use for mask attention. ) if self.use_window_mask: self.decoder.cell.attention_layer.setup_window( win_front=self.win_front, win_back=self.win_back ) # run decode step. ( (frames_prediction, stop_token_prediction, _), final_decoder_state, _, ) = dynamic_decode(self.decoder, maximum_iterations=self.maximum_iterations) decoder_outputs = tf.reshape( frames_prediction, [batch_size, -1, self.config.n_mels] ) stop_token_predictions = tf.reshape(stop_token_prediction, [batch_size, -1]) residual = self.postnet(decoder_outputs, training=False) residual_projection = self.post_projection(residual) mel_outputs = decoder_outputs + residual_projection alignment_historys = tf.transpose( final_decoder_state.alignment_history.stack(), [1, 2, 0] ) return decoder_outputs, mel_outputs, stop_token_predictions, alignment_historys @tf.function( experimental_relax_shapes=True, input_signature=[ tf.TensorSpec([1, None], dtype=tf.int32, name="input_ids"), tf.TensorSpec([1,], dtype=tf.int32, name="input_lengths"), tf.TensorSpec([1,], dtype=tf.int32, name="speaker_ids"), ], ) def inference_tflite(self, input_ids, input_lengths, speaker_ids, **kwargs): """Call logic.""" # create input-mask based on input_lengths input_mask = tf.sequence_mask( input_lengths, maxlen=tf.reduce_max(input_lengths), name="input_sequence_masks", ) # Encoder Step. encoder_hidden_states = self.encoder( [input_ids, speaker_ids, input_mask], training=False ) batch_size = tf.shape(encoder_hidden_states)[0] alignment_size = tf.shape(encoder_hidden_states)[1] # Setup some initial placeholders for decoder step. Include: # 1. batch_size for inference. # 2. alignment_size for attention size. # 3. initial state for decoder cell. # 4. memory (encoder hidden state) for attention mechanism. # 5. window front/back to solve long sentence synthesize problems. (call after setup memory.) self.decoder.sampler.set_batch_size(batch_size) self.decoder.cell.set_alignment_size(alignment_size) self.decoder.setup_decoder_init_state( self.decoder.cell.get_initial_state(batch_size) ) self.decoder.cell.attention_layer.setup_memory( memory=encoder_hidden_states, memory_sequence_length=input_lengths, # use for mask attention. ) if self.use_window_mask: self.decoder.cell.attention_layer.setup_window( win_front=self.win_front, win_back=self.win_back ) # run decode step. ( (frames_prediction, stop_token_prediction, _), final_decoder_state, _, ) = dynamic_decode( self.decoder, maximum_iterations=self.maximum_iterations, enable_tflite_convertible=self.enable_tflite_convertible, ) decoder_outputs = tf.reshape( frames_prediction, [batch_size, -1, self.config.n_mels] ) stop_token_predictions = tf.reshape(stop_token_prediction, [batch_size, -1]) residual = self.postnet(decoder_outputs, training=False) residual_projection = self.post_projection(residual) mel_outputs = decoder_outputs + residual_projection if self.enable_tflite_convertible: mask = tf.math.not_equal( tf.cast( tf.reduce_sum(tf.abs(decoder_outputs), axis=-1), dtype=tf.int32 ), 0, ) decoder_outputs = tf.expand_dims( tf.boolean_mask(decoder_outputs, mask), axis=0 ) mel_outputs = tf.expand_dims(tf.boolean_mask(mel_outputs, mask), axis=0) alignment_historys = () else: alignment_historys = tf.transpose( final_decoder_state.alignment_history.stack(), [1, 2, 0] ) return decoder_outputs, mel_outputs, stop_token_predictions, alignment_historys
35.884615
112
0.632262
9f3e7b71d1c571aef430ba87aedd39ff6ad35ce9
2,614
py
Python
venv/Lib/site-packages/pandas/core/internals/api.py
arnoyu-hub/COMP0016miemie
59af664dcf190eab4f93cefb8471908717415fea
[ "MIT" ]
null
null
null
venv/Lib/site-packages/pandas/core/internals/api.py
arnoyu-hub/COMP0016miemie
59af664dcf190eab4f93cefb8471908717415fea
[ "MIT" ]
null
null
null
venv/Lib/site-packages/pandas/core/internals/api.py
arnoyu-hub/COMP0016miemie
59af664dcf190eab4f93cefb8471908717415fea
[ "MIT" ]
null
null
null
""" This is a pseudo-public API for downstream libraries. We ask that downstream authors 1) Try to avoid using internals directly altogether, and failing that, 2) Use only functions exposed here (or in core.internals) """ from __future__ import annotations import numpy as np from pandas._libs.internals import BlockPlacement from pandas._typing import Dtype from pandas.core.dtypes.common import ( is_datetime64tz_dtype, pandas_dtype, ) from pandas.core.arrays import DatetimeArray from pandas.core.construction import extract_array from pandas.core.internals.blocks import ( Block, DatetimeTZBlock, check_ndim, ensure_block_shape, extract_pandas_array, get_block_type, maybe_coerce_values, ) def make_block( values, placement, klass=None, ndim=None, dtype: Dtype | None = None ) -> Block: """ This is a pseudo-public analogue to blocks.new_block. We ask that downstream libraries use this rather than any fully-internal APIs, including but not limited to: - core.internals.blocks.make_block - Block.make_block - Block.make_block_same_class - Block.__init__ """ if dtype is not None: dtype = pandas_dtype(dtype) values, dtype = extract_pandas_array(values, dtype, ndim) if klass is None: dtype = dtype or values.dtype klass = get_block_type(values, dtype) elif klass is DatetimeTZBlock and not is_datetime64tz_dtype(values.dtype): # pyarrow calls get here values = DatetimeArray._simple_new(values, dtype=dtype) if not isinstance(placement, BlockPlacement): placement = BlockPlacement(placement) ndim = maybe_infer_ndim(values, placement, ndim) if is_datetime64tz_dtype(values.dtype): # GH#41168 ensure we can pass 1D dt64tz values values = extract_array(values, extract_numpy=True) values = ensure_block_shape(values, ndim) check_ndim(values, placement, ndim) values = maybe_coerce_values(values) return klass(values, ndim=ndim, placement=placement) def maybe_infer_ndim(values, placement: BlockPlacement, ndim: int | None) -> int: """ If `ndim` is not provided, infer it from placment and values. """ if ndim is None: # GH#38134 Block constructor now assumes ndim is not None if not isinstance(values.dtype, np.dtype): if len(placement) != 1: ndim = 1 else: ndim = 2 else: ndim = values.ndim return ndim
29.370787
82
0.67062
d86bb1ae754832790703d6430562c7bd421c634e
660
py
Python
langford/langford.py
tlocke/geocache
53add754625d00779f676671ea595dc660fa0e82
[ "MIT" ]
null
null
null
langford/langford.py
tlocke/geocache
53add754625d00779f676671ea595dc660fa0e82
[ "MIT" ]
null
null
null
langford/langford.py
tlocke/geocache
53add754625d00779f676671ea595dc660fa0e82
[ "MIT" ]
null
null
null
sols = [] def langford(remain, sofar): try: c = sofar[-1] idx = sofar[:-1].index(c) if len(sofar) - idx - 2 != c: return except ValueError: pass except IndexError: pass if sum(remain.values()) == 0: sols.append(sofar) print("found sol", sofar) else: for k, v in remain.items(): if v != 0: remain_i = remain.copy() remain_i[k] -= 1 langford(remain_i, sofar + (k,)) n = 8 remain = dict((i, 2) for i in range(1, n + 1)) langford(remain, ()) for sol in sols: print(sol, '\n') print(len(sols), '\n')
20.625
48
0.477273
89deace523bb9bafdda63049940ddf36279c9bc6
649
py
Python
migrations/versions/2bc31ea34c8f_.py
bestwishfang/FrameWork
99f5a0316335e9df7b9da7b2af092cc735c7473c
[ "MIT" ]
null
null
null
migrations/versions/2bc31ea34c8f_.py
bestwishfang/FrameWork
99f5a0316335e9df7b9da7b2af092cc735c7473c
[ "MIT" ]
null
null
null
migrations/versions/2bc31ea34c8f_.py
bestwishfang/FrameWork
99f5a0316335e9df7b9da7b2af092cc735c7473c
[ "MIT" ]
null
null
null
"""empty message Revision ID: 2bc31ea34c8f Revises: 016b9025f91a Create Date: 2021-02-05 09:34:20.910591 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '2bc31ea34c8f' down_revision = '016b9025f91a' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('user', sa.Column('c_time', sa.DateTime(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('user', 'c_time') # ### end Alembic commands ###
22.37931
76
0.688752
e27294db4ec2e8ec8d2c7bf0551f007bf3a50bb1
53,516
py
Python
test/orm/test_events.py
Cito/sqlalchemy
c4dede6e7c1420aacc54c9c326bf3a834dff45c7
[ "MIT" ]
1
2021-02-22T15:00:47.000Z
2021-02-22T15:00:47.000Z
test/orm/test_events.py
xqzhou/sqlalchemy
e21cd0d95fb6cdcb4e10ea78abd5626bb92c37c3
[ "MIT" ]
null
null
null
test/orm/test_events.py
xqzhou/sqlalchemy
e21cd0d95fb6cdcb4e10ea78abd5626bb92c37c3
[ "MIT" ]
null
null
null
from sqlalchemy.testing import assert_raises_message, assert_raises import sqlalchemy as sa from sqlalchemy import testing from sqlalchemy import Integer, String from sqlalchemy.testing.schema import Table, Column from sqlalchemy.orm import mapper, relationship, \ create_session, class_mapper, \ Mapper, column_property, \ Session, sessionmaker, attributes from sqlalchemy.orm.instrumentation import ClassManager from sqlalchemy.orm import instrumentation, events from sqlalchemy.testing import eq_ from sqlalchemy.testing import fixtures from sqlalchemy.testing.util import gc_collect from test.orm import _fixtures from sqlalchemy import event from sqlalchemy.testing.mock import Mock, call class _RemoveListeners(object): def teardown(self): events.MapperEvents._clear() events.InstanceEvents._clear() events.SessionEvents._clear() events.InstrumentationEvents._clear() super(_RemoveListeners, self).teardown() class MapperEventsTest(_RemoveListeners, _fixtures.FixtureTest): run_inserts = None def test_instance_event_listen(self): """test listen targets for instance events""" users, addresses = self.tables.users, self.tables.addresses canary = [] class A(object): pass class B(A): pass mapper(A, users) mapper(B, addresses, inherits=A) def init_a(target, args, kwargs): canary.append(('init_a', target)) def init_b(target, args, kwargs): canary.append(('init_b', target)) def init_c(target, args, kwargs): canary.append(('init_c', target)) def init_d(target, args, kwargs): canary.append(('init_d', target)) def init_e(target, args, kwargs): canary.append(('init_e', target)) event.listen(mapper, 'init', init_a) event.listen(Mapper, 'init', init_b) event.listen(class_mapper(A), 'init', init_c) event.listen(A, 'init', init_d) event.listen(A, 'init', init_e, propagate=True) a = A() eq_(canary, [('init_a', a), ('init_b', a), ('init_c', a), ('init_d', a), ('init_e', a)]) # test propagate flag canary[:] = [] b = B() eq_(canary, [('init_a', b), ('init_b', b), ('init_e', b)]) def listen_all(self, mapper, **kw): canary = [] def evt(meth): def go(*args, **kwargs): canary.append(meth) return go for meth in [ 'init', 'init_failure', 'translate_row', 'create_instance', 'append_result', 'populate_instance', 'load', 'refresh', 'expire', 'before_insert', 'after_insert', 'before_update', 'after_update', 'before_delete', 'after_delete' ]: event.listen(mapper, meth, evt(meth), **kw) return canary def test_listen_doesnt_force_compile(self): User, users = self.classes.User, self.tables.users m = mapper(User, users, properties={ 'addresses': relationship(lambda: ImNotAClass) }) event.listen(User, "before_insert", lambda *a, **kw: None) assert not m.configured def test_basic(self): User, users = self.classes.User, self.tables.users mapper(User, users) canary = self.listen_all(User) sess = create_session() u = User(name='u1') sess.add(u) sess.flush() sess.expire(u) u = sess.query(User).get(u.id) sess.expunge_all() u = sess.query(User).get(u.id) u.name = 'u1 changed' sess.flush() sess.delete(u) sess.flush() eq_(canary, ['init', 'before_insert', 'after_insert', 'expire', 'translate_row', 'populate_instance', 'refresh', 'append_result', 'translate_row', 'create_instance', 'populate_instance', 'load', 'append_result', 'before_update', 'after_update', 'before_delete', 'after_delete']) def test_merge(self): users, User = self.tables.users, self.classes.User mapper(User, users) canary = [] def load(obj, ctx): canary.append('load') event.listen(mapper, 'load', load) s = Session() u = User(name='u1') s.add(u) s.commit() s = Session() u2 = s.merge(u) s = Session() u2 = s.merge(User(name='u2')) s.commit() s.query(User).first() eq_(canary, ['load', 'load', 'load']) def test_inheritance(self): users, addresses, User = (self.tables.users, self.tables.addresses, self.classes.User) class AdminUser(User): pass mapper(User, users) mapper(AdminUser, addresses, inherits=User) canary1 = self.listen_all(User, propagate=True) canary2 = self.listen_all(User) canary3 = self.listen_all(AdminUser) sess = create_session() am = AdminUser(name='au1', email_address='au1@e1') sess.add(am) sess.flush() am = sess.query(AdminUser).populate_existing().get(am.id) sess.expunge_all() am = sess.query(AdminUser).get(am.id) am.name = 'au1 changed' sess.flush() sess.delete(am) sess.flush() eq_(canary1, ['init', 'before_insert', 'after_insert', 'translate_row', 'populate_instance','refresh', 'append_result', 'translate_row', 'create_instance' , 'populate_instance', 'load', 'append_result', 'before_update', 'after_update', 'before_delete', 'after_delete']) eq_(canary2, []) eq_(canary3, ['init', 'before_insert', 'after_insert', 'translate_row', 'populate_instance','refresh', 'append_result', 'translate_row', 'create_instance' , 'populate_instance', 'load', 'append_result', 'before_update', 'after_update', 'before_delete', 'after_delete']) def test_inheritance_subclass_deferred(self): users, addresses, User = (self.tables.users, self.tables.addresses, self.classes.User) mapper(User, users) canary1 = self.listen_all(User, propagate=True) canary2 = self.listen_all(User) class AdminUser(User): pass mapper(AdminUser, addresses, inherits=User) canary3 = self.listen_all(AdminUser) sess = create_session() am = AdminUser(name='au1', email_address='au1@e1') sess.add(am) sess.flush() am = sess.query(AdminUser).populate_existing().get(am.id) sess.expunge_all() am = sess.query(AdminUser).get(am.id) am.name = 'au1 changed' sess.flush() sess.delete(am) sess.flush() eq_(canary1, ['init', 'before_insert', 'after_insert', 'translate_row', 'populate_instance','refresh', 'append_result', 'translate_row', 'create_instance' , 'populate_instance', 'load', 'append_result', 'before_update', 'after_update', 'before_delete', 'after_delete']) eq_(canary2, []) eq_(canary3, ['init', 'before_insert', 'after_insert', 'translate_row', 'populate_instance','refresh', 'append_result', 'translate_row', 'create_instance' , 'populate_instance', 'load', 'append_result', 'before_update', 'after_update', 'before_delete', 'after_delete']) def test_before_after_only_collection(self): """before_update is called on parent for collection modifications, after_update is called even if no columns were updated. """ keywords, items, item_keywords, Keyword, Item = ( self.tables.keywords, self.tables.items, self.tables.item_keywords, self.classes.Keyword, self.classes.Item) mapper(Item, items, properties={ 'keywords': relationship(Keyword, secondary=item_keywords)}) mapper(Keyword, keywords) canary1 = self.listen_all(Item) canary2 = self.listen_all(Keyword) sess = create_session() i1 = Item(description="i1") k1 = Keyword(name="k1") sess.add(i1) sess.add(k1) sess.flush() eq_(canary1, ['init', 'before_insert', 'after_insert']) eq_(canary2, ['init', 'before_insert', 'after_insert']) canary1[:]= [] canary2[:]= [] i1.keywords.append(k1) sess.flush() eq_(canary1, ['before_update', 'after_update']) eq_(canary2, []) def test_retval(self): User, users = self.classes.User, self.tables.users def create_instance(mapper, context, row, class_): u = User.__new__(User) u.foo = True return u mapper(User, users) event.listen(User, 'create_instance', create_instance, retval=True) sess = create_session() u1 = User() u1.name = 'ed' sess.add(u1) sess.flush() sess.expunge_all() u = sess.query(User).first() assert u.foo def test_instrument_event(self): Address, addresses, users, User = (self.classes.Address, self.tables.addresses, self.tables.users, self.classes.User) canary = [] def instrument_class(mapper, cls): canary.append(cls) event.listen(Mapper, 'instrument_class', instrument_class) mapper(User, users) eq_(canary, [User]) mapper(Address, addresses) eq_(canary, [User, Address]) class DeclarativeEventListenTest(_RemoveListeners, fixtures.DeclarativeMappedTest): run_setup_classes = "each" run_deletes = None def test_inheritance_propagate_after_config(self): # test [ticket:2949] class A(self.DeclarativeBasic): __tablename__ = 'a' id = Column(Integer, primary_key=True) class B(A): pass listen = Mock() event.listen(self.DeclarativeBasic, "load", listen, propagate=True) class C(B): pass m1 = A.__mapper__.class_manager m2 = B.__mapper__.class_manager m3 = C.__mapper__.class_manager a1 = A() b1 = B() c1 = C() m3.dispatch.load(c1._sa_instance_state, "c") m2.dispatch.load(b1._sa_instance_state, "b") m1.dispatch.load(a1._sa_instance_state, "a") eq_( listen.mock_calls, [call(c1, "c"), call(b1, "b"), call(a1, "a")] ) class DeferredMapperEventsTest(_RemoveListeners, _fixtures.FixtureTest): """"test event listeners against unmapped classes. This incurs special logic. Note if we ever do the "remove" case, it has to get all of these, too. """ run_inserts = None def test_deferred_map_event(self): """ 1. mapper event listen on class 2. map class 3. event fire should receive event """ users, User = (self.tables.users, self.classes.User) canary = [] def evt(x, y, z): canary.append(x) event.listen(User, "before_insert", evt, raw=True) m = mapper(User, users) m.dispatch.before_insert(5, 6, 7) eq_(canary, [5]) def test_deferred_map_event_subclass_propagate(self): """ 1. mapper event listen on class, w propagate 2. map only subclass of class 3. event fire should receive event """ users, User = (self.tables.users, self.classes.User) class SubUser(User): pass class SubSubUser(SubUser): pass canary = Mock() def evt(x, y, z): canary.append(x) event.listen(User, "before_insert", canary, propagate=True, raw=True) m = mapper(SubUser, users) m.dispatch.before_insert(5, 6, 7) eq_(canary.mock_calls, [call(5, 6, 7)]) m2 = mapper(SubSubUser, users) m2.dispatch.before_insert(8, 9, 10) eq_(canary.mock_calls, [call(5, 6, 7), call(8, 9, 10)]) def test_deferred_map_event_subclass_no_propagate(self): """ 1. mapper event listen on class, w/o propagate 2. map only subclass of class 3. event fire should not receive event """ users, User = (self.tables.users, self.classes.User) class SubUser(User): pass canary = [] def evt(x, y, z): canary.append(x) event.listen(User, "before_insert", evt, propagate=False) m = mapper(SubUser, users) m.dispatch.before_insert(5, 6, 7) eq_(canary, []) def test_deferred_map_event_subclass_post_mapping_propagate(self): """ 1. map only subclass of class 2. mapper event listen on class, w propagate 3. event fire should receive event """ users, User = (self.tables.users, self.classes.User) class SubUser(User): pass m = mapper(SubUser, users) canary = [] def evt(x, y, z): canary.append(x) event.listen(User, "before_insert", evt, propagate=True, raw=True) m.dispatch.before_insert(5, 6, 7) eq_(canary, [5]) def test_deferred_map_event_subclass_post_mapping_propagate_two(self): """ 1. map only subclass of class 2. mapper event listen on class, w propagate 3. event fire should receive event """ users, User = (self.tables.users, self.classes.User) class SubUser(User): pass class SubSubUser(SubUser): pass m = mapper(SubUser, users) canary = Mock() event.listen(User, "before_insert", canary, propagate=True, raw=True) m2 = mapper(SubSubUser, users) m.dispatch.before_insert(5, 6, 7) eq_(canary.mock_calls, [call(5, 6, 7)]) m2.dispatch.before_insert(8, 9, 10) eq_(canary.mock_calls, [call(5, 6, 7), call(8, 9, 10)]) def test_deferred_instance_event_subclass_post_mapping_propagate(self): """ 1. map only subclass of class 2. instance event listen on class, w propagate 3. event fire should receive event """ users, User = (self.tables.users, self.classes.User) class SubUser(User): pass m = mapper(SubUser, users) canary = [] def evt(x): canary.append(x) event.listen(User, "load", evt, propagate=True, raw=True) m.class_manager.dispatch.load(5) eq_(canary, [5]) def test_deferred_instance_event_plain(self): """ 1. instance event listen on class, w/o propagate 2. map class 3. event fire should receive event """ users, User = (self.tables.users, self.classes.User) canary = [] def evt(x): canary.append(x) event.listen(User, "load", evt, raw=True) m = mapper(User, users) m.class_manager.dispatch.load(5) eq_(canary, [5]) def test_deferred_instance_event_subclass_propagate_subclass_only(self): """ 1. instance event listen on class, w propagate 2. map two subclasses of class 3. event fire on each class should receive one and only one event """ users, User = (self.tables.users, self.classes.User) class SubUser(User): pass class SubUser2(User): pass canary = [] def evt(x): canary.append(x) event.listen(User, "load", evt, propagate=True, raw=True) m = mapper(SubUser, users) m2 = mapper(SubUser2, users) m.class_manager.dispatch.load(5) eq_(canary, [5]) m2.class_manager.dispatch.load(5) eq_(canary, [5, 5]) def test_deferred_instance_event_subclass_propagate_baseclass(self): """ 1. instance event listen on class, w propagate 2. map one subclass of class, map base class, leave 2nd subclass unmapped 3. event fire on sub should receive one and only one event 4. event fire on base should receive one and only one event 5. map 2nd subclass 6. event fire on 2nd subclass should receive one and only one event """ users, User = (self.tables.users, self.classes.User) class SubUser(User): pass class SubUser2(User): pass canary = Mock() event.listen(User, "load", canary, propagate=True, raw=False) # reversing these fixes.... m = mapper(SubUser, users) m2 = mapper(User, users) instance = Mock() m.class_manager.dispatch.load(instance) eq_(canary.mock_calls, [call(instance.obj())]) m2.class_manager.dispatch.load(instance) eq_(canary.mock_calls, [call(instance.obj()), call(instance.obj())]) m3 = mapper(SubUser2, users) m3.class_manager.dispatch.load(instance) eq_(canary.mock_calls, [call(instance.obj()), call(instance.obj()), call(instance.obj())]) def test_deferred_instance_event_subclass_no_propagate(self): """ 1. instance event listen on class, w/o propagate 2. map subclass 3. event fire on subclass should not receive event """ users, User = (self.tables.users, self.classes.User) class SubUser(User): pass canary = [] def evt(x): canary.append(x) event.listen(User, "load", evt, propagate=False) m = mapper(SubUser, users) m.class_manager.dispatch.load(5) eq_(canary, []) def test_deferred_instrument_event(self): users, User = (self.tables.users, self.classes.User) canary = [] def evt(x): canary.append(x) event.listen(User, "attribute_instrument", evt) instrumentation._instrumentation_factory.dispatch.attribute_instrument(User) eq_(canary, [User]) def test_isolation_instrument_event(self): users, User = (self.tables.users, self.classes.User) class Bar(object): pass canary = [] def evt(x): canary.append(x) event.listen(Bar, "attribute_instrument", evt) instrumentation._instrumentation_factory.dispatch.attribute_instrument(User) eq_(canary, []) @testing.requires.predictable_gc def test_instrument_event_auto_remove(self): class Bar(object): pass dispatch = instrumentation._instrumentation_factory.dispatch assert not dispatch.attribute_instrument event.listen(Bar, "attribute_instrument", lambda: None) eq_(len(dispatch.attribute_instrument), 1) del Bar gc_collect() assert not dispatch.attribute_instrument def test_deferred_instrument_event_subclass_propagate(self): users, User = (self.tables.users, self.classes.User) class SubUser(User): pass canary = [] def evt(x): canary.append(x) event.listen(User, "attribute_instrument", evt, propagate=True) instrumentation._instrumentation_factory.dispatch.\ attribute_instrument(SubUser) eq_(canary, [SubUser]) def test_deferred_instrument_event_subclass_no_propagate(self): users, User = (self.tables.users, self.classes.User) class SubUser(User): pass canary = [] def evt(x): canary.append(x) event.listen(User, "attribute_instrument", evt, propagate=False) mapper(SubUser, users) instrumentation._instrumentation_factory.dispatch.attribute_instrument(5) eq_(canary, []) class LoadTest(_fixtures.FixtureTest): run_inserts = None @classmethod def setup_mappers(cls): User, users = cls.classes.User, cls.tables.users mapper(User, users) def _fixture(self): User = self.classes.User canary = [] def load(target, ctx): canary.append("load") def refresh(target, ctx, attrs): canary.append(("refresh", attrs)) event.listen(User, "load", load) event.listen(User, "refresh", refresh) return canary def test_just_loaded(self): User = self.classes.User canary = self._fixture() sess = Session() u1 = User(name='u1') sess.add(u1) sess.commit() sess.close() sess.query(User).first() eq_(canary, ['load']) def test_repeated_rows(self): User = self.classes.User canary = self._fixture() sess = Session() u1 = User(name='u1') sess.add(u1) sess.commit() sess.close() sess.query(User).union_all(sess.query(User)).all() eq_(canary, ['load']) class RemovalTest(_fixtures.FixtureTest): run_inserts = None def test_attr_propagated(self): User = self.classes.User users, addresses, User = (self.tables.users, self.tables.addresses, self.classes.User) class AdminUser(User): pass mapper(User, users) mapper(AdminUser, addresses, inherits=User) fn = Mock() event.listen(User.name, "set", fn, propagate=True) au = AdminUser() au.name = 'ed' eq_(fn.call_count, 1) event.remove(User.name, "set", fn) au.name = 'jack' eq_(fn.call_count, 1) def test_unmapped_listen(self): users = self.tables.users class Foo(object): pass fn = Mock() event.listen(Foo, "before_insert", fn, propagate=True) class User(Foo): pass m = mapper(User, users) u1 = User() m.dispatch.before_insert(m, None, attributes.instance_state(u1)) eq_(fn.call_count, 1) event.remove(Foo, "before_insert", fn) # existing event is removed m.dispatch.before_insert(m, None, attributes.instance_state(u1)) eq_(fn.call_count, 1) # the _HoldEvents is also cleaned out class Bar(Foo): pass m = mapper(Bar, users) b1 = Bar() m.dispatch.before_insert(m, None, attributes.instance_state(b1)) eq_(fn.call_count, 1) def test_instance_event_listen_on_cls_before_map(self): users = self.tables.users fn = Mock() class User(object): pass event.listen(User, "load", fn) m = mapper(User, users) u1 = User() m.class_manager.dispatch.load(u1._sa_instance_state, "u1") event.remove(User, "load", fn) m.class_manager.dispatch.load(u1._sa_instance_state, "u2") eq_(fn.mock_calls, [call(u1, "u1")]) class RefreshTest(_fixtures.FixtureTest): run_inserts = None @classmethod def setup_mappers(cls): User, users = cls.classes.User, cls.tables.users mapper(User, users) def _fixture(self): User = self.classes.User canary = [] def load(target, ctx): canary.append("load") def refresh(target, ctx, attrs): canary.append(("refresh", attrs)) event.listen(User, "load", load) event.listen(User, "refresh", refresh) return canary def test_already_present(self): User = self.classes.User canary = self._fixture() sess = Session() u1 = User(name='u1') sess.add(u1) sess.flush() sess.query(User).first() eq_(canary, []) def test_repeated_rows(self): User = self.classes.User canary = self._fixture() sess = Session() u1 = User(name='u1') sess.add(u1) sess.commit() sess.query(User).union_all(sess.query(User)).all() eq_(canary, [('refresh', set(['id','name']))]) def test_via_refresh_state(self): User = self.classes.User canary = self._fixture() sess = Session() u1 = User(name='u1') sess.add(u1) sess.commit() u1.name eq_(canary, [('refresh', set(['id','name']))]) def test_was_expired(self): User = self.classes.User canary = self._fixture() sess = Session() u1 = User(name='u1') sess.add(u1) sess.flush() sess.expire(u1) sess.query(User).first() eq_(canary, [('refresh', set(['id','name']))]) def test_was_expired_via_commit(self): User = self.classes.User canary = self._fixture() sess = Session() u1 = User(name='u1') sess.add(u1) sess.commit() sess.query(User).first() eq_(canary, [('refresh', set(['id','name']))]) def test_was_expired_attrs(self): User = self.classes.User canary = self._fixture() sess = Session() u1 = User(name='u1') sess.add(u1) sess.flush() sess.expire(u1, ['name']) sess.query(User).first() eq_(canary, [('refresh', set(['name']))]) def test_populate_existing(self): User = self.classes.User canary = self._fixture() sess = Session() u1 = User(name='u1') sess.add(u1) sess.commit() sess.query(User).populate_existing().first() eq_(canary, [('refresh', None)]) class SessionEventsTest(_RemoveListeners, _fixtures.FixtureTest): run_inserts = None def test_class_listen(self): def my_listener(*arg, **kw): pass event.listen(Session, 'before_flush', my_listener) s = Session() assert my_listener in s.dispatch.before_flush def test_sessionmaker_listen(self): """test that listen can be applied to individual scoped_session() classes.""" def my_listener_one(*arg, **kw): pass def my_listener_two(*arg, **kw): pass S1 = sessionmaker() S2 = sessionmaker() event.listen(Session, 'before_flush', my_listener_one) event.listen(S1, 'before_flush', my_listener_two) s1 = S1() assert my_listener_one in s1.dispatch.before_flush assert my_listener_two in s1.dispatch.before_flush s2 = S2() assert my_listener_one in s2.dispatch.before_flush assert my_listener_two not in s2.dispatch.before_flush def test_scoped_session_invalid_callable(self): from sqlalchemy.orm import scoped_session def my_listener_one(*arg, **kw): pass scope = scoped_session(lambda:Session()) assert_raises_message( sa.exc.ArgumentError, "Session event listen on a scoped_session requires that its " "creation callable is associated with the Session class.", event.listen, scope, "before_flush", my_listener_one ) def test_scoped_session_invalid_class(self): from sqlalchemy.orm import scoped_session def my_listener_one(*arg, **kw): pass class NotASession(object): def __call__(self): return Session() scope = scoped_session(NotASession) assert_raises_message( sa.exc.ArgumentError, "Session event listen on a scoped_session requires that its " "creation callable is associated with the Session class.", event.listen, scope, "before_flush", my_listener_one ) def test_scoped_session_listen(self): from sqlalchemy.orm import scoped_session def my_listener_one(*arg, **kw): pass scope = scoped_session(sessionmaker()) event.listen(scope, "before_flush", my_listener_one) assert my_listener_one in scope().dispatch.before_flush def _listener_fixture(self, **kw): canary = [] def listener(name): def go(*arg, **kw): canary.append(name) return go sess = Session(**kw) for evt in [ 'after_transaction_create', 'after_transaction_end', 'before_commit', 'after_commit', 'after_rollback', 'after_soft_rollback', 'before_flush', 'after_flush', 'after_flush_postexec', 'after_begin', 'before_attach', 'after_attach', 'after_bulk_update', 'after_bulk_delete' ]: event.listen(sess, evt, listener(evt)) return sess, canary def test_flush_autocommit_hook(self): User, users = self.classes.User, self.tables.users mapper(User, users) sess, canary = self._listener_fixture(autoflush=False, autocommit=True, expire_on_commit=False) u = User(name='u1') sess.add(u) sess.flush() eq_( canary, [ 'before_attach', 'after_attach', 'before_flush', 'after_transaction_create', 'after_begin', 'after_flush', 'after_flush_postexec', 'before_commit', 'after_commit','after_transaction_end'] ) def test_rollback_hook(self): User, users = self.classes.User, self.tables.users sess, canary = self._listener_fixture() mapper(User, users) u = User(name='u1', id=1) sess.add(u) sess.commit() u2 = User(name='u1', id=1) sess.add(u2) assert_raises( sa.orm.exc.FlushError, sess.commit ) sess.rollback() eq_(canary, ['before_attach', 'after_attach', 'before_commit', 'before_flush', 'after_transaction_create', 'after_begin', 'after_flush', 'after_flush_postexec', 'after_transaction_end', 'after_commit', 'after_transaction_end', 'after_transaction_create', 'before_attach', 'after_attach', 'before_commit', 'before_flush', 'after_transaction_create', 'after_begin', 'after_rollback', 'after_transaction_end', 'after_soft_rollback', 'after_transaction_end','after_transaction_create', 'after_soft_rollback']) def test_can_use_session_in_outer_rollback_hook(self): User, users = self.classes.User, self.tables.users mapper(User, users) sess = Session() assertions = [] @event.listens_for(sess, "after_soft_rollback") def do_something(session, previous_transaction): if session.is_active: assertions.append('name' not in u.__dict__) assertions.append(u.name == 'u1') u = User(name='u1', id=1) sess.add(u) sess.commit() u2 = User(name='u1', id=1) sess.add(u2) assert_raises( sa.orm.exc.FlushError, sess.commit ) sess.rollback() eq_(assertions, [True, True]) def test_flush_noautocommit_hook(self): User, users = self.classes.User, self.tables.users sess, canary = self._listener_fixture() mapper(User, users) u = User(name='u1') sess.add(u) sess.flush() eq_(canary, ['before_attach', 'after_attach', 'before_flush', 'after_transaction_create', 'after_begin', 'after_flush', 'after_flush_postexec', 'after_transaction_end']) def test_flush_in_commit_hook(self): User, users = self.classes.User, self.tables.users sess, canary = self._listener_fixture() mapper(User, users) u = User(name='u1') sess.add(u) sess.flush() canary[:] = [] u.name = 'ed' sess.commit() eq_(canary, ['before_commit', 'before_flush', 'after_transaction_create', 'after_flush', 'after_flush_postexec', 'after_transaction_end', 'after_commit', 'after_transaction_end', 'after_transaction_create',]) def test_state_before_attach(self): User, users = self.classes.User, self.tables.users sess = Session() @event.listens_for(sess, "before_attach") def listener(session, inst): state = attributes.instance_state(inst) if state.key: assert state.key not in session.identity_map else: assert inst not in session.new mapper(User, users) u= User(name='u1') sess.add(u) sess.flush() sess.expunge(u) sess.add(u) def test_state_after_attach(self): User, users = self.classes.User, self.tables.users sess = Session() @event.listens_for(sess, "after_attach") def listener(session, inst): state = attributes.instance_state(inst) if state.key: assert session.identity_map[state.key] is inst else: assert inst in session.new mapper(User, users) u= User(name='u1') sess.add(u) sess.flush() sess.expunge(u) sess.add(u) def test_standalone_on_commit_hook(self): sess, canary = self._listener_fixture() sess.commit() eq_(canary, ['before_commit', 'after_commit', 'after_transaction_end', 'after_transaction_create']) def test_on_bulk_update_hook(self): User, users = self.classes.User, self.tables.users sess = Session() canary = Mock() event.listen(sess, "after_begin", canary.after_begin) event.listen(sess, "after_bulk_update", canary.after_bulk_update) def legacy(ses, qry, ctx, res): canary.after_bulk_update_legacy(ses, qry, ctx, res) event.listen(sess, "after_bulk_update", legacy) mapper(User, users) sess.query(User).update({'name': 'foo'}) eq_( canary.after_begin.call_count, 1 ) eq_( canary.after_bulk_update.call_count, 1 ) upd = canary.after_bulk_update.mock_calls[0][1][0] eq_( upd.session, sess ) eq_( canary.after_bulk_update_legacy.mock_calls, [call(sess, upd.query, upd.context, upd.result)] ) def test_on_bulk_delete_hook(self): User, users = self.classes.User, self.tables.users sess = Session() canary = Mock() event.listen(sess, "after_begin", canary.after_begin) event.listen(sess, "after_bulk_delete", canary.after_bulk_delete) def legacy(ses, qry, ctx, res): canary.after_bulk_delete_legacy(ses, qry, ctx, res) event.listen(sess, "after_bulk_delete", legacy) mapper(User, users) sess.query(User).delete() eq_( canary.after_begin.call_count, 1 ) eq_( canary.after_bulk_delete.call_count, 1 ) upd = canary.after_bulk_delete.mock_calls[0][1][0] eq_( upd.session, sess ) eq_( canary.after_bulk_delete_legacy.mock_calls, [call(sess, upd.query, upd.context, upd.result)] ) def test_connection_emits_after_begin(self): sess, canary = self._listener_fixture(bind=testing.db) conn = sess.connection() eq_(canary, ['after_begin']) def test_reentrant_flush(self): users, User = self.tables.users, self.classes.User mapper(User, users) def before_flush(session, flush_context, objects): session.flush() sess = Session() event.listen(sess, 'before_flush', before_flush) sess.add(User(name='foo')) assert_raises_message(sa.exc.InvalidRequestError, 'already flushing', sess.flush) def test_before_flush_affects_flush_plan(self): users, User = self.tables.users, self.classes.User mapper(User, users) def before_flush(session, flush_context, objects): for obj in list(session.new) + list(session.dirty): if isinstance(obj, User): session.add(User(name='another %s' % obj.name)) for obj in list(session.deleted): if isinstance(obj, User): x = session.query(User).filter(User.name == 'another %s' % obj.name).one() session.delete(x) sess = Session() event.listen(sess, 'before_flush', before_flush) u = User(name='u1') sess.add(u) sess.flush() eq_(sess.query(User).order_by(User.name).all(), [ User(name='another u1'), User(name='u1') ] ) sess.flush() eq_(sess.query(User).order_by(User.name).all(), [ User(name='another u1'), User(name='u1') ] ) u.name='u2' sess.flush() eq_(sess.query(User).order_by(User.name).all(), [ User(name='another u1'), User(name='another u2'), User(name='u2') ] ) sess.delete(u) sess.flush() eq_(sess.query(User).order_by(User.name).all(), [ User(name='another u1'), ] ) def test_before_flush_affects_dirty(self): users, User = self.tables.users, self.classes.User mapper(User, users) def before_flush(session, flush_context, objects): for obj in list(session.identity_map.values()): obj.name += " modified" sess = Session(autoflush=True) event.listen(sess, 'before_flush', before_flush) u = User(name='u1') sess.add(u) sess.flush() eq_(sess.query(User).order_by(User.name).all(), [User(name='u1')] ) sess.add(User(name='u2')) sess.flush() sess.expunge_all() eq_(sess.query(User).order_by(User.name).all(), [ User(name='u1 modified'), User(name='u2') ] ) class MapperExtensionTest(_fixtures.FixtureTest): """Superseded by MapperEventsTest - test backwards compatibility of MapperExtension.""" run_inserts = None def extension(self): methods = [] class Ext(sa.orm.MapperExtension): def instrument_class(self, mapper, cls): methods.append('instrument_class') return sa.orm.EXT_CONTINUE def init_instance(self, mapper, class_, oldinit, instance, args, kwargs): methods.append('init_instance') return sa.orm.EXT_CONTINUE def init_failed(self, mapper, class_, oldinit, instance, args, kwargs): methods.append('init_failed') return sa.orm.EXT_CONTINUE def translate_row(self, mapper, context, row): methods.append('translate_row') return sa.orm.EXT_CONTINUE def create_instance(self, mapper, selectcontext, row, class_): methods.append('create_instance') return sa.orm.EXT_CONTINUE def reconstruct_instance(self, mapper, instance): methods.append('reconstruct_instance') return sa.orm.EXT_CONTINUE def append_result(self, mapper, selectcontext, row, instance, result, **flags): methods.append('append_result') return sa.orm.EXT_CONTINUE def populate_instance(self, mapper, selectcontext, row, instance, **flags): methods.append('populate_instance') return sa.orm.EXT_CONTINUE def before_insert(self, mapper, connection, instance): methods.append('before_insert') return sa.orm.EXT_CONTINUE def after_insert(self, mapper, connection, instance): methods.append('after_insert') return sa.orm.EXT_CONTINUE def before_update(self, mapper, connection, instance): methods.append('before_update') return sa.orm.EXT_CONTINUE def after_update(self, mapper, connection, instance): methods.append('after_update') return sa.orm.EXT_CONTINUE def before_delete(self, mapper, connection, instance): methods.append('before_delete') return sa.orm.EXT_CONTINUE def after_delete(self, mapper, connection, instance): methods.append('after_delete') return sa.orm.EXT_CONTINUE return Ext, methods def test_basic(self): """test that common user-defined methods get called.""" User, users = self.classes.User, self.tables.users Ext, methods = self.extension() mapper(User, users, extension=Ext()) sess = create_session() u = User(name='u1') sess.add(u) sess.flush() u = sess.query(User).populate_existing().get(u.id) sess.expunge_all() u = sess.query(User).get(u.id) u.name = 'u1 changed' sess.flush() sess.delete(u) sess.flush() eq_(methods, ['instrument_class', 'init_instance', 'before_insert', 'after_insert', 'translate_row', 'populate_instance', 'append_result', 'translate_row', 'create_instance', 'populate_instance', 'reconstruct_instance', 'append_result', 'before_update', 'after_update', 'before_delete', 'after_delete']) def test_inheritance(self): users, addresses, User = (self.tables.users, self.tables.addresses, self.classes.User) Ext, methods = self.extension() class AdminUser(User): pass mapper(User, users, extension=Ext()) mapper(AdminUser, addresses, inherits=User) sess = create_session() am = AdminUser(name='au1', email_address='au1@e1') sess.add(am) sess.flush() am = sess.query(AdminUser).populate_existing().get(am.id) sess.expunge_all() am = sess.query(AdminUser).get(am.id) am.name = 'au1 changed' sess.flush() sess.delete(am) sess.flush() eq_(methods, ['instrument_class', 'instrument_class', 'init_instance', 'before_insert', 'after_insert', 'translate_row', 'populate_instance', 'append_result', 'translate_row', 'create_instance', 'populate_instance', 'reconstruct_instance', 'append_result', 'before_update', 'after_update', 'before_delete', 'after_delete']) def test_before_after_only_collection(self): """before_update is called on parent for collection modifications, after_update is called even if no columns were updated. """ keywords, items, item_keywords, Keyword, Item = (self.tables.keywords, self.tables.items, self.tables.item_keywords, self.classes.Keyword, self.classes.Item) Ext1, methods1 = self.extension() Ext2, methods2 = self.extension() mapper(Item, items, extension=Ext1() , properties={ 'keywords': relationship(Keyword, secondary=item_keywords)}) mapper(Keyword, keywords, extension=Ext2()) sess = create_session() i1 = Item(description="i1") k1 = Keyword(name="k1") sess.add(i1) sess.add(k1) sess.flush() eq_(methods1, ['instrument_class', 'init_instance', 'before_insert', 'after_insert']) eq_(methods2, ['instrument_class', 'init_instance', 'before_insert', 'after_insert']) del methods1[:] del methods2[:] i1.keywords.append(k1) sess.flush() eq_(methods1, ['before_update', 'after_update']) eq_(methods2, []) def test_inheritance_with_dupes(self): """Inheritance with the same extension instance on both mappers.""" users, addresses, User = (self.tables.users, self.tables.addresses, self.classes.User) Ext, methods = self.extension() class AdminUser(User): pass ext = Ext() mapper(User, users, extension=ext) mapper(AdminUser, addresses, inherits=User, extension=ext) sess = create_session() am = AdminUser(name="au1", email_address="au1@e1") sess.add(am) sess.flush() am = sess.query(AdminUser).populate_existing().get(am.id) sess.expunge_all() am = sess.query(AdminUser).get(am.id) am.name = 'au1 changed' sess.flush() sess.delete(am) sess.flush() eq_(methods, ['instrument_class', 'instrument_class', 'init_instance', 'before_insert', 'after_insert', 'translate_row', 'populate_instance', 'append_result', 'translate_row', 'create_instance', 'populate_instance', 'reconstruct_instance', 'append_result', 'before_update', 'after_update', 'before_delete', 'after_delete']) def test_create_instance(self): User, users = self.classes.User, self.tables.users class CreateUserExt(sa.orm.MapperExtension): def create_instance(self, mapper, selectcontext, row, class_): return User.__new__(User) mapper(User, users, extension=CreateUserExt()) sess = create_session() u1 = User() u1.name = 'ed' sess.add(u1) sess.flush() sess.expunge_all() assert sess.query(User).first() def test_unnecessary_methods_not_evented(self): users = self.tables.users class MyExtension(sa.orm.MapperExtension): def before_insert(self, mapper, connection, instance): pass class Foo(object): pass m = mapper(Foo, users, extension=MyExtension()) assert not m.class_manager.dispatch.load assert not m.dispatch.before_update assert len(m.dispatch.before_insert) == 1 class AttributeExtensionTest(fixtures.MappedTest): @classmethod def define_tables(cls, metadata): Table('t1', metadata, Column('id', Integer, primary_key=True), Column('type', String(40)), Column('data', String(50)) ) def test_cascading_extensions(self): t1 = self.tables.t1 ext_msg = [] class Ex1(sa.orm.AttributeExtension): def set(self, state, value, oldvalue, initiator): ext_msg.append("Ex1 %r" % value) return "ex1" + value class Ex2(sa.orm.AttributeExtension): def set(self, state, value, oldvalue, initiator): ext_msg.append("Ex2 %r" % value) return "ex2" + value class A(fixtures.BasicEntity): pass class B(A): pass class C(B): pass mapper(A, t1, polymorphic_on=t1.c.type, polymorphic_identity='a', properties={ 'data':column_property(t1.c.data, extension=Ex1()) }) mapper(B, polymorphic_identity='b', inherits=A) mc = mapper(C, polymorphic_identity='c', inherits=B, properties={ 'data':column_property(t1.c.data, extension=Ex2()) }) a1 = A(data='a1') b1 = B(data='b1') c1 = C(data='c1') eq_(a1.data, 'ex1a1') eq_(b1.data, 'ex1b1') eq_(c1.data, 'ex2c1') a1.data = 'a2' b1.data='b2' c1.data = 'c2' eq_(a1.data, 'ex1a2') eq_(b1.data, 'ex1b2') eq_(c1.data, 'ex2c2') eq_(ext_msg, ["Ex1 'a1'", "Ex1 'b1'", "Ex2 'c1'", "Ex1 'a2'", "Ex1 'b2'", "Ex2 'c2'"]) class SessionExtensionTest(_fixtures.FixtureTest): run_inserts = None def test_extension(self): User, users = self.classes.User, self.tables.users mapper(User, users) log = [] class MyExt(sa.orm.session.SessionExtension): def before_commit(self, session): log.append('before_commit') def after_commit(self, session): log.append('after_commit') def after_rollback(self, session): log.append('after_rollback') def before_flush(self, session, flush_context, objects): log.append('before_flush') def after_flush(self, session, flush_context): log.append('after_flush') def after_flush_postexec(self, session, flush_context): log.append('after_flush_postexec') def after_begin(self, session, transaction, connection): log.append('after_begin') def after_attach(self, session, instance): log.append('after_attach') def after_bulk_update( self, session, query, query_context, result ): log.append('after_bulk_update') def after_bulk_delete( self, session, query, query_context, result ): log.append('after_bulk_delete') sess = create_session(extension = MyExt()) u = User(name='u1') sess.add(u) sess.flush() assert log == [ 'after_attach', 'before_flush', 'after_begin', 'after_flush', 'after_flush_postexec', 'before_commit', 'after_commit', ] log = [] sess = create_session(autocommit=False, extension=MyExt()) u = User(name='u1') sess.add(u) sess.flush() assert log == ['after_attach', 'before_flush', 'after_begin', 'after_flush', 'after_flush_postexec'] log = [] u.name = 'ed' sess.commit() assert log == ['before_commit', 'before_flush', 'after_flush', 'after_flush_postexec', 'after_commit'] log = [] sess.commit() assert log == ['before_commit', 'after_commit'] log = [] sess.query(User).delete() assert log == ['after_begin', 'after_bulk_delete'] log = [] sess.query(User).update({'name': 'foo'}) assert log == ['after_bulk_update'] log = [] sess = create_session(autocommit=False, extension=MyExt(), bind=testing.db) conn = sess.connection() assert log == ['after_begin'] def test_multiple_extensions(self): User, users = self.classes.User, self.tables.users log = [] class MyExt1(sa.orm.session.SessionExtension): def before_commit(self, session): log.append('before_commit_one') class MyExt2(sa.orm.session.SessionExtension): def before_commit(self, session): log.append('before_commit_two') mapper(User, users) sess = create_session(extension = [MyExt1(), MyExt2()]) u = User(name='u1') sess.add(u) sess.flush() assert log == [ 'before_commit_one', 'before_commit_two', ] def test_unnecessary_methods_not_evented(self): class MyExtension(sa.orm.session.SessionExtension): def before_commit(self, session): pass s = Session(extension=MyExtension()) assert not s.dispatch.after_commit assert len(s.dispatch.before_commit) == 1
29.615938
96
0.560655
336d5f39291c302e648faafd72ed5d30ed611cae
2,391
py
Python
data_tools/train_test_split.py
bsm8734/formula-image-latex-recognition
86d5070e8f907571a47967d64facaee246d92a35
[ "MIT" ]
13
2021-06-20T18:11:23.000Z
2021-12-07T18:06:42.000Z
data_tools/train_test_split.py
bsm8734/formula-image-latex-recognition
86d5070e8f907571a47967d64facaee246d92a35
[ "MIT" ]
9
2021-06-16T14:55:07.000Z
2021-06-23T14:45:36.000Z
data_tools/train_test_split.py
bsm8734/formula-image-latex-recognition
86d5070e8f907571a47967d64facaee246d92a35
[ "MIT" ]
6
2021-06-17T15:16:50.000Z
2021-07-05T20:41:26.000Z
import argparse import csv import os import random test_percent = 0.2 output_dir = "gt-split" # Split the ground truth into train, test sets def split_gt(groundtruth, test_percent=0.2, data_num=None): """Split the ground truth into train, test sets Args: groundtruth (text file) : ground truth file test_percent (float) : represent the proportion of the dataset to include in the test split. Defaults to 0.2. data_num (int) : represents the absolute number of test samples. Defaults to None. Returns: train dataset test dataset """ with open(groundtruth, "r") as fd: data = fd.read() data = data.split('\n') data = [x.split('\t') for x in data] random.shuffle(data) if data_num: assert sum(data_num) < len(data) return data[:data_num[0]], data[data_num[0]:data_num[0] + data_num[1]] test_len = round(len(data) * test_percent) return data[test_len:], data[:test_len] # train, test def write_tsv(data, path): with open(path, "w") as fd: writer = csv.writer(fd, delimiter="\t") writer.writerows(data) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "-p", "--test-percent", dest="test_percent", default=test_percent, type=float, help="Percent of data to use for test [Default: {}]".format(test_percent) ) parser.add_argument( "-n", "--data_num", nargs=2, type=int, help="Number of train data and test data", ) parser.add_argument( "-i", "--input", dest="input", required=True, type=str, help="Path to input ground truth file", ) parser.add_argument( "-o", "--output-dir", dest="output_dir", default=output_dir, type=str, help="Directory to save the split ground truth files", ) return parser.parse_args() if __name__ == "__main__": options = parse_args() train_gt, test_gt = split_gt(options.input, options.test_percent, options.data_num) if not os.path.exists(options.output_dir): os.makedirs(options.output_dir) write_tsv(train_gt, os.path.join(options.output_dir, "train.txt")) write_tsv(test_gt, os.path.join(options.output_dir, "test.txt"))
28.464286
117
0.609787
5284a605bbfd1c8189766fc2dbe6944f6f59ea34
875
py
Python
Desafios/desafio94.py
gustavodoamaral/115_Desafios_Python
8baa1c0353a40f7a63f442293bc0f6852fd94da0
[ "MIT" ]
1
2022-02-07T01:12:19.000Z
2022-02-07T01:12:19.000Z
Desafios/desafio94.py
gustavodoamaral/desafios_python_gustavo_guanabara
8baa1c0353a40f7a63f442293bc0f6852fd94da0
[ "MIT" ]
null
null
null
Desafios/desafio94.py
gustavodoamaral/desafios_python_gustavo_guanabara
8baa1c0353a40f7a63f442293bc0f6852fd94da0
[ "MIT" ]
null
null
null
pessoaslist = [] dicionario = {} pessoastotal = 0 soma = media = 0 mulheres = [] acimamedia = [] while True: dicionario['Nome'] = str(input("Nome: ")) dicionario['Sexo'] = str(input("Sexo: [M/F] ")) dicionario['Idade'] = int(input("Idade: ")) resp = str(input("Continuar?: [S/N]")) pessoaslist.append(dicionario.copy()) pessoastotal += 1 dicionario.clear() if resp == "N": break for i, v in enumerate(pessoaslist): soma += pessoaslist[i]['Idade'] media = soma / pessoastotal if v['Sexo'] == "F": mulheres.append(v['Nome']) print(f'- O grupo tem {pessoastotal} pessoas. \n- A média de idade é de {media:.2f} anos. \n- As mulheres cadastradas foram {mulheres}') for v in pessoaslist: if v['Idade'] > media: acimamedia.append(v) print(f"- Lista das pessoas que estão acima da média: \n{acimamedia}")
33.653846
136
0.616
be2e5e45f9e44ebb2aae9217dd4bd949f6b5369f
6,484
py
Python
train_nerf.py
matajoh/fourier_feature_nets
784140f01464e34a0dd4b813c50d20c4c15a8a59
[ "MIT" ]
88
2021-11-24T09:22:43.000Z
2022-03-28T20:34:51.000Z
train_nerf.py
matajoh/fourier_feature_nets
784140f01464e34a0dd4b813c50d20c4c15a8a59
[ "MIT" ]
1
2022-01-04T18:13:18.000Z
2022-01-25T09:36:52.000Z
train_nerf.py
matajoh/fourier_feature_nets
784140f01464e34a0dd4b813c50d20c4c15a8a59
[ "MIT" ]
5
2021-11-27T13:48:22.000Z
2022-03-28T20:35:24.000Z
"""Script to train a full NeRF model.""" from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser import json import os import fourier_feature_nets as ffn import numpy as np import torch def _parse_args(): parser = ArgumentParser("NeRF Training script", formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument("data_path", help="Path to the data NPZ") parser.add_argument("results_dir", help="Path to output results") parser.add_argument("--mode", choices=["rgba", "rgb", "dilate"], default="rgba", help="Ray sampling mode.") parser.add_argument("--opacity-model", help="Path to the optional opacity model") parser.add_argument("--num-samples", type=int, default=128, help="Number of samples to take") parser.add_argument("--resolution", type=int, default=400, help="Ray sampling resolution") parser.add_argument("--num-cameras", type=int, default=100, help="Number of cameras") parser.add_argument("--batch-size", type=int, default=1024) parser.add_argument("--num-layers", type=int, default=8) parser.add_argument("--learning-rate", type=float, default=5e-4) parser.add_argument("--num-channels", type=int, default=256, help="Number of channels in the MLP") parser.add_argument("--pos-freq", type=int, default=10, help="Number of frequencies used for encoding") parser.add_argument("--pos-max-log-scale", type=float, default=9, help="Value of sigma for the positional model") parser.add_argument("--view-freq", type=int, default=4, help="Number of frequencies used for encoding") parser.add_argument("--view-max-log-scale", type=float, default=3, help="Value of sigma for the positional model") parser.add_argument("--num-steps", type=int, default=50000, help="Number of steps to use for training.") parser.add_argument("--report-interval", type=int, default=1000, help="Interval for progress reports") parser.add_argument("--image-interval", type=int, default=2000, help="Image rendering interval") parser.add_argument("--crop-steps", type=int, default=1000, help="Number of steps to train on center crops") parser.add_argument("--seed", type=int, default=20080524, help="Manual seed for the RNG") parser.add_argument("--omit-inputs", action="store_true", help="Whether to omit inputs from the input vector") parser.add_argument("--decay-rate", type=float, default=0.1, help="Rate at which the learning rate decays") parser.add_argument("--decay-steps", type=int, default=250000, help="Interval over which the learning rate decays.") parser.add_argument("--weight-decay", type=float, default=0, help="Regularizer term for the weights.") parser.add_argument("--make-video", action="store_true", help="Whether to render frames for a training video.") parser.add_argument("--color-space", choices=["YCrCb", "RGB"], default="RGB", help="Color space to use during training.") parser.add_argument("--num-frames", type=int, default=200, help="Number of frames in the training video orbit.") parser.add_argument("--device", default="cuda", help="Pytorch compute device") return parser.parse_args() def _main(): args = _parse_args() torch.manual_seed(args.seed) model = ffn.NeRF(args.num_layers, args.num_channels, args.pos_max_log_scale, args.pos_freq, args.view_max_log_scale, args.view_freq, [4], not args.omit_inputs) if args.opacity_model: opacity_model = ffn.load_model(args.opacity_model) if opacity_model is None: return 1 opacity_model = opacity_model.to(args.device) else: opacity_model = None include_alpha = args.mode == "rgba" train_dataset = ffn.RayDataset.load(args.data_path, "train", args.num_samples, include_alpha, True, opacity_model, args.batch_size, args.color_space) val_dataset = ffn.RayDataset.load(args.data_path, "val", args.num_samples, include_alpha, False, opacity_model, args.batch_size, args.color_space) if train_dataset is None: return 1 if args.make_video: cameras = ffn.orbit(np.array([0, 1, 0]), np.array([0, 0, -1]), args.num_frames, 40, train_dataset.resolution.square(), 4) bounds = np.eye(4, dtype=np.float32) * 2 video_sampler = ffn.RaySampler(bounds, cameras, args.num_samples) image_interval = args.num_steps // args.num_frames else: video_sampler = None image_interval = args.image_interval if args.mode == "dilate": train_dataset.mode = ffn.RayDataset.Mode.Dilate raycaster = ffn.Raycaster(model) raycaster.to(args.device) log = raycaster.fit(train_dataset, val_dataset, args.results_dir, args.batch_size, args.learning_rate, args.num_steps, image_interval, args.crop_steps, args.report_interval, args.decay_rate, args.decay_steps, args.weight_decay, video_sampler) model.save(os.path.join(args.results_dir, "nerf.pt")) with open(os.path.join(args.results_dir, "log.txt"), "w") as file: json.dump(vars(args), file) file.write("\n\n") file.write("\t".join(["step", "timestamp", "psnr_train", "psnr_val"])) file.write("\t") for line in log: file.write("\t".join([str(val) for val in line]) + "\n") sp_path = os.path.join(args.results_dir, "nerf.html") raycaster.to_scenepic(val_dataset).save_as_html(sp_path) if __name__ == "__main__": _main()
45.661972
78
0.588834
8f21dd63c6cf72af25249fe99e952b46bddcdbbe
128,199
py
Python
lrs/tests/test_Statement.py
dblacksmith/ADL_LRS
4732f62a53fecf76844a8b5fb420db0f5aed4647
[ "Apache-2.0" ]
null
null
null
lrs/tests/test_Statement.py
dblacksmith/ADL_LRS
4732f62a53fecf76844a8b5fb420db0f5aed4647
[ "Apache-2.0" ]
null
null
null
lrs/tests/test_Statement.py
dblacksmith/ADL_LRS
4732f62a53fecf76844a8b5fb420db0f5aed4647
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import json import base64 import uuid import urllib import hashlib from datetime import datetime, timedelta from django.test import TestCase from django.core.urlresolvers import reverse from django.utils.timezone import utc from django.conf import settings from django.test.utils import override_settings from ..models import Statement, Activity, Agent, Verb, SubStatement from ..utils import retrieve_statement from adl_lrs.views import register class StatementTests(TestCase): @classmethod def setUpClass(cls): print "\n%s" % __name__ super(StatementTests, cls).setUpClass() def setUp(self): self.username = "tester1" self.email = "test1@tester.com" self.password = "test" self.auth = "Basic %s" % base64.b64encode( "%s:%s" % (self.username, self.password)) form = {"username": self.username, "email": self.email, "password": self.password, "password2": self.password} self.client.post(reverse(register), form, X_Experience_API_Version=settings.XAPI_VERSION) self.username2 = "tester2" self.email2 = "test2@tester.com" self.password2 = "test2" self.auth2 = "Basic %s" % base64.b64encode( "%s:%s" % (self.username2, self.password2)) form2 = {"username": self.username2, "email": self.email2, "password": self.password2, "password2": self.password2} self.client.post(reverse(register), form2, X_Experience_API_Version=settings.XAPI_VERSION) self.firstTime = str(datetime.utcnow().replace(tzinfo=utc).isoformat()) self.guid1 = uuid.uuid4() def bunchostmts(self): self.guid2 = uuid.uuid4() self.guid3 = uuid.uuid4() self.guid4 = uuid.uuid4() self.guid5 = uuid.uuid4() self.guid6 = uuid.uuid4() self.guid7 = uuid.uuid4() self.guid8 = uuid.uuid4() self.guid9 = uuid.uuid4() self.guid10 = str(uuid.uuid4()) self.cguid1 = str(uuid.uuid4()) self.cguid2 = str(uuid.uuid4()) self.cguid3 = str(uuid.uuid4()) self.cguid4 = str(uuid.uuid4()) self.cguid5 = str(uuid.uuid4()) self.cguid6 = str(uuid.uuid4()) stmt = json.dumps({"verb": {"id": "http://example.com/verbs/created", "display": {"en-US": "created"}}, "object": {"id": "act:activity"}, "actor": {"objectType": "Agent", "mbox": "mailto:s@s.com"}, "authority": {"objectType": "Agent", "name": "tester1", "mbox": "mailto:test1@tester.com"}}) response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 200) stmt_id = uuid.UUID(json.loads(response.content)[0]) self.existStmt = Statement.objects.get(statement_id=stmt_id) self.exist_stmt_id = self.existStmt.statement_id self.existStmt1 = json.dumps({"verb": {"id": "http://example.com/verbs/created", "display": {"en-US": "created"}}, "actor": {"objectType": "Agent", "mbox": "mailto:s@s.com"}, "object": {"objectType": "Activity", "id": "act:foogie", "definition": {"name": {"en-US": "testname2", "en-GB": "altname"}, "description": {"en-US": "testdesc2", "en-GB": "altdesc"}, "type": "http://www.adlnet.gov/experienceapi/activity-types/http://adlnet.gov/expapi/activities/cmi.interaction", "interactionType": "fill-in", "correctResponsesPattern": ["answer"], "extensions": {"ext:key1": "value1", "ext:key2": "value2", "ext:key3": "value3"}}}, "result": {"score": {"scaled": .85}, "completion": True, "success": True, "response": "kicked", "duration": "P3Y6M4DT12H30M5S", "extensions": {"ext:key1": "value1", "ext:key2": "value2"}}, "context": {"registration": self.cguid1, "contextActivities": {"other": {"id": "act:NewActivityID2"}}, "revision": "food", "platform": "bard", "language": "en-US", "extensions": {"ext:ckey1": "cval1", "ext:ckey2": "cval2"}}}) self.existStmt2 = json.dumps({"verb": {"id": "http://example.com/verbs/created", "display": {"en-US": "created"}}, "actor": {"objectType": "Agent", "mbox": "mailto:s@t.com"}, "object": {"objectType": "Activity", "id": "act:foogie", "definition": {"name": {"en-US": "testname3", "en-GB": "altname"}, "description": {"en-US": "testdesc3", "en-GB": "altdesc"}, "type": "http://www.adlnet.gov/experienceapi/activity-types/http://adlnet.gov/expapi/activities/cmi.interaction", "interactionType": "fill-in", "correctResponsesPattern": ["answers"], "extensions": {"ext:key11": "value11", "ext:key22": "value22", "ext:key33": "value33"}}}, "result": {"score": {"scaled": .75}, "completion": True, "success": True, "response": "shouted", "duration": "P3Y6M4DT12H30M5S", "extensions": {"ext:dkey1": "dvalue1", "ext:dkey2": "dvalue2"}}, "context": {"registration": self.cguid2, "contextActivities": {"other": {"id": "act:NewActivityID22"}}, "revision": "food", "platform": "bard", "language": "en-US", "extensions": {"ext:ckey11": "cval11", "ext:ckey22": "cval22"}}}) self.existStmt3 = json.dumps({"verb": {"id": "http://example.com/verbs/created", "display": {"en-US": "created"}}, "actor": {"objectType": "Agent", "mbox": "mailto:s@s.com"}, "object": {"objectType": "Activity", "id": "act:foogals", "definition": {"name": {"en-US": "testname3"}, "description": {"en-US": "testdesc3"}, "type": "http://adlnet.gov/expapi/activities/cmi.interaction", "interactionType": "fill-in", "correctResponsesPattern": ["answers"], "extensions": {"ext:key111": "value111", "ext:key222": "value222", "ext:key333": "value333"}}}, "result": {"score": {"scaled": .79}, "completion": True, "success": True, "response": "shouted", "duration": "P3Y6M4DT12H30M5S", "extensions": {"ext:dkey1": "dvalue1", "ext:dkey2": "dvalue2"}}, "context": {"registration": self.cguid3, "contextActivities": {"other": {"id": "act:NewActivityID22"}}, "revision": "food", "platform": "bard", "language": "en-US", "instructor": {"objectType": "Agent", "name": "bob", "mbox": "mailto:bob@bob.com"}, "extensions": {"ext:ckey111": "cval111", "ext:ckey222": "cval222"}}}) self.existStmt4 = json.dumps({"verb": {"id": "http://example.com/verbs/created", "display": {"en-US": "created"}}, "actor": {"objectType": "Agent", "mbox": "mailto:s@s.com"}, "object": {"objectType": "Activity", "id": "act:foogal", "definition": {"name": {"en-US": "testname3"}, "description": {"en-US": "testdesc3"}, "type": "http://adlnet.gov/expapi/activities/cmi.interaction", "interactionType": "fill-in", "correctResponsesPattern": ["answers"], "extensions": {"ext:key111": "value111", "ext:key222": "value222", "ext:key333": "value333"}}}, "result": {"score": {"scaled": .79}, "completion": True, "success": True, "response": "shouted", "duration": "P3Y6M4DT12H30M5S", "extensions": {"ext:dkey1": "dvalue1", "ext:dkey2": "dvalue2"}}, "context": {"registration": self.cguid4, "contextActivities": {"other": {"id": "act:NewActivityID22"}}, "revision": "food", "platform": "bard", "language": "en-US", "instructor": {"name": "bill", "mbox": "mailto:bill@bill.com"}, "extensions": {"ext:ckey111": "cval111", "ext:ckey222": "cval222"}}}) self.existStmt5 = json.dumps({"object": {"objectType": "Agent", "name": "jon", "mbox": "mailto:jon@jon.com"}, "verb": {"id": "http://example.com/verbs/created", "display": {"en-US": "created"}}, "actor": {"objectType": "Agent", "mbox": "mailto:s@s.com"}}) self.existStmt6 = json.dumps({"actor": {"objectType": "Agent", "name": "max", "mbox": "mailto:max@max.com"}, "object": {"id": "act:test_activity"}, "verb": {"id": "http://example.com/verbs/created", "display": {"en-US": "created"}}}) self.existStmt7 = json.dumps({"object": {"objectType": "Agent", "name": "max", "mbox": "mailto:max@max.com"}, "verb": {"id": "http://example.com/verbs/created", "display": {"en-US": "created"}}, "actor": {"objectType": "Agent", "mbox": "mailto:s@s.com"}}) self.existStmt8 = json.dumps({"object": {"objectType": "Agent", "name": "john", "mbox": "mailto:john@john.com"}, "verb": {"id": "http://example.com/verbs/missed", "display": {"en-US": "missed"}}, "actor": {"objectType": "Agent", "mbox": "mailto:s@s.com"}}) self.existStmt9 = json.dumps({"actor": {"objectType": "Agent", "mbox": "mailto:sub@sub.com"}, "verb": {"id": "http://example.com/verbs/missed"}, "object": {"objectType": "SubStatement", "actor": {"objectType": "Agent", "mbox": "mailto:ss@ss.com"}, "verb": {"id": "verb:verb/url/nested"}, "object": {"objectType": "Activity", "id": "act:testex.com"}, "result": {"completion": True, "success": True, "response": "kicked"}, "context": {"registration": self.cguid5, "contextActivities": {"other": {"id": "act:NewActivityID"}}, "revision": "foo", "platform": "bar", "language": "en-US", "extensions": {"ext:k1": "v1", "ext:k2": "v2"}}}}) self.existStmt10 = json.dumps({"actor": {"objectType": "Agent", "mbox": "mailto:ref@ref.com"}, "verb": {"id": "http://example.com/verbs/missed"}, "object": {"objectType": "StatementRef", "id": str(self.exist_stmt_id)}}) # Put statements param = {"statementId": str(self.guid1)} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) stmt_payload = self.existStmt1 self.putresponse1 = self.client.put(path, stmt_payload, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(self.putresponse1.status_code, 204) time = retrieve_statement.convert_to_datetime_object( str((datetime.utcnow() + timedelta(seconds=2)).replace(tzinfo=utc).isoformat())) stmt = Statement.objects.filter( statement_id=self.guid1).update(stored=time) param = {"statementId": str(self.guid3)} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) stmt_payload = self.existStmt3 self.putresponse3 = self.client.put(path, stmt_payload, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(self.putresponse3.status_code, 204) time = retrieve_statement.convert_to_datetime_object( str((datetime.utcnow() + timedelta(seconds=3)).replace(tzinfo=utc).isoformat())) stmt = Statement.objects.filter( statement_id=self.guid3).update(stored=time) param = {"statementId": str(self.guid4)} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) stmt_payload = self.existStmt4 self.putresponse4 = self.client.put(path, stmt_payload, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(self.putresponse4.status_code, 204) time = retrieve_statement.convert_to_datetime_object( str((datetime.utcnow() + timedelta(seconds=4)).replace(tzinfo=utc).isoformat())) stmt = Statement.objects.filter( statement_id=self.guid4).update(stored=time) self.secondTime = str( (datetime.utcnow() + timedelta(seconds=4)).replace(tzinfo=utc).isoformat()) param = {"statementId": str(self.guid2)} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) stmt_payload = self.existStmt2 self.putresponse2 = self.client.put(path, stmt_payload, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(self.putresponse2.status_code, 204) time = retrieve_statement.convert_to_datetime_object( str((datetime.utcnow() + timedelta(seconds=6)).replace(tzinfo=utc).isoformat())) stmt = Statement.objects.filter( statement_id=self.guid2).update(stored=time) param = {"statementId": str(self.guid5)} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) stmt_payload = self.existStmt5 self.putresponse5 = self.client.put(path, stmt_payload, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(self.putresponse5.status_code, 204) time = retrieve_statement.convert_to_datetime_object( str((datetime.utcnow() + timedelta(seconds=7)).replace(tzinfo=utc).isoformat())) stmt = Statement.objects.filter( statement_id=self.guid5).update(stored=time) param = {"statementId": str(self.guid6)} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) stmt_payload = self.existStmt6 self.putresponse6 = self.client.put(path, stmt_payload, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(self.putresponse6.status_code, 204) time = retrieve_statement.convert_to_datetime_object( str((datetime.utcnow() + timedelta(seconds=8)).replace(tzinfo=utc).isoformat())) stmt = Statement.objects.filter( statement_id=self.guid6).update(stored=time) param = {"statementId": str(self.guid7)} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) stmt_payload = self.existStmt7 self.putresponse7 = self.client.put(path, stmt_payload, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(self.putresponse7.status_code, 204) time = retrieve_statement.convert_to_datetime_object( str((datetime.utcnow() + timedelta(seconds=9)).replace(tzinfo=utc).isoformat())) stmt = Statement.objects.filter( statement_id=self.guid7).update(stored=time) param = {"statementId": str(self.guid8)} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) stmt_payload = self.existStmt8 self.putresponse8 = self.client.put(path, stmt_payload, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(self.putresponse8.status_code, 204) time = retrieve_statement.convert_to_datetime_object( str((datetime.utcnow() + timedelta(seconds=10)).replace(tzinfo=utc).isoformat())) stmt = Statement.objects.filter( statement_id=self.guid8).update(stored=time) param = {"statementId": str(self.guid9)} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) stmt_payload = self.existStmt9 self.putresponse9 = self.client.put(path, stmt_payload, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(self.putresponse9.status_code, 204) time = retrieve_statement.convert_to_datetime_object( str((datetime.utcnow() + timedelta(seconds=11)).replace(tzinfo=utc).isoformat())) stmt = Statement.objects.filter( statement_id=self.guid9).update(stored=time) param = {"statementId": str(self.guid10)} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) stmt_payload = self.existStmt10 self.putresponse10 = self.client.put(path, stmt_payload, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(self.putresponse10.status_code, 204) time = retrieve_statement.convert_to_datetime_object( str((datetime.utcnow() + timedelta(seconds=11)).replace(tzinfo=utc).isoformat())) stmt = Statement.objects.filter( statement_id=self.guid10).update(stored=time) def test_invalid_result_fields(self): stmt = json.dumps({"verb": {"id": "http://example.com/verbs/created", "display": {"en-US": "created"}}, "actor": {"objectType": "Agent", "mbox": "mailto:s@s.com"}, "object": {"objectType": "Activity", "id": "act:foogie"}, "result": {"bad": "fields", "foo": "bar", "score": {"scaled": .85}, "completion": True, "success": True, "response": "kicked", "duration": "P3Y6M4DT12H30M5S", "extensions": {"ext:key1": "value1", "ext:key2": "value2"}}}) resp = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(resp.status_code, 400) self.assertEqual( resp.content, 'Invalid field(s) found in Result - bad, foo') def test_invalid_context_fields(self): stmt = json.dumps({"verb": {"id": "http://example.com/verbs/created", "display": {"en-US": "created"}}, "actor": {"objectType": "Agent", "mbox": "mailto:s@s.com"}, "object": {"objectType": "Activity", "id": "act:foogals", "definition": {"name": {"en-US": "testname3"}, "description": {"en-US": "testdesc3"}, "type": "http://adlnet.gov/expapi/activities/cmi.interaction", "interactionType": "fill-in", "correctResponsesPattern": ["answers"], "extensions": {"ext:key111": "value111", "ext:key222": "value222", "ext:key333": "value333"}}}, "result": {"score": {"scaled": .79}, "completion": True, "success": True, "response": "shouted", "duration": "P3Y6M4DT12H30M5S", "extensions": {"ext:dkey1": "dvalue1", "ext:dkey2": "dvalue2"}}, "context": {"contextActivities": {"other": {"id": "act:NewActivityID22"}}, "revision": "food", "bad": "foo", "platform": "bard", "language": "en-US", "instructor": {"objectType": "Agent", "name": "bob", "mbox": "mailto:bob@bob.com"}, "extensions": {"ext:ckey111": "cval111", "ext:ckey222": "cval222"}}}) resp = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(resp.status_code, 400) self.assertEqual( resp.content, 'Invalid field(s) found in Context - bad') def test_post_with_no_valid_params(self): # Error will be thrown in statements class resp = self.client.post(reverse('lrs:statements'), {"feet": "yes", "hands": {"id": "http://example.com/test_post"}}, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(resp.status_code, 400) def test_post(self): stmt = json.dumps({"actor": {"objectType": "Agent", "mbox": "mailto:t@t.com", "name": "bob"}, "verb": {"id": "http://example.com/verbs/passed", "display": {"en-US": "passed"}}, "object": {"id": "act:test_post"}}) response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 200) act = Activity.objects.get(activity_id="act:test_post") self.assertEqual(act.activity_id, "act:test_post") agent = Agent.objects.get(mbox="mailto:t@t.com") self.assertEqual(agent.name, "bob") def test_post_wrong_crp_type(self): stmt = json.dumps({"verb": {"id": "http://example.com/verbs/created"}, "object": {"objectType": "Activity", "id": "act:foogie", "definition": {"name": {"en-US": "testname2", "en-GB": "altname"}, "description": {"en-US": "testdesc2", "en-GB": "altdesc"}, "type": "http://www.adlnet.gov/experienceapi/activity-types/http://adlnet.gov/expapi/activities/cmi.interaction", "interactionType": "fill-in", "correctResponsesPattern": "wrong"}}, "actor": {"objectType": "Agent", "mbox": "mailto:wrong-t@t.com"}}) response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 400) self.assertEqual( response.content, 'Activity definition correctResponsesPattern is not a properly formatted array') def test_post_wrong_choice_type(self): stmt = json.dumps( {"verb": {"id": "http://example.com/verbs/created"}, "object": {"objectType": "Activity", "id": "act:foogie", "definition": {"name": {"en-US": "testname2", "en-GB": "altname"}, "description": {"en-US": "testdesc2", "en-GB": "altdesc"}, "type": "http://adlnet.gov/expapi/activities/cmi.interaction", "interactionType": "choice", "correctResponsesPattern": ["a1[,]a3[,]a6[,]a7"], "choices": "wrong"}}, "actor": {"objectType": "Agent", "mbox": "mailto:wrong-t@t.com"}}) response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 400) self.assertEqual( response.content, 'Activity definition choices is not a properly formatted array') def test_openid(self): stmt = json.dumps({'object': {'objectType': 'Agent', 'name': 'lulu', 'openid': 'id:luluid'}, 'verb': {"id": "verb:verb/url"}, 'actor': {'objectType': 'Agent', 'mbox': 'mailto:t@t.com'}}) response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 200) agent = Agent.objects.get(name='lulu') self.assertEqual(agent.openid, 'id:luluid') def test_invalid_actor_fields(self): stmt = json.dumps({"actor": {"objectType": "Agent", "mbox": "mailto:t@t.com", "name": "bob", "bad": "blah", "foo": "bar"}, "verb": {"id": "http://example.com/verbs/passed", "display": {"en-US": "passed"}}, "object": {"id": "act:test_post"}}) response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 400) self.assertEqual(response.content, 'Invalid field(s) found in Agent/Group - bad, foo') def test_invalid_activity_fields(self): stmt = json.dumps({"actor": {"objectType": "Agent", "mbox": "mailto:t@t.com", "name": "bob"}, "verb": {"id": "http://example.com/verbs/passed", "display": {"en-US": "passed"}}, "object": {"id": "act:test_post", "bad": "foo", "foo": "bar"}}) response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 400) self.assertEqual(response.content, "Invalid field(s) found in Activity - bad, foo") def test_invalid_activity_def_fields(self): stmt = json.dumps({"actor": {"objectType": "Agent", "mbox": "mailto:t@t.com", "name": "bob"}, "verb": {"id": "http://example.com/verbs/passed", "display": {"en-US": "passed"}}, "object": {'objectType': 'Activity', 'id': 'act:food', 'definition': {'bad': 'foo', 'name': {'en-FR': 'testname2', 'en-US': 'testnameEN'}, 'description': {'en-CH': 'testdesc2', 'en-GB': 'testdescGB'}, 'type': 'type:course', 'interactionType': 'intType2', 'extensions': {'ext:key1': 'value1', 'ext:key2': 'value2', 'ext:key3': 'value3'}}}}) response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 400) self.assertEqual(response.content, 'Invalid field(s) found in Activity definition - bad') def test_post_wrong_duration(self): stmt = json.dumps({"actor": {'name': 'jon', 'mbox': 'mailto:jon@example.com'}, 'verb': {"id": "verb:verb/url"}, "object": {'id': 'act:activity13'}, "result": {'completion': True, 'success': True, 'response': 'yes', 'duration': 'wrongduration', 'extensions': {'ext:key1': 'value1', 'ext:key2': 'value2'}}}) response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 400) self.assertEqual( response.content, "Error with result duration - Unable to parse duration string u'wrongduration'") def test_post_stmt_ref_no_existing_stmt(self): stmt = json.dumps({"actor": {"objectType": "Agent", "mbox": "mailto:ref@ref.com"}, "verb": {"id": "http://example.com/verbs/missed"}, "object": {"objectType": "StatementRef", "id": "12345678-1234-5678-1234-567812345678"}}) response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 200) def test_post_with_actor(self): stmt = json.dumps({"actor": {"mbox": "mailto:mr.t@example.com"}, "verb": {"id": "http://example.com/verbs/passed", "display": {"en-US": "passed"}}, "object": {"id": "act:i.pity.the.fool"}}) response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 200) Agent.objects.get(mbox="mailto:mr.t@example.com") def test_list_post(self): stmts = json.dumps([{"verb": {"id": "http://example.com/verbs/passed", "display": {"en-US": "passed"}}, "object": {"id": "act:test_list_post"}, "actor": {"objectType": "Agent", "mbox": "mailto:t@t.com"}}, {"verb": {"id": "http://example.com/verbs/failed", "display": {"en-GB": "failed"}}, "object": {"id": "act:test_list_post1"}, "actor": {"objectType": "Agent", "mbox": "mailto:t@t.com"}}]) response = self.client.post(reverse('lrs:statements'), stmts, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 200) activity1 = Activity.objects.get(activity_id="act:test_list_post") activity2 = Activity.objects.get(activity_id="act:test_list_post1") stmt1 = Statement.objects.get(object_activity=activity1) stmt2 = Statement.objects.get(object_activity=activity2) verb1 = Verb.objects.get(id=stmt1.verb.id) verb2 = Verb.objects.get(id=stmt2.verb.id) lang_map1 = verb1.canonical_data['display'] lang_map2 = verb2.canonical_data['display'] self.assertEqual(response.status_code, 200) self.assertEqual(stmt1.verb.verb_id, "http://example.com/verbs/passed") self.assertEqual(stmt2.verb.verb_id, "http://example.com/verbs/failed") self.assertEqual(lang_map1.keys()[0], "en-US") self.assertEqual(lang_map1.values()[0], "passed") self.assertEqual(lang_map2.keys()[0], "en-GB") self.assertEqual(lang_map2.values()[0], "failed") def test_put(self): guid = uuid.uuid4() param = {"statementId": str(guid)} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) stmt = json.dumps({"verb": {"id": "http://example.com/verbs/passed", "display": {"en-US": "passed"}}, "object": {"id": "act:test_put"}, "actor": {"objectType": "Agent", "mbox": "mailto:t@t.com"}}) putResponse = self.client.put(path, stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(putResponse.status_code, 204) stmt = Statement.objects.get(statement_id=guid) act = Activity.objects.get(activity_id="act:test_put") self.assertEqual(act.activity_id, "act:test_put") self.assertEqual(stmt.actor.mbox, "mailto:t@t.com") self.assertEqual(stmt.authority.name, "tester1") self.assertEqual(stmt.authority.mbox, "mailto:test1@tester.com") self.assertEqual(stmt.version, settings.XAPI_VERSION) self.assertEqual(stmt.verb.verb_id, "http://example.com/verbs/passed") def test_put_1_0_0(self): guid = uuid.uuid4() param = {"statementId": str(guid)} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) stmt = json.dumps({"verb": {"id": "http://example.com/verbs/passed", "display": {"en-US": "passed"}}, "object": {"id": "act:test_put"}, "actor": {"objectType": "Agent", "mbox": "mailto:t@t.com"}}) putResponse = self.client.put(path, stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version="1.0.0") self.assertEqual(putResponse.status_code, 204) stmt = Statement.objects.get(statement_id=guid) act = Activity.objects.get(activity_id="act:test_put") self.assertEqual(act.activity_id, "act:test_put") self.assertEqual(stmt.actor.mbox, "mailto:t@t.com") self.assertEqual(stmt.authority.name, "tester1") self.assertEqual(stmt.authority.mbox, "mailto:test1@tester.com") self.assertEqual(stmt.version, "1.0.0") self.assertEqual(stmt.verb.verb_id, "http://example.com/verbs/passed") def test_put_id_in_stmt(self): guid = uuid.uuid4() stmt = json.dumps({"id": str(guid), "verb": {"id": "http://example.com/verbs/passed", "display": {"en-US": "passed"}}, "object": {"id": "act:test_put"}, "actor": {"objectType": "Agent", "mbox": "mailto:t@t.com"}}) putResponse = self.client.put(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(putResponse.status_code, 400) def test_put_id_in_both_same(self): guid = uuid.uuid4() param = {"statementId": str(guid)} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) stmt = json.dumps({"id": str(guid), "verb": {"id": "http://example.com/verbs/passed", "display": {"en-US": "passed"}}, "object": {"id": "act:test_put"}, "actor": {"objectType": "Agent", "mbox": "mailto:t@t.com"}}) putResponse = self.client.put(path, stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(putResponse.status_code, 204) stmt = Statement.objects.get(statement_id=guid) act = Activity.objects.get(activity_id="act:test_put") self.assertEqual(act.activity_id, "act:test_put") self.assertEqual(stmt.actor.mbox, "mailto:t@t.com") self.assertEqual(stmt.authority.name, "tester1") self.assertEqual(stmt.authority.mbox, "mailto:test1@tester.com") self.assertEqual(stmt.version, settings.XAPI_VERSION) self.assertEqual(stmt.verb.verb_id, "http://example.com/verbs/passed") def test_put_id_in_both_different(self): guid1 = str(uuid.uuid4()) guid2 = str(uuid.uuid4()) param = {"statementId": guid1} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) stmt = json.dumps({"id": guid2, "verb": {"id": "http://example.com/verbs/passed", "display": {"en-US": "passed"}}, "object": {"id": "act:test_put"}, "actor": {"objectType": "Agent", "mbox": "mailto:t@t.com"}}) putResponse = self.client.put(path, stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(putResponse.status_code, 400) self.assertEqual( putResponse.content, "Error -- statements - method = PUT, param and body ID both given, but do not match") def test_put_with_substatement(self): con_guid = str(uuid.uuid4()) st_guid = str(uuid.uuid4()) param = {"statementId": st_guid} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) stmt = json.dumps({"actor": {"objectType": "Agent", "mbox": "mailto:sass@sass.com"}, "verb": {"id": "verb:verb/url/tested"}, "object": {"objectType": "SubStatement", "actor": {"objectType": "Agent", "mbox": "mailto:ss@ss.com"}, "verb": {"id": "verb:verb/url/nested"}, "object": {"objectType": "Activity", "id": "act:testex.com"}, "result": {"completion": True, "success": True, "response": "kicked"}, "context": {"registration": con_guid, "contextActivities": {"other": {"id": "act:NewActivityID"}}, "revision": "foo", "platform": "bar", "language": "en-US", "extensions": {"ext:k1": "v1", "ext:k2": "v2"}}}}) response = self.client.put(path, stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 204) path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) get_response = self.client.get( path, X_Experience_API_Version=settings.XAPI_VERSION, Authorization=self.auth) self.assertEqual(get_response.status_code, 200) rsp = get_response.content self.assertIn("objectType", rsp) self.assertIn("SubStatement", rsp) self.assertIn("actor", rsp) self.assertIn("ss@ss.com", rsp) self.assertIn("verb", rsp) self.assertIn("verb:verb/url/nested", rsp) self.assertIn("Activity", rsp) self.assertIn("act:testex.com", rsp) self.assertIn("result", rsp) self.assertIn("completion", rsp) self.assertIn("success", rsp) self.assertIn("response", rsp) self.assertIn("kicked", rsp) self.assertIn("context", rsp) self.assertIn(con_guid, rsp) self.assertIn("contextActivities", rsp) self.assertIn("other", rsp) self.assertIn("revision", rsp) self.assertIn("foo", rsp) self.assertIn("platform", rsp) self.assertIn("bar", rsp) self.assertIn("language", rsp) self.assertIn("en-US", rsp) self.assertIn("extensions", rsp) self.assertIn("ext:k1", rsp) self.assertIn("v1", rsp) self.assertIn("ext:k2", rsp) self.assertIn("v2", rsp) def test_no_content_put(self): guid = str(uuid.uuid4()) param = {"statementId": guid} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) stmt = json.dumps({}) putResponse = self.client.put(path, stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(putResponse.status_code, 400) def test_existing_stmtID_put(self): guid = str(uuid.uuid4()) exist_stmt = json.dumps({"verb": {"id": "http://example.com/verbs/passed", "display": {"en-US": "passed"}}, "object": {"id": "act:activity"}, "actor": {"objectType": "Agent", "mbox": "mailto:t@t.com"}}) path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode({"statementId": guid})) response = self.client.put(path, exist_stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 204) param = {"statementId": guid} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) stmt = json.dumps({"verb": {"id": "http://example.com/verbs/passed", "display": {"en-US": "passed"}}, "object": {"id": "act:test_existing_put"}, "actor": {"objectType": "Agent", "mbox": "mailto:t@t.com"}}) putResponse = self.client.put(path, stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(putResponse.status_code, 409) def test_missing_stmtID_put(self): stmt = json.dumps({"verb": {"id": "http://example.com/verbs/passed", "display": {"en-US": "passed"}}, "object": {"id": "act:test_put"}, "actor": {"objectType": "Agent", "mbox": "mailto:t@t.com"}}) response = self.client.put(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 400) self.assertIn( response.content, "Error -- statements - method = PUT, but no statementId parameter or ID given in statement") def test_get(self): self.bunchostmts() param = {"statementId": str(self.guid1)} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) getResponse = self.client.get( path, X_Experience_API_Version=settings.XAPI_VERSION, Authorization=self.auth) self.assertEqual(getResponse.status_code, 200) rsp = getResponse.content self.assertIn(str(self.guid1), rsp) self.assertIn('content-length', getResponse._headers) def test_get_no_params(self): self.bunchostmts() getResponse = self.client.get(reverse('lrs:statements'), X_Experience_API_Version=settings.XAPI_VERSION, Authorization=self.auth) self.assertEqual(getResponse.status_code, 200) self.assertIn('content-length', getResponse._headers) rsp = json.loads(getResponse.content) self.assertEqual(len(rsp['statements']), 11) def test_head(self): self.bunchostmts() param = {"statementId": str(self.guid1)} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) head_resp = self.client.head( path, X_Experience_API_Version=settings.XAPI_VERSION, Authorization=self.auth) self.assertEqual(head_resp.status_code, 200) self.assertEqual(head_resp.content, '') self.assertIn('content-length', head_resp._headers) def test_get_no_existing_ID(self): param = {"statementId": "aaaaaa"} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) getResponse = self.client.get( path, X_Experience_API_Version=settings.XAPI_VERSION, Authorization=self.auth) self.assertEqual(getResponse.status_code, 404) def test_get_no_statementid(self): self.bunchostmts() getResponse = self.client.get(reverse( 'lrs:statements'), X_Experience_API_Version=settings.XAPI_VERSION, Authorization=self.auth) self.assertEqual(getResponse.status_code, 200) jsn = json.loads(getResponse.content) self.assertEqual(len(jsn["statements"]), 11) self.assertIn('content-length', getResponse._headers) def test_head_no_statementid(self): self.bunchostmts() head_resp = self.client.head(reverse( 'lrs:statements'), X_Experience_API_Version=settings.XAPI_VERSION, Authorization=self.auth) self.assertEqual(head_resp.status_code, 200) self.assertEqual(head_resp.content, '') self.assertIn('content-length', head_resp._headers) # Sever activities are PUT - contextActivities create 3 more def test_number_of_activities(self): self.bunchostmts() acts = len(Activity.objects.all()) self.assertEqual(9, acts) def test_timeout_snafu(self): stmt = json.dumps({ "timestamp": "2013-11-05T07:33:49.512119+00:00", "object": { "definition": { "name": { "en-US": "news.google.com", "ja": "news.google.com" }, "description": { "en-US": "", "ja": "" } }, "id": "http://garewelswe.com/", "objectType": "Activity" }, "authority": { "mbox": "mailto:kazutaka_kamiya@test.local", "name": "adllrs", "objectType": "Agent" }, "verb": { "id": "http://example.com/verbs/experienced", "display": { "en-US": "experienced" } }, "actor": { "openid": "http://test.local/PEab76617d1d21d725d358a7ad5231bd6e", "name": "dev2-001", "objectType": "Agent" }, "id": "9cb78e42-45ec-11e3-b8dc-0af904863508" }) response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 200) stmt = json.dumps({ "timestamp": "2013-11-08T08:41:55.985064+00:00", "object": { "definition": { "interactionType": "fill-in", "correctResponsesPattern": [], "type": "http://adlnet.gov/expapi/activities/cmi.interaction", "name": { "ja": "SCORM20110721_12" }, "description": { "ja": "" } }, "id": "http://garewelswe.com/", "objectType": "Activity" }, "actor": { "openid": "http://test.local/EAGLE/PEab76617d1d21d725d358a7ad5231bd6e", "name": "dev2-001", "objectType": "Agent" }, "verb": { "id": "http://example.com/verbs/answered", "display": { "en-US": "answered" } }, "result": { "response": "TEST0", "success": True }, "context": { "contextActivities": { "parent": [ { "id": "http://garewelswe.com/" } ], "grouping": [ { "id": "http://garewelswe.com/" } ] } }, "id": "9faf143c-4851-11e3-b1a1-000c29bfba11", "authority": { "mbox": "mailto:kazutaka_kamiya@test.local", "name": "adllrs", "objectType": "Agent" } }) response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 200) def test_amsterdam_snafu(self): stmt = json.dumps({ "timestamp": "2013-05-23T10:46:39+02:00", "verb": {"id": "http://www.adlnet.gov/expapi/verbs/experienced"}, "context": { "contextActivities": { "parent": { "id": "http://localhost:8080/portal/site/~88a4933d-99d2-4a35-8906-993fdcdf2259" } } }, "object": { "id": "http://localhost:8080/portal/web/~88a4933d-99d2-4a35-8906-993fdcdf2259/id/c50bf034-0f3e-4055-a1e7-8d1cf92be353/url/%2Flibrary%2Fcontent%2Fmyworkspace_info.html", "definition": { "type": "http://adlnet.gov/expapi/activities/view-web-content" }, "objectType": "Activity" }, "actor": { "name": "Alan Tester", "objectType": "Agent", "mbox": "mailto:tester@dev.nl" } }) post_response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(post_response.status_code, 200) def test_update_activity_wrong_auth(self): existStmt1 = json.dumps({"verb": {"id": "http://example.com/verbs/created", "display": {"en-US": "created"}}, "actor": {"objectType": "Agent", "mbox": "mailto:s@s.com"}, "object": {"objectType": "Activity", "id": "act:foogie", "definition": {"name": {"en-US": "testname2", "en-GB": "altname"}, "description": {"en-US": "testdesc2", "en-GB": "altdesc"}, "type": "http://www.adlnet.gov/experienceapi/activity-types/http://adlnet.gov/expapi/activities/cmi.interaction", "interactionType": "fill-in", "correctResponsesPattern": ["answer"], "extensions": {"ext:key1": "value1", "ext:key2": "value2", "ext:key3": "value3"}}}, "result": {"score": {"scaled": .85}, "completion": True, "success": True, "response": "kicked", "duration": "P3Y6M4DT12H30M5S", "extensions": {"ext:key1": "value1", "ext:key2": "value2"}}, "context": {"registration": str(uuid.uuid4()), "contextActivities": {"other": {"id": "act:NewActivityID2"}}, "revision": "food", "platform": "bard", "language": "en-US", "extensions": {"ext:ckey1": "cval1", "ext:ckey2": "cval2"}}}) param = {"statementId": str(self.guid1)} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) putresponse1 = self.client.put(path, existStmt1, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(putresponse1.status_code, 204) wrong_username = "tester2" wrong_email = "test2@tester.com" wrong_password = "test2" wrong_auth = "Basic %s" % base64.b64encode( "%s:%s" % (wrong_username, wrong_password)) form = {"username": wrong_username, "email": wrong_email, "password": wrong_password, "password2": wrong_password} self.client.post(reverse(register), form, X_Experience_API_Version=settings.XAPI_VERSION) stmt = json.dumps({"verb": {"id": "verb:verb/iri/attempted"}, "actor": {"objectType": "Agent", "mbox": "mailto:r@r.com"}, "object": {"objectType": "Activity", "id": "act:foogie", "definition": {"name": {"en-US": "testname3"}, "description": {"en-US": "testdesc3"}, "type": "http://www.adlnet.gov/experienceapi/activity-types/http://adlnet.gov/expapi/activities/cmi.interaction", "interactionType": "fill-in", "correctResponsesPattern": ["answer"], "extensions": {"ext:key1": "value1", "ext:key2": "value2", "ext:key3": "value3"}}}, "result": {"score": {"scaled": .85}, "completion": True, "success": True, "response": "kicked", "duration": "P3Y6M4DT12H30M5S", "extensions": {"ext:key1": "value1", "ext:key2": "value2"}}, "context": {"registration": str(uuid.uuid4()), "contextActivities": {"other": {"id": "act:NewActivityID2"}}, "revision": "food", "platform": "bard", "language": "en-US", "extensions": {"ext:ckey1": "cval1", "ext:ckey2": "cval2"}}, "authority": {"objectType": "Agent", "name": "auth", "mbox": "mailto:auth@example.com"}}) post_response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=wrong_auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(post_response.status_code, 200) acts = Activity.objects.filter(activity_id="act:foogie").count() self.assertEqual(acts, 1) def test_update_activity_correct_auth(self): self.bunchostmts() stmt = json.dumps({"verb": {"id": "verb:verb/url/changed-act"}, "actor": {"objectType": "Agent", "mbox": "mailto:l@l.com"}, "object": {"objectType": "Activity", "id": "act:foogie", "definition": {"name": {"en-US": "testname3"}, "description": {"en-US": "testdesc3"}, "type": "http://www.adlnet.gov/experienceapi/activity-types/http://adlnet.gov/expapi/activities/cmi.interaction", "interactionType": "fill-in", "correctResponsesPattern": ["answer"], "extensions": {"ext:key1": "value1", "ext:key2": "value2", "ext:key3": "value3"}}}, "result": {"score": {"scaled": .85}, "completion": True, "success": True, "response": "kicked", "duration": "P3Y6M4DT12H30M5S", "extensions": {"ext:key1": "value1", "ext:key2": "value2"}}, "context": {"registration": self.cguid6, "contextActivities": {"other": {"id": "act:NewActivityID2"}}, "revision": "food", "platform": "bard", "language": "en-US", "extensions": {"ext:ckey1": "cval1", "ext:ckey2": "cval2"}}, "authority": {"objectType": "Agent", "name": "auth", "mbox": "mailto:auth@example.com"}}) post_response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(post_response.status_code, 200) act = Activity.objects.get(activity_id="act:foogie") name_set = act.canonical_data['definition']['name'] desc_set = act.canonical_data['definition']['description'] self.assertEqual(name_set.keys()[1], "en-US") self.assertEqual(name_set.values()[1], "testname3") self.assertEqual(name_set.keys()[0], "en-GB") self.assertEqual(name_set.values()[0], "altname") self.assertEqual(desc_set.keys()[1], "en-US") self.assertEqual(desc_set.values()[1], "testdesc3") self.assertEqual(desc_set.keys()[0], "en-GB") self.assertEqual(desc_set.values()[0], "altdesc") def test_cors_post_put(self): content = {"verb": {"id": "verb:verb/url"}, "actor": {"objectType": "Agent", "mbox": "mailto:r@r.com"}, "object": {"id": "act:test_cors_post_put"}} bdy = "statementId=886313e1-3b8a-5372-9b90-0c9aee199e5d&content=%s&Authorization=%s&Content-Type=application/json&X-Experience-API-Version=%s" % ( content, self.auth, settings.XAPI_VERSION) path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode({"method": "PUT"})) response = self.client.post( path, bdy, content_type="application/x-www-form-urlencoded") self.assertEqual(response.status_code, 204) act = Activity.objects.get(activity_id="act:test_cors_post_put") self.assertEqual(act.activity_id, "act:test_cors_post_put") agent = Agent.objects.get(mbox="mailto:test1@tester.com") self.assertEqual(agent.name, "tester1") self.assertEqual(agent.mbox, "mailto:test1@tester.com") def test_cors_post_put_1_0_0(self): content = {"verb": {"id": "verb:verb/url"}, "actor": {"objectType": "Agent", "mbox": "mailto:r@r.com"}, "object": {"id": "act:test_cors_post_put"}} bdy = "statementId=886313e1-3b8a-5372-9b90-0c9aee199e5d&content=%s&Authorization=%s&Content-Type=application/json&X-Experience-API-Version=1.0.0" % ( content, self.auth) path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode({"method": "PUT"})) response = self.client.post( path, bdy, content_type="application/x-www-form-urlencoded") self.assertEqual(response.status_code, 204) act = Activity.objects.get(activity_id="act:test_cors_post_put") self.assertEqual(act.activity_id, "act:test_cors_post_put") agent = Agent.objects.get(mbox="mailto:test1@tester.com") self.assertEqual(agent.name, "tester1") self.assertEqual(agent.mbox, "mailto:test1@tester.com") def test_cors_post_put_wrong_version(self): content = {"verb": {"id": "verb:verb/url"}, "actor": {"objectType": "Agent", "mbox": "mailto:r@r.com"}, "object": {"id": "act:test_cors_post_put"}} bdy = "statementId=886313e1-3b8a-5372-9b90-0c9aee199e5b&content=%s&Authorization=%s&X-Experience-API-Version=1.0.33&Content-Type=application/json" % ( content, self.auth) path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode({"method": "PUT"})) response = self.client.post( path, bdy, content_type="application/x-www-form-urlencoded") self.assertEqual(response.status_code, 400) self.assertEqual(response.content, "X-Experience-API-Version is not supported") def test_cors_post_put_correct_version(self): content = {"verb": {"id": "verb:verb/url"}, "actor": {"objectType": "Agent", "mbox": "mailto:r@r.com"}, "object": {"id": "act:test_cors_post_put"}} bdy = "statementId=886313e1-3b8a-5372-9b90-0c9aee199e5a&content=%s&Authorization=%s&X-Experience-API-Version=1.0.1&Content-Type=application/json" % ( content, self.auth) path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode({"method": "PUT"})) response = self.client.post( path, bdy, content_type="application/x-www-form-urlencoded") self.assertEqual(response.status_code, 204) def test_issue_put(self): stmt_id = "33f60b35-e1b2-4ddc-9c6f-7b3f65244430" stmt = json.dumps({"verb": {"id": "verb:verb/iri"}, "object": {"id": "act:scorm.com/JsTetris_TCAPI", "definition": {"type": "type:media", "name": {"en-US": "Js Tetris - Tin Can Prototype"}, "description": {"en-US": "A game of tetris."}}}, "context": {"contextActivities": {"grouping": {"id": "act:scorm.com/JsTetris_TCAPI"}}, "registration": "6b1091be-2833-4886-b4a6-59e5e0b3c3f4"}, "actor": {"mbox": "mailto:tom.creighton.ctr@adlnet.gov", "name": "Tom Creighton"}}) path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode({"statementId": stmt_id})) put_stmt = self.client.put(path, stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(put_stmt.status_code, 204) def test_post_with_group(self): ot = "Group" name = "the group ST" mbox = "mailto:the.groupST@example.com" stmt = json.dumps({"actor": {"objectType": ot, "name": name, "mbox": mbox, "member": [{"name": "agentA", "mbox": "mailto:agentA@example.com"}, {"name": "agentB", "mbox": "mailto:agentB@example.com"}]}, "verb": {"id": "http://verb/iri/created", "display": {"en-US": "created"}}, "object": {"id": "act:i.pity.the.fool"}}) response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 200) g = Agent.objects.get(mbox="mailto:the.groupST@example.com") self.assertEquals(g.name, name) self.assertEquals(g.mbox, mbox) mems = g.member.values_list("name", flat=True) self.assertEquals(len(mems), 2) self.assertIn("agentA", mems) self.assertIn("agentB", mems) def test_post_with_group_no_members_listed(self): ot = "Group" name = "the group ML" mbox = "mailto:the.groupML@example.com" stmt = json.dumps({"actor": {"objectType": ot, "name": name, "mbox": mbox}, "verb": {"id": "http://verb/iri/created", "display": {"en-US": "created"}}, "object": {"id": "act:i.pity.the.fool"}}) response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 200) g = Agent.objects.get(mbox="mailto:the.groupML@example.com") self.assertEquals(g.name, name) self.assertEquals(g.mbox, mbox) mems = g.member.values_list("name", flat=True) self.assertEquals(len(mems), 0) def test_post_with_group_member_not_array(self): ot = "Group" name = "the group ST" mbox = "mailto:the.groupST@example.com" members = "wrong" stmt = json.dumps({"actor": {"objectType": ot, "name": name, "mbox": mbox, "member": members}, "verb": {"id": "http://verb/iri/created", "display": {"en-US": "created"}}, "object": {"id": "act:i.pity.the.fool"}}) response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 400) self.assertEqual(response.content, 'Members is not a properly formatted array') def test_post_with_group_member_empty_array(self): ot = "Group" name = "the group ST" mbox = "mailto:the.groupST@example.com" members = [] stmt = json.dumps({"actor": {"objectType": ot, "name": name, "mbox": mbox, "member": members}, "verb": {"id": "http://verb/iri/created", "display": {"en-US": "created"}}, "object": {"id": "act:i.pity.the.fool"}}) response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 400) self.assertEqual(response.content, "Member property must contain agents") def test_issue_put_no_version_header(self): stmt_id = '33f60b35-e1b2-4ddc-9c6f-7b3f65244431' stmt = json.dumps({"verb": "verb:completed", "object": {"id": "act:scorm.com/JsTetris_TCAPI/level2", "definition": {"type": "media", "name": {"en-US": "Js Tetris Level2"}, "description": {"en-US": "Starting at 1, the higher the level, the harder the game."}}}, "result": {"extensions": {"ext:time": 104, "ext:apm": 229, "ext:lines": 5}, "score": {"raw": 9911, "min": 0}}, "context": {"contextActivities": {"grouping": {"id": "act:scorm.com/JsTetris_TCAPI"}}, "registration": "b7be7d9d-bfe2-4917-8ccd-41a0d18dd953"}, "actor": {"name": "tom creighton", "mbox": "mailto:tom@example.com"}}) path = '%s?%s' % (reverse('lrs:statements'), urllib.urlencode({"statementId": stmt_id})) put_stmt = self.client.put( path, stmt, content_type="application/json", Authorization=self.auth) self.assertEqual(put_stmt.status_code, 400) def test_issue_put_wrong_version_header(self): stmt_id = '33f60b35-e1b2-4ddc-9c6f-7b3f65244432' stmt = json.dumps({"verb": {"id": "verb:completed"}, "object": {"id": "act:scorm.com/JsTetris_TCAPI/level2", "definition": {"type": "media", "name": {"en-US": "Js Tetris Level2"}, "description": {"en-US": "Starting at 1, the higher the level, the harder the game."}}}, "result": {"extensions": {"ext:time": 104, "ext:apm": 229, "ext:lines": 5}, "score": {"raw": 9911, "min": 0}}, "context": {"contextActivities": {"grouping": {"id": "act:scorm.com/JsTetris_TCAPI"}}, "registration": "b7be7d9d-bfe2-4917-8ccd-41a0d18dd953"}, "actor": {"name": "tom creighton", "mbox": "mailto:tom@example.com"}}) path = '%s?%s' % (reverse('lrs:statements'), urllib.urlencode({"statementId": stmt_id})) put_stmt = self.client.put(path, stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version="0.90") self.assertEqual(put_stmt.status_code, 400) def test_issue_put_wrong_version_header_again(self): stmt_id = '33f60b35-e1b2-4ddc-9c6f-7b3f65244432' stmt = json.dumps({"verb": {"id": "verb:completed"}, "object": {"id": "act:scorm.com/JsTetris_TCAPI/level2", "definition": {"type": "media", "name": {"en-US": "Js Tetris Level2"}, "description": {"en-US": "Starting at 1, the higher the level, the harder the game."}}}, "result": {"extensions": {"ext:time": 104, "ext:apm": 229, "ext:lines": 5}, "score": {"raw": 9911, "min": 0}}, "context": {"contextActivities": {"grouping": {"id": "act:scorm.com/JsTetris_TCAPI"}}, "registration": "b7be7d9d-bfe2-4917-8ccd-41a0d18dd953"}, "actor": {"name": "tom creighton", "mbox": "mailto:tom@example.com"}}) path = '%s?%s' % (reverse('lrs:statements'), urllib.urlencode({"statementId": stmt_id})) put_stmt = self.client.put(path, stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version="1.0.") self.assertEqual(put_stmt.status_code, 400) def test_issue_put_wrong_version_header_1_1(self): stmt_id = '33f60b35-e1b2-4ddc-9c6f-7b3f65244432' stmt = json.dumps({"verb": {"id": "verb:completed"}, "object": {"id": "act:scorm.com/JsTetris_TCAPI/level2", "definition": {"type": "media", "name": {"en-US": "Js Tetris Level2"}, "description": {"en-US": "Starting at 1, the higher the level, the harder the game."}}}, "result": {"extensions": {"ext:time": 104, "ext:apm": 229, "ext:lines": 5}, "score": {"raw": 9911, "min": 0}}, "context": {"contextActivities": {"grouping": {"id": "act:scorm.com/JsTetris_TCAPI"}}, "registration": "b7be7d9d-bfe2-4917-8ccd-41a0d18dd953"}, "actor": {"name": "tom creighton", "mbox": "mailto:tom@example.com"}}) path = '%s?%s' % (reverse('lrs:statements'), urllib.urlencode({"statementId": stmt_id})) put_stmt = self.client.put(path, stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version="1.1.") self.assertEqual(put_stmt.status_code, 400) # Use this test to make sure stmts are being returned correctly with all # data - doesn't check timestamp and stored fields def test_all_fields_activity_as_object(self): self.bunchostmts() nested_st_id = str(uuid.uuid4()) nest_param = {"statementId": nested_st_id} nest_path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(nest_param)) nested_stmt = json.dumps({"actor": {"objectType": "Agent", "mbox": "mailto:tincan@adlnet.gov"}, "verb": {"id": "http://example.com/verbs/assess", "display": {"en-US": "assessed"}}, "object": {"id": "http://example.adlnet.gov/tincan/example/simplestatement"}}) put_sub_stmt = self.client.put(nest_path, nested_stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(put_sub_stmt.status_code, 204) stmt_id = str(uuid.uuid4()) context_id = str(uuid.uuid4()) param = {"statementId": stmt_id} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) stmt = json.dumps({"actor": {"objectType": "Agent", "name": "Lou Wolford", "account": {"homePage": "http://example.com", "name": "uniqueName"}}, "verb": {"id": "http://example.com/verbs/created", "display": {"en-US": "created", "en-GB": "made"}}, "object": {"objectType": "Activity", "id": "http:adlnet.gov/my/Activity/URL", "definition": {"name": {"en-US": "actName", "en-GB": "anotherActName"}, "description": {"en-US": "This is my activity description.", "en-GB": "This is another activity description."}, "type": "http://adlnet.gov/expapi/activities/cmi.interaction", "moreInfo": "http://some/activity/url", "interactionType": "choice", "correctResponsesPattern": ["golf", "tetris"], "choices": [{"id": "golf", "description": {"en-US": "Golf Example", "en-GB": "GOLF"}}, {"id": "tetris", "description": { "en-US": "Tetris Example", "en-GB": "TETRIS"}}, {"id": "facebook", "description": { "en-US": "Facebook App", "en-GB": "FACEBOOK"}}, {"id": "scrabble", "description": {"en-US": "Scrabble Example", "en-GB": "SCRABBLE"}}], "extensions": {"ext:key1": "value1", "ext:key2": "value2", "ext:key3": "value3"}}}, "result": {"score": {"scaled": .85, "raw": 85, "min": 0, "max": 100}, "completion": True, "success": False, "response": "Well done", "duration": "P3Y6M4DT12H30M5S", "extensions": {"ext:resultKey1": "resultValue1", "ext:resultKey2": "resultValue2"}}, "context": {"registration": context_id, "contextActivities": {"other": {"id": "http://example.adlnet.gov/tincan/example/test"}, "grouping": {"id": "http://groupingID"}}, "revision": "Spelling error in choices.", "platform": "Platform is web browser.", "language": "en-US", "statement": {"objectType": "StatementRef", "id": str(nested_st_id)}, "extensions": {"ext:contextKey1": "contextVal1", "ext:contextKey2": "contextVal2"}}, "timestamp": self.firstTime}) put_stmt = self.client.put(path, stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(put_stmt.status_code, 204) param = {"statementId": stmt_id} get_response = self.client.get( path, X_Experience_API_Version=settings.XAPI_VERSION, Authorization=self.auth) the_returned = json.loads(get_response.content) self.assertEqual(the_returned['id'], stmt_id) self.assertEqual(the_returned['version'], settings.XAPI_VERSION) self.assertEqual(the_returned['actor']['objectType'], 'Agent') self.assertEqual(the_returned['actor']['name'], 'Lou Wolford') self.assertEqual(the_returned['actor'][ 'account']['name'], 'uniqueName') self.assertEqual(the_returned['actor']['account'][ 'homePage'], 'http://example.com') self.assertEqual(the_returned['verb']['id'], 'http://example.com/verbs/created') self.assertEqual(the_returned['verb']['display']['en-GB'], 'made') self.assertEqual(the_returned['verb']['display']['en-US'], 'created') self.assertEqual(the_returned['result']['completion'], True) self.assertEqual(the_returned['result'][ 'duration'], 'P3Y6M4DT12H30M5S') self.assertEqual(the_returned['result']['extensions'][ 'ext:resultKey1'], 'resultValue1') self.assertEqual(the_returned['result']['extensions'][ 'ext:resultKey2'], 'resultValue2') self.assertEqual(the_returned['result']['response'], 'Well done') self.assertEqual(the_returned['result']['score']['max'], 100) self.assertEqual(the_returned['result']['score']['min'], 0) self.assertEqual(the_returned['result']['score']['raw'], 85) self.assertEqual(the_returned['result']['score']['scaled'], 0.85) self.assertEqual(the_returned['result']['success'], False) self.assertEqual(the_returned['context']['contextActivities']['other'][0][ 'id'], 'http://example.adlnet.gov/tincan/example/test') self.assertEqual(the_returned['context']['extensions'][ 'ext:contextKey1'], 'contextVal1') self.assertEqual(the_returned['context']['extensions'][ 'ext:contextKey2'], 'contextVal2') self.assertEqual(the_returned['context']['language'], 'en-US') self.assertEqual(the_returned['context'][ 'platform'], 'Platform is web browser.') self.assertEqual(the_returned['context']['registration'], context_id) self.assertEqual(the_returned['context'][ 'revision'], 'Spelling error in choices.') self.assertEqual(the_returned['context']['statement'][ 'id'], str(nested_st_id)) self.assertEqual(the_returned['context']['statement'][ 'objectType'], 'StatementRef') self.assertEqual(the_returned['authority']['objectType'], 'Agent') self.assertEqual(the_returned['authority']['name'], 'tester1') self.assertEqual(the_returned['authority'][ 'mbox'], 'mailto:test1@tester.com') self.assertEqual(the_returned['object'][ 'id'], 'http:adlnet.gov/my/Activity/URL') self.assertEqual(the_returned['object']['objectType'], 'Activity') self.assertEqual(the_returned['object']['definition']['description'][ 'en-US'], 'This is my activity description.') self.assertEqual(the_returned['object']['definition']['description'][ 'en-GB'], 'This is another activity description.') self.assertEqual(the_returned['object']['definition'][ 'interactionType'], 'choice') self.assertEqual(the_returned['object']['definition'][ 'name']['en-US'], 'actName') self.assertEqual(the_returned['object']['definition'][ 'name']['en-GB'], 'anotherActName') self.assertEqual(the_returned['object']['definition'][ 'type'], 'http://adlnet.gov/expapi/activities/cmi.interaction') self.assertEqual(the_returned['object']['definition'][ 'moreInfo'], 'http://some/activity/url') self.assertEqual(the_returned['object']['definition'][ 'extensions']['ext:key1'], 'value1') self.assertEqual(the_returned['object']['definition'][ 'extensions']['ext:key2'], 'value2') self.assertEqual(the_returned['object']['definition'][ 'extensions']['ext:key3'], 'value3') # arrays.. testing slightly differently choices_str = json.dumps(the_returned['object'][ 'definition']['choices']) self.assertIn('description', choices_str) self.assertIn('id', choices_str) self.assertIn('GOLF', choices_str) self.assertIn('Golf Example', choices_str) self.assertIn('golf', choices_str) self.assertIn('TETRIS', choices_str) self.assertIn('Tetris Example', choices_str) self.assertIn('tetris', choices_str) self.assertIn('FACEBOOK', choices_str) self.assertIn('Facebook App', choices_str) self.assertIn('Facebook', choices_str) self.assertIn('SCRABBLE', choices_str) self.assertIn('Scrabble Example', choices_str) self.assertIn('scrabble', choices_str) crp_str = json.dumps(the_returned['object']['definition'][ 'correctResponsesPattern']) self.assertIn('golf', crp_str) self.assertIn('tetris', crp_str) # Use this test to make sure stmts are being returned correctly with all # data - doesn't check timestamp, stored fields def test_all_fields_agent_as_object(self): nested_st_id = str(uuid.uuid4()) nest_param = {"statementId": nested_st_id} nest_path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(nest_param)) nested_stmt = json.dumps({"actor": {"objectType": "Agent", "mbox": "mailto:tincan@adlnet.gov"}, "verb": {"id": "http://example.com/verbs/assess", "display": {"en-US": "assessed"}}, "object": {"id": "http://example.adlnet.gov/tincan/example/simplestatement"}}) put_sub_stmt = self.client.put(nest_path, nested_stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(put_sub_stmt.status_code, 204) stmt_id = str(uuid.uuid4()) context_id = str(uuid.uuid4()) param = {"statementId": stmt_id} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) msha = hashlib.sha1("mailto:tom@example.com").hexdigest() stmt = json.dumps({"actor": {"objectType": "Agent", "name": "Lou Wolford", "account": {"homePage": "http://example.com", "name": "louUniqueName"}}, "verb": {"id": "http://example.com/verbs/helped", "display": {"en-US": "helped", "en-GB": "assisted"}}, "object": {"objectType": "Agent", "name": "Tom Creighton", "mbox_sha1sum": msha}, "result": {"score": {"scaled": .85, "raw": 85, "min": 0, "max": 100}, "completion": True, "success": True, "response": "Well done", "duration": "P3Y6M4DT12H30M5S", "extensions": {"ext:resultKey1": "resultValue1", "ext:resultKey2": "resultValue2"}}, "context": {"registration": context_id, "contextActivities": {"other": {"id": "http://example.adlnet.gov/tincan/example/test"}}, "language": "en-US", "statement": {"objectType": "StatementRef", "id": str(nested_st_id)}, "extensions": {"ext:contextKey1": "contextVal1", "ext:contextKey2": "contextVal2"}}, "timestamp": self.firstTime}) put_stmt = self.client.put(path, stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(put_stmt.status_code, 204) param = {"statementId": stmt_id} get_response = self.client.get( path, X_Experience_API_Version=settings.XAPI_VERSION, Authorization=self.auth) the_returned = json.loads(get_response.content) self.assertEqual(the_returned['id'], stmt_id) self.assertEqual(the_returned['version'], settings.XAPI_VERSION) self.assertEqual(the_returned['actor']['objectType'], 'Agent') self.assertEqual(the_returned['actor']['name'], 'Lou Wolford') self.assertEqual(the_returned['actor']['account'][ 'name'], 'louUniqueName') self.assertEqual(the_returned['actor']['account'][ 'homePage'], 'http://example.com') self.assertEqual(the_returned['verb']['id'], 'http://example.com/verbs/helped') self.assertEqual(the_returned['verb']['display']['en-GB'], 'assisted') self.assertEqual(the_returned['verb']['display']['en-US'], 'helped') self.assertEqual(the_returned['result']['completion'], True) self.assertEqual(the_returned['result'][ 'duration'], 'P3Y6M4DT12H30M5S') self.assertEqual(the_returned['result']['extensions'][ 'ext:resultKey1'], 'resultValue1') self.assertEqual(the_returned['result']['extensions'][ 'ext:resultKey2'], 'resultValue2') self.assertEqual(the_returned['result']['response'], 'Well done') self.assertEqual(the_returned['result']['score']['max'], 100) self.assertEqual(the_returned['result']['score']['min'], 0) self.assertEqual(the_returned['result']['score']['raw'], 85) self.assertEqual(the_returned['result']['score']['scaled'], 0.85) self.assertEqual(the_returned['result']['success'], True) self.assertEqual(the_returned['context']['contextActivities']['other'][0][ 'id'], 'http://example.adlnet.gov/tincan/example/test') self.assertEqual(the_returned['context']['extensions'][ 'ext:contextKey1'], 'contextVal1') self.assertEqual(the_returned['context']['extensions'][ 'ext:contextKey2'], 'contextVal2') self.assertEqual(the_returned['context']['language'], 'en-US') self.assertEqual(the_returned['context']['registration'], context_id) self.assertEqual(the_returned['context']['statement'][ 'id'], str(nested_st_id)) self.assertEqual(the_returned['context']['statement'][ 'objectType'], 'StatementRef') self.assertEqual(the_returned['authority']['objectType'], 'Agent') self.assertEqual(the_returned['authority']['name'], 'tester1') self.assertEqual(the_returned['authority'][ 'mbox'], 'mailto:test1@tester.com') self.assertEqual(the_returned['object']['objectType'], 'Agent') self.assertEqual(the_returned['object']['name'], 'Tom Creighton') self.assertEqual(the_returned['object']['mbox_sha1sum'], msha) # Use this test to make sure stmts are being returned correctly with all # data - doesn't check timestamps or stored fields def test_all_fields_substatement_as_object(self): nested_st_id = str(uuid.uuid4()) nest_param = {"statementId": nested_st_id} nest_path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(nest_param)) nested_stmt = json.dumps({"actor": {"objectType": "Agent", "mbox": "mailto:tincannest@adlnet.gov"}, "verb": {"id": "http://example.com/verbs/assess", "display": {"en-US": "assessed", "en-GB": "graded"}}, "object": {"id": "http://example.adlnet.gov/tincan/example/simplestatement"}}) put_sub_stmt = self.client.put(nest_path, nested_stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(put_sub_stmt.status_code, 204) nested_sub_st_id = str(uuid.uuid4()) nest_sub_param = {"statementId": nested_sub_st_id} nest_sub_path = "%s?%s" % ( reverse('lrs:statements'), urllib.urlencode(nest_sub_param)) nested_sub_stmt = json.dumps({"actor": {"objectType": "Agent", "mbox": "mailto:tincannestsub@adlnet.gov"}, "verb": {"id": "http://example.com/verbs/verb", "display": {"en-US": "verb", "en-GB": "altVerb"}}, "object": {"id": "http://example.adlnet.gov/tincan/example/simplenestedsubstatement"}}) put_nest_sub_stmt = self.client.put(nest_sub_path, nested_sub_stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(put_nest_sub_stmt.status_code, 204) stmt_id = str(uuid.uuid4()) context_id = str(uuid.uuid4()) sub_context_id = str(uuid.uuid4()) param = {"statementId": stmt_id} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) stmt = json.dumps({"actor": {"objectType": "Agent", "name": "Lou Wolford", "account": {"homePage": "http://example.com", "name": "louUniqueName"}}, "verb": {"id": "http://example.com/verbs/said", "display": {"en-US": "said", "en-GB": "talked"}}, "object": {"objectType": "SubStatement", "actor": {"objectType": "Agent", "name": "Tom Creighton", "mbox": "mailto:tom@adlnet.gov"}, "verb": {"id": "http://example.com/verbs/assess", "display": {"en-US": "assessed", "en-GB": "Graded"}}, "object": {"id": "http://example.adlnet.gov/tincan/example/simplestatement", 'definition': {'name': {'en-US': 'SubStatement name'}, 'description': {'en-US': 'SubStatement description'}, 'type': 'http://adlnet.gov/expapi/activities/cmi.interaction', 'interactionType': 'matching', 'correctResponsesPattern': ['lou.3,tom.2,andy.1'], 'source': [{'id': 'lou', 'description': {'en-US': 'Lou', 'it': 'Luigi'}}, {'id': 'tom', 'description': {'en-US': 'Tom', 'it': 'Tim'}}, {'id': 'andy', 'description': {'en-US': 'Andy'}}], 'target': [{'id': '1', 'description': {'en-US': 'ADL LRS'}}, {'id': '2', 'description': {'en-US': 'lrs'}}, {'id': '3', 'description': {'en-US': 'the adl lrs', 'en-CH': 'the lrs'}}]}}, "result": {"score": {"scaled": .50, "raw": 50, "min": 1, "max": 51}, "completion": True, "success": True, "response": "Poorly done", "duration": "P3Y6M4DT12H30M5S", "extensions": {"ext:resultKey11": "resultValue11", "ext:resultKey22": "resultValue22"}}, "context": {"registration": sub_context_id, "contextActivities": {"other": {"id": "http://example.adlnet.gov/tincan/example/test/nest"}}, "revision": "Spelling error in target.", "platform": "Ipad.", "language": "en-US", "statement": {"objectType": "StatementRef", "id": str(nested_sub_st_id)}, "extensions": {"ext:contextKey11": "contextVal11", "ext:contextKey22": "contextVal22"}}}, "result": {"score": {"scaled": .85, "raw": 85, "min": 0, "max": 100}, "completion": True, "success": True, "response": "Well done", "duration": "P3Y6M4DT12H30M5S", "extensions": {"ext:resultKey1": "resultValue1", "ext:resultKey2": "resultValue2"}}, "context": {"registration": context_id, "contextActivities": {"other": {"id": "http://example.adlnet.gov/tincan/example/test"}}, "language": "en-US", "statement": {"objectType": "StatementRef", "id": str(nested_st_id)}, "extensions": {"ext:contextKey1": "contextVal1", "ext:contextKey2": "contextVal2"}}, "timestamp": self.firstTime}) put_stmt = self.client.put(path, stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(put_stmt.status_code, 204) param = {"statementId": stmt_id} get_response = self.client.get( path, X_Experience_API_Version=settings.XAPI_VERSION, Authorization=self.auth) the_returned = json.loads(get_response.content) self.assertEqual(the_returned['id'], stmt_id) self.assertEqual(the_returned['version'], settings.XAPI_VERSION) self.assertEqual(the_returned['actor']['objectType'], 'Agent') self.assertEqual(the_returned['actor']['name'], 'Lou Wolford') self.assertEqual(the_returned['actor']['account'][ 'name'], 'louUniqueName') self.assertEqual(the_returned['actor']['account'][ 'homePage'], 'http://example.com') self.assertEqual(the_returned['verb']['id'], 'http://example.com/verbs/said') self.assertEqual(the_returned['verb']['display']['en-GB'], 'talked') self.assertEqual(the_returned['verb']['display']['en-US'], 'said') self.assertEqual(the_returned['object'][ 'actor']['objectType'], 'Agent') self.assertEqual(the_returned['object']['actor'][ 'name'], 'Tom Creighton') self.assertEqual(the_returned['object']['actor'][ 'mbox'], 'mailto:tom@adlnet.gov') self.assertEqual(the_returned['object']['context'][ 'registration'], sub_context_id) self.assertEqual(the_returned['object'][ 'context']['language'], 'en-US') self.assertEqual(the_returned['object'][ 'context']['platform'], 'Ipad.') self.assertEqual(the_returned['object']['context'][ 'revision'], 'Spelling error in target.') self.assertEqual(the_returned['object']['context'][ 'statement']['id'], str(nested_sub_st_id)) self.assertEqual(the_returned['object']['context'][ 'statement']['objectType'], 'StatementRef') self.assertEqual(the_returned['object']['context']['contextActivities']['other'][ 0]['id'], 'http://example.adlnet.gov/tincan/example/test/nest') self.assertEqual(the_returned['object']['context']['extensions'][ 'ext:contextKey11'], 'contextVal11') self.assertEqual(the_returned['object']['context']['extensions'][ 'ext:contextKey22'], 'contextVal22') self.assertEqual(the_returned['object']['object'][ 'id'], 'http://example.adlnet.gov/tincan/example/simplestatement') self.assertEqual(the_returned['object']['object']['definition'][ 'type'], 'http://adlnet.gov/expapi/activities/cmi.interaction') self.assertEqual(the_returned['object']['object']['definition'][ 'description']['en-US'], 'SubStatement description') self.assertEqual(the_returned['object']['object'][ 'definition']['interactionType'], 'matching') self.assertEqual(the_returned['object']['object']['definition'][ 'name']['en-US'], 'SubStatement name') # arrays.. testing slightly differently source_str = json.dumps(the_returned['object']['object'][ 'definition']['source']) self.assertIn('description', source_str) self.assertIn('id', source_str) self.assertIn('Lou', source_str) self.assertIn('Luigi', source_str) self.assertIn('lou', source_str) self.assertIn('Tom', source_str) self.assertIn('Tim', source_str) self.assertIn('tom', source_str) self.assertIn('Andy', source_str) self.assertIn('andy', source_str) target_str = json.dumps(the_returned['object']['object'][ 'definition']['target']) self.assertIn('description', target_str) self.assertIn('id', target_str) self.assertIn('ADL LRS', target_str) self.assertIn('1', target_str) self.assertIn('lrs', target_str) self.assertIn('2', target_str) self.assertIn('the lrs', target_str) self.assertIn('the adl lrs', target_str) self.assertIn('3', target_str) self.assertEqual(the_returned['object']['objectType'], 'SubStatement') self.assertEqual(the_returned['object']['result']['completion'], True) self.assertEqual(the_returned['object']['result'][ 'duration'], 'P3Y6M4DT12H30M5S') self.assertEqual(the_returned['object']['result']['extensions'][ 'ext:resultKey11'], 'resultValue11') self.assertEqual(the_returned['object']['result']['extensions'][ 'ext:resultKey22'], 'resultValue22') self.assertEqual(the_returned['object']['result'][ 'response'], 'Poorly done') self.assertEqual(the_returned['object']['result']['score']['max'], 51) self.assertEqual(the_returned['object']['result']['score']['min'], 1) self.assertEqual(the_returned['object']['result']['score']['raw'], 50) self.assertEqual(the_returned['object']['result'][ 'score']['scaled'], 0.5) self.assertEqual(the_returned['object']['result']['success'], True) self.assertEqual(the_returned['object']['verb'][ 'id'], 'http://example.com/verbs/assess') self.assertEqual(the_returned['object']['verb'][ 'display']['en-GB'], 'Graded') self.assertEqual(the_returned['object']['verb'][ 'display']['en-US'], 'assessed') self.assertEqual(the_returned['result']['completion'], True) self.assertEqual(the_returned['result'][ 'duration'], 'P3Y6M4DT12H30M5S') self.assertEqual(the_returned['result']['extensions'][ 'ext:resultKey1'], 'resultValue1') self.assertEqual(the_returned['result']['extensions'][ 'ext:resultKey2'], 'resultValue2') self.assertEqual(the_returned['result']['response'], 'Well done') self.assertEqual(the_returned['result']['score']['max'], 100) self.assertEqual(the_returned['result']['score']['min'], 0) self.assertEqual(the_returned['result']['score']['raw'], 85) self.assertEqual(the_returned['result']['score']['scaled'], 0.85) self.assertEqual(the_returned['result']['success'], True) self.assertEqual(the_returned['context']['contextActivities']['other'][0][ 'id'], 'http://example.adlnet.gov/tincan/example/test') self.assertEqual(the_returned['context']['extensions'][ 'ext:contextKey1'], 'contextVal1') self.assertEqual(the_returned['context']['extensions'][ 'ext:contextKey2'], 'contextVal2') self.assertEqual(the_returned['context']['language'], 'en-US') self.assertEqual(the_returned['context']['registration'], context_id) self.assertEqual(the_returned['context']['statement'][ 'id'], str(nested_st_id)) self.assertEqual(the_returned['context']['statement'][ 'objectType'], 'StatementRef') self.assertEqual(the_returned['authority']['objectType'], 'Agent') self.assertEqual(the_returned['authority']['name'], 'tester1') self.assertEqual(the_returned['authority'][ 'mbox'], 'mailto:test1@tester.com') # Third stmt in list is missing actor - should throw error and perform # cascading delete on first three statements def test_post_list_rollback(self): self.bunchostmts() cguid1 = str(uuid.uuid4()) stmts = json.dumps([ {"verb": {"id": "http://example.com/verbs/wrong-failed", "display": {"en-US": "wrong-failed"}}, "object": {"id": "act:test_wrong_list_post2"}, "actor": {"objectType": "Agent", "mbox": "mailto:wrong-t@t.com"}, "result": {"score": {"scaled": .99}, "completion": True, "success": True, "response": "wrong", "extensions": {"ext:resultwrongkey1": "value1", "ext:resultwrongkey2": "value2"}}}, {"verb": {"id": "http://example.com/verbs/wrong-kicked", "display": {"en-US": "wrong-kicked"}}, "object": {"objectType": "Activity", "id": "act:test_wrong_list_post", "definition": {"name": {"en-US": "wrongactName", "en-GB": "anotherActName"}, "description": {"en-US": "This is my activity description.", "en-GB": "This is another activity description."}, "type": "http://www.adlnet.gov/experienceapi/activity-types/http://adlnet.gov/expapi/activities/cmi.interaction", "interactionType": "choice", "correctResponsesPattern": ["wronggolf", "wrongtetris"], "choices":[{"id": "wronggolf", "description": {"en-US": "Golf Example", "en-GB": "GOLF"}}, {"id": "wrongtetris", "description": { "en-US": "Tetris Example", "en-GB": "TETRIS"}}, {"id": "wrongfacebook", "description": { "en-US": "Facebook App", "en-GB": "FACEBOOK"}}, {"id": "wrongscrabble", "description": {"en-US": "Scrabble Example", "en-GB": "SCRABBLE"}}], "extensions": {"ext:wrongkey1": "wrongvalue1", "ext:wrongkey2": "wrongvalue2", "ext:wrongkey3": "wrongvalue3"}}}, "actor": {"objectType": "Agent", "mbox": "mailto:wrong-t@t.com"}}, {"verb": {"id": "http://example.com/verbs/wrong-passed", "display": {"en-US": "wrong-passed"}}, "object": {"id": "act:test_wrong_list_post1"}, "actor": {"objectType": "Agent", "mbox": "mailto:wrong-t@t.com"}, "context": {"registration": cguid1, "contextActivities": {"other": {"id": "act:wrongActivityID2"}}, "revision": "wrong", "platform": "wrong", "language": "en-US", "extensions": {"ext:wrongkey1": "wrongval1", "ext:wrongkey2": "wrongval2"}}}, {"verb": {"id": "http://example.com/verbs/wrong-kicked", "display": { "en-US": "wrong-kicked"}}, "object": {"id": "act:test_wrong_list_post2"}}, {"verb": {"id": "http://example.com/verbs/wrong-kicked", "display": {"en-US": "wrong-kicked"}}, "object": {"id": "act:test_wrong_list_post4"}, "actor": {"objectType": "Agent", "mbox": "wrong-t@t.com"}}]) response = self.client.post(reverse('lrs:statements'), stmts, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 400) self.assertIn('actor is missing in Statement', response.content) verbs = Verb.objects.filter(verb_id__contains='wrong') activities = Activity.objects.filter( activity_id__contains='test_wrong_list_post') stmts = Statement.objects.all() # 11 statements from setup self.assertEqual(len(stmts), 11) self.assertEqual(len(verbs), 0) self.assertEqual(len(activities), 0) def test_post_list_rollback_part_2(self): self.bunchostmts() stmts = json.dumps([{"object": {"objectType": "Agent", "name": "john", "mbox": "mailto:john@john.com"}, "verb": {"id": "http://example.com/verbs/wrong", "display": {"en-US": "wrong"}}, "actor": {"objectType": "Agent", "mbox": "mailto:s@s.com"}}, {"verb": {"id": "http://example.com/verbs/created"}, "object": {"objectType": "Activity", "id": "act:foogie", "definition": {"name": {"en-US": "testname2", "en-GB": "altname"}, "description": {"en-US": "testdesc2", "en-GB": "altdesc"}, "type": "http://www.adlnet.gov/experienceapi/activity-types/http://adlnet.gov/expapi/activities/cmi.interaction", "interactionType": "fill-in", "correctResponsesPattern": ["answer"]}}, "actor":{"objectType": "Agent", "mbox": "mailto:wrong-t@t.com"}}, {"verb": {"id": "http://example.com/verbs/wrong-kicked"}, "object": {"id": "act:test_wrong_list_post2"}}]) response = self.client.post(reverse('lrs:statements'), stmts, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 400) self.assertIn('actor is missing in Statement', response.content) created_verbs = Verb.objects.filter( verb_id__contains='http://example.com/verbs/created') wrong_verbs = Verb.objects.filter( verb_id__contains='http://example.com/verbs/wrong') activities = Activity.objects.filter(activity_id='act:foogie') stmts = Statement.objects.all() wrong_agent = Agent.objects.filter(mbox='mailto:wrong-t@t.com') john_agent = Agent.objects.filter(mbox='mailto:john@john.com') s_agent = Agent.objects.filter(mbox='mailto:s@s.com') auth_agent = Agent.objects.filter(mbox='mailto:test1@tester.com') self.assertEqual(len(created_verbs), 1) self.assertEqual(len(wrong_verbs), 0) self.assertEqual(len(activities), 1) self.assertEqual(len(stmts), 11) self.assertEqual(len(wrong_agent), 0) self.assertEqual(len(john_agent), 1) self.assertEqual(len(s_agent), 1) self.assertEqual(len(auth_agent), 1) def test_post_list_rollback_with_void(self): self.bunchostmts() stmts = json.dumps([{"actor": {"objectType": "Agent", "mbox": "mailto:only-s@s.com"}, "object": {"objectType": "StatementRef", "id": str(self.exist_stmt_id)}, "verb": {"id": "http://adlnet.gov/expapi/verbs/voided", "display": {"en-US": "voided"}}}, {"verb": {"id": "http://example.com/verbs/wrong-kicked"}, "object": {"id": "act:test_wrong_list_post2"}}]) response = self.client.post(reverse('lrs:statements'), stmts, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 400) self.assertIn('actor is missing in Statement', response.content) voided_st = Statement.objects.get(statement_id=self.exist_stmt_id) voided_verb = Verb.objects.filter(verb_id__contains='voided') only_actor = Agent.objects.filter(mbox="mailto:only-s@s.com") stmts = Statement.objects.all() self.assertEqual(len(stmts), 11) self.assertEqual(voided_st.voided, False) self.assertEqual(len(voided_verb), 0) self.assertEqual(len(only_actor), 0) def test_post_list_rollback_with_subs(self): self.bunchostmts() sub_context_id = str(uuid.uuid4()) stmts = json.dumps([{"actor": {"objectType": "Agent", "mbox": "mailto:wrong-s@s.com"}, "verb": {"id": "http://example.com/verbs/wrong", "display": {"en-US": "wrong"}}, "object": {"objectType": "Agent", "name": "john", "mbox": "mailto:john@john.com"}}, {"actor": {"objectType": "Agent", "mbox": "mailto:s@s.com"}, "verb": {"id": "http://example.com/verbs/wrong-next", "display": {"en-US": "wrong-next"}}, "object": {"objectType": "SubStatement", "actor": {"objectType": "Agent", "mbox": "mailto:wrong-ss@ss.com"}, "verb": {"id": "http://example.com/verbs/wrong-sub"}, "object": {"objectType": "Activity", "id": "act:wrong-testex.com"}, "result": {"completion": True, "success": True, "response": "sub-wrong-kicked"}, "context": {"registration": sub_context_id, "contextActivities": {"other": {"id": "act:sub-wrong-ActivityID"}}, "revision": "foo", "platform": "bar", "language": "en-US", "extensions": {"ext:wrong-k1": "v1", "ext:wrong-k2": "v2"}}}}, {"verb": {"id": "http://example.com/verbs/wrong-kicked"}, "object": {"id": "act:test_wrong_list_post2"}}]) response = self.client.post(reverse('lrs:statements'), stmts, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 400) self.assertIn('actor is missing in Statement', response.content) s_agent = Agent.objects.filter(mbox="mailto:wrong-s@s.com") ss_agent = Agent.objects.filter(mbox="mailto:wrong-ss@ss.com") john_agent = Agent.objects.filter(mbox="mailto:john@john.com") subs = SubStatement.objects.all() wrong_verb = Verb.objects.filter(verb_id__contains="wrong") activities = Activity.objects.filter(activity_id__contains="wrong") stmts = Statement.objects.all() self.assertEqual(len(stmts), 11) self.assertEqual(len(s_agent), 0) self.assertEqual(len(ss_agent), 0) self.assertEqual(len(john_agent), 1) # Only 1 sub from setup self.assertEqual(len(subs), 1) self.assertEqual(len(wrong_verb), 0) self.assertEqual(len(activities), 0) def test_post_list_rollback_context_activities(self): self.bunchostmts() sub_context_id = str(uuid.uuid4()) # Will throw error and need to rollback b/c last stmt is missing actor stmts = json.dumps([{ "actor": {"objectType": "Agent", "mbox": "mailto:wrong-s@s.com"}, "verb": {"id": "http://example.com/verbs/wrong", "display": {"en-US": "wrong"}}, "object": {"objectType": "Agent", "name": "john", "mbox": "mailto:john@john.com"}}, { "actor": {"objectType": "Agent", "mbox": "mailto:s@s.com"}, "verb": {"id": "http://example.com/verbs/wrong-next", "display": {"en-US": "wrong-next"}}, "object": { "objectType": "SubStatement", "actor": {"objectType": "Agent", "mbox": "mailto:wrong-ss@ss.com"}, "verb": {"id": "http://example.com/verbs/wrong-sub"}, "object": {"objectType": "Activity", "id": "act:wrong-testex.com"}, "result": {"completion": True, "success": True, "response": "sub-wrong-kicked"}, "context": { "registration": sub_context_id, "contextActivities": { "other": [{"id": "act:subwrongActivityID"}, {"id": "act:foogie"}]}, "revision": "foo", "platform": "bar", "language": "en-US", "extensions": {"ext:wrong-k1": "v1", "ext:wrong-k2": "v2"}} } }, { "verb": {"id": "http://example.com/verbs/wrong-kicked"}, "object": {"id": "act:test_wrong_list_post2"}}]) response = self.client.post(reverse('lrs:statements'), stmts, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 400) self.assertIn('actor is missing in Statement', response.content) s_agent = Agent.objects.filter(mbox="mailto:wrong-s@s.com") ss_agent = Agent.objects.filter(mbox="mailto:wrong-ss@ss.com") john_agent = Agent.objects.filter(mbox="mailto:john@john.com") subs = SubStatement.objects.all() wrong_verb = Verb.objects.filter(verb_id__contains="wrong") wrong_activities = Activity.objects.filter( activity_id__contains="wrong") foogie_activities = Activity.objects.filter( activity_id__exact="act:foogie") stmts = Statement.objects.all() self.assertEqual(len(stmts), 11) self.assertEqual(len(s_agent), 0) self.assertEqual(len(ss_agent), 0) self.assertEqual(len(john_agent), 1) # Only 1 sub from setup self.assertEqual(len(subs), 1) self.assertEqual(len(wrong_verb), 0) self.assertEqual(len(wrong_activities), 0) self.assertEqual(len(foogie_activities), 1) def test_unique_actor_authority(self): stmt = json.dumps({"actor": {"objectType": "Agent", "mbox": "mailto:timmay@timmay.com", "name": "timmay"}, "verb": {"id": "http://example.com/verbs/passed", "display": {"en-US": "passed"}}, "object": {"id": "act:test_post"}}) response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 200) response2 = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth2, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response2.status_code, 200) acts = Activity.objects.filter(activity_id='act:test_post').count() self.assertEqual(acts, 1) def test_stmts_w_same_regid(self): stmt1_guid = str(uuid.uuid4()) stmt2_guid = str(uuid.uuid4()) reg_guid = str(uuid.uuid4()) stmt1 = json.dumps({"actor": {"mbox": "mailto:tom@example.com"}, "verb": {"id": "http:adlnet.gov/expapi/verbs/tested", "display": {"en-US": "tested"}}, "object": {"id": "test:same.regid"}, "context": {"registration": reg_guid} }) stmt2 = json.dumps({"actor": {"mbox": "mailto:tom@example.com"}, "verb": {"id": "http:adlnet.gov/expapi/verbs/tested", "display": {"en-US": "tested"}}, "object": {"id": "test:same.regid.again"}, "context": {"registration": reg_guid} }) param1 = {"statementId": stmt1_guid} path1 = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param1)) stmt_payload1 = stmt1 resp1 = self.client.put(path1, stmt_payload1, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(resp1.status_code, 204) param2 = {"statementId": stmt2_guid} path2 = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param2)) stmt_payload2 = stmt2 resp2 = self.client.put(path2, stmt_payload2, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(resp2.status_code, 204) @override_settings(CELERY_ALWAYS_EAGER=True, TEST_RUNNER='djcelery.contrib.test_runner.CeleryTestSuiteRunner') def test_void(self): stmt_guid = str(uuid.uuid4()) stmt = {"actor": {"mbox": "mailto:tinytom@example.com"}, "verb": {"id": "http://tommy.com/my-testverbs/danced", "display": {"en-US": "danced"}}, "object": {"id": "act:the-macarena"}} param = {"statementId": stmt_guid} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) payload = json.dumps(stmt) r = self.client.put(path, payload, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(r.status_code, 204) r = self.client.get(reverse('lrs:statements'), Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(r.status_code, 200) obj = json.loads(r.content) self.assertEqual(len(obj['statements']), 1) obj = obj['statements'][0] self.assertEqual(obj['id'], stmt_guid) self.assertEqual(obj['actor']['mbox'], stmt['actor']['mbox']) self.assertEqual(obj['verb'], stmt['verb']) self.assertEqual(obj['object']['id'], stmt['object']['id']) stmt2_guid = str(uuid.uuid4()) stmt2 = {"actor": {"mbox": "mailto:louo@example.com"}, "verb": {"id": "http://tommy.com/my-testverbs/laughed", "display": {"en-US": "laughed at"}}, "object": {"objectType": "StatementRef", "id": stmt_guid}} param = {"statementId": stmt2_guid} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(param)) payload2 = json.dumps(stmt2) r = self.client.put(path, payload2, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(r.status_code, 204) r = self.client.get(reverse('lrs:statements'), Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(r.status_code, 200) obj = json.loads(r.content) self.assertEqual(len(obj['statements']), 2) objs = obj['statements'] for o in objs: if o['id'] == stmt_guid: self.assertEqual(o['actor']['mbox'], stmt['actor']['mbox']) self.assertEqual(o['verb']['id'], stmt['verb']['id']) self.assertEqual(o['object']['id'], stmt['object']['id']) else: self.assertEqual(o['actor']['mbox'], stmt2['actor']['mbox']) self.assertEqual(o['verb']['id'], stmt2['verb']['id']) self.assertEqual(o['object']['id'], stmt2['object']['id']) stmtv = {"actor": {"mbox": "mailto:hulk@example.com"}, "verb": {"id": "http://adlnet.gov/expapi/verbs/voided"}, "object": {"objectType": "StatementRef", "id": "%s" % stmt_guid}} v_guid = str(uuid.uuid4()) paramv = {"statementId": v_guid} path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode(paramv)) vpayload = json.dumps(stmtv) r = self.client.put(path, vpayload, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(r.status_code, 204) r = self.client.get(reverse('lrs:statements'), Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(r.status_code, 200) obj = json.loads(r.content) self.assertEqual(len(obj['statements']), 2) objs = obj['statements'] for o in objs: if o['id'] == v_guid: self.assertEqual(o['actor']['mbox'], stmtv['actor']['mbox']) self.assertEqual(o['verb']['id'], stmtv['verb']['id']) self.assertEqual(o['object']['id'], stmtv['object']['id']) else: self.assertEqual(o['actor']['mbox'], stmt2['actor']['mbox']) self.assertEqual(o['verb']['id'], stmt2['verb']['id']) self.assertEqual(o['object']['id'], stmt2['object']['id']) # get voided statement via voidedStatementId path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode( {"voidedStatementId": stmt_guid})) r = self.client.get(path, Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(r.status_code, 200) obj = json.loads(r.content) self.assertEqual(obj['id'], stmt_guid) self.assertEqual(obj['actor']['mbox'], stmt['actor']['mbox']) self.assertEqual(obj['verb']['id'], stmt['verb']['id']) self.assertEqual(obj['object']['id'], stmt['object']['id']) # make sure voided statement returns a 404 on get w/ statementId req path = "%s?%s" % (reverse('lrs:statements'), urllib.urlencode({"statementId": stmt_guid})) r = self.client.get(path, Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(r.status_code, 404) def test_act_id_iri(self): act_id = "act:Flügel" stmt = json.dumps({"actor": {"objectType": "Agent", "mbox": "mailto:s@s.com"}, "verb": {"id": "http://example.com/verbs/created", "display": {"en-US": "created"}}, "object": {"id": act_id}}) response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 200) stmt_db = Statement.objects.get( statement_id=uuid.UUID(json.loads(response.content)[0])) act = Activity.objects.get(id=stmt_db.object_activity.id) self.assertEqual(act.activity_id.encode('utf-8'), act_id) def test_invalid_act_id_iri(self): act_id = "Flügel" stmt = json.dumps({"actor": {"objectType": "Agent", "mbox": "mailto:s@s.com"}, "verb": {"id": "http://example.com/verbs/created", "display": {"en-US": "created"}}, "object": {"id": act_id}}) response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 400) self.assertIn('not a valid IRI', response.content) def test_tag_act_id_uri(self): act_id = "tag:adlnet.gov,2013:expapi:0.9:activities" stmt = json.dumps({"actor": {"objectType": "Agent", "mbox": "mailto:s@s.com"}, "verb": {"id": "http://example.com/verbs/created", "display": {"en-US": "created"}}, "object": {"id": act_id}}) response = self.client.post(reverse('lrs:statements'), stmt, content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 200) stmt_db = Statement.objects.get( statement_id=uuid.UUID(json.loads(response.content)[0])) act = Activity.objects.get(id=stmt_db.object_activity.id) self.assertEqual(act.activity_id, act_id) @override_settings(CELERY_ALWAYS_EAGER=True, TEST_RUNNER='djcelery.contrib.test_runner.CeleryTestSuiteRunner') def test_large_batch(self): import random post_payload = [] acts = ["http://tom.com/act/1/foo", "http://adlnet.gov/act/arrgs/2", "http://google.com/activity/eats/ants", "http://tom.com/act/3/boo"] ctxs = ["http://ctx.com/one", "http://ctx.com/two"] for x in range(1, 500): s = {"verb": {"id": "http://example.com/verbs/passed"}, "object": {"id": ""}, "actor": {"mbox": "mailto:t@t.com"}, "context": {"contextActivities": {"grouping": [{"id": ""}]}}} s['object']['id'] = acts[random.randrange(0, len(acts) - 1)] s['context']['contextActivities']['grouping'][0][ 'id'] = ctxs[random.randrange(0, len(ctxs) - 1)] post_payload.append(s) response = self.client.post(reverse('lrs:statements'), json.dumps(post_payload), content_type="application/json", Authorization=self.auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(response.status_code, 200)
64.812437
306
0.536946
078aebba0281776544583a695d22daa9f51176e7
770
py
Python
classroom/api/urls.py
anish1997bendarkar/pytest
de7bf758e75b7c4f921e89b2695aca14bf48ee05
[ "MIT" ]
16
2020-02-26T09:52:43.000Z
2021-12-21T07:03:10.000Z
classroom/api/urls.py
anish1997bendarkar/pytest
de7bf758e75b7c4f921e89b2695aca14bf48ee05
[ "MIT" ]
4
2021-03-18T23:31:32.000Z
2021-06-10T18:25:30.000Z
classroom/api/urls.py
anish1997bendarkar/pytest
de7bf758e75b7c4f921e89b2695aca14bf48ee05
[ "MIT" ]
11
2020-06-05T00:06:11.000Z
2022-02-14T07:50:31.000Z
from django.contrib import admin from django.urls import path from .views import ( StudentListAPIView, StudentCreateAPIView, StudentDeleteAPIView, StudentDetailAPIView, ClassroomNumberAPIView, ) urlpatterns = [ path("student/list/", StudentListAPIView.as_view(), name="student_list_api"), path("student/create/", StudentCreateAPIView.as_view(), name="student_create_api"), path( "student/<int:pk>/", StudentDetailAPIView.as_view(), name="student_detail_api" ), path( "student/<int:pk>/delete/", StudentDeleteAPIView.as_view(), name="student_delete_api", ), path( "classroom/<int:student_capacity>/", ClassroomNumberAPIView.as_view(), name="class_qs_api", ), ]
26.551724
87
0.671429
aa8cdd7fde92cc507f56b0b25c5e7a6c822ceb32
17,630
py
Python
peeringdb/http.py
adamgent/peering-manager
46858766cf131da2378010189d13485dec98332f
[ "Apache-2.0" ]
null
null
null
peeringdb/http.py
adamgent/peering-manager
46858766cf131da2378010189d13485dec98332f
[ "Apache-2.0" ]
null
null
null
peeringdb/http.py
adamgent/peering-manager
46858766cf131da2378010189d13485dec98332f
[ "Apache-2.0" ]
null
null
null
import json import logging import requests from django.db import transaction from django.conf import settings from django.core.exceptions import FieldDoesNotExist, ValidationError from django.utils import timezone from .models import Network, NetworkIXLAN, PeerRecord, Prefix, Synchronization NAMESPACES = { "facility": "fac", "internet_exchange": "ix", "internet_exchange_facility": "ixfac", "internet_exchange_lan": "ixlan", "internet_exchange_prefix": "ixpfx", "network": "net", "network_facility": "netfac", "network_internet_exchange_lan": "netixlan", "organization": "org", "network_contact": "poc", } class Object(object): """ This is a class used to load JSON data into class fields for easier use. """ def __init__(self, data): self.__dict__ = json.loads(json.dumps(data)) def __str__(self): return str(self.__dict__) class PeeringDB(object): """ Class used to interact with the PeeringDB API. """ logger = logging.getLogger("peering.manager.peeringdb") def lookup(self, namespace, search): """ Sends a get request to the API given a namespace and some parameters. """ # Enforce trailing slash and add namespace api_url = settings.PEERINGDB_API.strip("/") + "/" + namespace # Check if the depth param is provided, add it if not if "depth" not in search: search["depth"] = 1 # Make the request self.logger.debug("calling api: %s | %s", api_url, search) response = requests.get(api_url, params=search) return response.json() if response.status_code == 200 else None def record_last_sync(self, time, objects_changes): """ Save the last synchronization details (number of objects and time) for later use (and logs). """ last_sync = None number_of_changes = ( objects_changes["added"] + objects_changes["updated"] + objects_changes["deleted"] ) # Save the last sync time only if objects were retrieved if number_of_changes > 0: values = { "time": time, "added": objects_changes["added"], "updated": objects_changes["updated"], "deleted": objects_changes["deleted"], } last_sync = Synchronization(**values) last_sync.save() self.logger.debug( "synchronizated %s objects at %s", number_of_changes, last_sync.time ) return last_sync def get_last_synchronization(self): """ Return the last synchronization. """ try: return Synchronization.objects.latest("time") except Synchronization.DoesNotExist: pass return None def get_last_sync_time(self): """ Return the last time of synchronization based on the latest record. The time is returned as an integer UNIX timestamp. """ # Assume first sync last_sync_time = 0 last_sync = self.get_last_synchronization() if last_sync: last_sync_time = last_sync.time.timestamp() return int(last_sync_time) def synchronize_objects(self, last_sync, namespace, model): """ Synchronizes all the objects of a namespace of the PeeringDB to the local database. This function is meant to be run regularly to update the local database with the latest changes. If the object already exists locally it will be updated and no new entry will be created. If the object is marked as deleted in the PeeringDB, it will be locally deleted. This function returns the number of objects that have been successfully synchronized to the local database. """ objects_added = 0 objects_updated = 0 objects_deleted = 0 # Get all network changes since the last sync search = {"since": last_sync, "depth": 0} result = self.lookup(namespace, search) if not result: return None for data in result["data"]: peeringdb_object = Object(data) marked_as_deleted = peeringdb_object.status == "deleted" marked_as_new = False try: # Get the local object by its ID local_object = model.objects.get(pk=peeringdb_object.id) # Object marked as deleted so remove it locally too if marked_as_deleted: local_object.delete() objects_deleted += 1 self.logger.debug( "deleted %s #%s from local database", model._meta.verbose_name.lower(), peeringdb_object.id, ) continue except model.DoesNotExist: # Local object does not exist so create it local_object = model() marked_as_new = True # Set the value for each field for model_field in model._meta.get_fields(): field_name = model_field.name # Do not try to follow foreign keys if model_field.get_internal_type() == "ForeignKey": continue value = getattr(peeringdb_object, field_name) try: field = local_object._meta.get_field(field_name) except FieldDoesNotExist: field = None self.logger.error( "bug found? field: %s for model: %s", field_name, model._meta.verbose_name.lower(), ) if field: setattr(local_object, field_name, value) try: local_object.full_clean() except ValidationError: self.logger.error( "bug found? error while validating id: %s for model: %s", peeringdb_object.id, model._meta.verbose_name.lower(), ) continue # Save the local object local_object.save() # Update counters if marked_as_new: objects_added += 1 self.logger.debug( "created %s #%s from peeringdb", model._meta.verbose_name.lower(), local_object.id, ) else: objects_updated += 1 self.logger.debug( "updated %s #%s from peeringdb", model._meta.verbose_name.lower(), local_object.id, ) return (objects_added, objects_updated, objects_deleted) def update_local_database(self, last_sync): """ Update the local database by synchronizing all PeeringDB API's namespaces that we are actually caring about. """ # Set time of sync time_of_sync = timezone.now() objects_to_sync = [ (NAMESPACES["network"], Network), (NAMESPACES["network_internet_exchange_lan"], NetworkIXLAN), (NAMESPACES["internet_exchange_prefix"], Prefix), ] list_of_changes = [] # Make a single transaction, avoid too much database commits (poor # speed) and fail the whole synchronization if something goes wrong with transaction.atomic(): # Try to sync objects for (namespace, object_type) in objects_to_sync: changes = self.synchronize_objects(last_sync, namespace, object_type) list_of_changes.append(changes) objects_changes = { "added": sum(added for added, _, _ in list_of_changes), "updated": sum(updated for _, updated, _ in list_of_changes), "deleted": sum(deleted for _, _, deleted in list_of_changes), } # Save the last sync time return self.record_last_sync(time_of_sync, objects_changes) def clear_local_database(self): """ Delete all data related to the local database. This can be used to get a fresh start. """ for model in [Network, NetworkIXLAN, PeerRecord, Synchronization]: model.objects.all().delete() def force_peer_records_discovery(self): """ Force the peer records cache to be [re]built. This function can be used if this cache appears to be out of sync or inconsistent. """ indexed = 0 with transaction.atomic(): # First of all, delete all existing peer records PeerRecord.objects.all().delete() # Build the cache for network_ixlan in NetworkIXLAN.objects.all(): # Ignore if we have no IPv6 and no IPv4 to peer with if not network_ixlan.ipaddr6 and not network_ixlan.ipaddr4: self.logger.debug( "network ixlan with as%s and ixlan id %s" " ignored, no ipv6 and no ipv4", network_ixlan.asn, network_ixlan.ixlan_id, ) continue network = None try: network = Network.objects.get(asn=network_ixlan.asn) except Network.DoesNotExist: self.logger.debug("unable to find network as%s", network_ixlan.asn) if network: PeerRecord.objects.create( network=network, network_ixlan=network_ixlan ) self.logger.debug( "peer record with network as%s and ixlan" "id %s created", network_ixlan.asn, network_ixlan.ixlan_id, ) indexed += 1 else: self.logger.debug( "network ixlan with as%s and ixlan id %s" " ignored", network_ixlan.asn, network_ixlan.ixlan_id, ) return indexed def get_autonomous_system(self, asn): """ Return an AS (and its details) given its ASN. The result can come from the local database (cache built with the peeringdb_sync command). If the AS details are not found in the local database, they will be fetched online which will take more time. """ try: # Try to get from cached data network = Network.objects.get(asn=asn) except Network.DoesNotExist: # If no cached data found, query the API search = {"asn": asn} result = self.lookup(NAMESPACES["network"], search) if not result or not result["data"]: return None network = Object(result["data"][0]) return network def get_ix_network(self, ix_network_id): """ Return an IX network (and its details) given an IP address. The result can come from the local database (cache built with the peeringdb_sync command). If the IX network is not found in the local database, it will be fetched online which will take more time. """ try: # Try to get from cached data network_ixlan = NetworkIXLAN.objects.get(id=ix_network_id) except NetworkIXLAN.DoesNotExist: # If no cached data found, query the API search = {"id": ix_network_id} result = self.lookup(NAMESPACES["network_internet_exchange_lan"], search) if not result or not result["data"]: return None network_ixlan = Object(result["data"][0]) return network_ixlan def get_ix_network_by_ip_address(self, ipv6_address=None, ipv4_address=None): """ Return an IX network (and its details) given its ID. The result can come from the local database (cache built with the peeringdb_sync command). If the IX network is not found in the local database, it will be fetched online which will take more time. """ if not ipv6_address and not ipv4_address: return None search = {} if ipv6_address: search.update({"ipaddr6": ipv6_address}) if ipv4_address: search.update({"ipaddr4": ipv4_address}) try: # Try to get from cached data network_ixlan = NetworkIXLAN.objects.get(**search) except NetworkIXLAN.DoesNotExist: # If no cached data found, query the API result = self.lookup(NAMESPACES["network_internet_exchange_lan"], search) if not result or not result["data"]: return None network_ixlan = Object(result["data"][0]) return network_ixlan def get_ix_networks_for_asn(self, asn): """ Returns a list of all IX networks an AS is connected to. """ # Try to get from cached data network_ixlans = NetworkIXLAN.objects.filter(asn=asn) # If nothing found in cache, try to fetch data online if not network_ixlans: search = {"asn": asn} result = self.lookup(NAMESPACES["network_internet_exchange_lan"], search) if not result or not result["data"]: return None network_ixlans = [] for ix_network in result["data"]: network_ixlans.append(Object(ix_network)) return network_ixlans def get_common_ix_networks_for_asns(self, asn1, asn2): """ Returns a list of all common IX networks on which both ASNs are connected to. The list contains tuples of NetworkIXLAN objects. The first element of each tuple is the IX LAN network of asn1, the second element is the IX LAN network of asn2 matching the one of asn1. """ common_network_ixlans = [] # Grab IX LANs for both ASNs asn1_network_ixlans = self.get_ix_networks_for_asn(asn1) asn2_network_ixlans = self.get_ix_networks_for_asn(asn2) # If IX for one of the AS cannot be found, return the empty list if not asn1_network_ixlans or not asn2_network_ixlans: return common_network_ixlans # Find IX LAN networks matching for asn1_network_ixlan in asn1_network_ixlans: for asn2_network_ixlan in asn2_network_ixlans: if asn1_network_ixlan.ixlan_id == asn2_network_ixlan.ixlan_id: # Keep track of the two IX LAN networks common_network_ixlans.append( (asn1_network_ixlan, asn2_network_ixlan) ) return common_network_ixlans def get_prefixes_for_ix_network(self, ix_network_id): """ Returns a list of all prefixes used by an IX network. """ prefixes = [] # Get the NetworkIXLAN object using its ID network_ixlan = self.get_ix_network(ix_network_id) if network_ixlan: # Try to get prefixes from cache ix_prefixes = Prefix.objects.filter(ixlan_id=network_ixlan.ixlan_id) # If not cached data, try to fetch online if not ix_prefixes: search = {"ixlan_id": network_ixlan.ixlan_id} result = self.lookup(NAMESPACES["internet_exchange_prefix"], search) if not result or not result["data"]: return prefixes ix_prefixes = [] for ix_prefix in result["data"]: ix_prefixes.append(Object(ix_prefix)) # Build a list with protocol and prefix couples for ix_prefix in ix_prefixes: prefixes.append(ix_prefix.prefix) return prefixes def get_peers_for_ix(self, ix_id): """ Returns a dict with details for peers for the IX corresponding to the given ID. This function try to leverage the use of local database caching. If the cache is not built it can take some time to execute due to the amount of peers on the IX which increases the number of API calls to be made. """ # Try to get from cached data network_ixlans = NetworkIXLAN.objects.filter(ix_id=ix_id) # If nothing found in cache, try to fetch data online if not network_ixlans: search = {"ix_id": ix_id} result = self.lookup(NAMESPACES["network_internet_exchange_lan"], search) if not result or not result["data"]: return None network_ixlans = [] for data in result["data"]: network_ixlans.append(Object(data)) # List potential peers peers = [] for network_ixlan in network_ixlans: # Ignore our own ASN if network_ixlan.asn == settings.MY_ASN: continue # Get more details about the current network network = self.get_autonomous_system(network_ixlan.asn) # Package all gathered details peers.append({"network": network, "network_ixlan": network_ixlan}) return peers
35.26
87
0.57544
bd6eba807c280f3006e20fe7adcfa8cbeff7fa9e
1,183
py
Python
opencanary/modules/sip.py
amorrowbellarmine/opencanary
a25209888faa3fbaa15db09e419d03b42897a7d5
[ "BSD-3-Clause" ]
1,412
2015-08-06T03:54:37.000Z
2022-03-29T07:30:54.000Z
opencanary/modules/sip.py
amorrowbellarmine/opencanary
a25209888faa3fbaa15db09e419d03b42897a7d5
[ "BSD-3-Clause" ]
170
2015-08-11T00:33:06.000Z
2022-03-30T05:11:38.000Z
opencanary/modules/sip.py
amorrowbellarmine/opencanary
a25209888faa3fbaa15db09e419d03b42897a7d5
[ "BSD-3-Clause" ]
297
2015-08-17T09:25:41.000Z
2022-03-31T08:25:41.000Z
from opencanary.modules import CanaryService from twisted.application import internet from twisted.protocols.sip import Base from twisted.internet.address import IPv4Address """ A log-only SIP server. It won't respond, but it will log any SIP requests sent its way. """ class SIPServer(Base): def handle_request(self, request, addr): try: logdata={'HEADERS': request.headers} self.transport.getPeer = lambda: IPv4Address('UDP', addr[0], addr[1]) self.factory.log(logdata=logdata, transport=self.transport) except Exception as e: self.factory.log(logdata={'ERROR': e}, transport=self.transport) class CanarySIP(CanaryService): NAME = 'SIP' def __init__(self, config=None, logger=None): CanaryService.__init__(self, config=config, logger=logger) self.port = int(config.getVal('sip.port', default=5060)) self.logtype=self.logger.LOG_SIP_REQUEST self.listen_addr = config.getVal('device.listen_addr', default='') def getService(self): f = SIPServer() f.factory = self return internet.UDPServer(self.port, f, interface=self.listen_addr)
33.8
81
0.682164
b811a63acad21c85cc38b3b6ac1e1026db9940c3
7,507
py
Python
pytorch_optimizers/adam.py
madsbk/pytorch_optimizers
10eefd83277237d3aa2788a2a5a47ba3294a6e50
[ "Apache-2.0" ]
null
null
null
pytorch_optimizers/adam.py
madsbk/pytorch_optimizers
10eefd83277237d3aa2788a2a5a47ba3294a6e50
[ "Apache-2.0" ]
null
null
null
pytorch_optimizers/adam.py
madsbk/pytorch_optimizers
10eefd83277237d3aa2788a2a5a47ba3294a6e50
[ "Apache-2.0" ]
null
null
null
import math import os from distutils.util import strtobool import torch from torch.optim.optimizer import Optimizer from torch.hub import _check_module_exists NUMBA_CUDA_EXIST = False NUMBA_CUDA_THREAD_PER_BLOCK = 512 if not strtobool(os.environ.get('NO_NUMBA', 'n')) and _check_module_exists("numba.cuda"): import numba.cuda NUMBA_CUDA_EXIST = numba.cuda.is_available() @numba.cuda.jit() def numba_cuda_kernel(param, grad, exp_avg, exp_avg_sq, beta1, beta2, step_size, bias_correction2, eps, weight_decay): i = numba.cuda.grid(1) if i >= param.size: return if weight_decay != 0: grad[i] += weight_decay * param[i] exp_avg[i] = exp_avg[i] * beta1 + (1 - beta1) * grad[i] exp_avg_sq[i] = exp_avg_sq[i] * beta2 + (1 - beta2) * grad[i] * grad[i] denom = math.sqrt(exp_avg_sq[i]) / bias_correction2 + eps param[i] = param[i] + (-step_size) * (exp_avg[i] / denom) class Adam(Optimizer): r"""Implements Adam algorithm. It has been proposed in `Adam: A Method for Stochastic Optimization`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad) super(Adam, self).__init__(params, defaults) def __setstate__(self, state): super(Adam, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ # In order to reduce Numba overhead, we save the device arrays # between calls to `step()` in `_nbstate`. self._nbstate = getattr(self, '_nbstate', {}) loss = None if closure is not None: loss = closure() for group in self.param_groups: for param in group['params']: if param.grad is None: continue # Perform optimization step grad = param.grad.data p = param.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients,' 'please consider SparseAdam instead') amsgrad = group['amsgrad'] state = self.state[param] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros_like(p) elif NUMBA_CUDA_EXIST and numba.cuda.is_cuda_array(p.data): self._nbstate[param] = { 'param': numba.cuda.as_cuda_array(p.data.flatten()), 'grad': numba.cuda.as_cuda_array(grad.flatten()), 'exp_avg': numba.cuda.as_cuda_array(state['exp_avg'].data.flatten()), 'exp_avg_sq': numba.cuda.as_cuda_array(state['exp_avg_sq']. data.flatten()), 'blockspergrid': math.ceil(p.data.numel() / NUMBA_CUDA_THREAD_PER_BLOCK) } weight_decay = group['weight_decay'] eps = group['eps'] beta1, beta2 = group['betas'] state['step'] += 1 bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = math.sqrt(1 - beta2 ** state['step']) step_size = group['lr'] / bias_correction1 if param in self._nbstate: s = self._nbstate[param] numba_cuda_kernel[s['blockspergrid'], NUMBA_CUDA_THREAD_PER_BLOCK](s['param'], s['grad'], s['exp_avg'], s['exp_avg_sq'], beta1, beta2, step_size, bias_correction2, eps, weight_decay) else: if weight_decay != 0: grad.add_(weight_decay, p.data) exp_avg = state['exp_avg'].data exp_avg_sq = state['exp_avg_sq'].data # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) if amsgrad: max_exp_avg_sq = state['max_exp_avg_sq'] # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = (max_exp_avg_sq.sqrt() / bias_correction2).add_(eps) else: denom = (exp_avg_sq.sqrt() / bias_correction2).add_(eps) p.data.addcdiv_(-step_size, exp_avg, denom) return loss
45.49697
100
0.515785
77a0c2c02d3262294696213f2e32732df83ea738
525
py
Python
class4/exercise5.py
agonzo777/pynet
8b2c2bbd71ea001ba0dc2acb20a4d46c7ddeaa12
[ "Apache-2.0" ]
null
null
null
class4/exercise5.py
agonzo777/pynet
8b2c2bbd71ea001ba0dc2acb20a4d46c7ddeaa12
[ "Apache-2.0" ]
null
null
null
class4/exercise5.py
agonzo777/pynet
8b2c2bbd71ea001ba0dc2acb20a4d46c7ddeaa12
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import pexpect import time import netmiko from netmiko import ConnectHandler password = '88newclass' pynet1 = { 'device_type': 'cisco_ios', 'ip': '50.76.53.27', 'username': 'pyclass', 'password': password, } pynet2 = { 'device_type': 'cisco_ios', 'ip': '50.76.53.27', 'username': 'pyclass', 'password': password, 'port': 8022, } rc = ConnectHandler(**pynet2) rc.config_mode() output = rc.find_prompt() print output output = rc.check_config_mode() print output
15.909091
34
0.653333
0c65afa180db47038d20348fd747c92c3b44f8ef
7,344
py
Python
commands/views.py
guptaharsh13/notifIEEE
359ba33410ba3cd0b16fdbdfe6bfb45117067ece
[ "MIT" ]
1
2022-01-08T19:02:22.000Z
2022-01-08T19:02:22.000Z
commands/views.py
guptaharsh13/notifIEEE
359ba33410ba3cd0b16fdbdfe6bfb45117067ece
[ "MIT" ]
null
null
null
commands/views.py
guptaharsh13/notifIEEE
359ba33410ba3cd0b16fdbdfe6bfb45117067ece
[ "MIT" ]
null
null
null
from datetime import datetime from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import status from django.conf import settings import slack import re from utils.scheduler import scheduleMeet from pprint import pprint SLACK_VERIFICATION_TOKEN = getattr(settings, "SLACK_VERIFICATION_TOKEN", None) SLACK_BOT_USER_TOKEN = getattr(settings, "SLACK_BOT_USER_TOKEN", None) client = slack.WebClient(SLACK_BOT_USER_TOKEN) BOT_ID = client.api_call("auth.test")["user_id"] class PlanCommand(APIView): def post(self, request): payload = request.data if not payload.get("token", None) == SLACK_VERIFICATION_TOKEN: return Response(status=status.HTTP_403_FORBIDDEN) team_id = payload.get("team_id", None) meet_info = payload.get("text", None) if not (team_id and meet_info): return Response( { "response_type": "ephemeral", "text": "Sorry, slash commando, that didn't work. Please try again.", }, status=status.HTTP_400_BAD_REQUEST, ) members = client.users_list(team_id=team_id)["members"] members = list( filter(lambda member: member["is_email_confirmed"], members)) emails = list( map( lambda member: {"email": member["profile"]["email"]}, members, ) ) if not emails: return Response( { "response_type": "ephemeral", "text": "Sorry, slash commando, that didn't work. No Team mates found !!", }, status=status.HTTP_200_OK, ) meet_link = re.findall(r"<((?:http|https).+)>", meet_info) meet_link = list( filter(lambda link: link.startswith( "https://meet.google.com"), meet_link) ) if not meet_link: return Response( { "response_type": "ephemeral", "text": "Sorry, slash commando, that didn't work. INVALID G-meet link !!", }, status=status.HTTP_200_OK, ) if len(meet_link) > 1: return Response( { "response_type": "ephemeral", "text": "Sorry, slash commando, that didn't work. You cannot add multiple G-meet links as of now !!", }, status=status.HTTP_200_OK, ) meet_link = meet_link[0] s_datetime = re.findall( r"(\d{1,2}(?:\.|/|-)\d{1,2}(?:\.|/|-)(?:\d{2}|\d{4})/\d{0,2}:\d{0,2})", meet_info ) if not s_datetime: return Response( { "response_type": "ephemeral", "text": "Sorry, slash commando, that didn't work. You did not mention start time !!", }, status=status.HTTP_200_OK, ) if len(s_datetime) > 1: return Response( { "response_type": "ephemeral", "text": "Sorry, slash commando, that didn't work. You cannot add multiple start times as of now !!", }, status=status.HTTP_200_OK, ) s_datetime = s_datetime[0].split("/") s_date = s_datetime[0] if "." in s_date: s_date = s_date.split(".") elif "-" in s_date: s_date = s_date.split("-") else: s_date = s_datetime[:3] s_time = s_datetime[-1].split(":") hour = s_time[0] minute = s_time[1] if not hour: hour = 0 if not minute: minute = 0 hour = int(hour) minute = int(minute) year = s_date[-1] if len(year) == 2: year = f"20{year}" year = int(year) month = int(s_date[1]) day = int(s_date[0]) duration = re.findall(r"duration:(\d{1})", meet_info) if not duration: return Response( { "response_type": "ephemeral", "text": "Sorry, slash commando, that didn't work. You did not enter your meet duration !!", }, status=status.HTTP_200_OK, ) if len(duration) > 1: return Response( { "response_type": "ephemeral", "text": "Sorry, slash commando, that didn't work. You cannot add multilpe meet durations as of now !!", }, status=status.HTTP_200_OK, ) duration = int(duration[0]) meet_info = meet_info.split(",") meet_info = list(map(lambda info: info.strip(), meet_info)) if not meet_info: return Response( { "response_type": "ephemeral", "text": "Sorry, slash commando, that didn't work. You did not enter your meet name !!", }, status=status.HTTP_200_OK, ) meet_name = meet_info[0] try: meet_datetime = datetime(year=year, month=month, day=day, hour=hour, minute=minute, second=0) except: return Response( { "response_type": "ephemeral", "text": "Sorry, slash commando, that didn't work. Your datetime format was incorrect !!", }, status=status.HTTP_200_OK, ) try: print("\n\n") print(meet_name) print(meet_link) print(meet_datetime) print(duration) print(emails) print("\n") meet = scheduleMeet(meet_name=meet_name, meet_link=meet_link, s_datetime=meet_datetime, duration=duration, emails=emails) pprint(meet) print("\n\n") except Exception as e: print(e) return Response( {"text": "Sorry, slash commando, that didn't work. We could not schedule your meeting !!"}, status=status.HTTP_200_OK, ) return Response( {"text": "Thank You !! Your meeting has been scheduled."}, status=status.HTTP_200_OK, ) class Events(APIView): def post(self, request): slack_message = request.data if slack_message.get("token", None) != SLACK_VERIFICATION_TOKEN: return Response(status=status.HTTP_403_FORBIDDEN) if slack_message.get("type", None) == "url_verification": return Response(data=slack_message, status=status.HTTP_200_OK) event_message = slack_message.get("event", None) if event_message: channel = event_message.get("channel", None) text = event_message.get("text", "") if not event_message.get("user", None) == BOT_ID: # client.chat_postMessage(channel=channel, text=text) print(f"Message found: {text} in channel: {channel}") return Response(status=status.HTTP_200_OK)
33.688073
123
0.513617
ec47428f90d74efe86c02bfc80e62ef3e5e23521
4,283
py
Python
jesse/store/__init__.py
slipperlobster/flipper
8482edd77604fcec2ea08913f1748c21be80dac7
[ "MIT" ]
3
2021-09-26T15:55:00.000Z
2022-01-17T08:04:21.000Z
jesse/store/__init__.py
slipperlobster/flipper
8482edd77604fcec2ea08913f1748c21be80dac7
[ "MIT" ]
26
2021-10-31T07:04:04.000Z
2022-03-24T04:24:21.000Z
jesse/store/__init__.py
slipperlobster/flipper
8482edd77604fcec2ea08913f1748c21be80dac7
[ "MIT" ]
null
null
null
import jesse.helpers as jh from jesse.config import config from jesse.exceptions import InvalidRoutes from jesse.routes import router from .state_app import AppState from .state_candles import CandlesState from .state_completed_trades import CompletedTrades from .state_exchanges import ExchangesState from .state_logs import LogsState from .state_orderbook import OrderbookState from .state_orders import OrdersState from .state_positions import PositionsState from .state_tickers import TickersState from .state_trades import TradesState def install_routes() -> None: considering_candles = set() # when importing market data, considering_candles is all we need if jh.is_collecting_data(): for r in router.market_data: considering_candles.add((r.exchange, r.symbol)) config['app']['considering_candles'] = tuple(considering_candles) return # validate routes for duplicates: # each exchange-symbol pair can be traded only once. for r in router.routes: considering_candles.add((r.exchange, r.symbol)) exchange = r.exchange symbol = r.symbol count = sum( ro.exchange == exchange and ro.symbol == symbol for ro in router.routes ) if count != 1: raise InvalidRoutes( 'each exchange-symbol pair can be traded only once. \nMore info: https://docs.jesse.trade/docs/routes.html#trading-multiple-routes') # check to make sure if trading more than one route, they all have the same quote # currency because otherwise we cannot calculate the correct performance metrics first_routes_quote = jh.quote_asset(router.routes[0].symbol) for r in router.routes: if jh.quote_asset(r.symbol) != first_routes_quote: raise InvalidRoutes('All trading routes must have the same quote asset.') trading_exchanges = set() trading_timeframes = set() trading_symbols = set() for r in router.routes: trading_exchanges.add(r.exchange) trading_timeframes.add(r.timeframe) trading_symbols.add(r.symbol) considering_exchanges = trading_exchanges.copy() considering_timeframes = trading_timeframes.copy() considering_symbols = trading_symbols.copy() for e in router.extra_candles: considering_candles.add((e['exchange'], e['symbol'])) considering_exchanges.add(e['exchange']) considering_symbols.add(e['symbol']) considering_timeframes.add(e['timeframe']) # 1m must be present at all times considering_timeframes.add('1m') config['app']['considering_candles'] = tuple(considering_candles) config['app']['considering_exchanges'] = tuple(considering_exchanges) config['app']['considering_symbols'] = tuple(considering_symbols) config['app']['considering_timeframes'] = tuple(considering_timeframes) config['app']['trading_exchanges'] = tuple(trading_exchanges) config['app']['trading_symbols'] = tuple(trading_symbols) config['app']['trading_timeframes'] = tuple(trading_timeframes) class StoreClass: app = AppState() orders = OrdersState() completed_trades = CompletedTrades() logs = LogsState() exchanges = ExchangesState() candles = CandlesState() positions = PositionsState() tickers = TickersState() trades = TradesState() orderbooks = OrderbookState() def __init__(self) -> None: self.vars = {} def reset(self, force_install_routes: bool = False) -> None: """ Resets all the states within the store Keyword Arguments: force_install_routes {bool} -- used for unit_testing (default: {False}) """ if not jh.is_unit_testing() or force_install_routes: install_routes() self.app = AppState() self.orders = OrdersState() self.completed_trades = CompletedTrades() self.logs = LogsState() self.exchanges = ExchangesState() self.candles = CandlesState() self.positions = PositionsState() self.tickers = TickersState() self.trades = TradesState() self.orderbooks = OrderbookState() # if not jh.is_unit_testing(): # install_routes() store = StoreClass() # store.reset()
34.264
148
0.68947
676a0da4bb76c8c3b76afd904abca4e5573bedaf
1,677
py
Python
tests/time_integration/chemistry_abc_explicit/rebless.py
sandialabs/Spitfire
65670e3ba5d1ccb4ac72524b77957706345c5bf6
[ "Apache-2.0" ]
11
2020-03-20T02:10:17.000Z
2021-12-14T10:08:09.000Z
tests/time_integration/chemistry_abc_explicit/rebless.py
sandialabs/Spitfire
65670e3ba5d1ccb4ac72524b77957706345c5bf6
[ "Apache-2.0" ]
18
2020-03-18T18:58:56.000Z
2021-12-21T02:35:35.000Z
tests/time_integration/chemistry_abc_explicit/rebless.py
sandialabs/Spitfire
65670e3ba5d1ccb4ac72524b77957706345c5bf6
[ "Apache-2.0" ]
2
2021-05-31T17:24:56.000Z
2021-06-20T05:27:41.000Z
import pickle def run(): from spitfire.time.integrator import odesolve from spitfire.time.methods import RK4ClassicalS4P4 import numpy as np def right_hand_side(c, k_ab, k_bc): """ Computes the right-hand side function for the ODE system. Note that time integration requires a function that takes (t, y) as arguments. To accomodate this, we will write a lambda after defining the rate constants, which passes the appropriate y value and rate constant to this function (and ignores the time). :param c: current concentration vector :param k_ab: the rate constant of the reaction A -> B :param k_bc: the rate constant of the reaction A + B -> 2C :return: right-hand side of the ODE system """ c_a = c[0] c_b = c[1] c_c = c[2] q_1 = k_ab * c_a q_2 = k_bc * c_a * c_b return np.array([-q_1 - q_2, q_1 - q_2, 2. * q_2]) c0 = np.array([1., 0., 0.]) # initial condition k_ab = 1. # A -> B rate constant k_bc = 0.2 # A + B -> 2C rate constant final_time = 10. # final time to integrate to time_step_size = 0.1 # size of the time step used t, sol = odesolve(lambda t, y: right_hand_side(y, k_ab, k_bc), c0, stop_at_time=final_time, step_size=time_step_size, method=RK4ClassicalS4P4(), save_each_step=True) return dict({'t': t.copy(), 'sol': sol.copy()}) if __name__ == '__main__': output = run() with open('gold.pkl', 'wb') as file_output: pickle.dump(output, file_output)
34.22449
103
0.588551
89ac80c2e0d6ab41956717b8048cc0f0b6bc574f
389
py
Python
src/algoritmia/problems/fourier/interfaces.py
DavidLlorens/algoritmia
40ca0a89ea6de9b633fa5f697f0a28cae70816a2
[ "MIT" ]
6
2018-09-15T15:09:10.000Z
2022-02-27T01:23:11.000Z
src/algoritmia/problems/fourier/interfaces.py
JeromeIllgner/algoritmia
406afe7206f2411557859bf03480c16db7dcce0d
[ "MIT" ]
null
null
null
src/algoritmia/problems/fourier/interfaces.py
JeromeIllgner/algoritmia
406afe7206f2411557859bf03480c16db7dcce0d
[ "MIT" ]
5
2018-07-10T20:19:55.000Z
2021-03-31T03:32:22.000Z
from abc import ABCMeta, abstractmethod class IDiscreteFourierTransform(metaclass=ABCMeta): #[full @abstractmethod def transform(self, x: "IList<complex>") -> "IList<complex>": pass def inverse_transform(self, x: "IList<complex>") -> "IList<complex>": X = self.transform(x) N = len(x) for i in range(N): X[i] /= N return X #]full
35.363636
74
0.611825
2e9562fe77f5ef4f7901bee933291de2728d023c
2,796
py
Python
huaweicloud-sdk-iec/huaweicloudsdkiec/v1/model/delete_public_ip_request.py
wuchen-huawei/huaweicloud-sdk-python-v3
3683d703f4320edb2b8516f36f16d485cff08fc2
[ "Apache-2.0" ]
1
2021-11-03T07:54:50.000Z
2021-11-03T07:54:50.000Z
huaweicloud-sdk-iec/huaweicloudsdkiec/v1/model/delete_public_ip_request.py
wuchen-huawei/huaweicloud-sdk-python-v3
3683d703f4320edb2b8516f36f16d485cff08fc2
[ "Apache-2.0" ]
null
null
null
huaweicloud-sdk-iec/huaweicloudsdkiec/v1/model/delete_public_ip_request.py
wuchen-huawei/huaweicloud-sdk-python-v3
3683d703f4320edb2b8516f36f16d485cff08fc2
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 import pprint import re import six class DeletePublicIpRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'publicip_id': 'str' } attribute_map = { 'publicip_id': 'publicip_id' } def __init__(self, publicip_id=None): """DeletePublicIpRequest - a model defined in huaweicloud sdk""" self._publicip_id = None self.discriminator = None self.publicip_id = publicip_id @property def publicip_id(self): """Gets the publicip_id of this DeletePublicIpRequest. 弹性公网IP ID :return: The publicip_id of this DeletePublicIpRequest. :rtype: str """ return self._publicip_id @publicip_id.setter def publicip_id(self, publicip_id): """Sets the publicip_id of this DeletePublicIpRequest. 弹性公网IP ID :param publicip_id: The publicip_id of this DeletePublicIpRequest. :type: str """ self._publicip_id = publicip_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DeletePublicIpRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
25.418182
74
0.54578
fa7c85a8eb4adae14ac06fcd91d0f50748a282b4
35,539
py
Python
coremltools/test/neural_network/test_quantization.py
tonybove-apple/coremltools
22a8877beec7bad136ba5612d5aacd8e323ecdfc
[ "BSD-3-Clause" ]
2,740
2017-10-03T23:19:01.000Z
2022-03-30T15:16:39.000Z
coremltools/test/neural_network/test_quantization.py
tonybove-apple/coremltools
22a8877beec7bad136ba5612d5aacd8e323ecdfc
[ "BSD-3-Clause" ]
1,057
2017-10-05T22:47:01.000Z
2022-03-31T23:51:15.000Z
coremltools/test/neural_network/test_quantization.py
tonybove-apple/coremltools
22a8877beec7bad136ba5612d5aacd8e323ecdfc
[ "BSD-3-Clause" ]
510
2017-10-04T19:22:28.000Z
2022-03-31T12:16:52.000Z
# Copyright (c) 2021, Apple Inc. All rights reserved. # # Use of this source code is governed by a BSD-3-clause license that can be # found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause """Module containing unit tests for verifying various quantization.""" import os import shutil import tempfile import unittest import numpy as np import pytest import coremltools import coremltools.models.datatypes as datatypes from coremltools.models import neural_network import coremltools.models.neural_network.quantization_utils as quantization_utils from coremltools.models.neural_network.quantization_utils import ( activate_int8_int8_matrix_multiplications, MatrixMultiplyLayerSelector, _quantize_spec_weights, ) from coremltools._deps import _HAS_KERAS2_TF from coremltools.models import ( _MLMODEL_FULL_PRECISION, _QUANTIZATION_MODE_LINEAR_QUANTIZATION, _QUANTIZATION_MODE_LOOKUP_TABLE_KMEANS, _QUANTIZATION_MODE_CUSTOM_LOOKUP_TABLE, ) @unittest.skipIf( not coremltools.utils._is_macos() or coremltools.utils._macos_version() < (10, 14), "Missing macOS 10.14+. Skipping tests.", ) @unittest.skipIf(not _HAS_KERAS2_TF, "Missing keras. Skipping tests.") @pytest.mark.keras2 class QuantizationNumericalCorrectnessTests(unittest.TestCase): def runTest(self): pass def setUp(self): self.qbits = 8 # n-bit quantization for tests self.qmode = _QUANTIZATION_MODE_LINEAR_QUANTIZATION self.custom_lut = None from .test_keras2_numeric import KerasBasicNumericCorrectnessTest self.keras_tester = KerasBasicNumericCorrectnessTest() self.keras_tester._test_model = self._test_model def _run_quantized_test(self, input_, full_precision_model, quantized_model, delta): # Output from both models should be the same full_output = full_precision_model.predict(input_) quantized_output = quantized_model.predict(input_) self.assertEqual(full_output.keys(), quantized_output.keys()) for key in full_output.keys(): full_output_flatten = full_output[key].flatten() quantized_output_flatten = quantized_output[key].flatten() self.assertTrue(len(full_output_flatten) == len(quantized_output_flatten)) norm_factor = np.maximum(full_output_flatten, quantized_output_flatten) norm_factor = np.maximum(norm_factor, 1.0) f_out = full_output_flatten / norm_factor q_out = quantized_output_flatten / norm_factor for idx, full_value in enumerate(f_out): quantized_value = q_out[idx] self.assertAlmostEqual(full_value, quantized_value, delta=delta) def _test_model( self, model, num_samples=1, mode="random", delta=1e-2, model_dir=None, transpose_keras_result=True, one_dim_seq_flags=None, model_precision=_MLMODEL_FULL_PRECISION, ): # Get the model path use_tmp_folder = False if model_dir is None: use_tmp_folder = True model_dir = tempfile.mkdtemp() # Get converted coreml model and sample input ( input_names, output_names, _, coreml_input, ) = self.keras_tester._get_coreml_model_params_and_test_input( model, mode, one_dim_seq_flags ) from .test_keras2_numeric import _get_coreml_model coreml_model = _get_coreml_model( model, input_names, output_names, model_precision=model_precision ) # Now we quantize the model and dequantize it. We then use this model # as our full precision model since quantizing this model again will # result in 0 quantization error. coreml_spec = coreml_model.get_spec() quantization_utils._quantize_spec_weights( spec=coreml_spec, nbits=self.qbits, quantization_mode=self.qmode, lut_function=self.custom_lut, ) # De-quantize model quantization_utils._dequantize_nn_spec(spec=coreml_spec.neuralNetwork) full_precision_model_spec = coreml_spec # Quantize model from another copy quantized_model_spec = quantization_utils._quantize_spec_weights( spec=coreml_model.get_spec(), nbits=self.qbits, quantization_mode=self.qmode, lut_function=self.custom_lut, ) full_precision_model = coremltools.models.MLModel(full_precision_model_spec) quantized_model = coremltools.models.MLModel(quantized_model_spec) self._run_quantized_test( coreml_input, full_precision_model, quantized_model, delta ) # Clean up after ourselves if use_tmp_folder and os.path.exists(model_dir): shutil.rmtree(model_dir) def test_quantized_tiny_inner_product(self): self.keras_tester.test_tiny_inner_product() def test_quantized_conv_batchnorm_random(self): self.keras_tester.test_conv_batchnorm_random() def test_quantized_conv_batchnorm_no_gamma_no_beta(self): self.keras_tester.test_conv_batchnorm_no_gamma_no_beta() def test_quantized_tiny_deconv_random(self): self.keras_tester.test_tiny_deconv_random() def test_quantized_tiny_deconv_random_same_padding(self): self.keras_tester.test_tiny_deconv_random_same_padding() def test_quantized_tiny_depthwise_conv_valid_pad(self): self.keras_tester.test_tiny_depthwise_conv_valid_pad() def test_quantized_tiny_separable_conv_valid_depth_multiplier(self): self.keras_tester.test_tiny_separable_conv_valid_depth_multiplier() def test_quantized_max_pooling_no_overlap(self): self.keras_tester.test_max_pooling_no_overlap() def test_quantized_dense_softmax(self): self.keras_tester.test_dense_softmax() def test_quantized_housenet_random(self): self.keras_tester.test_housenet_random() def test_quantized_large_input_length_conv1d_same_random(self): self.keras_tester.test_large_input_length_conv1d_same_random() def test_quantized_conv_dense(self): self.keras_tester.test_conv_dense() def test_quantized_tiny_conv_crop_1d_random(self): self.keras_tester.test_tiny_conv_crop_1d_random() def test_quantized_embedding(self): self.keras_tester.test_embedding() def test_quantized_tiny_conv_elu_random(self): self.keras_tester.test_tiny_conv_elu_random() def test_quantized_tiny_concat_random(self): self.keras_tester.test_tiny_concat_random() def test_quantized_tiny_dense_tanh_fused_random(self): self.keras_tester.test_tiny_dense_tanh_fused_random() def test_quantized_conv1d_flatten(self): # Softmax after quantization appears to have a bigger error margin self.keras_tester.test_conv1d_flatten(delta=2e-2) def test_quantized_tiny_conv_dropout_random(self): self.keras_tester.test_tiny_conv_dropout_random() def test_quantized_tiny_mul_random(self): self.keras_tester.test_tiny_mul_random() def test_quantized_tiny_conv_thresholded_relu_random(self): self.keras_tester.test_tiny_conv_thresholded_relu_random() def test_quantized_tiny_seq2seq_rnn_random(self): self.keras_tester.test_tiny_seq2seq_rnn_random() def test_quantized_rnn_seq(self): self.keras_tester.test_rnn_seq() def test_quantized_medium_no_sequence_simple_rnn_random(self): self.keras_tester.test_medium_no_sequence_simple_rnn_random() def test_quantized_tiny_no_sequence_lstm_zeros(self): self.keras_tester.test_tiny_no_sequence_lstm_zeros() def test_quantized_tiny_no_sequence_lstm_ones(self): self.keras_tester.test_tiny_no_sequence_lstm_ones() def test_quantized_lstm_seq(self): self.keras_tester.test_lstm_seq() def test_quantized_medium_no_sequence_lstm_random(self): self.keras_tester.test_medium_no_sequence_lstm_random() def test_quantized_tiny_no_sequence_gru_random(self): self.keras_tester.test_tiny_no_sequence_gru_random() def test_quantized_gru_seq_backwards(self): self.keras_tester.test_gru_seq_backwards() def test_quantized_tiny_no_sequence_bidir_random(self): self.keras_tester.test_tiny_no_sequence_bidir_random() def test_quantized_tiny_no_sequence_bidir_random_gpu(self): self.keras_tester.test_tiny_no_sequence_bidir_random_gpu() def test_quantized_small_no_sequence_bidir_random(self): self.keras_tester.test_small_no_sequence_bidir_random() def test_quantized_medium_no_sequence_bidir_random(self): self.keras_tester.test_medium_no_sequence_bidir_random() def test_quantized_medium_bidir_random_return_seq_false(self): self.keras_tester.test_medium_bidir_random_return_seq_false() def test_quantized_tiny_sequence_lstm(self): self.keras_tester.test_tiny_sequence_lstm() def test_quantized__lstm_td(self): self.keras_tester.test_lstm_td() def test_quantized_large_channel_gpu(self): self.keras_tester.test_large_channel_gpu() def test_quantized_tiny_seq2seq_rnn_random(self): self.keras_tester.test_tiny_seq2seq_rnn_random() def test_quantized_lstm_seq_backwards(self): self.keras_tester.test_lstm_seq_backwards() @unittest.skipIf(not _HAS_KERAS2_TF, "Missing keras. Skipping tests.") @pytest.mark.keras2 @pytest.mark.slow class SevenBitQuantizationNumericalCorrectnessTests( QuantizationNumericalCorrectnessTests ): def setUp(self): super(SevenBitQuantizationNumericalCorrectnessTests, self).setUp() self.qbits = 7 @unittest.skipIf(not _HAS_KERAS2_TF, "Missing keras. Skipping tests.") @pytest.mark.keras2 @pytest.mark.slow class SixBitQuantizationNumericalCorrectnessTests( QuantizationNumericalCorrectnessTests ): def setUp(self): super(SixBitQuantizationNumericalCorrectnessTests, self).setUp() self.qbits = 6 @unittest.skipIf(not _HAS_KERAS2_TF, "Missing keras. Skipping tests.") @pytest.mark.keras2 @pytest.mark.slow class FiveBitQuantizationNumericalCorrectnessTests( QuantizationNumericalCorrectnessTests ): def setUp(self): super(FiveBitQuantizationNumericalCorrectnessTests, self).setUp() self.qbits = 5 @unittest.skipIf(not _HAS_KERAS2_TF, "Missing keras. Skipping tests.") @pytest.mark.keras2 class FourBitQuantizationNumericalCorrectnessTests( QuantizationNumericalCorrectnessTests ): def setUp(self): super(FourBitQuantizationNumericalCorrectnessTests, self).setUp() self.qbits = 4 @unittest.skipIf(not _HAS_KERAS2_TF, "Missing keras. Skipping tests.") @pytest.mark.keras2 @pytest.mark.slow class ThreeBitQuantizationNumericalCorrectnessTests( QuantizationNumericalCorrectnessTests ): def setUp(self): super(ThreeBitQuantizationNumericalCorrectnessTests, self).setUp() self.qbits = 3 @unittest.skipIf(not _HAS_KERAS2_TF, "Missing keras. Skipping tests.") @pytest.mark.keras2 @pytest.mark.slow class TwoBitQuantizationNumericalCorrectnessTests( QuantizationNumericalCorrectnessTests ): def setUp(self): super(TwoBitQuantizationNumericalCorrectnessTests, self).setUp() self.qbits = 2 @unittest.skipIf(not _HAS_KERAS2_TF, "Missing keras. Skipping tests.") @pytest.mark.keras2 class OneBitQuantizationNumericalCorrectnessTests( QuantizationNumericalCorrectnessTests ): def setUp(self): super(OneBitQuantizationNumericalCorrectnessTests, self).setUp() self.qbits = 1 @unittest.skipIf(not _HAS_KERAS2_TF, "Missing keras. Skipping tests.") @pytest.mark.keras2 class LUTQuantizationNumericalCorrectnessTests(QuantizationNumericalCorrectnessTests): def setUp(self): super(LUTQuantizationNumericalCorrectnessTests, self).setUp() self.qbits = 8 self.qmode = _QUANTIZATION_MODE_LOOKUP_TABLE_KMEANS def test_quantized_custom_lut(self): pass @unittest.skipIf(not _HAS_KERAS2_TF, "Missing keras. Skipping tests.") @pytest.mark.keras2 @pytest.mark.slow class LUTSevenBitQuantizationNumericalCorrectnessTests( QuantizationNumericalCorrectnessTests ): def setUp(self): super(LUTSevenBitQuantizationNumericalCorrectnessTests, self).setUp() self.qbits = 7 self.qmode = _QUANTIZATION_MODE_LOOKUP_TABLE_KMEANS @unittest.skipIf(not _HAS_KERAS2_TF, "Missing keras. Skipping tests.") @pytest.mark.keras2 @pytest.mark.slow class LUTSixBitQuantizationNumericalCorrectnessTests( QuantizationNumericalCorrectnessTests ): def setUp(self): super(LUTSixBitQuantizationNumericalCorrectnessTests, self).setUp() self.qbits = 6 self.qmode = _QUANTIZATION_MODE_LOOKUP_TABLE_KMEANS @unittest.skipIf(not _HAS_KERAS2_TF, "Missing keras. Skipping tests.") @pytest.mark.keras2 @pytest.mark.slow class LUTFiveBitQuantizationNumericalCorrectnessTests( QuantizationNumericalCorrectnessTests ): def setUp(self): super(LUTFiveBitQuantizationNumericalCorrectnessTests, self).setUp() self.qbits = 5 self.qmode = _QUANTIZATION_MODE_LOOKUP_TABLE_KMEANS @unittest.skipIf(not _HAS_KERAS2_TF, "Missing keras. Skipping tests.") @pytest.mark.keras2 class LUTFourBitQuantizationNumericalCorrectnessTests( QuantizationNumericalCorrectnessTests ): def setUp(self): super(LUTFourBitQuantizationNumericalCorrectnessTests, self).setUp() self.qbits = 4 self.qmode = _QUANTIZATION_MODE_LOOKUP_TABLE_KMEANS @unittest.skipIf(not _HAS_KERAS2_TF, "Missing keras. Skipping tests.") @pytest.mark.keras2 @pytest.mark.slow class LUTThreeBitQuantizationNumericalCorrectnessTests( QuantizationNumericalCorrectnessTests ): def setUp(self): super(LUTThreeBitQuantizationNumericalCorrectnessTests, self).setUp() self.qbits = 3 self.qmode = _QUANTIZATION_MODE_LOOKUP_TABLE_KMEANS @unittest.skipIf(not _HAS_KERAS2_TF, "Missing keras. Skipping tests.") @pytest.mark.keras2 @pytest.mark.slow class LUTTwoBitQuantizationNumericalCorrectnessTests( QuantizationNumericalCorrectnessTests ): def setUp(self): super(LUTTwoBitQuantizationNumericalCorrectnessTests, self).setUp() self.qbits = 2 self.qmode = _QUANTIZATION_MODE_LOOKUP_TABLE_KMEANS @unittest.skipIf(not _HAS_KERAS2_TF, "Missing keras. Skipping tests.") @pytest.mark.keras2 class LUTOneBitQuantizationNumericalCorrectnessTests( QuantizationNumericalCorrectnessTests ): def setUp(self): super(LUTOneBitQuantizationNumericalCorrectnessTests, self).setUp() self.qbits = 1 self.qmode = _QUANTIZATION_MODE_LOOKUP_TABLE_KMEANS @unittest.skipIf(not _HAS_KERAS2_TF, "Missing keras. Skipping tests.") @pytest.mark.keras2 class LUTCustomQuantizationNumericalCorrectnessTests( QuantizationNumericalCorrectnessTests ): def setUp(self): super(LUTCustomQuantizationNumericalCorrectnessTests, self).setUp() self.qbits = 8 self.qmode = _QUANTIZATION_MODE_CUSTOM_LOOKUP_TABLE self.custom_lut = quantization_utils._get_linear_lookup_table_and_weight from coremltools.converters import keras as keras_converter @unittest.skipIf( not coremltools.utils._is_macos() or coremltools.utils._macos_version() < (10, 14), "Missing macOS 10.14+. Skipping tests.", ) @unittest.skipIf(not _HAS_KERAS2_TF, "Missing keras. Skipping tests.") @pytest.mark.keras2 class AdvancedQuantizationNumericalCorrectnessTests(unittest.TestCase): """ Quantization tests for advanced settings """ def test_8bit_symmetric_and_skips(self): from keras.models import Sequential from keras.layers import Conv2D def stable_rel_error(x, ref): err = x - ref denom = np.maximum(np.abs(ref), np.ones_like(ref)) return np.abs(err) / denom np.random.seed(1988) input_dim = 16 num_kernels, kernel_height, kernel_width, input_channels = 64, 3, 3, 32 # Define a model model = Sequential() model.add( Conv2D( input_shape=(input_dim, input_dim, input_channels), filters=num_kernels, kernel_size=(kernel_height, kernel_width), ) ) # Set some random weights weight, bias = model.layers[0].get_weights() num_filters = weight.shape[-1] filter_shape = weight.shape[:-1] new_weight = np.stack( [4.0 * np.random.rand(*filter_shape) - 2 for i in range(num_filters)], axis=-1, ) model.layers[0].set_weights([new_weight, bias]) mlmodel = keras_converter.convert(model, ["data"], ["output_0"]) selector = quantization_utils.AdvancedQuantizedLayerSelector( skip_layer_types=["batchnorm", "bias", "depthwiseConv"], minimum_conv_kernel_channels=4, minimum_conv_weight_count=4096, ) q_mlmodel = quantization_utils.quantize_weights(mlmodel, 8, selector=selector) input_shape = (1, 1, input_channels, input_dim, input_dim) input_val = 2 * np.random.rand(*input_shape) - 1 coreml_input = {"data": input_val} coreml_output = mlmodel.predict(coreml_input) q_coreml_output = q_mlmodel.predict(coreml_input) val = coreml_output["output_0"] q_val = q_coreml_output["output_0"] rel_err = stable_rel_error(q_val, val) max_rel_err, mean_rel_err = np.max(rel_err), np.mean(rel_err) self.assertTrue(max_rel_err < 0.25) self.assertTrue(max_rel_err > 0.01) self.assertTrue(mean_rel_err < 0.02) @unittest.skipIf( not coremltools.utils._is_macos() or coremltools.utils._macos_version() < (10, 16), "Missing macOS 10.16+. Skipping tests.", ) class DynamicQuantizedInt8Int8MatMul(unittest.TestCase): """ Quantization tests for dynamic Int8 - Int8 matrix multiplications """ def initialize(self): np.random.seed(1988) self.Cout, self.Cin = 16, 32 self.W = np.random.rand(self.Cout, self.Cin) * 20.0 - 10.0 self.b = np.random.rand(self.Cout) * 20.0 - 10.0 self.input_shape = (5, self.Cin) input_features = [("data", datatypes.Array(*self.input_shape))] output_features = [("output", None)] self.builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) self.selector = MatrixMultiplyLayerSelector() def _test_predictions( self, np_preds, coreml_preds, SNR=30, PSNR=40, ): np_preds = np_preds.flatten() coreml_preds = coreml_preds.flatten() noise = np_preds - coreml_preds noise_var = np.sum(noise ** 2) / len(noise) + 1e-7 signal_energy = np.sum(np_preds ** 2) / len(np_preds) max_signal_energy = np.amax(np_preds ** 2) snr = 10 * np.log10(signal_energy / noise_var) psnr = 10 * np.log10(max_signal_energy / noise_var) self.assertGreaterEqual(snr, SNR) self.assertGreaterEqual(psnr, PSNR) def compare(self, specification_modified=True): x = np.random.rand(*self.input_shape) def _get_preds(spec): mlmodel = coremltools.models.MLModel(spec) return mlmodel.predict({"data": x}, useCPUOnly=True)["output"] preds = _get_preds(self.builder.spec) self.assertEqual(self.builder.spec.specificationVersion, 4) quantized_spec = activate_int8_int8_matrix_multiplications( self.builder.spec, self.selector ) layer = self.builder.spec.neuralNetwork.layers[0] layer_type = layer.WhichOneof("layer") if layer_type == "innerProduct": matmul_layer = layer.innerProduct elif layer_type == "batchedMatmul": matmul_layer = layer.batchedMatmul wp = matmul_layer.weights if specification_modified: self.assertEqual(self.builder.spec.specificationVersion, 5) quant_preds = _get_preds(quantized_spec) self._test_predictions(preds, quant_preds, SNR=40) self.assertEqual(len(wp.floatValue), 0) else: self.assertEqual(self.builder.spec.specificationVersion, 4) quant_preds = _get_preds(quantized_spec) np.testing.assert_array_almost_equal(preds, quant_preds) self.assertGreater(len(wp.floatValue), 0) def test_single_batched_matmul_no_bias(self): self.initialize() self.builder.add_batched_mat_mul( name="batched_matmul", input_names=["data"], output_name="output", weight_matrix_rows=self.Cin, weight_matrix_columns=self.Cout, W=self.W, ) self.compare() def test_single_batched_matmul_with_bias(self): self.initialize() self.builder.add_batched_mat_mul( name="batched_matmul", input_names=["data"], output_name="output", weight_matrix_rows=self.Cin, weight_matrix_columns=self.Cout, W=self.W, bias=self.b, ) self.compare() def test_single_inner_product_no_bias(self): self.initialize() self.builder.add_inner_product( name="ip", input_name="data", output_name="output", input_channels=self.Cin, output_channels=self.Cout, W=self.W, b=None, has_bias=False, ) self.compare() def test_single_inner_product_with_bias(self): self.initialize() self.builder.add_inner_product( name="ip", input_name="data", output_name="output", input_channels=self.Cin, output_channels=self.Cout, W=self.W, b=self.b, has_bias=True, ) self.compare() def test_inner_product_min_input_channels_valid(self): self.initialize() self.builder.add_inner_product( name="ip", input_name="data", output_name="output", input_channels=self.Cin, output_channels=self.Cout, W=self.W, b=self.b, has_bias=True, ) self.selector.minimum_input_channels = 31 self.compare() def test_batched_matmul_min_input_channels_valid(self): self.initialize() self.builder.add_batched_mat_mul( name="batched_matmul", input_names=["data"], output_name="output", weight_matrix_rows=self.Cin, weight_matrix_columns=self.Cout, W=self.W, ) self.selector.minimum_input_channels = 32 self.compare() def test_inner_product_min_input_channels_invalid(self): self.initialize() self.builder.add_inner_product( name="ip", input_name="data", output_name="output", input_channels=self.Cin, output_channels=self.Cout, W=self.W, b=self.b, has_bias=True, ) self.selector.minimum_input_channels = 33 self.compare(specification_modified=False) def test_batched_matmul_min_input_channels_invalid(self): self.initialize() self.builder.add_batched_mat_mul( name="batched_matmul", input_names=["data"], output_name="output", weight_matrix_rows=self.Cin, weight_matrix_columns=self.Cout, W=self.W, ) self.selector.minimum_input_channels = 33 self.compare(specification_modified=False) def test_batched_matmul_max_input_channels_valid(self): self.initialize() self.builder.add_batched_mat_mul( name="batched_matmul", input_names=["data"], output_name="output", weight_matrix_rows=self.Cin, weight_matrix_columns=self.Cout, W=self.W, ) self.selector.maximum_input_channels = 32 self.compare() def test_inner_product_max_input_channels_valid(self): self.initialize() self.builder.add_inner_product( name="ip", input_name="data", output_name="output", input_channels=self.Cin, output_channels=self.Cout, W=self.W, b=self.b, has_bias=True, ) self.selector.maximum_input_channels = 33 self.compare() def test_batched_matmul_max_input_channels_invalid(self): self.initialize() self.builder.add_batched_mat_mul( name="batched_matmul", input_names=["data"], output_name="output", weight_matrix_rows=self.Cin, weight_matrix_columns=self.Cout, W=self.W, ) self.selector.maximum_input_channels = 31 self.compare(specification_modified=False) def test_inner_product_max_input_channels_invalid(self): self.initialize() self.builder.add_inner_product( name="ip", input_name="data", output_name="output", input_channels=self.Cin, output_channels=self.Cout, W=self.W, b=self.b, has_bias=True, ) self.selector.maximum_input_channels = 30 self.compare(specification_modified=False) def test_inner_product_min_output_channels_valid(self): self.initialize() self.builder.add_inner_product( name="ip", input_name="data", output_name="output", input_channels=self.Cin, output_channels=self.Cout, W=self.W, b=self.b, has_bias=True, ) self.selector.minimum_output_channels = 16 self.compare() def test_batched_matmul_min_output_channels_valid(self): self.initialize() self.builder.add_batched_mat_mul( name="batched_matmul", input_names=["data"], output_name="output", weight_matrix_rows=self.Cin, weight_matrix_columns=self.Cout, W=self.W, ) self.selector.minimum_output_channels = 16 self.compare() def test_inner_product_min_output_channels_invalid(self): self.initialize() self.builder.add_inner_product( name="ip", input_name="data", output_name="output", input_channels=self.Cin, output_channels=self.Cout, W=self.W, b=self.b, has_bias=True, ) self.selector.minimum_output_channels = 17 self.compare(specification_modified=False) def test_batched_matmul_min_output_channels_invalid(self): self.initialize() self.builder.add_batched_mat_mul( name="batched_matmul", input_names=["data"], output_name="output", weight_matrix_rows=self.Cin, weight_matrix_columns=self.Cout, W=self.W, ) self.selector.minimum_output_channels = 17 self.compare(specification_modified=False) def test_batched_matmul_max_output_channels_valid(self): self.initialize() self.builder.add_batched_mat_mul( name="batched_matmul", input_names=["data"], output_name="output", weight_matrix_rows=self.Cin, weight_matrix_columns=self.Cout, W=self.W, ) self.selector.maximum_output_channels = 17 self.compare() def test_inner_product_max_output_channels_valid(self): self.initialize() self.builder.add_inner_product( name="ip", input_name="data", output_name="output", input_channels=self.Cin, output_channels=self.Cout, W=self.W, b=self.b, has_bias=True, ) self.selector.maximum_output_channels = 16 self.compare() def test_batched_matmul_max_output_channels_invalid(self): self.initialize() self.builder.add_batched_mat_mul( name="batched_matmul", input_names=["data"], output_name="output", weight_matrix_rows=self.Cin, weight_matrix_columns=self.Cout, W=self.W, ) self.selector.maximum_output_channels = 14 self.compare(specification_modified=False) def test_inner_product_max_output_channels_invalid(self): self.initialize() self.builder.add_inner_product( name="ip", input_name="data", output_name="output", input_channels=self.Cin, output_channels=self.Cout, W=self.W, b=self.b, has_bias=True, ) self.selector.maximum_output_channels = 15 self.compare(specification_modified=False) def test_inner_product_min_weight_count_valid(self): self.initialize() self.builder.add_inner_product( name="ip", input_name="data", output_name="output", input_channels=self.Cin, output_channels=self.Cout, W=self.W, b=self.b, has_bias=True, ) self.selector.minimum_weight_count = 512 self.compare() def test_batched_matmul_min_weight_count_invalid(self): self.initialize() self.builder.add_batched_mat_mul( name="batched_matmul", input_names=["data"], output_name="output", weight_matrix_rows=self.Cin, weight_matrix_columns=self.Cout, W=self.W, ) self.selector.minimum_weight_count = 513 self.compare(specification_modified=False) def test_inner_product_layer_names_invalid(self): self.initialize() self.builder.add_inner_product( name="ip", input_name="data", output_name="output", input_channels=self.Cin, output_channels=self.Cout, W=self.W, b=self.b, has_bias=True, ) self.selector.include_layers_with_names = ["ip1", "ip2"] self.compare(specification_modified=False) def test_batched_matmul_layer_names_valid(self): self.initialize() self.builder.add_batched_mat_mul( name="batched_matmul", input_names=["data"], output_name="output", weight_matrix_rows=self.Cin, weight_matrix_columns=self.Cout, W=self.W, ) self.selector.include_layers_with_names = ["bm1", "batched_matmul"] self.compare() def test_batched_matmul_8bit_weight_quantized(self): self.initialize() self.builder.add_batched_mat_mul( name="batched_matmul", input_names=["data"], output_name="output", weight_matrix_rows=self.Cin, weight_matrix_columns=self.Cout, W=self.W, ) _quantize_spec_weights( self.builder.spec, 8, _QUANTIZATION_MODE_LINEAR_QUANTIZATION ) self.compare() def test_batched_matmul_4bit_weight_quantized(self): self.initialize() self.builder.add_batched_mat_mul( name="batched_matmul", input_names=["data"], output_name="output", weight_matrix_rows=self.Cin, weight_matrix_columns=self.Cout, W=self.W, ) _quantize_spec_weights( self.builder.spec, 4, _QUANTIZATION_MODE_LINEAR_QUANTIZATION ) self.compare() def test_batched_matmul_2bit_weight_quantized(self): self.initialize() self.builder.add_batched_mat_mul( name="batched_matmul", input_names=["data"], output_name="output", weight_matrix_rows=self.Cin, weight_matrix_columns=self.Cout, W=self.W, ) _quantize_spec_weights( self.builder.spec, 2, _QUANTIZATION_MODE_LINEAR_QUANTIZATION ) self.compare() def test_batched_matmul_1bit_weight_quantized(self): self.initialize() self.builder.add_batched_mat_mul( name="batched_matmul", input_names=["data"], output_name="output", weight_matrix_rows=self.Cin, weight_matrix_columns=self.Cout, W=self.W, ) _quantize_spec_weights( self.builder.spec, 1, _QUANTIZATION_MODE_LINEAR_QUANTIZATION ) self.compare() @unittest.skipIf( not coremltools.utils._is_macos() or coremltools.utils._macos_version() < (10, 15), "Missing macOS 10.15+. Skipping tests.", ) class QuantizeWeightsAPI(unittest.TestCase): def test_embeddingND_quantize(self): input_features = [("data", datatypes.Array(10, 1))] output_features = [("output", None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_embedding_nd( name="embedding_nd", input_name="data", output_name="output", vocab_size=300, embedding_size=20, W=np.random.rand(20, 300), ) spec = builder.spec model_fp32 = coremltools.models.MLModel(spec) self.assertEqual( len(spec.neuralNetwork.layers[0].embeddingND.weights.floatValue), 6000 ) # quantize to FP16 model_fp16 = quantization_utils.quantize_weights(model_fp32, nbits=16) spec_fp16 = model_fp16.get_spec() self.assertEqual( len(spec_fp16.neuralNetwork.layers[0].embeddingND.weights.floatValue), 0 ) self.assertEqual( len(spec_fp16.neuralNetwork.layers[0].embeddingND.weights.float16Value), 2 * 6000, ) # quantize to uint8 model_uint8 = quantization_utils.quantize_weights(model_fp32, nbits=8) spec_uint8 = model_uint8.get_spec() self.assertEqual( len(spec_uint8.neuralNetwork.layers[0].embeddingND.weights.floatValue), 0 ) self.assertEqual( len(spec_uint8.neuralNetwork.layers[0].embeddingND.weights.float16Value), 0 ) self.assertEqual( len(spec_uint8.neuralNetwork.layers[0].embeddingND.weights.rawValue), 6000 ) # quantize to uint5 model_uint5 = quantization_utils.quantize_weights(model_fp32, nbits=5) spec_uint5 = model_uint5.get_spec() self.assertEqual( len(spec_uint5.neuralNetwork.layers[0].embeddingND.weights.floatValue), 0 ) self.assertEqual( len(spec_uint5.neuralNetwork.layers[0].embeddingND.weights.float16Value), 0 ) self.assertEqual( len(spec_uint5.neuralNetwork.layers[0].embeddingND.weights.rawValue), 3750 ) # 3750 = 5*6000/8
33.527358
88
0.669068
e9ebfc09d99518cc92f5425ce0b5c199c61813df
3,642
py
Python
qa/rpc-tests/nodehandling.py
ripox/ripoffcoinv2
c9d34fbf5350ea7b6a7e36465155bd8e195d2575
[ "MIT" ]
null
null
null
qa/rpc-tests/nodehandling.py
ripox/ripoffcoinv2
c9d34fbf5350ea7b6a7e36465155bd8e195d2575
[ "MIT" ]
null
null
null
qa/rpc-tests/nodehandling.py
ripox/ripoffcoinv2
c9d34fbf5350ea7b6a7e36465155bd8e195d2575
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 # Copyright (c) 2014-2015 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test node handling # from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * try: import http.client as httplib except ImportError: import httplib try: import urllib.parse as urlparse except ImportError: import urlparse class NodeHandlingTest (BitcoinTestFramework): def run_test(self): ########################### # setban/listbanned tests # ########################### assert_equal(len(self.nodes[2].getpeerinfo()), 4) #we should have 4 nodes at this point self.nodes[2].setban("127.0.0.1", "add") time.sleep(3) #wait till the nodes are disconected assert_equal(len(self.nodes[2].getpeerinfo()), 0) #all nodes must be disconnected at this point assert_equal(len(self.nodes[2].listbanned()), 1) self.nodes[2].clearbanned() assert_equal(len(self.nodes[2].listbanned()), 0) self.nodes[2].setban("127.0.0.0/24", "add") assert_equal(len(self.nodes[2].listbanned()), 1) try: self.nodes[2].setban("127.0.0.1", "add") #throws exception because 127.0.0.1 is within range 127.0.0.0/24 except: pass assert_equal(len(self.nodes[2].listbanned()), 1) #still only one banned ip because 127.0.0.1 is within the range of 127.0.0.0/24 try: self.nodes[2].setban("127.0.0.1", "remove") except: pass assert_equal(len(self.nodes[2].listbanned()), 1) self.nodes[2].setban("127.0.0.0/24", "remove") assert_equal(len(self.nodes[2].listbanned()), 0) self.nodes[2].clearbanned() assert_equal(len(self.nodes[2].listbanned()), 0) ##test persisted banlist self.nodes[2].setban("127.0.0.0/32", "add") self.nodes[2].setban("127.0.0.0/24", "add") self.nodes[2].setban("192.168.0.1", "add", 1) #ban for 1 seconds self.nodes[2].setban("2001:4d48:ac57:400:cacf:e9ff:fe1d:9c63/19", "add", 1000) #ban for 1000 seconds listBeforeShutdown = self.nodes[2].listbanned() assert_equal("192.168.0.1/32", listBeforeShutdown[2]['address']) #must be here time.sleep(2) #make 100% sure we expired 192.168.0.1 node time #stop node stop_node(self.nodes[2], 2) self.nodes[2] = start_node(2, self.options.tmpdir) listAfterShutdown = self.nodes[2].listbanned() assert_equal("127.0.0.0/24", listAfterShutdown[0]['address']) assert_equal("127.0.0.0/32", listAfterShutdown[1]['address']) assert_equal("/19" in listAfterShutdown[2]['address'], True) ########################### # RPC disconnectnode test # ########################### url = urlparse.urlparse(self.nodes[1].url) self.nodes[0].disconnectnode(url.hostname+":"+str(p2p_port(1))) time.sleep(2) #disconnecting a node needs a little bit of time for node in self.nodes[0].getpeerinfo(): assert(node['addr'] != url.hostname+":"+str(p2p_port(1))) connect_nodes_bi(self.nodes,0,1) #reconnect the node found = False for node in self.nodes[0].getpeerinfo(): if node['addr'] == url.hostname+":"+str(p2p_port(1)): found = True assert(found) if __name__ == '__main__': NodeHandlingTest ().main ()
41.862069
137
0.595003
8be1aa48d6dd07eebad7a646b20c39b0b7a61056
8,487
py
Python
python_modules/dagster-graphql/dagster_graphql/schema/external.py
mitodl/dagster
c94cd8d0f5f67722790e8a176228aa4bdcaa0068
[ "Apache-2.0" ]
1
2021-04-30T00:19:20.000Z
2021-04-30T00:19:20.000Z
python_modules/dagster-graphql/dagster_graphql/schema/external.py
mitodl/dagster
c94cd8d0f5f67722790e8a176228aa4bdcaa0068
[ "Apache-2.0" ]
null
null
null
python_modules/dagster-graphql/dagster_graphql/schema/external.py
mitodl/dagster
c94cd8d0f5f67722790e8a176228aa4bdcaa0068
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import from dagster import check from dagster.core.host_representation import ( ExternalRepository, ExternalRepositoryOrigin, GrpcServerRepositoryLocationHandle, ManagedGrpcPythonEnvRepositoryLocationHandle, RepositoryLocation, ) from dagster.core.host_representation.grpc_server_state_subscriber import ( LocationStateChangeEventType, ) from dagster.utils.error import SerializableErrorInfo from dagster_graphql import dauphin from dagster_graphql.implementation.fetch_solids import get_solid, get_solids from dagster_graphql.schema.errors import DauphinPythonError DauphinLocationStateChangeEventType = dauphin.Enum.from_enum(LocationStateChangeEventType) class DauphinRepository(dauphin.ObjectType): class Meta: name = "Repository" def __init__(self, repository, repository_location): self._repository = check.inst_param(repository, "repository", ExternalRepository) self._repository_location = check.inst_param( repository_location, "repository_location", RepositoryLocation ) super(DauphinRepository, self).__init__(name=repository.name) id = dauphin.NonNull(dauphin.ID) name = dauphin.NonNull(dauphin.String) location = dauphin.NonNull("RepositoryLocation") pipelines = dauphin.non_null_list("Pipeline") usedSolids = dauphin.Field(dauphin.non_null_list("UsedSolid")) usedSolid = dauphin.Field("UsedSolid", name=dauphin.NonNull(dauphin.String)) origin = dauphin.NonNull("RepositoryOrigin") partitionSets = dauphin.non_null_list("PartitionSet") scheduleDefinitions = dauphin.non_null_list("ScheduleDefinition") sensors = dauphin.non_null_list("Sensor") def resolve_id(self, _graphene_info): return self._repository.get_external_origin_id() def resolve_origin(self, graphene_info): origin = self._repository.get_external_origin() return graphene_info.schema.type_named("RepositoryOrigin")(origin) def resolve_location(self, graphene_info): return graphene_info.schema.type_named("RepositoryLocation")(self._repository_location) def resolve_scheduleDefinitions(self, graphene_info): schedules = self._repository.get_external_schedules() return sorted( [ graphene_info.schema.type_named("ScheduleDefinition")(graphene_info, schedule) for schedule in schedules ], key=lambda schedule: schedule.name, ) def resolve_sensors(self, graphene_info): sensors = self._repository.get_external_sensors() return sorted( [ graphene_info.schema.type_named("Sensor")(graphene_info, sensor) for sensor in sensors ], key=lambda sensor: sensor.name, ) def resolve_pipelines(self, graphene_info): return sorted( [ graphene_info.schema.type_named("Pipeline")(pipeline) for pipeline in self._repository.get_all_external_pipelines() ], key=lambda pipeline: pipeline.name, ) def resolve_usedSolid(self, _graphene_info, name): return get_solid(self._repository, name) def resolve_usedSolids(self, _graphene_info): return get_solids(self._repository) def resolve_partitionSets(self, graphene_info): return ( graphene_info.schema.type_named("PartitionSet")(self._repository.handle, partition_set) for partition_set in self._repository.get_external_partition_sets() ) class DauphinRepositoryOrigin(dauphin.ObjectType): class Meta: name = "RepositoryOrigin" repository_location_name = dauphin.NonNull(dauphin.String) repository_name = dauphin.NonNull(dauphin.String) repository_location_metadata = dauphin.non_null_list("RepositoryMetadata") def __init__(self, origin): self._origin = check.inst_param(origin, "origin", ExternalRepositoryOrigin) def resolve_repository_location_name(self, _graphene_info): return self._origin.repository_location_origin.location_name def resolve_repository_name(self, _graphene_info): return self._origin.repository_name def resolve_repository_location_metadata(self, graphene_info): metadata = self._origin.repository_location_origin.get_display_metadata() return [ graphene_info.schema.type_named("RepositoryMetadata")(key=key, value=value) for key, value in metadata.items() if value is not None ] class DauphinRepositoryMetadata(dauphin.ObjectType): class Meta: name = "RepositoryMetadata" key = dauphin.NonNull(dauphin.String) value = dauphin.NonNull(dauphin.String) class DauphinRepositoryLocationOrLoadFailure(dauphin.Union): class Meta: name = "RepositoryLocationOrLoadFailure" types = ("RepositoryLocation", "RepositoryLocationLoadFailure") class DauphinRepositoryLocation(dauphin.ObjectType): class Meta: name = "RepositoryLocation" id = dauphin.NonNull(dauphin.ID) name = dauphin.NonNull(dauphin.String) is_reload_supported = dauphin.NonNull(dauphin.Boolean) environment_path = dauphin.String() repositories = dauphin.non_null_list("Repository") server_id = dauphin.String() def __init__(self, location): self._location = check.inst_param(location, "location", RepositoryLocation) environment_path = ( location.location_handle.executable_path if isinstance(location.location_handle, ManagedGrpcPythonEnvRepositoryLocationHandle) else None ) server_id = ( location.location_handle.server_id if isinstance(location.location_handle, GrpcServerRepositoryLocationHandle) else None ) check.invariant(location.name is not None) super(DauphinRepositoryLocation, self).__init__( name=location.name, environment_path=environment_path, is_reload_supported=location.is_reload_supported, server_id=server_id, ) def resolve_id(self, _): return self.name def resolve_repositories(self, graphene_info): return [ graphene_info.schema.type_named("Repository")(repository, self._location) for repository in self._location.get_repositories().values() ] class DauphinRepositoryLocationLoadFailure(dauphin.ObjectType): class Meta: name = "RepositoryLocationLoadFailure" id = dauphin.NonNull(dauphin.ID) name = dauphin.NonNull(dauphin.String) error = dauphin.NonNull("PythonError") def __init__(self, name, error): check.str_param(name, "name") check.inst_param(error, "error", SerializableErrorInfo) super(DauphinRepositoryLocationLoadFailure, self).__init__( name=name, error=DauphinPythonError(error) ) def resolve_id(self, _): return self.name class DauphinRepositoryConnection(dauphin.ObjectType): class Meta: name = "RepositoryConnection" nodes = dauphin.non_null_list("Repository") class DauphinRepositoryLocationConnection(dauphin.ObjectType): class Meta: name = "RepositoryLocationConnection" nodes = dauphin.non_null_list("RepositoryLocationOrLoadFailure") class DauphinLocationStateChangeSubscription(dauphin.ObjectType): class Meta(object): name = "LocationStateChangeSubscription" event = dauphin.Field(dauphin.NonNull("LocationStateChangeEvent")) class DauphinLocationStateChangeEvent(dauphin.ObjectType): class Meta(object): name = "LocationStateChangeEvent" event_type = dauphin.NonNull("LocationStateChangeEventType") message = dauphin.NonNull(dauphin.String) location_name = dauphin.NonNull(dauphin.String) server_id = dauphin.Field(dauphin.String) def get_location_state_change_observable(graphene_info): context = graphene_info.context return context.location_state_events.map( lambda event: graphene_info.schema.type_named("LocationStateChangeSubscription")( event=graphene_info.schema.type_named("LocationStateChangeEvent")( event_type=event.event_type, location_name=event.location_name, message=event.message, server_id=event.server_id, ), ) )
34.782787
99
0.712148
488e9122eeefe520eee11ed20bd429d681a29150
831
py
Python
jnpy/experiments/Qt/zetcode_tutorial/C5_Events_and_signals/c1_signal_slot.py
jojoquant/jnpy
c874060af4b129ae09cee9f8542517b7b2f6573b
[ "MIT" ]
5
2020-05-19T07:32:39.000Z
2022-03-14T09:09:48.000Z
jnpy/experiments/Qt/zetcode_tutorial/C5_Events_and_signals/c1_signal_slot.py
jojoquant/jnpy
c874060af4b129ae09cee9f8542517b7b2f6573b
[ "MIT" ]
null
null
null
jnpy/experiments/Qt/zetcode_tutorial/C5_Events_and_signals/c1_signal_slot.py
jojoquant/jnpy
c874060af4b129ae09cee9f8542517b7b2f6573b
[ "MIT" ]
3
2020-04-02T08:30:17.000Z
2020-05-03T12:12:05.000Z
# !/usr/bin/env python3 # -*- coding:utf-8 -*- ''' created by Fangyang on Time:2019/11/10 ''' __author__ = 'Fangyang' import sys from PyQt5.QtCore import Qt from PyQt5.QtWidgets import ( QWidget, QLCDNumber, QSlider, QVBoxLayout, QApplication ) class Example(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): lcd = QLCDNumber(self) sld = QSlider(Qt.Horizontal, self) vbox = QVBoxLayout() vbox.addWidget(lcd) vbox.addWidget(sld) self.setLayout(vbox) sld.valueChanged.connect(lcd.display) self.setGeometry(300, 300, 300, 300) self.setWindowTitle('Signal and slot') self.show() if __name__ == '__main__': app = QApplication(sys.argv) ex = Example() sys.exit(app.exec_())
19.325581
59
0.622142
98db201b0c6af51ea318faf9e8cef5aa23787712
2,282
py
Python
data/helpers.py
ZXisSpider/attention-is-all-you-need-pytorch
431222202dbbb86daa4bca42d9a3bd215c27056c
[ "MIT" ]
null
null
null
data/helpers.py
ZXisSpider/attention-is-all-you-need-pytorch
431222202dbbb86daa4bca42d9a3bd215c27056c
[ "MIT" ]
null
null
null
data/helpers.py
ZXisSpider/attention-is-all-you-need-pytorch
431222202dbbb86daa4bca42d9a3bd215c27056c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import math import matplotlib.pyplot as plt import matplotlib.ticker as ticker import os import re import time import unicodedata def show_plot(points): plt.figure() fig, ax = plt.subplots() # loc = ticker.MultipleLocator(base=0.2) # put ticks at regular intervals # ax.yaxis.set_major_locator(loc) plt.plot(points) plt.show() fig.show() def as_minutes(s): """ :param s: 总秒数 :return: 将秒数转换成小时-分钟格式 """ m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s) def time_since(since, percent): """ :param since: 起始计算时间 :param percent: :return: """ now = time.time() s = now - since es = s / (percent) rs = es - s return '%s (- %s)' % (as_minutes(s), as_minutes(rs)) # Lowercase, trim, and remove non-letter characters def normalize_string(s): """ :param s: 目标语句 :return: 对目标语句的特殊的非语言符号进行替换 """ s = unicode_to_ascii(s.lower().strip()) s = re.sub(r"([.!?])", r" \1", s) s = re.sub(r"[^a-zA-Z.!?]+", r" ", s) return s # Turns a unicode string to plain ASCII (http://stackoverflow.com/a/518232/2809427) def unicode_to_ascii(s): """ :param s: 目标语句 :return: 将目标语句转从unicode码转换成ascii码 """ chars = [c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn'] char_list = ''.join(chars) return char_list def validate_language(l): """ :param l: 数据文件名 :return: 验证数据文件存在 """ p = './data/{}.txt'.format(l) p = os.path.abspath(p) print(p) if not os.path.exists(p): url = 'http://www.manythings.org/anki/' print("{}.txt does not exist in the data directory. Please go to '{}' and download the data set.".format(l, url)) exit(1) def validate_language_params(l): """ :param l: 模型文件名 :return: 验证模型参数存在 """ is_missing = (not os.path.exists('./data/attention_params_{}'.format(l)) or not os.path.exists('./data/decoder_params_{}'.format(l)) or not os.path.exists('./data/encoder_params_{}'.format(l))) if is_missing: print("Model params for language '{}' do not exist in the data directory. Please train a new model for this language.".format(l)) exit(1)
24.276596
137
0.594216
986027994312d05be41fe1383635710a3f74206a
1,981
py
Python
sourced/ml/tests/test_uast_struct_to_bag.py
vmarkovtsev/ml
22699b2f44901b84507d15e732003955024e6755
[ "Apache-2.0" ]
122
2017-11-15T15:19:19.000Z
2022-03-23T13:36:34.000Z
sourced/ml/tests/test_uast_struct_to_bag.py
vmarkovtsev/ml
22699b2f44901b84507d15e732003955024e6755
[ "Apache-2.0" ]
176
2017-11-14T18:11:21.000Z
2019-05-16T04:12:31.000Z
sourced/ml/tests/test_uast_struct_to_bag.py
vmarkovtsev/ml
22699b2f44901b84507d15e732003955024e6755
[ "Apache-2.0" ]
58
2017-11-14T18:07:08.000Z
2021-01-28T11:41:21.000Z
import unittest from bblfsh import BblfshClient from sourced.ml.algorithms import UastRandomWalk2Bag, UastSeq2Bag from sourced.ml.tests.models import SOURCE_PY class Uast2RandomWalk2BagTest(unittest.TestCase): def setUp(self): self.uast_random_walk2bag = UastRandomWalk2Bag(seq_len=[2, 3]) self.uast = BblfshClient("0.0.0.0:9432").parse(SOURCE_PY).uast def test_uast_to_bag(self): bag = self.uast_random_walk2bag(self.uast) self.assertGreater(len(bag), 0, "Expected size of bag should be > 0") def test_equivalence_prepare_starting_nodes(self): starting_nodes_old = self.prepare_starting_nodes(self.uast) starting_nodes = self.uast_random_walk2bag.uast2walks.prepare_starting_nodes(self.uast) self.assertEqual(len(starting_nodes_old), len(starting_nodes)) def structure(tree): from collections import Counter return set(Counter(len(node.children) for node in tree)) self.assertEqual(structure(starting_nodes_old), structure(starting_nodes)) def prepare_starting_nodes(self, uast): starting_nodes = [] self._prepare_starting_nodes(uast, None, starting_nodes) return starting_nodes def _prepare_starting_nodes(self, root, parent, starting_nodes): node = self.uast_random_walk2bag.uast2walks._extract_node(node=root, parent=parent) starting_nodes.append(node) for ch in root.children: node.children.append(self._prepare_starting_nodes( ch, parent=node, starting_nodes=starting_nodes)) class UastSeq2BagTest(unittest.TestCase): def setUp(self): self.uast_seq2bag = UastSeq2Bag(seq_len=[2, 3]) self.uast = BblfshClient("0.0.0.0:9432").parse(SOURCE_PY).uast def test_uast_to_bag(self): bag = self.uast_seq2bag(self.uast) self.assertGreater(len(bag), 0, "Expected size of bag should be > 0") if __name__ == "__main__": unittest.main()
35.375
95
0.712267
4bffb15a753d1ebb80f44fceeb83073734c0d37b
5,489
py
Python
low_level_simulation/src/rosbridge_suite/rosbridge_library/test/internal/publishers/test_publisher_consistency_listener.py
abiantorres/autonomous-vehicles-system-simulation
3f0112036b2b270f5055729c648a1310976df933
[ "Apache-2.0" ]
60
2021-09-07T12:42:48.000Z
2022-03-12T09:30:36.000Z
low_level_simulation/src/rosbridge_suite/rosbridge_library/test/internal/publishers/test_publisher_consistency_listener.py
abiantorres/autonomous-vehicles-system-simulation
3f0112036b2b270f5055729c648a1310976df933
[ "Apache-2.0" ]
222
2021-10-29T22:00:27.000Z
2022-03-29T20:56:34.000Z
low_level_simulation/src/rosbridge_suite/rosbridge_library/test/internal/publishers/test_publisher_consistency_listener.py
abiantorres/autonomous-vehicles-system-simulation
3f0112036b2b270f5055729c648a1310976df933
[ "Apache-2.0" ]
1
2021-08-13T08:30:25.000Z
2021-08-13T08:30:25.000Z
#!/usr/bin/env python from __future__ import print_function import sys import rospy import rostest import unittest from time import sleep, time from rosbridge_library.internal.publishers import * from rosbridge_library.internal import ros_loader from rosbridge_library.internal.message_conversion import * from std_msgs.msg import String, Int32 class TestPublisherConsistencyListener(unittest.TestCase): def setUp(self): rospy.init_node("test_publisher_consistency_listener") def test_listener_timeout(self): """ See whether the listener can correctly time out """ topic = "/test_listener_timeout" type = String publisher = rospy.Publisher(topic, type) listener = PublisherConsistencyListener() listener.attach(publisher) self.assertFalse(listener.timed_out()) sleep(listener.timeout / 2.0) self.assertFalse(listener.timed_out()) sleep(listener.timeout / 2.0 + 0.1) self.assertTrue(listener.timed_out()) def test_listener_attach_detach(self): """ See whether the listener actually attaches and detaches itself """ topic = "/test_listener_attach_detach" type = String publisher = rospy.Publisher(topic, type) orig_publish = publisher.publish listener = PublisherConsistencyListener() listener_publish = listener.publish_override self.assertNotEqual(orig_publish, listener_publish) self.assertNotIn(listener, publisher.impl.subscriber_listeners) listener.attach(publisher) self.assertEqual(publisher.publish, listener_publish) self.assertNotEqual(publisher.publish, orig_publish) self.assertIn(listener, publisher.impl.subscriber_listeners) listener.detach() self.assertEqual(publisher.publish, orig_publish) self.assertNotEqual(publisher.publish, listener_publish) self.assertNotIn(listener, publisher.impl.subscriber_listeners) def test_immediate_publish_fails_without(self): """ This test makes sure the failure case that the PublisherConsistency Listener is trying to solve, is indeed a failure case """ topic = "/test_immediate_publish_fails_without" msg_class = String msg = String() string = "why halo thar" msg.data = string received = {"msg": None} def callback(msg): received["msg"] = msg rospy.Subscriber(topic, msg_class, callback) publisher = rospy.Publisher(topic, msg_class) publisher.publish(msg) sleep(0.5) self.assertNotEqual(received["msg"], msg) self.assertEqual(received["msg"], None) def test_immediate_publish(self): """ This test makes sure the PublisherConsistencyListener is working""" topic = "/test_immediate_publish" msg_class = String msg = String() string = "why halo thar" msg.data = string received = {"msg": None} def callback(msg): print("Received a msg! ", msg) received["msg"] = msg rospy.Subscriber(topic, msg_class, callback) class temp_listener(rospy.SubscribeListener): def peer_subscribe(self, topic_name, topic_publish, peer_publish): print("peer subscribe in temp listener") listener = PublisherConsistencyListener() publisher = rospy.Publisher(topic, msg_class, temp_listener()) listener.attach(publisher) publisher.publish(msg) sleep(0.5) self.assertEqual(received["msg"], msg) def test_immediate_multi_publish_fails_without(self): """ This test makes sure the failure case that the PublisherConsistency Listener is trying to solve, is indeed a failure case, even for large message buffers """ topic = "/test_immediate_multi_publish_fails_without" msg_class = Int32 msgs = [] for i in range(100): msg = Int32() msg.data = i msgs.append(msg) received = {"msgs": []} def callback(msg): received["msgs"].append(msg) rospy.Subscriber(topic, msg_class, callback) publisher = rospy.Publisher(topic, msg_class) for msg in msgs: publisher.publish(msg) sleep(0.5) self.assertEqual(len(received["msgs"]), 0) self.assertNotEqual(received["msgs"], msgs) def test_immediate_multi_publish(self): """ This test makes sure the PublisherConsistencyListener is working even with a huge message buffer""" topic = "/test_immediate_multi_publish" msg_class = Int32 msgs = [] for i in range(100): msg = Int32() msg.data = i msgs.append(msg) received = {"msgs": []} def callback(msg): received["msgs"].append(msg) rospy.Subscriber(topic, msg_class, callback) listener = PublisherConsistencyListener() publisher = rospy.Publisher(topic, msg_class) listener.attach(publisher) for msg in msgs: publisher.publish(msg) sleep(0.5) self.assertEqual(len(received["msgs"]), len(msgs)) self.assertEqual(received["msgs"], msgs) PKG = 'rosbridge_library' NAME = 'test_publisher_consistency_listener' if __name__ == '__main__': rostest.unitrun(PKG, NAME, TestPublisherConsistencyListener)
30.837079
79
0.65276
dbe7a5199aaa83599cdfde26de4df1092a25d66c
2,020
py
Python
backend/sentiment-analysis/sentiment-analysis-sample.py
North-Seattle-College/ad440-winter2022-tuesday-repo
0778958ec6ba3606819a7b24533366380467dbbb
[ "Apache-2.0" ]
null
null
null
backend/sentiment-analysis/sentiment-analysis-sample.py
North-Seattle-College/ad440-winter2022-tuesday-repo
0778958ec6ba3606819a7b24533366380467dbbb
[ "Apache-2.0" ]
116
2022-01-12T03:43:01.000Z
2022-03-24T20:56:33.000Z
backend/sentiment-analysis/sentiment-analysis-sample.py
North-Seattle-College/ad440-winter2022-tuesday-repo
0778958ec6ba3606819a7b24533366380467dbbb
[ "Apache-2.0" ]
5
2022-01-16T22:40:18.000Z
2022-03-09T01:44:11.000Z
import string import nltk import json nltk.download('vader_lexicon') from nltk.sentiment.vader import SentimentIntensityAnalyzer import matplotlib.pyplot as plt from nltk.sentiment.vader import SentimentIntensityAnalyzer import matplotlib.pyplot as plt import logging # Setting up the loggings to monitor gensim logging.basicConfig(format="%(levelname)s - %(asctime)s: %(message)s", datefmt= '%H:%M:%S', level=logging.INFO) import pandas as pd import boto3 import botocore # !pip install sagemaker import sagemaker from sagemaker import get_execution_role sagemaker_session = sagemaker.Session() role = "christopher.navocz1@seattlecolleges.edu" bucket_name = 'deploy-sagemaker-conversation' s3_url = 's3://deploy-sagemaker-conversation/floop_data_15k.json' conn = boto3.client('s3') contents = conn.list_objects(Bucket = bucket_name)['Contents'] s3 = boto3.resource('s3') s3_client = boto3.client('s3') # s3_client.list_objects(Bucket = bucket_name)['Contents'] dataset = conn.get_object(Bucket = bucket_name, Key = 'floop_data_15k.json') s3_client.get_object(Bucket = bucket_name, Key = 'floop_data_15k.json') path = "floop_data_15k.json" dataset = pd.read_json(path).values.tolist() def clean_dataset(dataset): new_ds = map(lambda x: x[0].lower(),dataset) return list(new_ds) new_ds = clean_dataset(dataset) def sentiment_analysis(sentiment_text): score = SentimentIntensityAnalyzer().polarity_scores(sentiment_text) if score['neg'] > score['pos']: return 'Negative' elif score['neg'] < score['pos']: return 'Positive' else: return 'Neutral' sentiments = [] for i in new_ds: sentiments.append(sentiment_analysis(i)) result = pd.DataFrame({'Original Data':dataset, 'Sentiment Identified':sentiments}) result.to_csv('results.csv') print(result) print(result['Sentiment Identified'].value_counts()) plt.pie(result['Sentiment Identified'].value_counts(), labels = result['Sentiment Identified'].value_counts().keys(), autopct='%.1f%%') plt.show()
31.076923
135
0.751485
19f3be539d13bd34de28690516cc289e03d77947
5,263
py
Python
configure_pretraining.py
trisongz/electra
9dbb2b96edf6bb39965003eb126d41ef1e715eb3
[ "Apache-2.0" ]
1
2020-08-12T21:08:56.000Z
2020-08-12T21:08:56.000Z
configure_pretraining.py
trisongz/electra
9dbb2b96edf6bb39965003eb126d41ef1e715eb3
[ "Apache-2.0" ]
null
null
null
configure_pretraining.py
trisongz/electra
9dbb2b96edf6bb39965003eb126d41ef1e715eb3
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Config controlling hyperparameters for pre-training ELECTRA.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os class PretrainingConfig(object): """Defines pre-training hyperparameters.""" def __init__(self, model_name, data_dir, **kwargs): self.model_name = model_name self.debug = False # debug mode for quickly running things self.do_train = True # pre-train ELECTRA self.do_eval = False # evaluate generator/discriminator on unlabeled data # loss functions self.electra_objective = True # if False, use the BERT objective instead self.gen_weight = 1.0 # masked language modeling / generator loss self.disc_weight = 50.0 # discriminator loss self.mask_prob = 0.15 # percent of input tokens to mask out / replace # optimization self.learning_rate = 5e-4 self.lr_decay_power = 1.0 # linear weight decay by default self.weight_decay_rate = 0.01 self.num_warmup_steps = 10000 # training settings self.iterations_per_loop = 200 self.save_checkpoints_steps = 1000 self.num_train_steps = 1000000 self.num_eval_steps = 100 # model settings self.model_size = "small" # one of "small", "base", or "large" # override the default transformer hparams for the provided model size; see # modeling.BertConfig for the possible hparams and util.training_utils for # the defaults self.model_hparam_overrides = ( kwargs["model_hparam_overrides"] if "model_hparam_overrides" in kwargs else {}) self.embedding_size = None # bert hidden size by default self.vocab_size = 30522 # number of tokens in the vocabulary self.do_lower_case = True # lowercase the input? # generator settings self.uniform_generator = False # generator is uniform at random self.untied_generator_embeddings = False # tie generator/discriminator # token embeddings? self.untied_generator = True # tie all generator/discriminator weights? self.generator_layers = 1.0 # frac of discriminator layers for generator self.generator_hidden_size = 0.25 # frac of discrim hidden size for gen self.disallow_correct = False # force the generator to sample incorrect # tokens (so 15% of tokens are always # fake) self.temperature = 1.0 # temperature for sampling from generator # batch sizes self.max_seq_length = 128 self.train_batch_size = 128 self.eval_batch_size = 128 # TPU settings self.use_tpu = False self.num_tpu_cores = 1 self.tpu_job_name = None self.tpu_name = None # cloud TPU to use for training self.tpu_zone = None # GCE zone where the Cloud TPU is located in self.gcp_project = None # project name for the Cloud TPU-enabled project # default locations of data files self.pretrain_tfrecords = os.path.join( data_dir, "pretrain_tfrecords/pretrain_data.tfrecord*") self.vocab_file = os.path.join(data_dir, "vocab.txt") self.model_dir = os.path.join(data_dir, "models", model_name) results_dir = os.path.join(self.model_dir, "results") self.results_txt = os.path.join(results_dir, "unsup_results.txt") self.results_pkl = os.path.join(results_dir, "unsup_results.pkl") # update defaults with passed-in hyperparameters self.update(kwargs) self.max_predictions_per_seq = int((self.mask_prob + 0.005) * self.max_seq_length) # debug-mode settings if self.debug: self.train_batch_size = 8 self.num_train_steps = 20 self.eval_batch_size = 4 self.iterations_per_loop = 1 self.num_eval_steps = 2 # defaults for different-sized model if self.model_size == "small": self.embedding_size = 128 # Here are the hyperparameters we used for larger models; see Table 6 in the # paper for the full hyperparameters else: self.max_seq_length = 512 self.learning_rate = 2e-4 if self.model_size == "base": self.embedding_size = 768 self.generator_hidden_size = 0.33333 self.train_batch_size = 256 else: self.embedding_size = 1024 self.mask_prob = 0.25 self.train_batch_size = 2048 # passed-in-arguments override (for example) debug-mode defaults self.update(kwargs) def update(self, kwargs): for k, v in kwargs.items(): if k not in self.__dict__: raise ValueError("Unknown hparam " + k) self.__dict__[k] = v
38.416058
80
0.689341
aeac0fabe4570d7ff3e22f2aea10abfbf127b47a
9,051
py
Python
othello.py
James-QiuHaoran/Othello
6725bd0a581fa60e3403d71265f9f5aa174eda97
[ "MIT" ]
10
2018-02-24T21:54:27.000Z
2021-11-29T02:41:49.000Z
othello.py
James-QiuHaoran/Othello
6725bd0a581fa60e3403d71265f9f5aa174eda97
[ "MIT" ]
null
null
null
othello.py
James-QiuHaoran/Othello
6725bd0a581fa60e3403d71265f9f5aa174eda97
[ "MIT" ]
4
2018-02-24T21:54:29.000Z
2021-04-03T23:00:11.000Z
import ai class IllegalMove(Exception): def __init__(self, message): self.message = message class Othello(object): # 0 - Empty # 1 - Black (Player 1) # 2 - White (Player 2) def __init__(self): super().__init__() self.player = 1 self.victory = 0 # 0 - ongoing | 1 - black win | 2 - white win | (-1) - draw self.whiteTiles = 2 self.blackTiles = 2 self.board = [[0 for x in range(8)] for x in range(8)] self.board[3][3] = 1 self.board[3][4] = 2 self.board[4][3] = 2 self.board[4][4] = 1 # set useAI = False to disable AI opponent - two-player mode self.useAI = True # set up AI - player-computer mode self.ai = ai.GameAI(self) self.changed = True self.AIReadyToMove = False self.debug = False # True for debugging def playerMove(self, x, y): # if the game is over or not player's turn if self.victory != 0 or (self.useAI and self.player != 1): return self.performMove(x, y) # AI's turn and AI is ready to move if self.useAI and self.player == 2: self.AIReadyToMove = True if self.debug: print("AI is ready to move!") def performMove(self, x, y): if self.debug: print("Check whether move (" + str(x) + ", " + str(y) + ") is legal or not ...") # check whether the block has been occupied if self.board[x][y] != 0: raise IllegalMove(" - Block has already been occupied!") else: # place the piece and flip necessary pieces numFlipped = self.placePiece(self.board, x, y, self.player, PLAYMODE=True) if self.debug: print("Flipped " + str(numFlipped) + " pieces!") self.changed = True # check game ending allTiles = [item for sublist in self.board for item in sublist] emptyTiles = sum(1 for tile in allTiles if tile == 0) whiteTiles = sum(1 for tile in allTiles if tile == 2) blackTiles = sum(1 for tile in allTiles if tile == 1) print("[Console MSG] Current state - empty: " + str(emptyTiles) + " white: " + str(whiteTiles) + " black: " + str(blackTiles)) if self.debug: for x in range(0, 8): for y in range(0, 8): print(str(self.board[x][y]) + " ", end = '') print('') # no moves left to make if whiteTiles < 1 or blackTiles < 1 or emptyTiles < 1: self.endGame(whiteTiles, blackTiles) return # check available moves of its opponent movesFound = self.moveCanBeMade(self.board, 3 - self.player) if not movesFound: if self.debug: print("Player " + str(3 - self.player) + " cannot move!") # opponent cannot move, do not alternate movesFound = self.moveCanBeMade(self.board, self.player) if not movesFound: # this player cannot move either, end game if self.debug: print("Player " + str(self.player) + "cannot move either!") self.endGame(whiteTiles, blackTiles) return else: if self.debug: print("Player " + str(self.player) + " can move, then move!") if self.useAI and self.player == 2: self.ai.performMove() # this player can move, move self.changed = True else: # opponent can move, alternate between player 1 and 2 self.player = 3 - self.player self.changed = True def moveCanBeMade(self, board, playerID): movesFound = False for row in range(0, 8): for col in range(0, 8): if movesFound: continue elif board[row][col] == 0: numAvailableMoves = self.placePiece(board, row, col, playerID, PLAYMODE=False) if numAvailableMoves > 0: movesFound = True return movesFound def AIMove(self): self.ai.performMove() self.AIReadyToMove = False def endGame(self, whiteTiles, blackTiles): if whiteTiles > blackTiles: self.victory = 2 elif whiteTiles < blackTiles: self.victory = 1 else: self.victory = -1 self.changed = True self.whiteTiles = whiteTiles self.blackTiles = blackTiles """ return: the number of flips given that (row, col) will be occupied by player. param: PLAYMODE: - True for board flipping after a piece is put by the player - False for available number of moves checking """ def placePiece(self, board, row, col, playerID, PLAYMODE=True): if PLAYMODE: board[row][col] = self.player count = 0 # record number of flips # record current row and column __column = board[row] __row = [board[i][col] for i in range(0,8)] # check up direction if playerID in __column[:col]: changes = [] searchCompleted = False for i in range(col-1, -1, -1): if searchCompleted: continue piece = __column[i] if piece == 0: changes = [] searchCompleted = True elif piece == playerID: searchCompleted = True else: changes.append(i) # perform flippings if searchCompleted: count += len(changes) if PLAYMODE: for i in changes: board[row][i] = self.player # check down direction if playerID in __column[col:]: changes = [] searchCompleted = False for i in range(col+1, 8, 1): if searchCompleted: continue piece = __column[i] if piece == 0: changes = [] searchCompleted = True elif piece == playerID: searchCompleted = True else: changes.append(i) # perform flippings if searchCompleted: count += len(changes) if PLAYMODE: for i in changes: board[row][i] = self.player # check left direction if playerID in __row[:row]: changes = [] searchCompleted = False for i in range(row-1, -1, -1): if searchCompleted: continue piece = __row[i] if piece == 0: changes = [] searchCompleted = True elif piece == playerID: searchCompleted = True else: changes.append(i) # perform flippings if searchCompleted: count += len(changes) if PLAYMODE: for i in changes: board[i][col] = self.player # check right direction if playerID in __row[row:]: changes = [] searchCompleted = False for i in range(row+1, 8, 1): if searchCompleted: continue piece = __row[i] if piece == 0: changes = [] searchCompleted = True elif piece == playerID: searchCompleted = True else: changes.append(i) # perform flippings if searchCompleted: count += len(changes) if PLAYMODE: for i in changes: board[i][col] = self.player # check along diagonal directions # upper-left direction i = 1 ulDiagonal = [] while row - i >= 0 and col - i >= 0: ulDiagonal.append(board[row-i][col-i]) i += 1 if playerID in ulDiagonal: changes = [] searchCompleted = False for i in range(0, len(ulDiagonal)): piece = ulDiagonal[i] if searchCompleted: continue if piece == 0: changes = [] searchCompleted = True elif piece == playerID: searchCompleted = True else: changes.append((row-(i+1), col-(i+1))) # perform flippings if searchCompleted: count += len(changes) if PLAYMODE: for i,j in changes: board[i][j] = self.player # upper-right direction i = 1 urDiagonal = [] while row + i < 8 and col - i >= 0: urDiagonal.append(board[row+i][col-i]) i += 1 if playerID in urDiagonal: changes = [] searchCompleted = False for i in range(0, len(urDiagonal)): piece = urDiagonal[i] if searchCompleted: continue if piece == 0: changes = [] searchCompleted = True elif piece == playerID: searchCompleted = True else: changes.append((row+(i+1), col-(i+1))) # perform flippings if searchCompleted: count += len(changes) if PLAYMODE: for i,j in changes: board[i][j] = self.player # lower-left direction i = 1 llDiagonal = [] while row - i >= 0 and col + i < 8: llDiagonal.append(board[row-i][col+i]) i += 1 if playerID in llDiagonal: changes = [] searchCompleted = False for i in range(0, len(llDiagonal)): piece = llDiagonal[i] if searchCompleted: continue if piece == 0: changes = [] searchCompleted = True elif piece == playerID: searchCompleted = True else: changes.append((row-(i+1), col+(i+1))) # perform flippings if searchCompleted: count += len(changes) if PLAYMODE: for i,j in changes: board[i][j] = self.player # lower-right direction i = 1 lrDiagonal = [] while row + i < 8 and col + i < 8: lrDiagonal.append(board[row+i][col+i]) i += 1 if playerID in lrDiagonal: changes = [] searchCompleted = False for i in range(0, len(lrDiagonal)): piece = lrDiagonal[i] if searchCompleted: continue if piece == 0: changes = [] searchCompleted = True elif piece == playerID: searchCompleted = True else: changes.append((row+(i+1), col+(i+1))) # perform flippings if searchCompleted: count += len(changes) if PLAYMODE: for i,j in changes: board[i][j] = self.player if count == 0 and PLAYMODE: board[row][col] = 0 raise IllegalMove("Placing piece at (" + str(row) + ", " + str(col) + ") does not have any flips!") return count
24.865385
129
0.623025
34e7022dda004ed53146afe78a2b502707097585
9,413
py
Python
benchs/link_and_code/bench_link_and_code.py
ScriptBox99/facebook-faiss
04d31fac53c609b6487a4cd6ead1c8b4ad926b0c
[ "MIT" ]
17,006
2017-03-01T02:54:26.000Z
2022-03-31T19:08:11.000Z
benchs/link_and_code/bench_link_and_code.py
ScriptBox99/facebook-faiss
04d31fac53c609b6487a4cd6ead1c8b4ad926b0c
[ "MIT" ]
2,154
2017-03-01T10:30:34.000Z
2022-03-31T11:35:40.000Z
benchs/link_and_code/bench_link_and_code.py
ScriptBox99/facebook-faiss
04d31fac53c609b6487a4cd6ead1c8b4ad926b0c
[ "MIT" ]
2,790
2017-03-01T14:09:44.000Z
2022-03-31T06:49:39.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import print_function import os import sys import time import numpy as np import re import faiss from multiprocessing.dummy import Pool as ThreadPool import pdb import argparse import datasets from datasets import sanitize import neighbor_codec ###################################################### # Command-line parsing ###################################################### parser = argparse.ArgumentParser() def aa(*args, **kwargs): group.add_argument(*args, **kwargs) group = parser.add_argument_group('dataset options') aa('--db', default='deep1M', help='dataset') aa( '--compute_gt', default=False, action='store_true', help='compute and store the groundtruth') group = parser.add_argument_group('index consturction') aa('--indexkey', default='HNSW32', help='index_factory type') aa('--efConstruction', default=200, type=int, help='HNSW construction factor') aa('--M0', default=-1, type=int, help='size of base level') aa('--maxtrain', default=256 * 256, type=int, help='maximum number of training points') aa('--indexfile', default='', help='file to read or write index from') aa('--add_bs', default=-1, type=int, help='add elements index by batches of this size') aa('--link_singletons', default=False, action='store_true', help='do a pass to link in the singletons') group = parser.add_argument_group( 'searching (reconstruct_from_neighbors options)') aa('--beta_centroids', default='', help='file with codebook') aa('--neigh_recons_codes', default='', help='file with codes for reconstruction') aa('--beta_ntrain', default=250000, type=int, help='') aa('--beta_k', default=256, type=int, help='beta codebook size') aa('--beta_nsq', default=1, type=int, help='number of beta sub-vectors') aa('--beta_niter', default=10, type=int, help='') aa('--k_reorder', default='-1', help='') group = parser.add_argument_group('searching') aa('--k', default=100, type=int, help='nb of nearest neighbors') aa('--exhaustive', default=False, action='store_true', help='report the exhaustive search topline') aa('--searchthreads', default=-1, type=int, help='nb of threads to use at search time') aa('--efSearch', default='', type=str, help='comma-separated values of efSearch to try') args = parser.parse_args() print("args:", args) ###################################################### # Load dataset ###################################################### xt, xb, xq, gt = datasets.load_data( dataset=args.db, compute_gt=args.compute_gt) nq, d = xq.shape nb, d = xb.shape ###################################################### # Make index ###################################################### if os.path.exists(args.indexfile): print("reading", args.indexfile) index = faiss.read_index(args.indexfile) if isinstance(index, faiss.IndexPreTransform): index_hnsw = faiss.downcast_index(index.index) vec_transform = index.chain.at(0).apply_py else: index_hnsw = index vec_transform = lambda x:x hnsw = index_hnsw.hnsw hnsw_stats = faiss.cvar.hnsw_stats else: print("build index, key=", args.indexkey) index = faiss.index_factory(d, args.indexkey) if isinstance(index, faiss.IndexPreTransform): index_hnsw = faiss.downcast_index(index.index) vec_transform = index.chain.at(0).apply_py else: index_hnsw = index vec_transform = lambda x:x hnsw = index_hnsw.hnsw hnsw.efConstruction = args.efConstruction hnsw_stats = faiss.cvar.hnsw_stats index.verbose = True index_hnsw.verbose = True index_hnsw.storage.verbose = True if args.M0 != -1: print("set level 0 nb of neighbors to", args.M0) hnsw.set_nb_neighbors(0, args.M0) xt2 = sanitize(xt[:args.maxtrain]) assert np.all(np.isfinite(xt2)) print("train, size", xt.shape) t0 = time.time() index.train(xt2) print(" train in %.3f s" % (time.time() - t0)) print("adding") t0 = time.time() if args.add_bs == -1: index.add(sanitize(xb)) else: for i0 in range(0, nb, args.add_bs): i1 = min(nb, i0 + args.add_bs) print(" adding %d:%d / %d" % (i0, i1, nb)) index.add(sanitize(xb[i0:i1])) print(" add in %.3f s" % (time.time() - t0)) print("storing", args.indexfile) faiss.write_index(index, args.indexfile) ###################################################### # Train beta centroids and encode dataset ###################################################### if args.beta_centroids: print("reordering links") index_hnsw.reorder_links() if os.path.exists(args.beta_centroids): print("load", args.beta_centroids) beta_centroids = np.load(args.beta_centroids) nsq, k, M1 = beta_centroids.shape assert M1 == hnsw.nb_neighbors(0) + 1 rfn = faiss.ReconstructFromNeighbors(index_hnsw, k, nsq) else: print("train beta centroids") rfn = faiss.ReconstructFromNeighbors( index_hnsw, args.beta_k, args.beta_nsq) xb_full = vec_transform(sanitize(xb[:args.beta_ntrain])) beta_centroids = neighbor_codec.train_beta_codebook( rfn, xb_full, niter=args.beta_niter) print(" storing", args.beta_centroids) np.save(args.beta_centroids, beta_centroids) faiss.copy_array_to_vector(beta_centroids.ravel(), rfn.codebook) index_hnsw.reconstruct_from_neighbors = rfn if rfn.k == 1: pass # no codes to take care of elif os.path.exists(args.neigh_recons_codes): print("loading neigh codes", args.neigh_recons_codes) codes = np.load(args.neigh_recons_codes) assert codes.size == rfn.code_size * index.ntotal faiss.copy_array_to_vector(codes.astype('uint8'), rfn.codes) rfn.ntotal = index.ntotal else: print("encoding neigh codes") t0 = time.time() bs = 1000000 if args.add_bs == -1 else args.add_bs for i0 in range(0, nb, bs): i1 = min(i0 + bs, nb) print(" encode %d:%d / %d [%.3f s]\r" % ( i0, i1, nb, time.time() - t0), end=' ') sys.stdout.flush() xbatch = vec_transform(sanitize(xb[i0:i1])) rfn.add_codes(i1 - i0, faiss.swig_ptr(xbatch)) print() print("storing %s" % args.neigh_recons_codes) codes = faiss.vector_to_array(rfn.codes) np.save(args.neigh_recons_codes, codes) ###################################################### # Exhaustive evaluation ###################################################### if args.exhaustive: print("exhaustive evaluation") xq_tr = vec_transform(sanitize(xq)) index2 = faiss.IndexFlatL2(index_hnsw.d) accu_recons_error = 0.0 if faiss.get_num_gpus() > 0: print("do eval on GPU") co = faiss.GpuMultipleClonerOptions() co.shard = False index2 = faiss.index_cpu_to_all_gpus(index2, co) # process in batches in case the dataset does not fit in RAM rh = datasets.ResultHeap(xq_tr.shape[0], 100) t0 = time.time() bs = 500000 for i0 in range(0, nb, bs): i1 = min(nb, i0 + bs) print(' handling batch %d:%d' % (i0, i1)) xb_recons = np.empty( (i1 - i0, index_hnsw.d), dtype='float32') rfn.reconstruct_n(i0, i1 - i0, faiss.swig_ptr(xb_recons)) accu_recons_error += ( (vec_transform(sanitize(xb[i0:i1])) - xb_recons)**2).sum() index2.reset() index2.add(xb_recons) D, I = index2.search(xq_tr, 100) rh.add_batch_result(D, I, i0) rh.finalize() del index2 t1 = time.time() print("done in %.3f s" % (t1 - t0)) print("total reconstruction error: ", accu_recons_error) print("eval retrieval:") datasets.evaluate_DI(rh.D, rh.I, gt) def get_neighbors(hnsw, i, level): " list the neighbors for node i at level " assert i < hnsw.levels.size() assert level < hnsw.levels.at(i) be = np.empty(2, 'uint64') hnsw.neighbor_range(i, level, faiss.swig_ptr(be), faiss.swig_ptr(be[1:])) return [hnsw.neighbors.at(j) for j in range(be[0], be[1])] ############################################################# # Index is ready ############################################################# xq = sanitize(xq) if args.searchthreads != -1: print("Setting nb of threads to", args.searchthreads) faiss.omp_set_num_threads(args.searchthreads) if gt is None: print("no valid groundtruth -- exit") sys.exit() k_reorders = [int(x) for x in args.k_reorder.split(',')] efSearchs = [int(x) for x in args.efSearch.split(',')] for k_reorder in k_reorders: if index_hnsw.reconstruct_from_neighbors: print("setting k_reorder=%d" % k_reorder) index_hnsw.reconstruct_from_neighbors.k_reorder = k_reorder for efSearch in efSearchs: print("efSearch=%-4d" % efSearch, end=' ') hnsw.efSearch = efSearch hnsw_stats.reset() datasets.evaluate(xq, gt, index, k=args.k, endl=False) print("ndis %d nreorder %d" % (hnsw_stats.ndis, hnsw_stats.nreorder))
30.963816
77
0.601509
4f8cffa7120fd1753e67a75afd4d1b3672d3d86b
347
py
Python
test/test_molecule.py
sunhwan/MoleculeX
d718870a6f64fd7d6b110e3d6792e9d92c224da8
[ "MIT" ]
null
null
null
test/test_molecule.py
sunhwan/MoleculeX
d718870a6f64fd7d6b110e3d6792e9d92c224da8
[ "MIT" ]
null
null
null
test/test_molecule.py
sunhwan/MoleculeX
d718870a6f64fd7d6b110e3d6792e9d92c224da8
[ "MIT" ]
null
null
null
import pytest import moleculex as mx def test_add_atom(): m = mx.Molecule() v = mx.Atom() m.add_atom(v) assert len(m.atoms()) == 1 def test_add_bond(): m = mx.Molecule() v = mx.Atom() w = mx.Atom() m.add_atom(v) m.add_atom(w) m.add_bond(v, w) assert len(m.bonds()) == 1 assert len(m.atoms()) == 2
18.263158
30
0.56196
e00d9a9cfd84ef1939acaf0096d5178e2513f863
13,347
py
Python
lib/exabgp/reactor/protocol.py
mewbak/exabgp
223ccc685e2f7fa2d891ddcf4ebdcbadae540f1d
[ "BSD-3-Clause" ]
null
null
null
lib/exabgp/reactor/protocol.py
mewbak/exabgp
223ccc685e2f7fa2d891ddcf4ebdcbadae540f1d
[ "BSD-3-Clause" ]
null
null
null
lib/exabgp/reactor/protocol.py
mewbak/exabgp
223ccc685e2f7fa2d891ddcf4ebdcbadae540f1d
[ "BSD-3-Clause" ]
null
null
null
# encoding: utf-8 """ protocol.py Created by Thomas Mangin on 2009-08-25. Copyright (c) 2009-2017 Exa Networks. All rights reserved. License: 3-clause BSD. (See the COPYRIGHT file) """ import os from exabgp.vendoring import six import traceback # ================================================================ Registration # from exabgp.util import ordinal from exabgp.reactor.network.outgoing import Outgoing # from exabgp.reactor.network.error import NotifyError from exabgp.protocol.family import AFI from exabgp.protocol.family import SAFI from exabgp.bgp.message import Message from exabgp.bgp.message import NOP from exabgp.bgp.message import _NOP from exabgp.bgp.message import Open from exabgp.bgp.message.open import Version from exabgp.bgp.message.open.capability import Capabilities from exabgp.bgp.message.open.capability import Negotiated from exabgp.bgp.message import Update from exabgp.bgp.message import EOR from exabgp.bgp.message import KeepAlive from exabgp.bgp.message import Notification from exabgp.bgp.message import Notify from exabgp.bgp.message import Operational from exabgp.bgp.message.direction import IN from exabgp.bgp.message.update.attribute import Attribute from exabgp.protocol.ip import IP from exabgp.reactor.api.processes import ProcessError from exabgp.logger import Logger from exabgp.logger import FakeLogger # This is the number of chuncked message we are willing to buffer, not the number of routes MAX_BACKLOG = 15000 _UPDATE = Update([],b'') _OPERATIONAL = Operational(0x00) class Protocol (object): decode = True def __init__ (self, peer): try: self.logger = Logger() except RuntimeError: self.logger = FakeLogger() self.peer = peer self.neighbor = peer.neighbor self.negotiated = Negotiated(self.neighbor) self.connection = None if self.neighbor.connect: self.port = self.neighbor.connect elif os.environ.get('exabgp.tcp.port','').isdigit(): self.port = int(os.environ.get('exabgp.tcp.port')) elif os.environ.get('exabgp_tcp_port','').isdigit(): self.port = int(os.environ.get('exabgp_tcp_port')) else: self.port = 179 from exabgp.configuration.environment import environment self.log_routes = peer.neighbor.adj_rib_in or environment.settings().log.routes def fd (self): if self.connection is None: return -1 return self.connection.fd() # XXX: we use self.peer.neighbor.peer_address when we could use self.neighbor.peer_address def me (self, message): return "%s/%s %s" % (self.peer.neighbor.peer_address,self.peer.neighbor.peer_as,message) def accept (self, incoming): self.connection = incoming if self.peer.neighbor.api['neighbor-changes']: self.peer.reactor.processes.connected(self.peer.neighbor) # very important - as we use this function on __init__ return self def connect (self): # allows to test the protocol code using modified StringIO with a extra 'pending' function if not self.connection: local = self.neighbor.md5_ip.top() if not self.neighbor.auto_discovery else None peer = self.neighbor.peer_address.top() afi = self.neighbor.peer_address.afi md5 = self.neighbor.md5_password md5_base64 = self.neighbor.md5_base64 ttl_out = self.neighbor.ttl_out self.connection = Outgoing(afi,peer,local,self.port,md5,md5_base64,ttl_out) if not self.connection.init: yield False return if not local: self.neighbor.local_address = IP.create(self.connection.local) if self.neighbor.router_id is None and self.neighbor.local_address.afi == AFI.ipv4: self.neighbor.router_id = self.neighbor.local_address for connected in self.connection.establish(): if not connected: yield False continue if self.peer.neighbor.api['neighbor-changes']: self.peer.reactor.processes.connected(self.peer.neighbor) yield True return def close (self, reason='protocol closed, reason unspecified'): if self.connection: self.logger.debug(reason,self.connection.session()) # must be first otherwise we could have a loop caused by the raise in the below self.connection.close() self.connection = None self.peer.stats['down'] = self.peer.stats.get('down',0) + 1 try: if self.peer.neighbor.api['neighbor-changes']: self.peer.reactor.processes.down(self.peer.neighbor,reason) except ProcessError: self.logger.debug('could not send notification of neighbor close to API',self.connection.session()) def _to_api (self,direction,message,raw): packets = self.neighbor.api['%s-packets' % direction] parsed = self.neighbor.api['%s-parsed' % direction] consolidate = self.neighbor.api['%s-consolidate' % direction] negotiated = self.negotiated if self.neighbor.api['negotiated'] else None if consolidate: if packets: self.peer.reactor.processes.message(self.peer.neighbor,direction,message,negotiated,raw[:19],raw[19:]) else: self.peer.reactor.processes.message(self.peer.neighbor,direction,message,negotiated,b'',b'') else: if packets: self.peer.reactor.processes.packets(self.peer.neighbor,direction,int(message.ID),negotiated,raw[:19],raw[19:]) if parsed: self.peer.reactor.processes.message(message.ID,self.peer.neighbor,direction,message,negotiated,b'',b'') def write (self, message, negotiated=None): raw = message.message(negotiated) code = 'send-%s' % Message.CODE.short(message.ID) self.peer.stats[code] = self.peer.stats.get(code,0) + 1 if self.neighbor.api.get(code,False): self._to_api('send',message,raw) for boolean in self.connection.writer(raw): yield boolean def send (self, raw): code = 'send-%s' % Message.CODE.short(ordinal(raw[18])) self.peer.stats[code] = self.peer.stats.get(code,0) + 1 if self.neighbor.api.get(code,False): message = Update.unpack_message(raw[19:],self.negotiated) self._to_api('send',message,raw) for boolean in self.connection.writer(raw): yield boolean # Read from network ....................................................... def read_message (self): # This will always be defined by the loop but scope leaking upset scrutinizer/pylint msg_id = None packets = self.neighbor.api['receive-packets'] consolidate = self.neighbor.api['receive-consolidate'] parsed = self.neighbor.api['receive-parsed'] body,header = b'',b'' # just because pylint/pylama are getting more clever for length,msg_id,header,body,notify in self.connection.reader(): # internal issue if notify: code = 'receive-%s' % Message.CODE.NOTIFICATION.SHORT if self.neighbor.api.get(code,False): if consolidate: self.peer.reactor.processes.notification(self.peer.neighbor,'receive',notify.code,notify.subcode,str(notify),None,header,body) elif parsed: self.peer.reactor.processes.notification(self.peer.neighbor,'receive',notify.code,notify.subcode,str(notify),None,b'',b'') elif packets: self.peer.reactor.processes.packets(self.peer.neighbor,'receive',msg_id,None,header,body) # XXX: is notify not already Notify class ? raise Notify(notify.code,notify.subcode,str(notify)) if not length: yield _NOP continue self.logger.debug('<< message of type %s' % Message.CODE.name(msg_id),self.connection.session()) code = 'receive-%s' % Message.CODE.short(msg_id) self.peer.stats[code] = self.peer.stats.get(code,0) + 1 for_api = self.neighbor.api.get(code,False) if for_api and packets and not consolidate: negotiated = self.negotiated if self.neighbor.api.get('negotiated',False) else None self.peer.reactor.processes.packets(self.peer.neighbor,'receive',msg_id,negotiated,header,body) if msg_id == Message.CODE.UPDATE: if not self.neighbor.adj_rib_in and not (for_api or self.log_routes) and not (parsed or consolidate): yield _UPDATE return try: message = Message.unpack(msg_id,body,self.negotiated) except (KeyboardInterrupt,SystemExit,Notify): raise except Exception as exc: self.logger.debug('could not decode message "%d"' % msg_id,self.connection.session()) self.logger.debug('%s' % str(exc),self.connection.session()) self.logger.debug(traceback.format_exc(),self.connection.session()) raise Notify(1,0,'can not decode update message of type "%d"' % msg_id) # raise Notify(5,0,'unknown message received') if message.TYPE == Update.TYPE: if Attribute.CODE.INTERNAL_TREAT_AS_WITHDRAW in message.attributes: for nlri in message.nlris: nlri.action = IN.WITHDRAWN if for_api: negotiated = self.negotiated if self.neighbor.api.get('negotiated',False) else None if consolidate: self.peer.reactor.processes.message(msg_id,self.neighbor,'receive',message,negotiated,header,body) elif parsed: self.peer.reactor.processes.message(msg_id,self.neighbor,'receive',message,negotiated,b'',b'') if message.TYPE == Notification.TYPE: raise message if message.TYPE == Update.TYPE and Attribute.CODE.INTERNAL_DISCARD in message.attributes: yield _NOP else: yield message def validate_open (self): error = self.negotiated.validate(self.neighbor) if error is not None: raise Notify(*error) if self.neighbor.api['negotiated']: self.peer.reactor.processes.negotiated(self.peer.neighbor,self.negotiated) if self.negotiated.mismatch: self.logger.warning('--------------------------------------------------------------------',self.connection.session()) self.logger.warning('the connection can not carry the following family/families',self.connection.session()) for reason,(afi,safi) in self.negotiated.mismatch: self.logger.warning(' - %s is not configured for %s/%s' % (reason,afi,safi),self.connection.session()) self.logger.warning('therefore no routes of this kind can be announced on the connection',self.connection.session()) self.logger.warning('--------------------------------------------------------------------',self.connection.session()) def read_open (self, ip): for received_open in self.read_message(): if received_open.TYPE == NOP.TYPE: yield received_open else: break if received_open.TYPE != Open.TYPE: raise Notify(5,1,'The first packet received is not an open message (%s)' % received_open) self.logger.debug('<< %s' % received_open,self.connection.session()) yield received_open def read_keepalive (self): for message in self.read_message(): if message.TYPE == NOP.TYPE: yield message else: break if message.TYPE != KeepAlive.TYPE: raise Notify(5,2) yield message # # Sending message to peer # def new_open (self): if self.neighbor.local_as: local_as = self.neighbor.local_as elif self.negotiated.received_open: local_as = self.negotiated.received_open.asn else: raise RuntimeError('no ASN available for the OPEN message') sent_open = Open( Version(4), local_as, self.neighbor.hold_time, self.neighbor.router_id, Capabilities().new(self.neighbor,self.peer._restarted) ) # we do not buffer open message in purpose for _ in self.write(sent_open): yield _NOP self.logger.debug('>> %s' % sent_open,self.connection.session()) yield sent_open def new_keepalive (self, comment=''): keepalive = KeepAlive() for _ in self.write(keepalive): yield _NOP self.logger.debug('>> KEEPALIVE%s' % (' (%s)' % comment if comment else ''),self.connection.session()) yield keepalive def new_notification (self, notification): for _ in self.write(notification): yield _NOP self.logger.debug('>> NOTIFICATION (%d,%d,"%s")' % (notification.code,notification.subcode,notification.data.decode('utf-8')),self.connection.session()) yield notification def new_update (self, include_withdraw): updates = self.neighbor.rib.outgoing.updates(self.neighbor.group_updates) number = 0 for update in updates: for message in update.messages(self.negotiated,include_withdraw): number += 1 for boolean in self.send(message): # boolean is a transient network error we already announced yield _NOP if number: self.logger.debug('>> %d UPDATE(s)' % number,self.connection.session()) yield _UPDATE def new_eor (self, afi, safi): eor = EOR(afi,safi) for _ in self.write(eor): yield _NOP self.logger.debug('>> EOR %s %s' % (afi,safi),self.connection.session()) yield eor def new_eors (self, afi=AFI.undefined,safi=SAFI.undefined): # Send EOR to let our peer know he can perform a RIB update if self.negotiated.families: families = self.negotiated.families if (afi,safi) == (AFI.undefined,SAFI.undefined) else [(afi,safi),] for eor_afi,eor_safi in families: for _ in self.new_eor(eor_afi,eor_safi): yield _ else: # If we are not sending an EOR, send a keepalive as soon as when finished # So the other routers knows that we have no (more) routes to send ... # (is that behaviour documented somewhere ??) for eor in self.new_keepalive('EOR'): yield _NOP yield _UPDATE def new_operational (self, operational, negotiated): for _ in self.write(operational,negotiated): yield _NOP self.logger.debug('>> OPERATIONAL %s' % str(operational),self.connection.session()) yield operational def new_refresh (self, refresh): for _ in self.write(refresh,None): yield _NOP self.logger.debug('>> REFRESH %s' % str(refresh),self.connection.session()) yield refresh
34.57772
154
0.716865
fdb77e7f25072280edd32d6f8d2c507df7e37f8f
165
py
Python
uspy/execution/compute_feature.py
jwarndt/uspy
ab5bb73f9243a1d7978c83ccb63e7189fc18cd8a
[ "MIT" ]
null
null
null
uspy/execution/compute_feature.py
jwarndt/uspy
ab5bb73f9243a1d7978c83ccb63e7189fc18cd8a
[ "MIT" ]
null
null
null
uspy/execution/compute_feature.py
jwarndt/uspy
ab5bb73f9243a1d7978c83ccb63e7189fc18cd8a
[ "MIT" ]
null
null
null
import numpy as np from nmapy.features import * def compute_feature(in_array, feature_parameters): """ Parameters: ----------- in_array: an np """
15
51
0.630303
3617de5fb2b1fa49bb51079875687dc8af847c5c
12,696
py
Python
lib/galaxy/webapps/galaxy/api/cloudauthz.py
maikenp/galaxy
eb3f3c816f1f94bc328d092f30c8966d41a56a0d
[ "CC-BY-3.0" ]
1
2021-10-08T02:14:24.000Z
2021-10-08T02:14:24.000Z
lib/galaxy/webapps/galaxy/api/cloudauthz.py
maikenp/galaxy
eb3f3c816f1f94bc328d092f30c8966d41a56a0d
[ "CC-BY-3.0" ]
null
null
null
lib/galaxy/webapps/galaxy/api/cloudauthz.py
maikenp/galaxy
eb3f3c816f1f94bc328d092f30c8966d41a56a0d
[ "CC-BY-3.0" ]
null
null
null
""" API operations on defining cloud authorizations. Through means of cloud authorization a user is able to grant a Galaxy server a secure access to his/her cloud-based resources without sharing his/her long-lasting credentials. User provides a provider-specific configuration, which Galaxy users to request temporary credentials from the provider to access the user's resources. """ import logging from galaxy.exceptions import ( ActionInputError, InternalServerError, MalformedId, RequestParameterInvalidException, RequestParameterMissingException ) from galaxy.managers import cloudauthzs from galaxy.structured_app import StructuredApp from galaxy.util import unicodify from galaxy.web import ( expose_api ) from . import BaseGalaxyAPIController log = logging.getLogger(__name__) class CloudAuthzController(BaseGalaxyAPIController): """ RESTfull controller for defining cloud authorizations. """ def __init__(self, app: StructuredApp): super().__init__(app) self.cloudauthz_manager = cloudauthzs.CloudAuthzManager(app) self.cloudauthz_serializer = cloudauthzs.CloudAuthzsSerializer(app) self.cloudauthz_deserializer = cloudauthzs.CloudAuthzsDeserializer(app) @expose_api def index(self, trans, **kwargs): """ GET /api/cloud/authz Lists all the cloud authorizations user has defined. :type trans: galaxy.webapps.base.webapp.GalaxyWebTransaction :param trans: Galaxy web transaction :param kwargs: empty dict :rtype: list of dict :return: a list of cloud authorizations (each represented in key-value pair format) defined for the user. """ rtv = [] for cloudauthz in trans.user.cloudauthz: rtv.append(self.cloudauthz_serializer.serialize_to_view( cloudauthz, user=trans.user, trans=trans, **self._parse_serialization_params(kwargs, 'summary'))) return rtv @expose_api def create(self, trans, payload, **kwargs): """ * POST /api/cloud/authz Request to store the payload as a cloudauthz (cloud authorization) configuration for a user. :type trans: galaxy.webapps.base.webapp.GalaxyWebTransaction :param trans: Galaxy web transaction :type payload: dict :param payload: A dictionary structure containing the following keys: * provider: the cloud-based resource provider to which this configuration belongs to. * config: a dictionary containing all the configuration required to request temporary credentials from the provider. See the following page for details: https://galaxyproject.org/authnz/ * authn_id: the (encoded) ID of a third-party authentication of a user. To have this ID, user must have logged-in to this Galaxy server using third-party identity (e.g., Google), or has associated his/her Galaxy account with a third-party OIDC-based identity. See this page: https://galaxyproject.org/authnz/config/ * description: [Optional] a brief description for this configuration. :param kwargs: empty dict :rtype: dict :return: a dictionary with the following kvp: * status: HTTP response code * message: A message complementary to the response code. """ msg_template = "Rejected user `" + str(trans.user.id) + "`'s request to create cloudauthz config because of {}." if not isinstance(payload, dict): raise ActionInputError('Invalid payload data type. The payload is expected to be a dictionary, but ' 'received data of type `{}`.'.format(str(type(payload)))) missing_arguments = [] provider = payload.get('provider', None) if provider is None: missing_arguments.append('provider') config = payload.get('config', None) if config is None: missing_arguments.append('config') authn_id = payload.get('authn_id', None) if authn_id is None and provider.lower() not in ["azure", "gcp"]: missing_arguments.append('authn_id') if len(missing_arguments) > 0: log.debug(msg_template.format(f"missing required config {missing_arguments}")) raise RequestParameterMissingException('The following required arguments are missing in the payload: ' '{}'.format(missing_arguments)) description = payload.get("description", "") if not isinstance(config, dict): log.debug(msg_template.format("invalid config type `{}`, expect `dict`".format(type(config)))) raise RequestParameterInvalidException('Invalid type for the required `config` variable; expect `dict` ' 'but received `{}`.'.format(type(config))) if authn_id: try: decoded_authn_id = self.decode_id(authn_id) except MalformedId as e: log.debug(msg_template.format(f"cannot decode authz_id `{authn_id}`")) raise e try: trans.app.authnz_manager.can_user_assume_authn(trans, decoded_authn_id) except Exception as e: raise e # No two authorization configuration with # exact same key/value should exist. for ca in trans.user.cloudauthzs: if ca.equals(trans.user.id, provider, authn_id, config): log.debug("Rejected user `{}`'s request to create cloud authorization because a similar config " "already exists.".format(trans.user.id)) raise ActionInputError("A similar cloud authorization configuration is already defined.") try: new_cloudauthz = self.cloudauthz_manager.create( user_id=trans.user.id, provider=provider, config=config, authn_id=authn_id, description=description ) view = self.cloudauthz_serializer.serialize_to_view(new_cloudauthz, trans=trans, **self._parse_serialization_params(kwargs, 'summary')) log.debug('Created a new cloudauthz record for the user id `{}` '.format(str(trans.user.id))) return view except Exception as e: log.exception(msg_template.format("exception while creating the new cloudauthz record")) raise InternalServerError('An unexpected error has occurred while responding to the create request of the ' 'cloudauthz API.' + unicodify(e)) @expose_api def delete(self, trans, encoded_authz_id, **kwargs): """ * DELETE /api/cloud/authz/{encoded_authz_id} Deletes the CloudAuthz record with the given ``encoded_authz_id`` from database. :type trans: galaxy.webapps.base.webapp.GalaxyWebTransaction :param trans: Galaxy web transaction :type encoded_authz_id: string :param encoded_authz_id: The encoded ID of the CloudAuthz record to be marked deleted. :rtype JSON :return The cloudauthz record marked as deleted, serialized as a JSON object. """ msg_template = "Rejected user `" + str(trans.user.id) + "`'s request to delete cloudauthz config because of {}." try: authz_id = self.decode_id(encoded_authz_id) except MalformedId as e: log.debug(msg_template.format(f"cannot decode authz_id `{encoded_authz_id}`")) raise e try: cloudauthz = trans.app.authnz_manager.try_get_authz_config(trans.sa_session, trans.user.id, authz_id) trans.sa_session.delete(cloudauthz) trans.sa_session.flush() log.debug('Deleted a cloudauthz record with id `{}` for the user id `{}` '.format(authz_id, str(trans.user.id))) view = self.cloudauthz_serializer.serialize_to_view(cloudauthz, trans=trans, **self._parse_serialization_params(kwargs, 'summary')) trans.response.status = '200' return view except Exception as e: log.exception(msg_template.format("exception while deleting the cloudauthz record with " "ID: `{}`.".format(encoded_authz_id))) raise InternalServerError('An unexpected error has occurred while responding to the DELETE request of the ' 'cloudauthz API.' + unicodify(e)) @expose_api def update(self, trans, encoded_authz_id, payload, **kwargs): """ PUT /api/cloud/authz/{encoded_authz_id} Updates the values for the cloudauthz configuration with the given ``encoded_authz_id``. With this API only the following attributes of a cloudauthz configuration can be updated: `authn_id`, `provider`, `config`, `deleted`. :type trans: galaxy.webapps.base.webapp.GalaxyWebTransaction :param trans: Galaxy web transaction :type encoded_authz_id: string :param encoded_authz_id: The encoded ID of the CloudAuthz record to be updated. :type payload: dict :param payload: A dictionary structure containing the attributes to modified with their new values. It can contain any number of the following attributes: * provider: the cloud-based resource provider to which this configuration belongs to. * authn_id: the (encoded) ID of a third-party authentication of a user. To have this ID, user must have logged-in to this Galaxy server using third-party identity (e.g., Google), or has associated their Galaxy account with a third-party OIDC-based identity. See this page: https://galaxyproject.org/authnz/config/ Note: A user can associate a cloudauthz record with their own authentications only. If the given authentication with authn_id belongs to a different user, Galaxy will throw the ItemAccessibilityException exception. * config: a dictionary containing all the configuration required to request temporary credentials from the provider. See the following page for details: https://galaxyproject.org/authnz/ * deleted: a boolean type marking the specified cloudauthz as (un)deleted. """ msg_template = "Rejected user `" + str(trans.user.id) + "`'s request to delete cloudauthz config because of {}." try: authz_id = self.decode_id(encoded_authz_id) except MalformedId as e: log.debug(msg_template.format(f"cannot decode authz_id `{encoded_authz_id}`")) raise e try: cloudauthz_to_update = trans.app.authnz_manager.try_get_authz_config(trans.sa_session, trans.user.id, authz_id) self.cloudauthz_deserializer.deserialize(cloudauthz_to_update, payload, trans=trans) self.cloudauthz_serializer.serialize_to_view(cloudauthz_to_update, view='summary') return self.cloudauthz_serializer.serialize_to_view(cloudauthz_to_update, view='summary') except MalformedId as e: raise e except Exception as e: log.exception(msg_template.format("exception while updating the cloudauthz record with " "ID: `{}`.".format(encoded_authz_id))) raise InternalServerError('An unexpected error has occurred while responding to the PUT request of the ' 'cloudauthz API.' + unicodify(e))
49.209302
147
0.603497
ebea6f15e3db82b709db81df32d647649d6a8a93
2,889
py
Python
node_registry/decorators.py
rahulkatiyar19955/node_registry
42a2ed4ea7271a312223c724543e278ff9c9f54c
[ "BSD-3-Clause" ]
2
2021-07-05T12:36:29.000Z
2021-12-24T08:20:13.000Z
node_registry/decorators.py
rahulkatiyar19955/node_registry
42a2ed4ea7271a312223c724543e278ff9c9f54c
[ "BSD-3-Clause" ]
null
null
null
node_registry/decorators.py
rahulkatiyar19955/node_registry
42a2ed4ea7271a312223c724543e278ff9c9f54c
[ "BSD-3-Clause" ]
4
2021-06-30T04:22:58.000Z
2021-12-19T06:06:34.000Z
#!/usr/bin/env python3 # Copyright (c) 2021, DeepX-inc # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of the the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # @author Krishneel Chaudhary """Python Xnode Decorators.""" from .xnode_builder import node_init rosnode = node_init() def register(globals_params: dict = None): """ Spin the rosnode on the executor. Args: ---- globals_params (dict): Dictonary of module globals() """ if globals_params is not None: assert isinstance( globals_params, dict ), f'Expected {dict} but received {type(globals_params)}' __keys__: list = ['__name__', 'rosnode'] for key in __keys__: if key not in globals_params.keys(): raise KeyError(f'Key {key} is required') name = globals_params['__name__'] if name not in ['__main__']: print( '\033[33m__main__ not found in the globals\033[0m' ) return if rosnode.node is None: raise RuntimeError('Please initialize the node') rosnode.spin() def register_node(func_or_dict): """Registor Node in XNode.""" def _register(func): assert callable(func) func() register(globals_params) return func if isinstance(func_or_dict, dict): globals_params = func_or_dict return _register else: globals_params = None return _register(func_or_dict)
35.666667
77
0.695396
3245005919943544b4648dea45af507a74c2c488
4,219
py
Python
couchjs/scons/scons-local-2.0.1/SCons/Node/Python.py
Gussy/bigcouch
9e67d3f754186ce8368503509ae041a2847f2b7c
[ "Apache-2.0" ]
73
2015-03-19T04:04:52.000Z
2021-08-16T10:45:11.000Z
couchjs/scons/scons-local-2.0.1/SCons/Node/Python.py
Gussy/bigcouch
9e67d3f754186ce8368503509ae041a2847f2b7c
[ "Apache-2.0" ]
5
2016-04-26T13:19:25.000Z
2017-03-11T14:11:22.000Z
couchjs/scons/scons-local-2.0.1/SCons/Node/Python.py
Gussy/bigcouch
9e67d3f754186ce8368503509ae041a2847f2b7c
[ "Apache-2.0" ]
13
2015-03-27T05:21:42.000Z
2017-05-22T11:45:30.000Z
"""scons.Node.Python Python nodes. """ # # Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "src/engine/SCons/Node/Python.py 5134 2010/08/16 23:02:40 bdeegan" import SCons.Node class ValueNodeInfo(SCons.Node.NodeInfoBase): current_version_id = 1 field_list = ['csig'] def str_to_node(self, s): return Value(s) class ValueBuildInfo(SCons.Node.BuildInfoBase): current_version_id = 1 class Value(SCons.Node.Node): """A class for Python variables, typically passed on the command line or generated by a script, but not from a file or some other source. """ NodeInfo = ValueNodeInfo BuildInfo = ValueBuildInfo def __init__(self, value, built_value=None): SCons.Node.Node.__init__(self) self.value = value if built_value is not None: self.built_value = built_value def str_for_display(self): return repr(self.value) def __str__(self): return str(self.value) def make_ready(self): self.get_csig() def build(self, **kw): if not hasattr(self, 'built_value'): SCons.Node.Node.build(self, **kw) is_up_to_date = SCons.Node.Node.children_are_up_to_date def is_under(self, dir): # Make Value nodes get built regardless of # what directory scons was run from. Value nodes # are outside the filesystem: return 1 def write(self, built_value): """Set the value of the node.""" self.built_value = built_value def read(self): """Return the value. If necessary, the value is built.""" self.build() if not hasattr(self, 'built_value'): self.built_value = self.value return self.built_value def get_text_contents(self): """By the assumption that the node.built_value is a deterministic product of the sources, the contents of a Value are the concatenation of all the contents of its sources. As the value need not be built when get_contents() is called, we cannot use the actual node.built_value.""" ###TODO: something reasonable about universal newlines contents = str(self.value) for kid in self.children(None): contents = contents + kid.get_contents() return contents get_contents = get_text_contents ###TODO should return 'bytes' value def changed_since_last_build(self, target, prev_ni): cur_csig = self.get_csig() try: return cur_csig != prev_ni.csig except AttributeError: return 1 def get_csig(self, calc=None): """Because we're a Python value node and don't have a real timestamp, we get to ignore the calculator and just use the value contents.""" try: return self.ninfo.csig except AttributeError: pass contents = self.get_contents() self.get_ninfo().csig = contents return contents # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
32.705426
95
0.677886
2d897854d426c9d2fa9bd38ef33f0e71e81a4365
3,605
py
Python
linux_proc_extras/datadog_checks/linux_proc_extras/linux_proc_extras.py
Siecje/integrations-core
b2f3ea4145b25394be0b274093d1f0723e8f968d
[ "BSD-3-Clause" ]
5
2018-04-09T09:53:04.000Z
2021-07-02T05:37:41.000Z
linux_proc_extras/datadog_checks/linux_proc_extras/linux_proc_extras.py
Siecje/integrations-core
b2f3ea4145b25394be0b274093d1f0723e8f968d
[ "BSD-3-Clause" ]
19
2018-01-24T15:23:47.000Z
2020-07-14T14:30:53.000Z
linux_proc_extras/datadog_checks/linux_proc_extras/linux_proc_extras.py
Siecje/integrations-core
b2f3ea4145b25394be0b274093d1f0723e8f968d
[ "BSD-3-Clause" ]
6
2018-01-09T21:37:20.000Z
2020-05-26T09:28:09.000Z
# (C) Cory Watson <cory@stripe.com> 2016 # (C) Datadog, Inc. 2016-2017 # All rights reserved # Licensed under Simplified BSD License (see LICENSE) # project from checks import AgentCheck from utils.subprocess_output import get_subprocess_output from collections import defaultdict PROCESS_STATES = { 'D': 'uninterruptible', 'R': 'runnable', 'S': 'sleeping', 'T': 'stopped', 'W': 'paging', 'X': 'dead', 'Z': 'zombie', } PROCESS_PRIOS = { '<': 'high', 'N': 'low', 'L': 'locked' } class MoreUnixCheck(AgentCheck): def check(self, instance): self.tags = instance.get('tags', []) self.set_paths() self.get_inode_info() self.get_stat_info() self.get_entropy_info() self.get_process_states() def set_paths(self): proc_location = self.agentConfig.get('procfs_path', '/proc').rstrip('/') self.proc_path_map = { "inode_info": "sys/fs/inode-nr", "stat_info": "stat", "entropy_info": "sys/kernel/random/entropy_avail", } for key, path in self.proc_path_map.iteritems(): self.proc_path_map[key] = "{procfs}/{path}".format(procfs=proc_location, path=path) def get_inode_info(self): with open(self.proc_path_map['inode_info'], 'r') as inode_info: inode_stats = inode_info.readline().split() self.gauge('system.inodes.total', float(inode_stats[0]), tags=self.tags) self.gauge('system.inodes.used', float(inode_stats[1]), tags=self.tags) def get_stat_info(self): with open(self.proc_path_map['stat_info'], 'r') as stat_info: lines = [line.strip() for line in stat_info.readlines()] for line in lines: if line.startswith('ctxt'): ctxt_count = float(line.split(' ')[1]) self.monotonic_count('system.linux.context_switches', ctxt_count, tags=self.tags) elif line.startswith('processes'): process_count = int(line.split(' ')[1]) self.monotonic_count('system.linux.processes_created', process_count, tags=self.tags) elif line.startswith('intr'): interrupts = int(line.split(' ')[1]) self.monotonic_count('system.linux.interrupts', interrupts, tags=self.tags) def get_entropy_info(self): with open(self.proc_path_map['entropy_info'], 'r') as entropy_info: entropy = entropy_info.readline() self.gauge('system.entropy.available', float(entropy), tags=self.tags) def get_process_states(self): state_counts = defaultdict(int) prio_counts = defaultdict(int) ps = get_subprocess_output(['ps', '--no-header', '-eo', 'stat'], self.log) for state in ps[0]: # Each process state is a flag in a list of characters. See ps(1) for details. for flag in list(state): if state in PROCESS_STATES: state_counts[PROCESS_STATES[state]] += 1 elif state in PROCESS_PRIOS: prio_counts[PROCESS_PRIOS[state]] += 1 for state in state_counts: state_tags = list(self.tags) state_tags.append("state:" + state) self.gauge('system.processes.states', float(state_counts[state]), state_tags) for prio in prio_counts: prio_tags = list(self.tags) prio_tags.append("priority:" + prio) self.gauge('system.processes.priorities', float(prio_counts[prio]), prio_tags)
37.552083
105
0.601387
21c72c7cd993db13595d4a1e6122419a0a430f9b
2,502
py
Python
tests/test_referencing.py
chdemko/pandoc-numbering
19e6dfd6d5c2e213e279bc6aed0b5caae84249c7
[ "BSD-3-Clause" ]
29
2016-03-16T10:46:25.000Z
2021-09-09T19:03:57.000Z
tests/test_referencing.py
chdemko/pandoc-numbering
19e6dfd6d5c2e213e279bc6aed0b5caae84249c7
[ "BSD-3-Clause" ]
24
2016-03-16T10:53:13.000Z
2021-03-17T23:11:58.000Z
tests/test_referencing.py
chdemko/pandoc-numbering
19e6dfd6d5c2e213e279bc6aed0b5caae84249c7
[ "BSD-3-Clause" ]
8
2017-08-28T21:30:30.000Z
2020-12-27T21:04:15.000Z
# This Python file uses the following encoding: utf-8 from unittest import TestCase from helper import verify_conversion class ReferencincTest(TestCase): def test_referencing_standard(self): verify_conversion( self, r""" Header ====== Section ------- Exercise (First title) -.+.#exercise:first Exercise (Second title) -.+.#exercise:second See [%D %d %T %t %g %s %n # %c](#exercise:first) See [%D %d %T %t %g %s %n # %c](#exercise:second) """, r""" # Header ## Section []{#exercise:header.section.first-title}[**Exercise 1.1** *(First title)*]{#exercise:first .pandoc-numbering-text .exercise} []{#exercise:header.section.second-title}[**Exercise 1.2** *(Second title)*]{#exercise:second .pandoc-numbering-text .exercise} See [Exercise exercise First title first title 1.1.1 1.1 1.1 1.1 2](#exercise:first) See [Exercise exercise Second title second title 1.1.2 1.1 1.2 1.2 2](#exercise:second) """, ) def test_referencing_latex(self): verify_conversion( self, r""" Title ===== Exercise -.#first Exercise (Title) -.#second See [%D %d %T %t %g %s %n # %c %p](#exercise:first) See [%D %d %T %t %g %s %n # %c %p](#exercise:second) """, r""" --- header-includes: - "`\\usepackage{tocloft}`{=tex}" - "`\\usepackage{etoolbox}`{=tex}" - "`\\ifdef{\\mainmatter}{\\let\\oldmainmatter\\mainmatter\\renewcommand{\\mainmatter}[0]{\\oldmainmatter}}{}`{=tex}" --- `\usepackage{tocloft}`{=tex} `\usepackage{etoolbox}`{=tex} `\ifdef{\mainmatter}{\let\oldmainmatter\mainmatter\renewcommand{\mainmatter}[0]{\oldmainmatter}}{}`{=tex} ```{=tex} \ifdef{\mainmatter}{}{} ``` # Title `\phantomsection\addcontentsline{exercise}{exercise}{\protect\numberline {1.1}{\ignorespaces {Exercise}}}`{=tex}[]{#exercise:title.1}[`\label{exercise:first}`{=tex}`\label{exercise:title.1}`{=tex}**Exercise 1**]{#exercise:first .pandoc-numbering-text .exercise} `\phantomsection\addcontentsline{exercise}{exercise}{\protect\numberline {1.2}{\ignorespaces {Title}}}`{=tex}[]{#exercise:title.title}[`\label{exercise:second}`{=tex}`\label{exercise:title.title}`{=tex}**Exercise 2** *(Title)*]{#exercise:second .pandoc-numbering-text .exercise} See [Exercise exercise 1.1 1 1 1 2 `\pageref{exercise:first}`{=tex}](#exercise:first) See [Exercise exercise Title title 1.2 1 2 2 2 `\pageref{exercise:second}`{=tex}](#exercise:second) """, "latex", )
29.093023
278
0.635891
2600d62b53f56277f242f4ca9cdaee54198ba665
48,641
py
Python
kolibri/core/tasks/api.py
AtKristijan/kolibri
d9b4864a8e93205923c388b4387efc539ae82ec1
[ "MIT" ]
null
null
null
kolibri/core/tasks/api.py
AtKristijan/kolibri
d9b4864a8e93205923c388b4387efc539ae82ec1
[ "MIT" ]
null
null
null
kolibri/core/tasks/api.py
AtKristijan/kolibri
d9b4864a8e93205923c388b4387efc539ae82ec1
[ "MIT" ]
null
null
null
import logging import ntpath import os import shutil from functools import partial from tempfile import mkstemp import requests from django.apps.registry import AppRegistryNotReady from django.core.files.uploadedfile import InMemoryUploadedFile from django.core.files.uploadedfile import UploadedFile from django.core.management import call_command from django.core.management.base import CommandError from django.http.response import Http404 from django.http.response import HttpResponseBadRequest from django.utils.translation import get_language_from_request from django.utils.translation import gettext_lazy as _ from morango.models import ScopeDefinition from morango.sync.controller import MorangoProfileController from requests.exceptions import HTTPError from rest_framework import decorators from rest_framework import serializers from rest_framework import status from rest_framework import viewsets from rest_framework.authentication import BasicAuthentication from rest_framework.authentication import SessionAuthentication from rest_framework.exceptions import APIException from rest_framework.exceptions import AuthenticationFailed from rest_framework.exceptions import ParseError from rest_framework.exceptions import PermissionDenied from rest_framework.exceptions import ValidationError from rest_framework.response import Response from six import string_types from .permissions import FacilitySyncPermissions from kolibri.core.auth.constants.morango_sync import PROFILE_FACILITY_DATA from kolibri.core.auth.constants.morango_sync import State as FacilitySyncState from kolibri.core.auth.management.utils import get_client_and_server_certs from kolibri.core.auth.management.utils import get_dataset_id from kolibri.core.auth.models import Facility from kolibri.core.content.models import ChannelMetadata from kolibri.core.content.permissions import CanExportLogs from kolibri.core.content.permissions import CanImportUsers from kolibri.core.content.permissions import CanManageContent from kolibri.core.content.utils.channels import get_mounted_drive_by_id from kolibri.core.content.utils.channels import get_mounted_drives_with_channel_info from kolibri.core.content.utils.channels import read_channel_metadata_from_db_file from kolibri.core.content.utils.paths import get_channel_lookup_url from kolibri.core.content.utils.paths import get_content_database_file_path from kolibri.core.content.utils.upgrade import diff_stats from kolibri.core.device.permissions import IsSuperuser from kolibri.core.device.permissions import NotProvisionedCanPost from kolibri.core.discovery.models import NetworkLocation from kolibri.core.discovery.utils.network.client import NetworkClient from kolibri.core.discovery.utils.network.errors import NetworkLocationNotFound from kolibri.core.discovery.utils.network.errors import URLParseError from kolibri.core.logger.csv_export import CSV_EXPORT_FILENAMES from kolibri.core.tasks.exceptions import JobNotFound from kolibri.core.tasks.exceptions import JobNotRestartable from kolibri.core.tasks.exceptions import UserCancelledError from kolibri.core.tasks.job import JobRegistry from kolibri.core.tasks.job import State from kolibri.core.tasks.main import facility_queue from kolibri.core.tasks.main import job_storage from kolibri.core.tasks.main import priority_queue from kolibri.core.tasks.main import queue from kolibri.core.tasks.utils import get_current_job from kolibri.utils import conf try: from django.apps import apps apps.check_apps_ready() except AppRegistryNotReady: import django django.setup() logger = logging.getLogger(__name__) NETWORK_ERROR_STRING = _("There was a network error.") DISK_IO_ERROR_STRING = _("There was a disk access error.") CATCHALL_SERVER_ERROR_STRING = _("There was an unknown error.") def get_channel_name(channel_id, require_channel=False): try: channel = ChannelMetadata.objects.get(id=channel_id) channel_name = channel.name except ChannelMetadata.DoesNotExist: if require_channel: raise serializers.ValidationError("This channel does not exist") channel_name = "" return channel_name def validate_content_task(request, task_description, require_channel=False): try: channel_id = task_description["channel_id"] except KeyError: raise serializers.ValidationError("The channel_id field is required.") channel_name = task_description.get( "channel_name", get_channel_name(channel_id, require_channel) ) node_ids = task_description.get("node_ids", None) exclude_node_ids = task_description.get("exclude_node_ids", None) if node_ids and not isinstance(node_ids, list): raise serializers.ValidationError("node_ids must be a list.") if exclude_node_ids and not isinstance(exclude_node_ids, list): raise serializers.ValidationError("exclude_node_ids must be a list.") return { "channel_id": channel_id, "channel_name": channel_name, "exclude_node_ids": exclude_node_ids, "node_ids": node_ids, "started_by": request.user.pk, "started_by_username": request.user.username, } def validate_remote_import_task(request, task_description): import_task = validate_content_task(request, task_description) try: peer_id = task_description["peer_id"] baseurl = NetworkLocation.objects.values_list("base_url", flat=True).get( id=peer_id ) except NetworkLocation.DoesNotExist: raise serializers.ValidationError( "Peer with id {} does not exist".format(peer_id) ) except KeyError: baseurl = conf.OPTIONS["Urls"]["CENTRAL_CONTENT_BASE_URL"] peer_id = None import_task.update({"baseurl": baseurl, "peer_id": peer_id}) return import_task def _add_drive_info(import_task, task_description): try: drive_id = task_description["drive_id"] except KeyError: raise serializers.ValidationError("The drive_id field is required.") try: drive = get_mounted_drive_by_id(drive_id) except KeyError: raise serializers.ValidationError( "That drive_id was not found in the list of drives." ) import_task.update({"drive_id": drive_id, "datafolder": drive.datafolder}) return import_task def validate_local_import_task(request, task_description): task = validate_content_task(request, task_description) task = _add_drive_info(task, task_description) return task def validate_local_export_task(request, task_description): task = validate_content_task(request, task_description, require_channel=True) task = _add_drive_info(task, task_description) return task def validate_deletion_task(request, task_description): task = validate_content_task(request, task_description, require_channel=True) task["force_delete"] = bool(task_description.get("force_delete")) return task class BaseViewSet(viewsets.ViewSet): queues = [] permission_classes = [] # Adding auth classes explicitly until we find a fix for BasicAuth not # working on tasks API (in dev settings) authentication_classes = [SessionAuthentication, BasicAuthentication] def initial(self, request, *args, **kwargs): if len(self.permission_classes) == 0: self.permission_classes = self.default_permission_classes() if self.permission_classes is None: self.permission_classes = [] return super(BaseViewSet, self).initial(request, *args, **kwargs) def default_permission_classes(self): # For all /api/tasks/ endpoints return [CanManageContent] def validate_create_req_data(self, request): """ Validates the request data received on POST /api/tasks/. If `request.user` is authorized to initiate the `task` function, this returns a list of `request.data` otherwise raises PermissionDenied. """ if isinstance(request.data, list): request_data_list = request.data else: request_data_list = [request.data] for request_data in request_data_list: if "task" not in request_data: raise serializers.ValidationError("The 'task' field is required.") if not isinstance(request_data["task"], string_types): raise serializers.ValidationError("The 'task' value must be a string.") funcstr = request_data.get("task") # Make sure the task is registered try: registered_job = JobRegistry.REGISTERED_JOBS[funcstr] except KeyError: raise serializers.ValidationError( "'{funcstr}' is not registered.".format(funcstr=funcstr) ) # Check permissions the DRF way for permission in registered_job.permissions: if not permission.has_permission(request, self): self.permission_denied(request) return request_data_list def list(self, request): jobs_response = [ _job_to_response(j) for _queue in self.queues for j in _queue.jobs ] return Response(jobs_response) def create(self, request): """ Enqueue a task for async processing. API endpoint: POST /api/tasks/ Request payload parameters: - `task` (required): a string representing the dotted path to task function. - all other key value pairs are passed to the validator if the task function has one otherwise they are passed to the task function itself as keyword args. Keep in mind: If a task function has a validator then dict returned by the validator is passed to the task function as keyword args. The validator can add `extra_metadata` in the returning dict to set `extra_metadata` in the enqueued task. """ request_data_list = self.validate_create_req_data(request) enqueued_jobs_response = [] # Once we have validated all the tasks, we are good to go! for request_data in request_data_list: funcstr = request_data.pop("task") registered_job = JobRegistry.REGISTERED_JOBS[funcstr] # Run validator with request and request_data as its argument if registered_job.validator is not None: try: validator_result = registered_job.validator(request, request_data) except Exception as e: raise e if not isinstance(validator_result, dict): raise serializers.ValidationError("Validator must return a dict.") extra_metadata = validator_result.get("extra_metadata") if extra_metadata is not None and not isinstance(extra_metadata, dict): raise serializers.ValidationError( "In the dict returned by validator, 'extra_metadata' must be a dict." ) request_data = validator_result job_id = registered_job.enqueue(**request_data) enqueued_jobs_response.append(_job_to_response(job_storage.get_job(job_id))) if len(enqueued_jobs_response) == 1: enqueued_jobs_response = enqueued_jobs_response[0] return Response(enqueued_jobs_response) def retrieve(self, request, pk=None): for _queue in self.queues: try: task = _job_to_response(_queue.fetch_job(pk)) break except JobNotFound: continue else: raise Http404("Task with {pk} not found".format(pk=pk)) return Response(task) @decorators.action(methods=["post"], detail=False) def restarttask(self, request): """ Restart a task with its task id given in the task_id parameter. """ if "task_id" not in request.data: raise serializers.ValidationError("The 'task_id' field is required.") if not isinstance(request.data["task_id"], string_types): raise serializers.ValidationError("The 'task_id' should be a string.") resp = {} for _queue in self.queues: try: task_id = _queue.restart_job(request.data["task_id"]) resp = _job_to_response(_queue.fetch_job(task_id)) break except JobNotFound: continue except JobNotRestartable as e: raise serializers.ValidationError(str(e)) return Response(resp) def destroy(self, request, pk=None): # unimplemented for now. pass @decorators.action(methods=["post"], detail=False) def canceltask(self, request): """ Cancel a task with its task id given in the task_id parameter. """ if "task_id" not in request.data: raise serializers.ValidationError("The 'task_id' field is required.") if not isinstance(request.data["task_id"], string_types): raise serializers.ValidationError("The 'task_id' should be a string.") for _queue in self.queues: try: _queue.cancel(request.data["task_id"]) break except JobNotFound: continue return Response({}) @decorators.action(methods=["post"], detail=False) def cleartasks(self, request): """ Cancels all running tasks. """ for _queue in self.queues: _queue.empty() return Response({}) @decorators.action(methods=["post"], detail=False) def cleartask(self, request): # Given a single task ID, clear it from the queue task_id = request.data.get("task_id") if not task_id: return Response({}) for _queue in self.queues: _queue.clear_job(task_id) return Response({"task_id": task_id}) @decorators.action(methods=["post"], detail=False) def deletefinishedtasks(self, request): """ Delete all tasks that have succeeded, failed, or been cancelled. """ task_id = request.data.get("task_id") if task_id: for _queue in self.queues: _queue.clear_job(task_id) else: for _queue in self.queues: _queue.clear() return Response({}) class TasksViewSet(BaseViewSet): @property def queues(self): return [queue, priority_queue] def default_permission_classes(self): if self.action in ["list", "deletefinishedtasks"]: return [CanManageContent | CanExportLogs] elif self.action == "startexportlogcsv": return [CanExportLogs] elif self.action in ["importusersfromcsv", "exportuserstocsv"]: return [CanImportUsers] # For all other tasks return [CanManageContent] @decorators.action(methods=["post"], detail=False) def startchannelupdate(self, request): sourcetype = request.data.get("sourcetype", None) new_version = request.data.get("new_version", None) if sourcetype == "remote": task = validate_remote_import_task(request, request.data) task.update({"type": "UPDATECHANNEL", "new_version": new_version}) job_id = queue.enqueue( _remoteimport, task["channel_id"], task["baseurl"], peer_id=task["peer_id"], node_ids=task["node_ids"], is_updating=True, extra_metadata=task, track_progress=True, cancellable=True, ) elif sourcetype == "local": task = validate_local_import_task(request, request.data) task.update({"type": "UPDATECHANNEL", "new_version": new_version}) job_id = queue.enqueue( _diskimport, task["channel_id"], task["datafolder"], drive_id=task["drive_id"], node_ids=task["node_ids"], is_updating=True, extra_metadata=task, track_progress=True, cancellable=True, ) else: raise serializers.ValidationError("sourcetype must be 'remote' or 'local'") resp = _job_to_response(queue.fetch_job(job_id)) return Response(resp) @decorators.action(methods=["post"], detail=False) def startremotebulkimport(self, request): if not isinstance(request.data, list): raise serializers.ValidationError( "POST data must be a list of task descriptions" ) tasks = map(partial(validate_remote_import_task, request), request.data) job_ids = [] for task in tasks: task.update({"type": "REMOTEIMPORT", "database_ready": False}) import_job_id = queue.enqueue( _remoteimport, task["channel_id"], task["baseurl"], peer_id=task["peer_id"], extra_metadata=task, cancellable=True, track_progress=True, ) job_ids.append(import_job_id) resp = [_job_to_response(queue.fetch_job(job_id)) for job_id in job_ids] return Response(resp) @decorators.action(methods=["post"], detail=False) def startremotechannelimport(self, request): task = validate_remote_import_task(request, request.data) task.update({"type": "REMOTECHANNELIMPORT"}) job_id = priority_queue.enqueue( call_command, "importchannel", "network", task["channel_id"], baseurl=task["baseurl"], peer_id=task["peer_id"], extra_metadata=task, cancellable=True, ) resp = _job_to_response(priority_queue.fetch_job(job_id)) return Response(resp) @decorators.action(methods=["post"], detail=False) def startremotecontentimport(self, request): task = validate_remote_import_task(request, request.data) task.update({"type": "REMOTECONTENTIMPORT"}) job_id = queue.enqueue( call_command, "importcontent", "network", task["channel_id"], baseurl=task["baseurl"], peer_id=task["peer_id"], node_ids=task["node_ids"], exclude_node_ids=task["exclude_node_ids"], extra_metadata=task, track_progress=True, cancellable=True, ) resp = _job_to_response(queue.fetch_job(job_id)) return Response(resp) @decorators.action(methods=["post"], detail=False) def startdiskbulkimport(self, request): if not isinstance(request.data, list): raise serializers.ValidationError( "POST data must be a list of task descriptions" ) tasks = map(partial(validate_local_import_task, request), request.data) job_ids = [] for task in tasks: task.update({"type": "DISKIMPORT", "database_ready": False}) import_job_id = queue.enqueue( _diskimport, task["channel_id"], task["datafolder"], drive_id=task["drive_id"], extra_metadata=task, track_progress=True, cancellable=True, ) job_ids.append(import_job_id) resp = [_job_to_response(queue.fetch_job(job_id)) for job_id in job_ids] return Response(resp) @decorators.action(methods=["post"], detail=False) def startdiskchannelimport(self, request): task = validate_local_import_task(request, request.data) task.update({"type": "DISKCHANNELIMPORT"}) job_id = priority_queue.enqueue( call_command, "importchannel", "disk", task["channel_id"], task["datafolder"], drive_id=task["drive_id"], extra_metadata=task, cancellable=True, ) resp = _job_to_response(priority_queue.fetch_job(job_id)) return Response(resp) @decorators.action(methods=["post"], detail=False) def startdiskcontentimport(self, request): task = validate_local_import_task(request, request.data) task.update({"type": "DISKCONTENTIMPORT"}) job_id = queue.enqueue( call_command, "importcontent", "disk", task["channel_id"], task["datafolder"], drive_id=task["drive_id"], node_ids=task["node_ids"], exclude_node_ids=task["exclude_node_ids"], extra_metadata=task, track_progress=True, cancellable=True, ) resp = _job_to_response(queue.fetch_job(job_id)) return Response(resp) @decorators.action(methods=["post"], detail=False) def startbulkdelete(self, request): if not isinstance(request.data, list): raise serializers.ValidationError( "POST data must be a list of task descriptions" ) tasks = map(partial(validate_deletion_task, request), request.data) job_ids = [] for task in tasks: task.update({"type": "DELETECHANNEL"}) if task["node_ids"] or task["exclude_node_ids"]: task["file_size"] = None task["total_resources"] = None delete_job_id = queue.enqueue( call_command, "deletecontent", task["channel_id"], track_progress=True, extra_metadata=task, ) job_ids.append(delete_job_id) resp = [_job_to_response(queue.fetch_job(job_id)) for job_id in job_ids] return Response(resp) @decorators.action(methods=["post"], detail=False) def startdeletechannel(self, request): """ Delete a channel and all its associated content from the server """ task = validate_deletion_task(request, request.data) task.update({"type": "DELETECONTENT"}) if task["node_ids"] or task["exclude_node_ids"]: task["file_size"] = None task["total_resources"] = None task_id = queue.enqueue( call_command, "deletecontent", task["channel_id"], node_ids=task["node_ids"], exclude_node_ids=task["exclude_node_ids"], force_delete=task["force_delete"], track_progress=True, extra_metadata=task, ) # attempt to get the created Task, otherwise return pending status resp = _job_to_response(queue.fetch_job(task_id)) return Response(resp) @decorators.action(methods=["post"], detail=False) def startdiskbulkexport(self, request): if not isinstance(request.data, list): raise serializers.ValidationError( "POST data must be a list of task descriptions" ) tasks = map(partial(validate_local_export_task, request), request.data) job_ids = [] for task in tasks: task.update({"type": "DISKEXPORT"}) export_job_id = queue.enqueue( _localexport, task["channel_id"], task["drive_id"], track_progress=True, cancellable=True, extra_metadata=task, ) job_ids.append(export_job_id) resp = [_job_to_response(queue.fetch_job(job_id)) for job_id in job_ids] return Response(resp) @decorators.action(methods=["post"], detail=False) def startdiskexport(self, request): """ Export a channel to a local drive, and copy content to the drive. """ task = validate_local_export_task(request, request.data) task.update({"type": "DISKCONTENTEXPORT"}) task_id = queue.enqueue( _localexport, task["channel_id"], task["drive_id"], track_progress=True, cancellable=True, node_ids=task["node_ids"], exclude_node_ids=task["exclude_node_ids"], extra_metadata=task, ) # attempt to get the created Task, otherwise return pending status resp = _job_to_response(queue.fetch_job(task_id)) return Response(resp) @decorators.action(methods=["get"], detail=False) def localdrive(self, request): drives = get_mounted_drives_with_channel_info() # make sure everything is a dict, before converting to JSON if not isinstance(drives, dict): raise AssertionError out = [mountdata._asdict() for mountdata in drives.values()] return Response(out) @decorators.action(methods=["post"], detail=False) def importusersfromcsv(self, request): """ Import users, classes, roles and roles assignemnts from a csv file. :param: FILE: file dictionary with the file object :param: csvfile: filename of the file stored in kolibri temp folder :param: dryrun: validate the data but don't modify the database :param: delete: Users not in the csv will be deleted from the facility, and classes cleared :returns: An object with the job information """ def manage_fileobject(request, temp_dir): upload = UploadedFile(request.FILES["csvfile"]) # Django uses InMemoryUploadedFile for files less than 2.5Mb # and TemporaryUploadedFile for bigger files: if type(upload.file) == InMemoryUploadedFile: _, filepath = mkstemp(dir=temp_dir, suffix=".upload") with open(filepath, "w+b") as dest: filepath = dest.name for chunk in upload.file.chunks(): dest.write(chunk) else: tmpfile = upload.file.temporary_file_path() filename = ntpath.basename(tmpfile) filepath = os.path.join(temp_dir, filename) shutil.copy(tmpfile, filepath) return filepath temp_dir = os.path.join(conf.KOLIBRI_HOME, "temp") if not os.path.isdir(temp_dir): os.mkdir(temp_dir) locale = get_language_from_request(request) # the request must contain either an object file # or the filename of the csv stored in Kolibri temp folder # Validation will provide the file object, while # Importing will provide the filename, previously validated if not request.FILES: filename = request.data.get("csvfile", None) if filename: filepath = os.path.join(temp_dir, filename) else: return HttpResponseBadRequest("The request must contain a file object") else: if "csvfile" not in request.FILES: return HttpResponseBadRequest("Wrong file object") filepath = manage_fileobject(request, temp_dir) delete = request.data.get("delete", None) dryrun = request.data.get("dryrun", None) userid = request.user.pk facility_id = request.data.get("facility_id", None) job_type = "IMPORTUSERSFROMCSV" job_metadata = {"type": job_type, "started_by": userid, "facility": facility_id} job_args = ["bulkimportusers"] if dryrun: job_args.append("--dryrun") if delete: job_args.append("--delete") job_args.append(filepath) job_kwd_args = { "facility": facility_id, "userid": userid, "locale": locale, "extra_metadata": job_metadata, "track_progress": True, } job_id = priority_queue.enqueue(call_command, *job_args, **job_kwd_args) resp = _job_to_response(priority_queue.fetch_job(job_id)) return Response(resp) @decorators.action(methods=["post"], detail=False) def exportuserstocsv(self, request): """ Export users, classes, roles and roles assignemnts to a csv file. :param: facility_id :returns: An object with the job information """ facility_id = request.data.get("facility_id", None) try: if facility_id: facility = Facility.objects.get(pk=facility_id).id else: facility = request.user.facility except Facility.DoesNotExist: raise serializers.ValidationError( "Facility with ID {} does not exist".format(facility_id) ) job_type = "EXPORTUSERSTOCSV" job_metadata = { "type": job_type, "started_by": request.user.pk, "facility": facility, } locale = get_language_from_request(request) job_id = priority_queue.enqueue( call_command, "bulkexportusers", facility=facility, locale=locale, overwrite="true", extra_metadata=job_metadata, track_progress=True, ) resp = _job_to_response(priority_queue.fetch_job(job_id)) return Response(resp) @decorators.action(methods=["post"], detail=False) def startexportlogcsv(self, request): """ Dumps in csv format the required logs. By default it will be dump contentsummarylog. :param: logtype: Kind of log to dump, summary or session :param: facility :returns: An object with the job information """ facility_id = request.data.get("facility", None) if facility_id: facility = Facility.objects.get(pk=facility_id) else: facility = request.user.facility log_type = request.data.get("logtype", "summary") if log_type in CSV_EXPORT_FILENAMES.keys(): logs_dir = os.path.join(conf.KOLIBRI_HOME, "log_export") filepath = os.path.join( logs_dir, CSV_EXPORT_FILENAMES[log_type].format(facility.name, facility_id[:4]), ) else: raise Http404( "Impossible to create a csv export file for {}".format(log_type) ) if not os.path.isdir(logs_dir): os.mkdir(logs_dir) job_type = ( "EXPORTSUMMARYLOGCSV" if log_type == "summary" else "EXPORTSESSIONLOGCSV" ) job_metadata = { "type": job_type, "started_by": request.user.pk, "facility": facility.id, } job_id = priority_queue.enqueue( call_command, "exportlogs", log_type=log_type, output_file=filepath, facility=facility.id, overwrite="true", extra_metadata=job_metadata, track_progress=True, ) resp = _job_to_response(priority_queue.fetch_job(job_id)) return Response(resp) @decorators.action(methods=["post"], detail=False) def channeldiffstats(self, request): job_metadata = {} channel_id = request.data.get("channel_id") method = request.data.get("method") drive_id = request.data.get("drive_id") baseurl = request.data.get("baseurl") # request validation and job metadata info if not channel_id: raise serializers.ValidationError("The channel_id field is required.") if not method: raise serializers.ValidationError("The method field is required.") if method == "network": baseurl = baseurl or conf.OPTIONS["Urls"]["CENTRAL_CONTENT_BASE_URL"] job_metadata["baseurl"] = baseurl # get channel version metadata url = get_channel_lookup_url(baseurl=baseurl, identifier=channel_id) resp = requests.get(url) channel_metadata = resp.json() job_metadata["new_channel_version"] = channel_metadata[0]["version"] elif method == "disk": if not drive_id: raise serializers.ValidationError( "The drive_id field is required when using 'disk' method." ) job_metadata = _add_drive_info(job_metadata, request.data) # get channel version metadata drive = get_mounted_drive_by_id(drive_id) channel_metadata = read_channel_metadata_from_db_file( get_content_database_file_path(channel_id, drive.datafolder) ) job_metadata["new_channel_version"] = channel_metadata["version"] else: raise serializers.ValidationError( "'method' field should either be 'network' or 'disk'." ) job_metadata.update( { "type": "CHANNELDIFFSTATS", "started_by": request.user.pk, "channel_id": channel_id, } ) job_id = priority_queue.enqueue( diff_stats, channel_id, method, drive_id=drive_id, baseurl=baseurl, extra_metadata=job_metadata, track_progress=False, cancellable=True, ) resp = _job_to_response(priority_queue.fetch_job(job_id)) return Response(resp) class FacilityTasksViewSet(BaseViewSet): @property def queues(self): return [facility_queue] def default_permission_classes(self): if self.action in ["list", "retrieve"]: return [FacilitySyncPermissions] @decorators.action( methods=["post"], detail=False, permission_classes=[FacilitySyncPermissions] ) def startdataportalsync(self, request): """ Initiate a PUSH sync with Kolibri Data Portal. """ facility_id = validate_facility(request) sync_args = validate_sync_task(request) job_data = prepare_sync_job( facility=facility_id, extra_metadata=prepare_sync_task(*sync_args, type="SYNCDATAPORTAL"), ) job_id = facility_queue.enqueue(call_command, "sync", **job_data) resp = _job_to_response(facility_queue.fetch_job(job_id)) return Response(resp) @decorators.action(methods=["post"], detail=False, permission_classes=[IsSuperuser]) def startdataportalbulksync(self, request): """ Initiate a PUSH sync with Kolibri Data Portal for ALL registered facilities. """ responses = [] facilities = Facility.objects.filter(dataset__registered=True).values_list( "id", "name" ) for id, name in facilities: request.data.update(facility=id, facility_name=name) responses.append(self.startdataportalsync(request).data) return Response(responses) # Method needs to be available in Setup Wizard as well @decorators.action( methods=["post"], detail=False, permission_classes=[IsSuperuser | NotProvisionedCanPost], ) def startpeerfacilityimport(self, request): """ Initiate a PULL of a specific facility from another device. """ baseurl, facility_id, username, password = validate_peer_sync_job(request) validate_and_create_sync_credentials(baseurl, facility_id, username, password) sync_args = validate_sync_task(request) job_data = prepare_peer_sync_job( baseurl, facility_id, no_push=True, no_provision=True, extra_metadata=prepare_sync_task(*sync_args, type="SYNCPEER/PULL"), ) job_id = facility_queue.enqueue(call_command, "sync", **job_data) resp = _job_to_response(facility_queue.fetch_job(job_id)) return Response(resp) @decorators.action( methods=["post"], detail=False, permission_classes=[FacilitySyncPermissions] ) def startpeerfacilitysync(self, request): """ Initiate a SYNC (PULL + PUSH) of a specific facility from another device. """ baseurl, facility_id, username, password = validate_peer_sync_job(request) validate_and_create_sync_credentials(baseurl, facility_id, username, password) sync_args = validate_sync_task(request) job_data = prepare_peer_sync_job( baseurl, facility_id, extra_metadata=prepare_sync_task(*sync_args, type="SYNCPEER/FULL"), ) job_id = facility_queue.enqueue(call_command, "sync", **job_data) resp = _job_to_response(facility_queue.fetch_job(job_id)) return Response(resp) @decorators.action(methods=["post"], detail=False, permission_classes=[IsSuperuser]) def startdeletefacility(self, request): """ Initiate a task to delete a facility """ try: facility_id = request.data.get("facility") if not facility_id: raise KeyError() except KeyError: raise ParseError( dict(code="INVALID_FACILITY", message="Missing `facility` parameter") ) if not Facility.objects.filter(id=facility_id).exists(): raise ValidationError( dict(code="INVALID_FACILITY", message="Facility doesn't exist") ) if not Facility.objects.exclude(id=facility_id).exists(): raise ValidationError( dict( code="SOLE_FACILITY", message="Cannot delete the sole facility on the device", ) ) if request.user.is_facility_user and request.user.facility_id == facility_id: raise ValidationError( dict(code="FACILITY_MEMBER", message="User is member of facility") ) facility_name = Facility.objects.get(id=facility_id).name job_id = facility_queue.enqueue( call_command, "deletefacility", facility=facility_id, track_progress=True, noninteractive=True, cancellable=False, extra_metadata=dict( facility=facility_id, facility_name=facility_name, started_by=request.user.pk, started_by_username=request.user.username, type="DELETEFACILITY", ), ) resp = _job_to_response(facility_queue.fetch_job(job_id)) return Response(resp) class ResourceGoneError(APIException): """ API error for when a peer no longer is online """ status_code = status.HTTP_410_GONE default_detail = "Unable to connect" def prepare_sync_task( facility_id, user_id, username, facility_name, device_name, device_id, baseurl, **kwargs ): task_data = dict( facility=facility_id, started_by=user_id, started_by_username=username, sync_state=FacilitySyncState.PENDING, bytes_sent=0, bytes_received=0, ) task_type = kwargs.get("type") if task_type in ["SYNCPEER/PULL", "SYNCPEER/FULL"]: # Extra metadata that can be passed from the client extra_task_data = dict( facility_name=facility_name, device_name=device_name, device_id=device_id, baseurl=baseurl, ) task_data.update(extra_task_data) elif task_type == "SYNCDATAPORTAL": # Extra metadata that can be passed from the client extra_task_data = dict(facility_name=facility_name) task_data.update(extra_task_data) task_data.update(kwargs) return task_data def validate_facility(request): # ensure we have the facility try: facility_id = request.data.get("facility") if not facility_id: raise KeyError() except KeyError: raise ParseError("Missing `facility` parameter") return facility_id def validate_sync_task(request): facility_id = validate_facility(request) user_id = request.user.pk username = request.user.username facility_name = request.data.get("facility_name", "") device_name = request.data.get("device_name", "") device_id = request.data.get("device_id", "") baseurl = request.data.get("baseurl", "") return ( facility_id, user_id, username, facility_name, device_name, device_id, baseurl, ) def prepare_sync_job(**kwargs): job_data = dict( chunk_size=200, noninteractive=True, extra_metadata={}, track_progress=True, cancellable=False, ) job_data.update(kwargs) return job_data def validate_peer_sync_job(request): # validate the baseurl try: address = request.data.get("baseurl") if not address: raise KeyError() baseurl = NetworkClient(address=address).base_url except KeyError: raise ParseError("Missing `baseurl` parameter") except URLParseError: raise ParseError("Invalid URL") except NetworkLocationNotFound: raise ResourceGoneError() facility_id = validate_facility(request) username = request.data.get("username", None) password = request.data.get("password", None) return (baseurl, facility_id, username, password) def validate_and_create_sync_credentials( baseurl, facility_id, username, password, user_id=None ): """ Validates user credentials for syncing by performing certificate verification, which will also save any certificates after successful authentication :param user_id: Optional user ID for SoUD use case """ # call this in case user directly syncs without migrating database if not ScopeDefinition.objects.filter(): call_command("loaddata", "scopedefinitions") controller = MorangoProfileController(PROFILE_FACILITY_DATA) network_connection = controller.create_network_connection(baseurl) # try to get the certificate, which will save it if successful try: # make sure we get the dataset ID dataset_id = get_dataset_id( baseurl, identifier=facility_id, noninteractive=True ) # username and password are not required for this to succeed unless there is no cert get_client_and_server_certs( username, password, dataset_id, network_connection, user_id=user_id, facility_id=facility_id, noninteractive=True, ) except (CommandError, HTTPError) as e: if not username and not password: raise PermissionDenied() else: raise AuthenticationFailed(e) def prepare_peer_sync_job(baseurl, facility_id, **kwargs): """ Initializes and validates connection to peer with username and password for the sync command. If already initialized, the username and password do not need to be supplied """ return prepare_sync_job(facility=facility_id, baseurl=baseurl, **kwargs) def prepare_soud_sync_job(baseurl, facility_id, user_id, **kwargs): """ A SoUD sync requires that the device is already "registered" with the server, so there shouldn't be a need for username/password and the verification of those. This eliminates the validation to keep overhead low for automated single-user syncing. To initialize with a peer for a SoUD, use `prepare_peer_sync_job` with `user` keyword argument """ return prepare_sync_job( baseurl=baseurl, facility=facility_id, user=user_id, **kwargs ) def prepare_soud_resume_sync_job(baseurl, sync_session_id, user_id, **kwargs): """ Resuming a SoUD sync requires that a normal sync has occurred and the `SyncSession` is still active """ return prepare_sync_job(baseurl=baseurl, id=sync_session_id, user=user_id, **kwargs) def _remoteimport( channel_id, baseurl, peer_id=None, update_progress=None, check_for_cancel=None, node_ids=None, is_updating=False, exclude_node_ids=None, extra_metadata=None, ): call_command( "importchannel", "network", channel_id, baseurl=baseurl, update_progress=update_progress, check_for_cancel=check_for_cancel, ) # Make some real-time updates to the metadata job = get_current_job() # Signal to UI that the DB-downloading step is done so it knows to display # progress correctly job.update_progress(0, 1.0) job.extra_metadata["database_ready"] = True # Add the channel name if it wasn't added initially if job and job.extra_metadata.get("channel_name", "") == "": job.extra_metadata["channel_name"] = get_channel_name(channel_id) job.save_meta() call_command( "importcontent", "network", channel_id, baseurl=baseurl, peer_id=peer_id, node_ids=node_ids, exclude_node_ids=exclude_node_ids, import_updates=is_updating, update_progress=update_progress, check_for_cancel=check_for_cancel, ) def _diskimport( channel_id, directory, drive_id=None, update_progress=None, check_for_cancel=None, node_ids=None, is_updating=False, exclude_node_ids=None, extra_metadata=None, ): call_command( "importchannel", "disk", channel_id, directory, update_progress=update_progress, check_for_cancel=check_for_cancel, ) # Make some real-time updates to the metadata job = get_current_job() # Signal to UI that the DB-downloading step is done so it knows to display # progress correctly job.update_progress(0, 1.0) job.extra_metadata["database_ready"] = True # Add the channel name if it wasn't added initially if job and job.extra_metadata.get("channel_name", "") == "": job.extra_metadata["channel_name"] = get_channel_name(channel_id) job.save_meta() # Skip importcontent step if updating and no nodes have changed if is_updating and (node_ids is not None) and len(node_ids) == 0: pass else: call_command( "importcontent", "disk", channel_id, directory, drive_id=drive_id, node_ids=node_ids, exclude_node_ids=exclude_node_ids, update_progress=update_progress, check_for_cancel=check_for_cancel, ) def _localexport( channel_id, drive_id, update_progress=None, check_for_cancel=None, node_ids=None, exclude_node_ids=None, extra_metadata=None, ): drive = get_mounted_drive_by_id(drive_id) call_command( "exportchannel", channel_id, drive.datafolder, update_progress=update_progress, check_for_cancel=check_for_cancel, ) try: call_command( "exportcontent", channel_id, drive.datafolder, node_ids=node_ids, exclude_node_ids=exclude_node_ids, update_progress=update_progress, check_for_cancel=check_for_cancel, ) except UserCancelledError: try: os.remove( get_content_database_file_path(channel_id, datafolder=drive.datafolder) ) except OSError: pass raise def _job_to_response(job): if not job: return { "type": None, "started_by": None, "status": State.SCHEDULED, "percentage": 0, "progress": [], "id": None, "cancellable": False, "clearable": False, } output = { "status": job.state, "exception": str(job.exception), "traceback": str(job.traceback), "percentage": job.percentage_progress, "id": job.job_id, "cancellable": job.cancellable, "clearable": job.state in [State.FAILED, State.CANCELED, State.COMPLETED], } output.update(job.extra_metadata) return output
33.615066
100
0.632985
ede987a47b1789a599cfaa7e3ad1e65412ed3d95
11,967
py
Python
app/main/routes.py
justinsitarz/flask-toolio
f1ab22b2f9469a439af1c8436a378923a8c782ee
[ "MIT" ]
null
null
null
app/main/routes.py
justinsitarz/flask-toolio
f1ab22b2f9469a439af1c8436a378923a8c782ee
[ "MIT" ]
null
null
null
app/main/routes.py
justinsitarz/flask-toolio
f1ab22b2f9469a439af1c8436a378923a8c782ee
[ "MIT" ]
null
null
null
from datetime import datetime from flask import render_template, flash, redirect, url_for, request, g, \ jsonify, current_app from flask_login import current_user, login_required from flask_babel import _, get_locale from guess_language import guess_language from app import db from app.main.forms import EditProfileForm, EmptyForm, PostForm, SearchForm, \ MessageForm, AddToolForm, EditToolForm from app.models import User, Post, Message, Notification, Tool from app.translate import translate from app.main import bp import os import boto3, botocore from werkzeug.utils import secure_filename import uuid @bp.before_app_request def before_request(): if current_user.is_authenticated: current_user.last_seen = datetime.utcnow() db.session.commit() g.search_form = SearchForm() g.locale = str(get_locale()) @bp.route('/', methods=['GET', 'POST']) @bp.route('/index', methods=['GET', 'POST']) @login_required def index(): form = PostForm() if form.validate_on_submit(): language = guess_language(form.post.data) if language == 'UNKNOWN' or len(language) > 5: language = '' post = Post(body=form.post.data, author=current_user, language=language) db.session.add(post) db.session.commit() flash(_('Your post is now live!')) return redirect(url_for('main.index')) page = request.args.get('page', 1, type=int) posts = current_user.followed_posts().paginate( page, current_app.config['POSTS_PER_PAGE'], False) next_url = url_for('main.index', page=posts.next_num) \ if posts.has_next else None prev_url = url_for('main.index', page=posts.prev_num) \ if posts.has_prev else None return render_template('index.html', title=_('Home'), form=form, posts=posts.items, next_url=next_url, prev_url=prev_url) @bp.route('/explore') @login_required def explore(): page = request.args.get('page', 1, type=int) tools = Tool.query.filter(Tool.user_id != current_user.id).order_by(Tool.timestamp.desc()).paginate( page, current_app.config['POSTS_PER_PAGE'], False) print(tools.items) next_url = url_for('main.explore', page=tools.next_num) \ if tools.has_next else None prev_url = url_for('main.explore', page=tools.prev_num) \ if tools.has_prev else None return render_template('explore.html', title=_('Explore'), tools=tools.items, next_url=next_url, prev_url=prev_url) @bp.route('/user/<username>') @login_required def user(username): user = User.query.filter_by(username=username).first_or_404() page = request.args.get('page', 1, type=int) posts = user.posts.order_by(Post.timestamp.desc()).paginate( page, current_app.config['POSTS_PER_PAGE'], False) next_url = url_for('main.user', username=user.username, page=posts.next_num) if posts.has_next else None prev_url = url_for('main.user', username=user.username, page=posts.prev_num) if posts.has_prev else None form = EmptyForm() return render_template('user.html', user=user, posts=posts.items, next_url=next_url, prev_url=prev_url, form=form) @bp.route('/user/<username>/popup') @login_required def user_popup(username): user = User.query.filter_by(username=username).first_or_404() form = EmptyForm() return render_template('user_popup.html', user=user, form=form) @bp.route('/tool/<int:tool_id>/popup') @login_required def tool_popup(tool_id): tool = Tool.query.get_or_404(tool_id) form = EmptyForm() return render_template('tool_popup.html', tool=tool, form=form) @bp.route('/edit_profile', methods=['GET', 'POST']) @login_required def edit_profile(): form = EditProfileForm(current_user.username) if form.validate_on_submit(): current_user.username = form.username.data current_user.about_me = form.about_me.data db.session.commit() flash(_('Your changes have been saved.')) return redirect(url_for('main.edit_profile')) elif request.method == 'GET': form.username.data = current_user.username form.about_me.data = current_user.about_me return render_template('edit_profile.html', title=_('Edit Profile'), form=form) @bp.route('/add_tool', methods=['GET', 'POST']) @login_required def add_tool(): form = AddToolForm() if form.validate_on_submit(): f = form.image.data url = upload_file(f) tool = Tool(name=form.name.data, owner=current_user, description=form.description.data, image_path=url) db.session.add(tool) db.session.commit() flash(_('Your tool has been listed!')) return redirect(url_for('main.tools')) return render_template('add_tool.html', title='Add a tool', form=form) def upload_file(file): if file: file.filename = str(uuid.uuid1()) print(file.filename) output = upload_file_to_s3(file, current_app.config["S3_BUCKET"]) return str(output) else: return redirect("/tools") def upload_file_to_s3(file, bucket_name, acl="public-read"): s3 = boto3.client("s3", aws_access_key_id=current_app.config['S3_KEY'], aws_secret_access_key=current_app.config['S3_SECRET']) try: s3.upload_fileobj(file, bucket_name, file.filename, ExtraArgs={"ACL": acl, "ContentType": file.content_type}) except Exception as e: print("Something Happened: ", e) return e return "{}{}".format(current_app.config["S3_LOCATION"], file.filename) @bp.route('/tool/delete/<int:tool_id>', methods=['POST']) @login_required def delete_tool(tool_id): tool = Tool.query.get_or_404(tool_id) db.session.delete(tool) db.session.commit() flash('Item deleted.') return redirect(url_for('main.tools')) @bp.route('/edit_tool', methods=['GET', 'POST']) @login_required def edit_tool(): tool_id = 1 tool = Tool.query.filter_by(id=tool_id).first() form = EditToolForm() if form.validate_on_submit(): f = form.image.data url = upload_file(f) tool.name = form.name.data tool.description = form.description.data tool.image_path = url db.session.commit() flash(_('Your changes have been saved.')) return redirect(url_for('main.tools')) elif request.method == 'GET': form.name.data = tool.name form.description.data = tool.description return render_template('edit_tool.html', title=_('Edit Tool'), form=form) @bp.route('/follow/<username>', methods=['POST']) @login_required def follow(username): form = EmptyForm() if form.validate_on_submit(): user = User.query.filter_by(username=username).first() if user is None: flash(_('User %(username)s not found.', username=username)) return redirect(url_for('main.index')) if user == current_user: flash(_('You cannot follow yourself!')) return redirect(url_for('main.user', username=username)) current_user.follow(user) db.session.commit() flash(_('You are following %(username)s!', username=username)) return redirect(url_for('main.user', username=username)) else: return redirect(url_for('main.index')) @bp.route('/unfollow/<username>', methods=['POST']) @login_required def unfollow(username): form = EmptyForm() if form.validate_on_submit(): user = User.query.filter_by(username=username).first() if user is None: flash(_('User %(username)s not found.', username=username)) return redirect(url_for('main.index')) if user == current_user: flash(_('You cannot unfollow yourself!')) return redirect(url_for('main.user', username=username)) current_user.unfollow(user) db.session.commit() flash(_('You are not following %(username)s.', username=username)) return redirect(url_for('main.user', username=username)) else: return redirect(url_for('main.index')) @bp.route('/translate', methods=['POST']) @login_required def translate_text(): return jsonify({'text': translate(request.form['text'], request.form['source_language'], request.form['dest_language'])}) @bp.route('/search') @login_required def search(): if not g.search_form.validate(): return redirect(url_for('main.explore')) page = request.args.get('page', 1, type=int) posts, total = Post.search(g.search_form.q.data, page, current_app.config['POSTS_PER_PAGE']) next_url = url_for('main.search', q=g.search_form.q.data, page=page + 1) \ if total > page * current_app.config['POSTS_PER_PAGE'] else None prev_url = url_for('main.search', q=g.search_form.q.data, page=page - 1) \ if page > 1 else None return render_template('search.html', title=_('Search'), posts=posts, next_url=next_url, prev_url=prev_url) @bp.route('/send_message/<recipient>', methods=['GET', 'POST']) @login_required def send_message(recipient): user = User.query.filter_by(username=recipient).first_or_404() form = MessageForm() if form.validate_on_submit(): msg = Message(author=current_user, recipient=user, body=form.message.data) db.session.add(msg) user.add_notification('unread_message_count', user.new_messages()) db.session.commit() flash(_('Your message has been sent.')) return redirect(url_for('main.user', username=recipient)) return render_template('send_message.html', title=_('Send Message'), form=form, recipient=recipient) @bp.route('/tools') @login_required def tools(): # Retrieve tools owned by user tools = Tool.query.filter_by(user_id=current_user.id) return render_template('tools.html', title='Stuff', user=user, tools=tools) @bp.route('/tool/<int:tool_id>', methods=['GET']) @login_required def tool(tool_id): tool = Tool.query.get_or_404(tool_id) return render_template('tool.html', tool=tool) @bp.route('/messages') @login_required def messages(): current_user.last_message_read_time = datetime.utcnow() current_user.add_notification('unread_message_count', 0) db.session.commit() page = request.args.get('page', 1, type=int) messages = current_user.messages_received.order_by( Message.timestamp.desc()).paginate( page, current_app.config['POSTS_PER_PAGE'], False) next_url = url_for('main.messages', page=messages.next_num) \ if messages.has_next else None prev_url = url_for('main.messages', page=messages.prev_num) \ if messages.has_prev else None return render_template('messages.html', messages=messages.items, next_url=next_url, prev_url=prev_url) @bp.route('/export_posts') @login_required def export_posts(): if current_user.get_task_in_progress('export_posts'): flash(_('An export task is currently in progress')) else: current_user.launch_task('export_posts', _('Exporting posts...')) db.session.commit() return redirect(url_for('main.user', username=current_user.username)) @bp.route('/notifications') @login_required def notifications(): since = request.args.get('since', 0.0, type=float) notifications = current_user.notifications.filter( Notification.timestamp > since).order_by(Notification.timestamp.asc()) return jsonify([{ 'name': n.name, 'data': n.get_data(), 'timestamp': n.timestamp } for n in notifications])
37.280374
104
0.654634
712787511adc3f3962be4c81c2d358cf40213f2d
34,796
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2017_03_01/aio/operations_async/_public_ip_addresses_operations_async.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
2
2019-05-17T21:24:53.000Z
2020-02-12T11:13:42.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2017_03_01/aio/operations_async/_public_ip_addresses_operations_async.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
15
2019-07-12T18:18:04.000Z
2019-07-25T20:55:51.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2017_03_01/aio/operations_async/_public_ip_addresses_operations_async.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
2
2020-05-21T22:51:22.000Z
2020-05-26T20:53:01.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class PublicIPAddressesOperations: """PublicIPAddressesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2017_03_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, public_ip_address_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2017-03-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'publicIpAddressName': self._serialize.url("public_ip_address_name", public_ip_address_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] # Construct and send request request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/publicIPAddresses/{publicIpAddressName}'} # type: ignore async def begin_delete( self, resource_group_name: str, public_ip_address_name: str, **kwargs ) -> None: """Deletes the specified public IP address. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param public_ip_address_name: The name of the subnet. :type public_ip_address_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: None, or the result of cls(response) :rtype: None :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, public_ip_address_name=public_ip_address_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/publicIPAddresses/{publicIpAddressName}'} # type: ignore async def get( self, resource_group_name: str, public_ip_address_name: str, expand: Optional[str] = None, **kwargs ) -> "models.PublicIPAddress": """Gets the specified public IP address in a specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param public_ip_address_name: The name of the subnet. :type public_ip_address_name: str :param expand: Expands referenced resources. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: PublicIPAddress, or the result of cls(response) :rtype: ~azure.mgmt.network.v2017_03_01.models.PublicIPAddress :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.PublicIPAddress"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2017-03-01" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'publicIpAddressName': self._serialize.url("public_ip_address_name", public_ip_address_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('PublicIPAddress', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/publicIPAddresses/{publicIpAddressName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, public_ip_address_name: str, parameters: "models.PublicIPAddress", **kwargs ) -> "models.PublicIPAddress": cls = kwargs.pop('cls', None) # type: ClsType["models.PublicIPAddress"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2017-03-01" content_type = kwargs.pop("content_type", "application/json") # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'publicIpAddressName': self._serialize.url("public_ip_address_name", public_ip_address_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = 'application/json' # Construct and send request body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'PublicIPAddress') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('PublicIPAddress', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('PublicIPAddress', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/publicIPAddresses/{publicIpAddressName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, public_ip_address_name: str, parameters: "models.PublicIPAddress", **kwargs ) -> "models.PublicIPAddress": """Creates or updates a static or dynamic public IP address. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param public_ip_address_name: The name of the public IP address. :type public_ip_address_name: str :param parameters: Parameters supplied to the create or update public IP address operation. :type parameters: ~azure.mgmt.network.v2017_03_01.models.PublicIPAddress :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: PublicIPAddress, or the result of cls(response) :rtype: ~azure.mgmt.network.v2017_03_01.models.PublicIPAddress :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.PublicIPAddress"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, public_ip_address_name=public_ip_address_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('PublicIPAddress', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/publicIPAddresses/{publicIpAddressName}'} # type: ignore def list_all( self, **kwargs ) -> AsyncIterable["models.PublicIPAddressListResult"]: """Gets all the public IP addresses in a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either PublicIPAddressListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2017_03_01.models.PublicIPAddressListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.PublicIPAddressListResult"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2017-03-01" def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list_all.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') else: url = next_link query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('PublicIPAddressListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_all.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/publicIPAddresses'} # type: ignore def list( self, resource_group_name: str, **kwargs ) -> AsyncIterable["models.PublicIPAddressListResult"]: """Gets all public IP addresses in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either PublicIPAddressListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2017_03_01.models.PublicIPAddressListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.PublicIPAddressListResult"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2017-03-01" def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') else: url = next_link query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('PublicIPAddressListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/publicIPAddresses'} # type: ignore def list_virtual_machine_scale_set_public_ip_addresses( self, resource_group_name: str, virtual_machine_scale_set_name: str, **kwargs ) -> AsyncIterable["models.PublicIPAddressListResult"]: """Gets information about all public IP addresses on a virtual machine scale set level. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_machine_scale_set_name: The name of the virtual machine scale set. :type virtual_machine_scale_set_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either PublicIPAddressListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2017_03_01.models.PublicIPAddressListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.PublicIPAddressListResult"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2017-03-30" def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list_virtual_machine_scale_set_public_ip_addresses.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualMachineScaleSetName': self._serialize.url("virtual_machine_scale_set_name", virtual_machine_scale_set_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') else: url = next_link query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('PublicIPAddressListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_virtual_machine_scale_set_public_ip_addresses.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/virtualMachineScaleSets/{virtualMachineScaleSetName}/publicipaddresses'} # type: ignore def list_virtual_machine_scale_set_vm_public_ip_addresses( self, resource_group_name: str, virtual_machine_scale_set_name: str, virtualmachine_index: str, network_interface_name: str, ip_configuration_name: str, **kwargs ) -> AsyncIterable["models.PublicIPAddressListResult"]: """Gets information about all public IP addresses in a virtual machine IP configuration in a virtual machine scale set. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_machine_scale_set_name: The name of the virtual machine scale set. :type virtual_machine_scale_set_name: str :param virtualmachine_index: The virtual machine index. :type virtualmachine_index: str :param network_interface_name: The network interface name. :type network_interface_name: str :param ip_configuration_name: The IP configuration name. :type ip_configuration_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either PublicIPAddressListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2017_03_01.models.PublicIPAddressListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.PublicIPAddressListResult"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2017-03-30" def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list_virtual_machine_scale_set_vm_public_ip_addresses.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualMachineScaleSetName': self._serialize.url("virtual_machine_scale_set_name", virtual_machine_scale_set_name, 'str'), 'virtualmachineIndex': self._serialize.url("virtualmachine_index", virtualmachine_index, 'str'), 'networkInterfaceName': self._serialize.url("network_interface_name", network_interface_name, 'str'), 'ipConfigurationName': self._serialize.url("ip_configuration_name", ip_configuration_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') else: url = next_link query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('PublicIPAddressListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_virtual_machine_scale_set_vm_public_ip_addresses.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/virtualMachineScaleSets/{virtualMachineScaleSetName}/virtualMachines/{virtualmachineIndex}/networkInterfaces/{networkInterfaceName}/ipconfigurations/{ipConfigurationName}/publicipaddresses'} # type: ignore async def get_virtual_machine_scale_set_public_ip_address( self, resource_group_name: str, virtual_machine_scale_set_name: str, virtualmachine_index: str, network_interface_name: str, ip_configuration_name: str, public_ip_address_name: str, expand: Optional[str] = None, **kwargs ) -> "models.PublicIPAddress": """Get the specified public IP address in a virtual machine scale set. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_machine_scale_set_name: The name of the virtual machine scale set. :type virtual_machine_scale_set_name: str :param virtualmachine_index: The virtual machine index. :type virtualmachine_index: str :param network_interface_name: The name of the network interface. :type network_interface_name: str :param ip_configuration_name: The name of the IP configuration. :type ip_configuration_name: str :param public_ip_address_name: The name of the public IP Address. :type public_ip_address_name: str :param expand: Expands referenced resources. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: PublicIPAddress, or the result of cls(response) :rtype: ~azure.mgmt.network.v2017_03_01.models.PublicIPAddress :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.PublicIPAddress"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2017-03-30" # Construct URL url = self.get_virtual_machine_scale_set_public_ip_address.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualMachineScaleSetName': self._serialize.url("virtual_machine_scale_set_name", virtual_machine_scale_set_name, 'str'), 'virtualmachineIndex': self._serialize.url("virtualmachine_index", virtualmachine_index, 'str'), 'networkInterfaceName': self._serialize.url("network_interface_name", network_interface_name, 'str'), 'ipConfigurationName': self._serialize.url("ip_configuration_name", ip_configuration_name, 'str'), 'publicIpAddressName': self._serialize.url("public_ip_address_name", public_ip_address_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('PublicIPAddress', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_virtual_machine_scale_set_public_ip_address.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/virtualMachineScaleSets/{virtualMachineScaleSetName}/virtualMachines/{virtualmachineIndex}/networkInterfaces/{networkInterfaceName}/ipconfigurations/{ipConfigurationName}/publicipaddresses/{publicIpAddressName}'} # type: ignore
50.502177
395
0.673238
2fac46f82daec4abf9e2e66bfb2e5d95e78a4510
3,564
py
Python
download_mid_from_csv.py
gu-ma/Neural-Metal
b0ae8d41c924a33fe5946713f570525d5bfcd59d
[ "MIT" ]
null
null
null
download_mid_from_csv.py
gu-ma/Neural-Metal
b0ae8d41c924a33fe5946713f570525d5bfcd59d
[ "MIT" ]
null
null
null
download_mid_from_csv.py
gu-ma/Neural-Metal
b0ae8d41c924a33fe5946713f570525d5bfcd59d
[ "MIT" ]
null
null
null
# Download files from a CSV scrapping import os import sys import csv import urllib.request import urllib.parse import urllib.error import plistlib import xattr import re from time import sleep def parse_csv(file_name): tracks_list = open(file_name, "r") return csv.reader(tracks_list) def write_xattr_tags(file_path, tags): bpl_tags = plistlib.writePlistToString(tags) optional_tag = "com.apple.metadata:" map(lambda a: xattr.setxattr(file_path, optional_tag + a, bpl_tags), ["kMDItemFinderComment", "_kMDItemUserTags", "kMDItemOMUserTags"]) def create_path(path): if not os.path.isdir(path): os.makedirs(path) def save_midi_files(output_folder_fp, csv_fp, start='', end='', sleep_duration=.2): csv_reader = parse_csv(csv_fp) header = next(csv_reader) print(header) # change headers here depending on the CSV format # template for "midimelody_ru.csv" if "midimelody_ru.csv" in csv_fp: alphabet_index = header.index("alphabet") artist_index = header.index("artist") track_index = header.index("midi_files") url_index = header.index("midi_files_href") # template for "ninsheet.csv" elif "ninsheet.csv" in csv_fp: serie_index = header.index("series") title_index = header.index("title") url_index = header.index("mid-href") for index, row in enumerate(csv_reader): if index < end and index > start: # template for "midimelody_ru.csv" if "midimelody_ru.csv" in csv_fp: alphabet = row[alphabet_index] artist = row[artist_index] track = row[track_index] url = row[url_index] artist_path = os.path.join(output_folder_fp, alphabet, artist) song_path = os.path.join(artist_path, track) label = "x" if not os.path.isfile(song_path) and url: create_path(artist_path) urllib.request.urlretrieve(url, song_path) label = "+" print(label + " " + str(index) + "\t" + alphabet + "\t" + artist + "\t" + track) # template for "ninsheet.csv" elif "ninsheet.csv" in csv_fp: serie = row[serie_index] title = row[title_index] url = row[url_index] artist_path = os.path.join( output_folder_fp, re.sub('[^A-Za-z0-9]+', ' ', serie)) song_path = os.path.join(artist_path, re.sub( '[^A-Za-z0-9]+', ' ', title) + ".mid") label = "x" if not os.path.isfile(song_path) and url: create_path(artist_path) urllib.request.urlretrieve(url, song_path) label = "+" print(label + " " + str(index) + "\t" + serie + "\t" + title) # TBD # # tag_list1 = ['Rap', 'Yo'] # write_xattr_tags(song_path, tag_list1) # plistlib.writePlist(tag_list1, song_path) # # with open(song_path, 'rb') as fp: # pl = plistlib.readPlist(fp) # print(pl) # pl.append('Blue') # plistlib.writePlist(pl, song_path) sleep(sleep_duration) def main(): script, csv_fp, output_folder_fp = sys.argv save_midi_files(output_folder_fp, csv_fp, 0, 4000, .1) if __name__ == '__main__': sys.exit(main())
33.308411
83
0.565376
178bf55f04e7d0179f642648109ab02296d64292
589
py
Python
Binarization/Binarization_avgIntensity.py
PRAkTIKal24/CV
7cc2cce95283c32730a0a3976980efd89ef91085
[ "MIT" ]
null
null
null
Binarization/Binarization_avgIntensity.py
PRAkTIKal24/CV
7cc2cce95283c32730a0a3976980efd89ef91085
[ "MIT" ]
null
null
null
Binarization/Binarization_avgIntensity.py
PRAkTIKal24/CV
7cc2cce95283c32730a0a3976980efd89ef91085
[ "MIT" ]
null
null
null
import cv2 import numpy as np from matplotlib import pyplot as plt I = cv2.imread('hwf.jpeg') cv2.namedWindow('hwf',cv2.WINDOW_AUTOSIZE) cv2.imshow('',I) cv2.waitKey(0) r, c, cl = I.shape Sum = 0 for i in range(r): for j in range(c): Sum += ((I[i,j,1]+I[i,j,2]+I[i,j,0])**2) #Finding mean of all pixel intensities and setting it as the threshold T_avg = np.log(((Sum)/(r*c*cl))**0.5) for i in range(r): for j in range(c): if ((I[i,j,1]+I[i,j,2]+I[i,j,0])>T_avg): I[i,j] = 0 else: I[i,j] = 255 cv2.namedWindow('hw0',cv2.WINDOW_AUTOSIZE) cv2.imshow('',I) cv2.waitKey(0)
21.035714
70
0.631579
099673bc3bbd846f4c0ad9148601d6780292c1d0
403
py
Python
monzo_to_ynab/wsgi.py
Ben-Hampson/monzo_to_ynab
44e4e6fb48133d006b73540205b7768c4fca47d3
[ "MIT" ]
null
null
null
monzo_to_ynab/wsgi.py
Ben-Hampson/monzo_to_ynab
44e4e6fb48133d006b73540205b7768c4fca47d3
[ "MIT" ]
null
null
null
monzo_to_ynab/wsgi.py
Ben-Hampson/monzo_to_ynab
44e4e6fb48133d006b73540205b7768c4fca47d3
[ "MIT" ]
null
null
null
""" WSGI config for monzo_to_ynab project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'monzo_to_ynab.settings') application = get_wsgi_application()
23.705882
78
0.791563
f7194df8986a3f798477abbd22f0e92a006cfa20
967
py
Python
valid-sudoku/valid-sudoku.py
Atri10/Leet-code---Atri_Patel
49fc59b9147a44ab04a66128fbb2ef259b5f7b7c
[ "MIT" ]
1
2021-10-10T20:21:18.000Z
2021-10-10T20:21:18.000Z
valid-sudoku/valid-sudoku.py
Atri10/Leet-code---Atri_Patel
49fc59b9147a44ab04a66128fbb2ef259b5f7b7c
[ "MIT" ]
null
null
null
valid-sudoku/valid-sudoku.py
Atri10/Leet-code---Atri_Patel
49fc59b9147a44ab04a66128fbb2ef259b5f7b7c
[ "MIT" ]
null
null
null
class Solution: def isValidSudoku(self, board: List[List[str]]) -> bool: BZip = list(zip(*board)) def Checkline(li): temp = [i for i in li if i!="."] return len(set(temp))==len(temp) def check_row(board): for i in board: if not Checkline(i):return False return True def check_col(board): for i in BZip: if not Checkline(i):return False return True def square(board): for i in range(0,9,3): for j in range(0,9,3): sqr = [board[x][y] for x in range(i,i+3) for y in range(j,j+3)] if not Checkline(sqr):return False return True def checkmat(): return (check_row(board) and check_col(board) and square(board)) return checkmat()
31.193548
83
0.458118
3b859f50d54f28879ae73a8835b483b3e63c7152
1,134
py
Python
rasa_nlu_gao/models/lenet.py
1073521013/rasa_nlu_gq
6c8bea1b14390246b39770abc544986f4c7acf26
[ "Apache-2.0" ]
298
2018-10-10T04:15:45.000Z
2022-03-23T12:03:41.000Z
rasa_nlu_gao/models/lenet.py
1073521013/rasa_nlu_gq
6c8bea1b14390246b39770abc544986f4c7acf26
[ "Apache-2.0" ]
40
2019-01-28T07:04:52.000Z
2022-02-10T00:30:06.000Z
rasa_nlu_gao/models/lenet.py
1073521013/rasa_nlu_gq
6c8bea1b14390246b39770abc544986f4c7acf26
[ "Apache-2.0" ]
107
2018-11-28T05:54:54.000Z
2022-03-31T09:34:05.000Z
from __future__ import division, print_function, absolute_import import numpy as np import tensorflow as tf # Build a convolutional neural network def conv_net(x, n_classes, num_layers, layer_size, C2, dropout, is_training): # Define a scope for reusing the variables with tf.variable_scope('ConvNet'): # Flatten the data to a 1-D vector for the fully connected layer x = tf.contrib.layers.flatten(x) reg = tf.contrib.layers.l2_regularizer(C2) name = 'dense' for i in range(num_layers): x = tf.layers.dense(inputs=x, units=layer_size[i], activation=tf.nn.relu, kernel_regularizer=reg, name='hidden_layer_{}_{}'.format(name, i)) x = tf.layers.dropout(x, rate=dropout, training=is_training) out = tf.layers.dense(inputs=x, units=n_classes, kernel_regularizer=reg, name='dense_layer_{}'.format(name)) return out
42
78
0.554674
e879fb672c74f7dea3595024bf8e4606e4bc7fb5
317
py
Python
xamin/xamin/__init__.py
michaelmunje/Xamin-Python-Interface
d88ae596a32ec956beac045ec04c89a4ad8b5330
[ "MIT" ]
null
null
null
xamin/xamin/__init__.py
michaelmunje/Xamin-Python-Interface
d88ae596a32ec956beac045ec04c89a4ad8b5330
[ "MIT" ]
null
null
null
xamin/xamin/__init__.py
michaelmunje/Xamin-Python-Interface
d88ae596a32ec956beac045ec04c89a4ad8b5330
[ "MIT" ]
null
null
null
from .get_all_names import get_all_names from .get_all import get_all_tables as get_all_raw from .get import run_table_query from .helpers import get_inline_script_output from .helpers import get_script_output from .install import install from .get_downloads import download_tables, multi_core_download, mc_gz_to_csv
39.625
77
0.870662
c9e50e9a0437a27c0467e5cea272cc29b2fef2ce
2,445
py
Python
tools/ftp/spider_ftp.py
ChristophBerg/pgweb
bf6e7a81c0a5f329ffd2f7b3e50c4c7c68735ffc
[ "PostgreSQL" ]
1
2020-12-03T21:52:50.000Z
2020-12-03T21:52:50.000Z
tools/ftp/spider_ftp.py
ChristophBerg/pgweb
bf6e7a81c0a5f329ffd2f7b3e50c4c7c68735ffc
[ "PostgreSQL" ]
null
null
null
tools/ftp/spider_ftp.py
ChristophBerg/pgweb
bf6e7a81c0a5f329ffd2f7b3e50c4c7c68735ffc
[ "PostgreSQL" ]
null
null
null
#!/usr/bin/python # # spider_ftp.py - spider the ftp site and generate an output file with all # the metadata we require, that can be transferred over to # the master web server. # import sys import os from datetime import datetime import cPickle as pickle import codecs import urllib2 # Directories, specified from the root of the ftp tree and down, that # will be recursively excluded from the pickle. exclude_roots = ['/repos', ] allnodes = {} def read_file(fn): f = codecs.open(fn, 'r', encoding='utf-8', errors='replace') t = f.read() f.close() return t def parse_directory(dirname, rootlen): mynode = {} for f in os.listdir(dirname): if f.startswith(".") and not f == ".message": continue if f == "sync_timestamp": continue fn = os.path.join(dirname, f) if os.path.isdir(fn): # Can be a directory itself, or a symbolic link to a directory if os.path.islink(fn): # This is a symbolic link mynode[f] = { 't': 'l', 'd': os.readlink(fn), } else: # This is a subdirectory, recurse into it, unless it happens # to be on our exclude list. if not fn[rootlen:] in exclude_roots: parse_directory(fn, rootlen) mynode[f] = { 't': 'd', } else: # This a file stat = os.stat(fn) mynode[f] = { 't': 'f', 's': stat.st_size, 'd': datetime.fromtimestamp(stat.st_mtime), } if f == "README" or f == "CURRENT_MAINTAINER" or f == ".message": mynode[f]['c'] = read_file(fn) allnodes[dirname[rootlen:].strip("/")] = mynode def Usage(): print "Usage: spider_ftp.py <ftp_root> <pickle_file>" print "" print "If <pickle_file> starts with http[s]://, the file will be uploaded" print "to that URL instead of written to the filesystem." sys.exit(1) if len(sys.argv) != 3: Usage() parse_directory(sys.argv[1], len(sys.argv[1])) if sys.argv[2].startswith("http://") or sys.argv[2].startswith("https://"): o = urllib2.build_opener(urllib2.HTTPHandler) r = urllib2.Request(sys.argv[2], data=pickle.dumps(allnodes)) r.add_header('Content-type', 'application/octet-stream') r.add_header('Host', 'www.postgresql.org') r.get_method = lambda: 'PUT' u = o.open(r) x = u.read() if x != "NOT CHANGED" and x != "OK": print "Failed to upload: %s" % x sys.exit(1) else: f = open(sys.argv[2] + ".tmp", "wb") pickle.dump(allnodes, f) f.close() os.rename(sys.argv[2] + ".tmp", sys.argv[2]) #pprint(allnodes)
26.290323
75
0.641309
f50acf7b1a4b6e69601329c546719420984c4c70
2,503
py
Python
modules/basic.py
eieio/pyy
dface9d5c8914bb74ef1ee4df112269b65e62bec
[ "Apache-2.0" ]
null
null
null
modules/basic.py
eieio/pyy
dface9d5c8914bb74ef1ee4df112269b65e62bec
[ "Apache-2.0" ]
1
2020-09-29T22:20:49.000Z
2020-09-29T22:20:49.000Z
modules/basic.py
eieio/pyy
dface9d5c8914bb74ef1ee4df112269b65e62bec
[ "Apache-2.0" ]
null
null
null
''' basic.py Basic module Copyright 2008 Corey Tabaka Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from irclib import * from admin import trusted from bot import BotCommandHandler import re, sys @BotCommandHandler('modules') @trusted def _modules(context): '''Lists the loaded modules''' context.reply('Modules loaded: %s' % ', '.join(sorted(context.proc.modules.keys()))) @BotCommandHandler('load') @trusted('admin') def _load(context): '''Usage: load <module name>\nAttempts to load the named module''' module = (context.args or '').strip() try: if module not in context.proc.modules: context.proc.loadModule(module) context.reply("Loaded module '%s' successfully" % module) else: context.reply("Module '%s' already loaded" % module) except: context.reply("Error loading module '%s': %s" % (module, str(sys.exc_value))) @BotCommandHandler('do') @trusted def _do(context): '''Usage: do [@(nick | channel)] <message>\nDirects the given message at nick or channel as a CTCP action''' m = re.match('(?:@(#{0,2}[^\s]+)\s+)?(.*)', context.args) if m: where, what = m.groups() if where: context.proc.action(where, what) else: context.proc.action(context.replyto(), what) else: context.reply("I do not understand '%s'" % context.args) @BotCommandHandler('say') @trusted def _say(context): '''Usage: say [@(nick | channel)] <message>\nDirects the given message at nick or channel''' m = re.match('(?:@(#{0,2}[^\s]+)\s+)?(.*)', context.args) if m: where, what = m.groups() if where: context.proc.privmsg(where, what) else: context.proc.privmsg(context.replyto(), what) else: context.reply("I do not understand '%s'" % context.args) @BotCommandHandler('server') @trusted('admin') def _server(context): '''Usage: server <IRC protocol string>\nSends the given raw protocol string to the server''' context.proc._socket.sendall(context.args + '\r\n')
31.683544
110
0.674391
6886740f5f89338575a8fca451eac138d0005385
5,502
py
Python
examples/id_pools_vmac_ranges.py
doziya/hpeOneView
ef9bee2a0e1529e93bd6e8d84eff07fb8533049d
[ "MIT" ]
107
2015-02-16T12:40:36.000Z
2022-03-09T05:27:58.000Z
examples/id_pools_vmac_ranges.py
doziya/hpeOneView
ef9bee2a0e1529e93bd6e8d84eff07fb8533049d
[ "MIT" ]
148
2015-03-17T16:09:39.000Z
2020-02-09T16:28:06.000Z
examples/id_pools_vmac_ranges.py
doziya/hpeOneView
ef9bee2a0e1529e93bd6e8d84eff07fb8533049d
[ "MIT" ]
80
2015-01-03T22:58:53.000Z
2021-04-16T11:37:03.000Z
# -*- coding: utf-8 -*- ### # (C) Copyright (2012-2017) Hewlett Packard Enterprise Development LP # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ### from pprint import pprint from hpOneView.oneview_client import OneViewClient from hpOneView.exceptions import HPOneViewException from config_loader import try_load_from_file config = { "ip": "", "credentials": { "userName": "administrator", "password": "" } } # Try load config from a file (if there is a config file) config = try_load_from_file(config) oneview_client = OneViewClient(config) options = { "type": "Range", "startAddress": "E2:13:C5:F0:00:00", "endAddress": "E2:13:C5:FF:FF:FF", "rangeCategory": "Custom" } options_additional = { "type": "Range", "name": None, "prefix": None, "enabled": True, "rangeCategory": "Generated", "startAddress": "E2:13:C5:F0:00:00", "endAddress": "E2:13:C5:FF:FF:FF", "totalCount": 1048575, "freeIdCount": 1048575, "allocatedIdCount": 0, "allocatorUri": "/rest/id-pools/vmac/ranges/5613a502-9253-45c6-aa78-a83635241cf8/allocator", "collectorUri": "/rest/id-pools/vmac/ranges/5613a502-9253-45c6-aa78-a83635241cf8/collector", "reservedIdCount": 0, "freeFragmentUri": "/rest/id-pools/vmac/ranges/5613a502-9253-45c6-aa78-a83635241cf8/free-fragments?start=0&count=-1", "allocatedFragmentUri": "/rest/id-pools/vmac/ranges/5613a502-9253-45c6-aa78-a83635241cf8/allocated-fragments?start=0&count=-1", "uri": "/rest/id-pools/vmac/ranges/5613a502-9253-45c6-aa78-a83635241cf8", "category": "id-range-VMAC", "eTag": None, "created": "2013-03-20 01:29:10.570", "modified": "2013-03-20 01:29:10.570" } # Create vmac Range for id pools vmac_range = oneview_client.id_pools_vmac_ranges.create(options) pprint(vmac_range) # Get vmac range by uri vmac_range_byuri = oneview_client.id_pools_vmac_ranges.get(vmac_range['uri']) print("Got vmac range from '{}' to '{}' by uri:\n '{}'".format(vmac_range_byuri[ 'startAddress'], vmac_range_byuri['endAddress'], vmac_range_byuri['uri'])) # Get vmac range by id vmac_range_byId = oneview_client.id_pools_vmac_ranges.get(vmac_range['uri']) print("Got vmac range from '{}' to '{}' by uri:\n '{}'".format(vmac_range_byId[ 'startAddress'], vmac_range_byId['endAddress'], vmac_range_byId['uri'])) # Enable a vMAC range information = { "type": "Range", "enabled": True } vmac_range = oneview_client.id_pools_vmac_ranges.enable( information, vmac_range['uri']) print("Successfully enabled vmac range at\n 'uri': {}\n with 'enabled': {}".format( vmac_range['uri'], vmac_range['enabled'])) # Allocate a set of IDs from vmac range information = { "count": 10 } successfully_allocated_ids = oneview_client.id_pools_vmac_ranges.allocate( information, vmac_range['uri']) print("Successfully allocated IDs:") pprint(successfully_allocated_ids) # Get all allocated fragments in vmac range print("Get all allocated fragments in vmac range") allocated_fragments = oneview_client.id_pools_vmac_ranges.get_allocated_fragments( vmac_range['uri']) pprint(allocated_fragments) # Get all free fragments in vmac range print("Get all free fragments in vmac range") allocated_fragments = oneview_client.id_pools_vmac_ranges.get_free_fragments( vmac_range['uri']) pprint(allocated_fragments) # Collect a set of IDs back to vmac range try: information = { "idList": successfully_allocated_ids['idList'] } successfully_collected_ids = oneview_client.id_pools_vmac_ranges.collect( information, vmac_range['uri']) except HPOneViewException as e: print(e.msg) # Disable a vmac range information = { "type": "Range", "enabled": False } vmac_range = oneview_client.id_pools_vmac_ranges.enable( information, vmac_range['uri']) print("Successfully disabled vmac range at\n 'uri': {}\n with 'enabled': {}".format( vmac_range['uri'], vmac_range['enabled'])) # Delete vmac_range oneview_client.id_pools_vmac_ranges.delete(vmac_range) print("Successfully deleted vmac range") # Create vmac Range for id pools with more options specified print("Create vMAC range with more options specified for id pools") vmac_range = oneview_client.id_pools_vmac_ranges.create(options_additional) pprint(vmac_range) # Delete vmac_range oneview_client.id_pools_vmac_ranges.delete(vmac_range) print("Successfully deleted newly created vMAC range")
35.496774
111
0.729553
7da30d5caed00294b86055736ab3a477c3d2d3d6
10,641
py
Python
tests/test_schema_evolution.py
spenczar/fastavro
a6f18252415f23ad1ce06ce019ac2f1d9feef0aa
[ "MIT" ]
null
null
null
tests/test_schema_evolution.py
spenczar/fastavro
a6f18252415f23ad1ce06ce019ac2f1d9feef0aa
[ "MIT" ]
null
null
null
tests/test_schema_evolution.py
spenczar/fastavro
a6f18252415f23ad1ce06ce019ac2f1d9feef0aa
[ "MIT" ]
null
null
null
from fastavro import writer as fastavro_writer from fastavro.read import SchemaResolutionError import fastavro import pytest from io import BytesIO schema_dict_a = { "namespace": "example.avro2", "type": "record", "name": "evtest", "fields": [{"name": "a", "type": "int"}], } record_a = {"a": 123} schema_dict_a_b = { "namespace": "example.avro2", "type": "record", "name": "evtest", "fields": [ {"name": "a", "type": "int"}, {"name": "b", "type": ["null", "int"], "default": None}, ], } record_a_b = {"a": 234, "b": 345} schema_dict_a_c = { "namespace": "example.avro2", "type": "record", "name": "evtest", "fields": [{"name": "a", "type": "int"}, {"name": "c", "type": ["null", "int"]}], } def avro_to_bytes_with_schema(avro_schema, avro_dict): with BytesIO() as bytes_io: fastavro_writer(bytes_io, avro_schema, [avro_dict]) return bytes_io.getvalue() def bytes_with_schema_to_avro(avro_read_schema, binary): with BytesIO(binary) as bytes_io: reader = fastavro.reader(bytes_io, avro_read_schema) return next(reader) def test_evolution_drop_field(): record_bytes_a_b = avro_to_bytes_with_schema(schema_dict_a_b, record_a_b) record_a = bytes_with_schema_to_avro(schema_dict_a, record_bytes_a_b) assert "b" not in record_a def test_evolution_add_field_with_default(): record_bytes_a = avro_to_bytes_with_schema(schema_dict_a, record_a) record_b = bytes_with_schema_to_avro(schema_dict_a_b, record_bytes_a) assert "b" in record_b assert record_b.get("b") is None def test_evolution_add_field_without_default(): with pytest.raises(SchemaResolutionError): record_bytes_a = avro_to_bytes_with_schema(schema_dict_a, record_a) bytes_with_schema_to_avro(schema_dict_a_c, record_bytes_a) def test_enum_evolution_no_default_failure(): original_schema = { "type": "enum", "name": "test", "symbols": ["FOO", "BAR"], } new_schema = { "type": "enum", "name": "test", "symbols": ["BAZ", "BAR"], } original_records = ["FOO"] bio = BytesIO() fastavro.writer(bio, original_schema, original_records) bio.seek(0) with pytest.raises(fastavro.read.SchemaResolutionError): list(fastavro.reader(bio, new_schema)) def test_enum_evolution_using_default(): original_schema = { "type": "enum", "name": "test", "symbols": ["A", "B"], } new_schema = { "type": "enum", "name": "test", "symbols": ["C", "D"], "default": "C", } original_records = ["A"] bio = BytesIO() fastavro.writer(bio, original_schema, original_records) bio.seek(0) new_records = list(fastavro.reader(bio, new_schema)) assert new_records == ["C"] def test_schema_matching_with_records_in_arrays(): """https://github.com/fastavro/fastavro/issues/363""" original_schema = { "type": "record", "name": "DataRecord", "fields": [ { "name": "string1", "type": "string", }, { "name": "subrecord", "type": { "type": "array", "items": { "type": "record", "name": "SubRecord", "fields": [ { "name": "string2", "type": "string", } ], }, }, }, ], } new_schema = { "type": "record", "name": "DataRecord", "fields": [ { "name": "string1", "type": "string", }, { "name": "subrecord", "type": { "type": "array", "items": { "type": "record", "name": "SubRecord", "fields": [ { "name": "string2", "type": "string", }, { "name": "logs", "default": None, "type": [ "null", { "type": "array", "items": { "type": "record", "name": "LogRecord", "fields": [ { "name": "msg", "type": "string", "default": "", } ], }, }, ], }, ], }, }, }, ], } record = { "string1": "test", "subrecord": [{"string2": "foo"}], } binary = avro_to_bytes_with_schema(original_schema, record) output_using_original_schema = bytes_with_schema_to_avro(original_schema, binary) assert output_using_original_schema == record output_using_new_schema = bytes_with_schema_to_avro(new_schema, binary) assert output_using_new_schema == { "string1": "test", "subrecord": [{"string2": "foo", "logs": None}], } def test_schema_migrate_record_to_union(): """https://github.com/fastavro/fastavro/issues/406""" original_schema = { "name": "Item", "type": "record", "fields": [ { "name": "category", "type": { "type": "record", "name": "Category", "fields": [{"name": "name", "type": "string"}], }, } ], } new_schema_record_first = { "name": "Item", "type": "record", "fields": [ { "name": "category", "type": [ { "type": "record", "name": "Category", "fields": [{"name": "name", "type": "string"}], }, "null", ], } ], } new_schema_null_first = { "name": "Item", "type": "record", "fields": [ { "name": "category", "type": [ "null", { "type": "record", "name": "Category", "fields": [{"name": "name", "type": "string"}], }, ], } ], } record = {"category": {"name": "my-category"}} binary = avro_to_bytes_with_schema(original_schema, record) output_using_original_schema = bytes_with_schema_to_avro(original_schema, binary) assert output_using_original_schema == record output_using_new_schema_record_first = bytes_with_schema_to_avro( new_schema_record_first, binary ) assert output_using_new_schema_record_first == record output_using_new_schema_null_first = bytes_with_schema_to_avro( new_schema_null_first, binary ) assert output_using_new_schema_null_first == record def test_union_of_lists_evolution_with_doc(): """https://github.com/fastavro/fastavro/issues/486""" original_schema = { "name": "test_union_of_lists_evolution_with_doc", "type": "record", "fields": [ { "name": "id", "type": [ "null", { "name": "some_record", "type": "record", "fields": [{"name": "field", "type": "string"}], }, ], } ], } new_schema = { "name": "test_union_of_lists_evolution_with_doc", "type": "record", "fields": [ { "name": "id", "type": [ "null", { "name": "some_record", "type": "record", "doc": "some documentation", "fields": [{"name": "field", "type": "string"}], }, ], } ], } record = {"id": {"field": "foo"}} binary = avro_to_bytes_with_schema(original_schema, record) output_using_new_schema = bytes_with_schema_to_avro(new_schema, binary) assert output_using_new_schema == record def test_union_of_lists_evolution_with_extra_type(): """https://github.com/fastavro/fastavro/issues/486""" original_schema = { "name": "test_union_of_lists_evolution_with_extra_type", "type": "record", "fields": [ { "name": "id", "type": [ "null", { "name": "some_record", "type": "record", "fields": [{"name": "field", "type": "string"}], }, ], } ], } new_schema = { "name": "test_union_of_lists_evolution_with_extra_type", "type": "record", "fields": [ { "name": "id", "type": [ "null", { "name": "some_record", "type": "record", "fields": [{"name": "field", "type": "string"}], }, "string", ], } ], } record = {"id": {"field": "foo"}} binary = avro_to_bytes_with_schema(original_schema, record) output_using_new_schema = bytes_with_schema_to_avro(new_schema, binary) assert output_using_new_schema == record
28.52815
85
0.428813
c963b336d95e318394b319d0bcd9c3f3425079d8
290
py
Python
files/read_binary.py
janbodnar/Python-Course
51705ab5a2adef52bcdb99a800e94c0d67144a38
[ "BSD-2-Clause" ]
13
2017-08-22T12:26:07.000Z
2021-07-29T16:13:50.000Z
files/read_binary.py
janbodnar/Python-Course
51705ab5a2adef52bcdb99a800e94c0d67144a38
[ "BSD-2-Clause" ]
1
2021-02-08T10:24:33.000Z
2021-02-08T10:24:33.000Z
files/read_binary.py
janbodnar/Python-Course
51705ab5a2adef52bcdb99a800e94c0d67144a38
[ "BSD-2-Clause" ]
17
2018-08-13T11:10:33.000Z
2021-07-29T16:14:02.000Z
#!/usr/bin/python with open('web.png', 'rb') as f: hexdata = f.read().hex() n = 2 data = [hexdata[i:i+n] for i in range(0, len(hexdata), n)] i = 0 for e in data: print(e, end=' ') i += 1 if i % 20 == 0: print() print()
14.5
62
0.427586
751695f991698f8fdd4543246c38e13a80c36f7f
14,877
py
Python
PaddleCV/PaddleGAN/trainer/CycleGAN.py
FrancisLiang/models-1
e14d5bc1ab36d0dd11977f27cff54605bf99c945
[ "Apache-2.0" ]
2
2021-09-13T06:48:23.000Z
2021-09-13T06:48:28.000Z
PaddleCV/PaddleGAN/trainer/CycleGAN.py
FrancisLiang/models-1
e14d5bc1ab36d0dd11977f27cff54605bf99c945
[ "Apache-2.0" ]
null
null
null
PaddleCV/PaddleGAN/trainer/CycleGAN.py
FrancisLiang/models-1
e14d5bc1ab36d0dd11977f27cff54605bf99c945
[ "Apache-2.0" ]
1
2019-08-05T11:32:13.000Z
2019-08-05T11:32:13.000Z
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from network.CycleGAN_network import CycleGAN_model from util import utility import paddle.fluid as fluid import sys import time lambda_A = 10.0 lambda_B = 10.0 lambda_identity = 0.5 class GTrainer(): def __init__(self, input_A, input_B, cfg, step_per_epoch): self.program = fluid.default_main_program().clone() with fluid.program_guard(self.program): model = CycleGAN_model() self.fake_B = model.network_G(input_A, name="GA", cfg=cfg) self.fake_B.persistable = True self.fake_A = model.network_G(input_B, name="GB", cfg=cfg) self.fake_A.persistable = True self.cyc_A = model.network_G(self.fake_B, name="GB", cfg=cfg) self.cyc_B = model.network_G(self.fake_A, name="GA", cfg=cfg) self.infer_program = self.program.clone() # Cycle Loss diff_A = fluid.layers.abs( fluid.layers.elementwise_sub( x=input_A, y=self.cyc_A)) diff_B = fluid.layers.abs( fluid.layers.elementwise_sub( x=input_B, y=self.cyc_B)) self.cyc_A_loss = fluid.layers.reduce_mean(diff_A) * lambda_A self.cyc_A_loss.persistable = True self.cyc_B_loss = fluid.layers.reduce_mean(diff_B) * lambda_B self.cyc_B_loss.persistable = True self.cyc_loss = self.cyc_A_loss + self.cyc_B_loss # GAN Loss D_A(G_A(A)) self.fake_rec_A = model.network_D(self.fake_B, name="DA", cfg=cfg) self.G_A = fluid.layers.reduce_mean( fluid.layers.square(self.fake_rec_A - 1)) self.G_A.persistable = True # GAN Loss D_B(G_B(B)) self.fake_rec_B = model.network_D(self.fake_A, name="DB", cfg=cfg) self.G_B = fluid.layers.reduce_mean( fluid.layers.square(self.fake_rec_B - 1)) self.G_B.persistable = True self.G = self.G_A + self.G_B # Identity Loss G_A self.idt_A = model.network_G(input_B, name="GA", cfg=cfg) self.idt_loss_A = fluid.layers.reduce_mean( fluid.layers.abs( fluid.layers.elementwise_sub( x=input_B, y=self.idt_A))) * lambda_B * lambda_identity self.idt_loss_A.persistable = True # Identity Loss G_B self.idt_B = model.network_G(input_A, name="GB", cfg=cfg) self.idt_loss_B = fluid.layers.reduce_mean( fluid.layers.abs( fluid.layers.elementwise_sub( x=input_A, y=self.idt_B))) * lambda_A * lambda_identity self.idt_loss_B.persistable = True self.idt_loss = fluid.layers.elementwise_add(self.idt_loss_A, self.idt_loss_B) self.g_loss = self.cyc_loss + self.G + self.idt_loss vars = [] for var in self.program.list_vars(): if fluid.io.is_parameter(var) and (var.name.startswith("GA") or var.name.startswith("GB")): vars.append(var.name) self.param = vars lr = cfg.learning_rate if cfg.epoch <= 100: optimizer = fluid.optimizer.Adam( learning_rate=lr, beta1=0.5, beta2=0.999, name="net_G") else: optimizer = fluid.optimizer.Adam( learning_rate=fluid.layers.piecewise_decay( boundaries=[99 * step_per_epoch] + [ x * step_per_epoch for x in range(100, cfg.epoch - 1) ], values=[lr] + [ lr * (1.0 - (x - 99.0) / 101.0) for x in range(100, cfg.epoch) ]), beta1=0.5, beta2=0.999, name="net_G") optimizer.minimize(self.g_loss, parameter_list=vars) class DATrainer(): def __init__(self, input_B, fake_pool_B, cfg, step_per_epoch): self.program = fluid.default_main_program().clone() with fluid.program_guard(self.program): model = CycleGAN_model() self.rec_B = model.network_D(input_B, name="DA", cfg=cfg) self.fake_pool_rec_B = model.network_D( fake_pool_B, name="DA", cfg=cfg) self.d_loss_A = (fluid.layers.square(self.fake_pool_rec_B) + fluid.layers.square(self.rec_B - 1)) / 2.0 self.d_loss_A = fluid.layers.reduce_mean(self.d_loss_A) self.d_loss_A.persistable = True vars = [] for var in self.program.list_vars(): if fluid.io.is_parameter(var) and var.name.startswith("DA"): vars.append(var.name) self.param = vars lr = cfg.learning_rate if cfg.epoch <= 100: optimizer = fluid.optimizer.Adam( learning_rate=lr, beta1=0.5, beta2=0.999, name="net_DA") else: optimizer = fluid.optimizer.Adam( learning_rate=fluid.layers.piecewise_decay( boundaries=[99 * step_per_epoch] + [ x * step_per_epoch for x in range(100, cfg.epoch - 1) ], values=[lr] + [ lr * (1.0 - (x - 99.0) / 101.0) for x in range(100, cfg.epoch) ]), beta1=0.5, beta2=0.999, name="net_DA") optimizer.minimize(self.d_loss_A, parameter_list=vars) class DBTrainer(): def __init__(self, input_A, fake_pool_A, cfg, step_per_epoch): self.program = fluid.default_main_program().clone() with fluid.program_guard(self.program): model = CycleGAN_model() self.rec_A = model.network_D(input_A, name="DB", cfg=cfg) self.fake_pool_rec_A = model.network_D( fake_pool_A, name="DB", cfg=cfg) self.d_loss_B = (fluid.layers.square(self.fake_pool_rec_A) + fluid.layers.square(self.rec_A - 1)) / 2.0 self.d_loss_B = fluid.layers.reduce_mean(self.d_loss_B) self.d_loss_B.persistable = True vars = [] for var in self.program.list_vars(): if fluid.io.is_parameter(var) and var.name.startswith("DB"): vars.append(var.name) self.param = vars lr = 0.0002 if cfg.epoch <= 100: optimizer = fluid.optimizer.Adam( learning_rate=lr, beta1=0.5, beta2=0.999, name="net_DA") else: optimizer = fluid.optimizer.Adam( learning_rate=fluid.layers.piecewise_decay( boundaries=[99 * step_per_epoch] + [ x * step_per_epoch for x in range(100, cfg.epoch - 1) ], values=[lr] + [ lr * (1.0 - (x - 99.0) / 101.0) for x in range(100, cfg.epoch) ]), beta1=0.5, beta2=0.999, name="net_DB") optimizer.minimize(self.d_loss_B, parameter_list=vars) class CycleGAN(object): def add_special_args(self, parser): parser.add_argument( '--net_G', type=str, default="resnet_9block", help="Choose the CycleGAN generator's network, choose in [resnet_9block|resnet_6block|unet_128|unet_256]" ) parser.add_argument( '--net_D', type=str, default="basic", help="Choose the CycleGAN discriminator's network, choose in [basic|nlayers|pixel]" ) parser.add_argument( '--d_nlayers', type=int, default=3, help="only used when CycleGAN discriminator is nlayers") return parser def __init__(self, cfg=None, A_reader=None, B_reader=None, A_test_reader=None, B_test_reader=None, batch_num=1): self.cfg = cfg self.A_reader = A_reader self.B_reader = B_reader self.A_test_reader = A_test_reader self.B_test_reader = B_test_reader self.batch_num = batch_num def build_model(self): data_shape = [-1, 3, self.cfg.crop_size, self.cfg.crop_size] input_A = fluid.layers.data( name='input_A', shape=data_shape, dtype='float32') input_B = fluid.layers.data( name='input_B', shape=data_shape, dtype='float32') fake_pool_A = fluid.layers.data( name='fake_pool_A', shape=data_shape, dtype='float32') fake_pool_B = fluid.layers.data( name='fake_pool_B', shape=data_shape, dtype='float32') gen_trainer = GTrainer(input_A, input_B, self.cfg, self.batch_num) d_A_trainer = DATrainer(input_B, fake_pool_B, self.cfg, self.batch_num) d_B_trainer = DBTrainer(input_A, fake_pool_A, self.cfg, self.batch_num) # prepare environment place = fluid.CUDAPlace(0) if self.cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) A_pool = utility.ImagePool() B_pool = utility.ImagePool() if self.cfg.init_model: utility.init_checkpoints(self.cfg, exe, gen_trainer, "net_G") utility.init_checkpoints(self.cfg, exe, d_A_trainer, "net_DA") utility.init_checkpoints(self.cfg, exe, d_B_trainer, "net_DB") ### memory optim build_strategy = fluid.BuildStrategy() build_strategy.enable_inplace = True build_strategy.memory_optimize = False gen_trainer_program = fluid.CompiledProgram( gen_trainer.program).with_data_parallel( loss_name=gen_trainer.g_loss.name, build_strategy=build_strategy) d_A_trainer_program = fluid.CompiledProgram( d_A_trainer.program).with_data_parallel( loss_name=d_A_trainer.d_loss_A.name, build_strategy=build_strategy) d_B_trainer_program = fluid.CompiledProgram( d_B_trainer.program).with_data_parallel( loss_name=d_B_trainer.d_loss_B.name, build_strategy=build_strategy) losses = [[], []] t_time = 0 for epoch_id in range(self.cfg.epoch): batch_id = 0 for i in range(self.batch_num): data_A = next(self.A_reader()) data_B = next(self.B_reader()) tensor_A = fluid.LoDTensor() tensor_B = fluid.LoDTensor() tensor_A.set(data_A, place) tensor_B.set(data_B, place) s_time = time.time() # optimize the g_A network g_A_loss, g_A_cyc_loss, g_A_idt_loss, g_B_loss, g_B_cyc_loss,\ g_B_idt_loss, fake_A_tmp, fake_B_tmp = exe.run( gen_trainer_program, fetch_list=[ gen_trainer.G_A, gen_trainer.cyc_A_loss, gen_trainer.idt_loss_A, gen_trainer.G_B, gen_trainer.cyc_B_loss, gen_trainer.idt_loss_B, gen_trainer.fake_A, gen_trainer.fake_B ], feed={"input_A": tensor_A, "input_B": tensor_B}) fake_pool_B = B_pool.pool_image(fake_B_tmp) fake_pool_A = A_pool.pool_image(fake_A_tmp) # optimize the d_A network d_A_loss = exe.run( d_A_trainer_program, fetch_list=[d_A_trainer.d_loss_A], feed={"input_B": tensor_B, "fake_pool_B": fake_pool_B})[0] # optimize the d_B network d_B_loss = exe.run( d_B_trainer_program, fetch_list=[d_B_trainer.d_loss_B], feed={"input_A": tensor_A, "fake_pool_A": fake_pool_A})[0] batch_time = time.time() - s_time t_time += batch_time if batch_id % self.cfg.print_freq == 0: print("epoch{}: batch{}: \n\ d_A_loss: {}; g_A_loss: {}; g_A_cyc_loss: {}; g_A_idt_loss: {}; \n\ d_B_loss: {}; g_B_loss: {}; g_B_cyc_loss: {}; g_B_idt_loss: {}; \n\ Batch_time_cost: {:.2f}".format( epoch_id, batch_id, d_A_loss[0], g_A_loss[0], g_A_cyc_loss[0], g_A_idt_loss[0], d_B_loss[0], g_B_loss[ 0], g_B_cyc_loss[0], g_B_idt_loss[0], batch_time)) losses[0].append(g_A_loss[0]) losses[1].append(d_A_loss[0]) sys.stdout.flush() batch_id += 1 if self.cfg.run_test: test_program = gen_trainer.infer_program utility.save_test_image(epoch_id, self.cfg, exe, place, test_program, gen_trainer, self.A_test_reader, self.B_test_reader) if self.cfg.save_checkpoints: utility.checkpoints(epoch_id, self.cfg, exe, gen_trainer, "net_G") utility.checkpoints(epoch_id, self.cfg, exe, d_A_trainer, "net_DA") utility.checkpoints(epoch_id, self.cfg, exe, d_B_trainer, "net_DB")
43.121739
117
0.53734