hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
3d882ff63717c3ebe69686e1a7f5816476238d74
3,665
py
Python
Ecommerce/views.py
aryanshridhar/Ecommerce-Website
c582659e9b530555b9715ede7bb774c39f101c7e
[ "MIT" ]
1
2020-06-01T16:41:33.000Z
2020-06-01T16:41:33.000Z
Ecommerce/views.py
aryanshridhar/Ecommerce-Website
c582659e9b530555b9715ede7bb774c39f101c7e
[ "MIT" ]
4
2020-03-17T03:37:23.000Z
2021-09-22T18:36:18.000Z
Ecommerce/views.py
aryanshridhar/Ecommerce-Website
c582659e9b530555b9715ede7bb774c39f101c7e
[ "MIT" ]
null
null
null
from django.shortcuts import render , redirect from django.contrib import messages from django.http import HttpResponse from .models import Product , Review , Cart from .forms import ReviewForm from django.contrib.auth.decorators import login_required def homepage(request): products = list(Product.objects.all()) desc_list = [products[i].desc for i in range(0,len(products))] category = {products[i].category for i in range(len(products))} length = list(map(len , desc_list)) items = {'pro' : products , 'number' : len(products) , 'category':category , 'length': length} return render(request , 'Ecommerce/index.html' , items) def checkout(request): return HttpResponse('<h3>This page is under construction</h3>') def productview(request , myid): pressed_pro = list(Product.objects.filter(id=myid))[0] incart = list(Cart.objects.filter(Item_id = myid)) username = None if request.user.is_authenticated: username = request.user selected_review = list(filter(lambda item: item.for_product == pressed_pro , list(Review.objects.all()))) form = ReviewForm(request.POST or None) if form.is_valid() and 'reviewbtn' in request.POST: #handling multiple forms user_review = form.cleaned_data['Review'] model = Review(for_product = pressed_pro , Name = username , Review = user_review) model.save() messages.success(request , 'Your review has been posted successfully !') return redirect(f'http://127.0.0.1:8000/Ecommerce/productview/{myid}') #handling multiple forms in a single page if request.method == 'POST' and 'cartbtn' in request.POST: if myid in Cart.objects.values_list('Item_id' , flat = True): to_increase = list(Cart.objects.filter(Item_id = myid))[0] to_increase.quantity += 1 to_increase.save() else: CartModel = Cart(Item = pressed_pro , foruser = username , quantity = 1 , price = pressed_pro.price) CartModel.save() messages.success(request , 'The item has been added to your cart , Check you cart <a href = "http://127.0.0.1:8000/Ecommerce/cart">here</a>') return redirect(f'http://127.0.0.1:8000/Ecommerce/productview/{myid}') if request.method == 'POST' and 'remove' in request.POST: to_delete = list(Cart.objects.filter(Item_id = myid))[0] to_delete.delete() messages.success(request , f'{to_delete} has been removed from your cart') return redirect(f'http://127.0.0.1:8000/Ecommerce/productview/{myid}') item = {'pro': pressed_pro , 'form' : form , 'review' : selected_review, 'full_name' : username , 'incart' : incart} return render(request , 'Ecommerce/productview.html' , item) def products(request , value): products = list(filter(lambda item: item.category == value , list(Product.objects.all()))) total_items = len(products) context = {'name' : value , 'products' : products , 'total' : total_items} return render(request , 'Ecommerce/products.html' , context) @login_required(login_url = '/profile/login') def cart(request): current_user = request.user total= sum(map(lambda x:x.quantity*x.price ,Cart.objects.filter(foruser = current_user))) cart_products = list(zip(Cart.objects.filter(foruser = current_user) ,map(lambda x:x.quantity ,Cart.objects.filter(foruser = current_user)) , map(lambda x:x.quantity*x.price ,Cart.objects.filter(foruser = current_user)))) context = {'item' : cart_products , 'total' : total} return render(request , 'Ecommerce/cart.html' , context) def contact(request): return render(request , 'Ecommerce/contact.html')
54.701493
225
0.688404
c37da082453be34af47d687e915e25ba787272d1
4,003
py
Python
alipay/aop/api/request/ZhimaCustomerEpIdentificationQueryRequest.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/request/ZhimaCustomerEpIdentificationQueryRequest.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/request/ZhimaCustomerEpIdentificationQueryRequest.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.ZhimaCustomerEpIdentificationQueryModel import ZhimaCustomerEpIdentificationQueryModel class ZhimaCustomerEpIdentificationQueryRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._biz_content = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def biz_content(self): return self._biz_content @biz_content.setter def biz_content(self, value): if isinstance(value, ZhimaCustomerEpIdentificationQueryModel): self._biz_content = value else: self._biz_content = ZhimaCustomerEpIdentificationQueryModel.from_alipay_dict(value) @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'zhima.customer.ep.identification.query' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.biz_content: if hasattr(self.biz_content, 'to_alipay_dict'): params['biz_content'] = json.dumps(obj=self.biz_content.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['biz_content'] = self.biz_content if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
27.606897
148
0.647514
b508a18e28a3c46ec15030a3fc5702886ab1a004
6,113
py
Python
notebooks/test/preprocessing/neural_networks.py
Yu-Group/adaptive-wavelets
e67f726e741d83c94c3aee3ed97a772db4ce0bb3
[ "MIT" ]
22
2021-02-13T05:22:13.000Z
2022-03-07T09:55:55.000Z
notebooks/test/preprocessing/neural_networks.py
Yu-Group/adaptive-wavelets
e67f726e741d83c94c3aee3ed97a772db4ce0bb3
[ "MIT" ]
null
null
null
notebooks/test/preprocessing/neural_networks.py
Yu-Group/adaptive-wavelets
e67f726e741d83c94c3aee3ed97a772db4ce0bb3
[ "MIT" ]
5
2021-12-11T13:43:19.000Z
2022-03-19T07:07:37.000Z
import torch from torch import nn, optim from torch.nn import functional as F import numpy as np from tqdm import tqdm import torch.utils.data as data_utils from features import downsample import pickle as pkl import models class neural_net_sklearn(): """ sklearn wrapper for training a neural net """ def __init__(self, D_in=40, H=40, p=17, epochs=1000, batch_size=100, track_name='X_same_length_normalized', arch='fcnn', torch_seed=2): """ Parameters: ========================================================== D_in, H, p: int same as input to FCNN epochs: int number of epochs batch_size: int batch size track_name: str column name of track (the tracks should be of the same length) """ torch.manual_seed(torch_seed) self.D_in = D_in self.H = H self.p = p self.epochs = epochs self.batch_size = batch_size self.track_name = track_name self.torch_seed = torch_seed self.arch = arch torch.manual_seed(self.torch_seed) if self.arch == 'fcnn': self.model = models.FCNN(self.D_in, self.H, self.p) elif 'lstm' in self.arch: self.model = models.LSTMNet(self.D_in, self.H, self.p) elif 'cnn' in self.arch: self.model = models.CNN(self.D_in, self.H, self.p) elif 'attention' in self.arch: self.model = models.AttentionNet(self.D_in, self.H, self.p) elif 'video' in self.arch: self.model = models.VideoNet() def fit(self, X, y, verbose=False, checkpoint_fname=None, device='cpu'): """ Train model Parameters: ========================================================== X: pd.DataFrame input data, should contain tracks and additional covariates y: np.array input response """ torch.manual_seed(self.torch_seed) if self.arch == 'fcnn': self.model = models.FCNN(self.D_in, self.H, self.p) elif 'lstm' in self.arch: self.model = models.LSTMNet(self.D_in, self.H, self.p) elif 'cnn' in self.arch: self.model = models.CNN(self.D_in, self.H, self.p) elif 'attention' in self.arch: self.model = models.AttentionNet(self.D_in, self.H, self.p) elif 'video' in self.arch: self.model = models.VideoNet() # convert input dataframe to tensors X_track = X[self.track_name] # track X_track = torch.tensor(np.array(list(X_track.values)), dtype=torch.float) if len(X.columns) > 1: # covariates X_covariates = X[[c for c in X.columns if c != self.track_name]] X_covariates = torch.tensor(np.array(X_covariates).astype(float), dtype=torch.float) else: X_covariates = None # response y = torch.tensor(y.reshape(-1, 1), dtype=torch.float) # initialize optimizer optimizer = optim.Adam(self.model.parameters(), lr=0.001) # initialize dataloader if X_covariates is not None: dataset = torch.utils.data.TensorDataset(X_track, X_covariates, y) else: dataset = torch.utils.data.TensorDataset(X_track, y) train_loader = torch.utils.data.DataLoader(dataset, batch_size=self.batch_size, shuffle=True) #train_loader = [(X1, X2, y)] # train fcnn print('fitting dnn...') self.model = self.model.to(device) for epoch in tqdm(range(self.epochs)): train_loss = 0 for batch_idx, data in enumerate(train_loader): optimizer.zero_grad() # print('shapes input', data[0].shape, data[1].shape) if X_covariates is not None: preds = self.model(data[0].to(device), data[1].to(device)) y = data[2].to(device) else: preds = self.model(data[0].to(device)) y = data[1].to(device) loss_fn = torch.nn.MSELoss() loss = loss_fn(preds, y) loss.backward() train_loss += loss.item() optimizer.step() if verbose: print(f'Epoch: {epoch}, Average loss: {train_loss/len(X_track):.4e}') elif epoch % (self.epochs // 10) == 99: print(f'Epoch: {epoch}, Average loss: {train_loss/len(X_track):.4e}') if checkpoint_fname is not None: pkl.dump({'model_state_dict': self.model.state_dict()}, open(checkpoint_fname, 'wb')) def predict(self, X_new): """ make predictions with new data Parameters: ========================================================== X_new: pd.DataFrame input new data, should contain tracks and additional covariates """ self.model.eval() with torch.no_grad(): # convert input dataframe to tensors X_new_track = X_new[self.track_name] X_new_track = torch.tensor(np.array(list(X_new_track.values)), dtype=torch.float) if len(X_new.columns) > 1: X_new_covariates = X_new[[c for c in X_new.columns if c != self.track_name]] X_new_covariates = torch.tensor(np.array(X_new_covariates).astype(float), dtype=torch.float) preds = self.model(X_new_track, X_new_covariates) else: preds = self.model(X_new_track) return preds.data.numpy().reshape(1, -1)[0]
37.503067
139
0.515786
d3073477b3fd056b1a524ccc950c681675170f7a
1,360
py
Python
migrations/versions/4965ed66d657_initial_migration.py
danielmuthama/P_Blog
0712678328d5270e266fef530462630a57c546cd
[ "MIT" ]
1
2022-03-24T06:47:07.000Z
2022-03-24T06:47:07.000Z
migrations/versions/4965ed66d657_initial_migration.py
danielmuthama/P_Blog
0712678328d5270e266fef530462630a57c546cd
[ "MIT" ]
null
null
null
migrations/versions/4965ed66d657_initial_migration.py
danielmuthama/P_Blog
0712678328d5270e266fef530462630a57c546cd
[ "MIT" ]
null
null
null
"""Initial Migration Revision ID: 4965ed66d657 Revises: ee5a4f1305d0 Create Date: 2021-09-27 12:37:39.345275 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '4965ed66d657' down_revision = 'ee5a4f1305d0' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('blog', sa.Column('id', sa.Integer(), nullable=False), sa.Column('blogtitle', sa.String(length=255), nullable=True), sa.Column('myblog', sa.String(), nullable=True), sa.Column('postdate', sa.DateTime(), nullable=True), sa.Column('author', sa.String(length=255), nullable=True), sa.Column('category', sa.String(length=255), nullable=True), sa.Column('user_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_table('votes', sa.Column('id', sa.Integer(), nullable=False), sa.Column('blog_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['blog_id'], ['blog.id'], ), sa.PrimaryKeyConstraint('id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('votes') op.drop_table('blog') # ### end Alembic commands ###
29.565217
65
0.666912
4bc02ca7ee4055a6a928ea77a9e7c56d2e8fd8df
4,452
py
Python
Blind_SQLi_demo.py
KirinFuji/PentestSnips
a4e6818673f4629ccf6842617f123c63956206f0
[ "MIT" ]
null
null
null
Blind_SQLi_demo.py
KirinFuji/PentestSnips
a4e6818673f4629ccf6842617f123c63956206f0
[ "MIT" ]
null
null
null
Blind_SQLi_demo.py
KirinFuji/PentestSnips
a4e6818673f4629ccf6842617f123c63956206f0
[ "MIT" ]
null
null
null
# Written by github.com/KirinFuji """ MIT License Copyright (c) 2021 KirinFuji@users.noreply.github.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ # Disclaimer: DO NOT use this for malicious purposes, this is for purely educational purposes as a sample of how # a hacker may abuse a Blind SQLi vulnerability to steal a users password. # Simple Blind SQLi script from abc import ABC import aiohttp import asyncio import re import urllib.parse from html.parser import HTMLParser from string import ascii_lowercase class MyHTMLParser(HTMLParser, ABC): def __init__(self, username): HTMLParser.__init__(self) self.user_found = False self.username = username # Parser will need to be modified depending on the webserver def handle_data(self, data): data = re.sub(r'\s+', ' ', data) if data != ' ': if data == self.username: self.user_found = True class BruteForce: def __init__(self, website, parameter, chars_, user): self.user_search = user self.website = website self.parameter = parameter self.parser = MyHTMLParser(self.user_search) self.chars = chars_ self.delay = 0.2 self.session = None async def web_request(self, url): async with self.session.get(url) as resp: text = await resp.text() return text def create_request(self, pattern): # Parameter vulnerable to SQLi site = self.website + self.parameter # SQL/NoSQL query to inject query = rf"{self.user_search}' && this.password.match(/{pattern}/)" # URL Encode the request encoded_query = urllib.parse.quote(query) # Combine it and add null byte return site + encoded_query + '%00' async def find_next_char(self, password): for char in self.chars: # Reset Parser self.parser.user_found = False # Create full encoded URL to request request = self.create_request(f'^{password + str(char)}.*$') print(f'GET: {request}') # Send the request result = await self.web_request(request) # Parse the HTML looking for username self.parser.feed(result) if self.parser.user_found: # Append the discovered character to the password password += str(char) print(f'Pass: {password}') return password await asyncio.sleep(self.delay) return None async def brute_force(self): password = '' async with aiohttp.ClientSession() as session: self.session = session while not self.session.closed: result = await self.find_next_char(password) # If no new character was found, end loop, else check for next character if result is None: break else: password = result await self.session.close() self.session = None return f'Final: {password}' if __name__ == '__main__': chars = '-0123456789' chars += ascii_lowercase # Website, Vulnerable Parameter, chars to check for, brute forcing password for this user Brute = BruteForce('http://example.com/?', 'search=', chars, 'admin') Brute.delay = 0.1 finished = asyncio.run(Brute.brute_force()) print(finished)
36.195122
112
0.655436
e0f53805ab2f5ea01cd2f18208750b866d690319
15,976
py
Python
bot/logic/unit_manager/unit_manager.py
Scottdecat/HiveMind
cbd9de0645d756a63d65918f6c971753e1178652
[ "MIT" ]
null
null
null
bot/logic/unit_manager/unit_manager.py
Scottdecat/HiveMind
cbd9de0645d756a63d65918f6c971753e1178652
[ "MIT" ]
null
null
null
bot/logic/unit_manager/unit_manager.py
Scottdecat/HiveMind
cbd9de0645d756a63d65918f6c971753e1178652
[ "MIT" ]
null
null
null
import math import random from collections import defaultdict from math import sqrt from typing import Union import bot.injector as injector from bot.logic.army_strategy_manager.army_strategy_manager_interface import \ ArmyStrategyManagerInterface from bot.logic.overlord_manager import OverlordManager from bot.logic.queen_manager.default_queen_manager import DefaultQueenManager from bot.logic.spending_actions.default_spending_actions import \ DefaultSpendingActions from bot.logic.unit_manager.priority_calculations import ( enemy_group_priority, unit_desperation_threshold, unit_to_group_priority) from bot.model.unit_type_abstraction import UnitTypeAbstraction from bot.services.action_service import ActionService from bot.services.debug_service import DebugService from bot.services.state_service import StateService from bot.services.unit_group_service import UnitGroup, UnitGroupService from bot.services.unit_type_service import UnitTypeService from bot.util.mapping_functions import steep_decline from bot.util.priority_queue import PriorityQueue from bot.util.unit_type_utils import get_unit_origin_type, is_combat_unit from sc2 import AbilityId, UnitTypeId from sc2.position import Point3, Rect from sc2.unit import Unit from sc2.units import Units from .assigned_group import AssignedGroup from .group_tactics import GroupTactics, distance_from_boundary from .micro import Micro from .worker_distribution import WorkerDistributor class UnitManager: def __init__(self): self.state: StateService = injector.inject(StateService) self.debug_service: DebugService = injector.inject(DebugService) self.group_service: UnitGroupService = injector.inject(UnitGroupService) self.action_service: ActionService = injector.inject(ActionService) self.unit_type: UnitTypeService = injector.inject(UnitTypeService) self.group_tactics: GroupTactics = GroupTactics() self.micro: Micro = Micro() self.worker_distributor: WorkerDistributor = WorkerDistributor() self.spending_actions = DefaultSpendingActions() self.overlord_manager = OverlordManager() self.queen_manager = DefaultQueenManager() self.assigned_groups = [] self.previously_assigned_units = {} self.proxy_scouts: Units = Units([]) self.proxy_scout_idx: int = 0 self.expansion_locations: list = [] def on_init(self) -> None: expansion_locations = list(self.state._bot.expansion_locations.keys()) expansion_locations.append(self.state._bot.enemy_start_locations[0]) expansion_locations.sort(key=lambda p: p.distance_to(self.state._bot.enemy_start_locations[0])) self.expansion_locations = expansion_locations async def on_step(self): unassigned = self.state.own_units enemy_groups: PriorityQueue = self.state.enemy_groups self.assigned_groups = self.assign_groups(unassigned, enemy_groups) builder_units: Units = self.get_builder_units(unassigned, self.state.enemy_groups) assigned_tags = set() for g in self.assigned_groups: assigned_tags = assigned_tags.union(self.group_tactics.manage_group(g)) await self.micro.micro_units(g.group.units, assigned_tags) unassigned = unassigned.tags_not_in(assigned_tags) a = await self.spending_actions.build(self.state.build_queue, builder_units) unassigned = unassigned.tags_not_in(a.tags) # saturate remaining workers unassigned_workers = unassigned({UnitTypeId.DRONE, UnitTypeId.SCV, UnitTypeId.PROBE, UnitTypeId.MULE}) self.worker_distributor.distribute_workers(unassigned_workers) unassigned = unassigned.tags_not_in(unassigned_workers.tags) unassigned_overlords = unassigned({UnitTypeId.OVERLORD, UnitTypeId.OVERSEER}) await self.overlord_manager.on_step(unassigned_overlords) unassigned = unassigned.tags_not_in(unassigned_overlords.tags) unassigned_queens = unassigned({UnitTypeId.QUEEN}) unassigned = unassigned.tags_not_in(await self.queen_manager.on_step(unassigned_queens)) # use remaining units to do cool things # scout enemy bases with idle units #TODO ideally, should only reassign idle proxy scouts. However, can't really figure out how to get that working, so just putting this hack for now. if unassigned.exists: to_remove = set() for s in self.proxy_scouts: s: Unit tag = s.tag s = self.state.own_units.find_by_tag(s.tag) if not s or s.tag not in unassigned.tags or s.is_idle: to_remove.add(tag) self.proxy_scouts = self.proxy_scouts.tags_not_in(to_remove) missing_scouts = 4 - self.proxy_scouts.amount new_scouts = unassigned({UnitTypeId.ZERGLING, UnitTypeId.ROACH}).sorted(lambda u: u.movement_speed, reverse=True).take(missing_scouts, require_all=False) for scout in new_scouts: scout: Unit self.action_service.add(scout.tag, scout.move(random.choice(self.expansion_locations))) self.proxy_scouts.append(scout) unassigned = unassigned.tags_not_in(self.proxy_scouts.tags) ''' if (int(self.state.getTimeInSeconds()) % 15) == 0: self.reassign_proxy_scouts() num_scouting_units = 4 if self.proxy_scouts.amount < num_scouting_units and self.state.mode == 'defend': unassigned_scouts = unassigned.filter(self.is_scout) unassigned_scouts = unassigned_scouts.sorted(lambda u: u.movement_speed, reverse=True).take(num_scouting_units - self.proxy_scouts.amount, require_all=False) self.append_proxy_scouts(unassigned_scouts) elif self.state.mode == 'attack': unassigned_scouts = unassigned.filter(self.is_scout) self.append_proxy_scouts(unassigned_scouts) unassigned = unassigned.tags_not_in(self.proxy_scouts.tags) ''' # idle position at nearest base for unit in unassigned: unit: Unit if unit.movement_speed > 0 and unit.type_id not in {UnitTypeId.OVERLORD, UnitTypeId.LARVA}: pos = unit.position.closest(self.state.own_townhalls).position if unit.distance_to(pos) < 10: self.action_service.add(unit.tag, unit.attack(pos)) else: self.action_service.add(unit.tag, unit.move(pos)) self.debug_service.text_world(f'IDLE', unit.position3d, None, 16) def priority_apply_unit_modifier(self, priority, enemy_group: UnitGroup, unit: Unit): if enemy_group.range_hull: dist = distance_from_boundary(enemy_group.range_hull, unit.position) else: dist = unit.position.distance_to(enemy_group.location) dist = min(self.state.map_diagonal_len, max(0, dist)) dist_mod = dist / self.state.map_diagonal_len dist_mod = (0.5 + steep_decline(dist_mod)) ** 2 # increase priority by if unit was assigned to this group in the last iteration percentage_of_previously_assigned = 0 if unit.tag in self.previously_assigned_units: intersection = enemy_group.units.tags.intersection(self.previously_assigned_units[unit.tag]) percentage_of_previously_assigned = len(intersection) / len(enemy_group.units.tags) prev_mod = 1 + percentage_of_previously_assigned return priority * dist_mod * prev_mod class Temp: units: Units value = 0 ground_value = 0 air_value = 0 cloak = 0 retreaters: Units def unit_activation_function(self, unit: Unit, priority, enemy_group: UnitGroup, oversaturation = 0): if unit.type_id == UnitTypeId.DRONE: return priority > 0.1 and enemy_group.units.exclude_type(UnitTypeId.REAPER).exists and (oversaturation == 0 and ( ( unit.distance_to(enemy_group.units.center) < 15 and (self.state.own_townhalls.exists and (unit.distance_to(self.state.own_townhalls.closest_to(enemy_group.location).position) < 20)) ) or (enemy_group.location.distance_to(self.state.own_natural_position) < 10) or ( enemy_group.units({UnitTypeId.PHOTONCANNON, UnitTypeId.PYLON}).exists and enemy_group.location.distance_to_closest(self.state.own_townhalls) < 20 )) ) or ( enemy_group.value > 100 and enemy_group.units.exclude_type({UnitTypeId.SCV, UnitTypeId.PROBE, UnitTypeId.DRONE}).exists and enemy_group.range_hull and distance_from_boundary(enemy_group.range_hull, unit.position) <= 1 and unit.position.distance_to_closest(self.state.own_townhalls) < 15 ) elif unit.type_id == UnitTypeId.QUEEN: return priority > 0 and (enemy_group.location.distance_to_closest(self.state.own_townhalls.ready) < 20 or (self.state._bot.has_creep(enemy_group.location) and enemy_group.location.distance_to_closest(self.state.own_townhalls.ready) < 30)) elif unit.type_id in {UnitTypeId.CHANGELING, UnitTypeId.CHANGELINGMARINE, UnitTypeId.CHANGELINGMARINESHIELD, UnitTypeId.CHANGELINGZEALOT, UnitTypeId.CHANGELINGZERGLING, UnitTypeId.CHANGELINGZERGLINGWINGS}: return False elif unit.type_id == UnitTypeId.OVERSEER: return enemy_group.cloak_value > 0 else: return priority > 0 def assign_groups(self, unassigned: Units, priorities: PriorityQueue): groups = [] units = unassigned.not_structure.filter(is_combat_unit) d = {} for enemy_group in priorities: t = self.Temp() t.units = Units([]) t.retreaters = Units([]) d[enemy_group] = t #assign army units unit_to_priorities = defaultdict(PriorityQueue) for unit in units: for p in priorities.iterate2(): priority = self.priority_apply_unit_modifier(p[1], p[0], unit) unit_to_priorities[unit].enqueue(p[0], priority) #sort units so that those who have a very high priority for the first enemy group #and low priority for the rest are assigned first def sort_by_diff(unit: Unit): s = 0 if not unit_to_priorities[unit].isEmpty(): prio = unit_to_priorities[unit].peek2() enemy_group = prio[0] priority = prio[1] percentage_of_previously_assigned = 0 if unit.tag in self.previously_assigned_units: intersection = enemy_group.units.tags.intersection(self.previously_assigned_units[unit.tag]) percentage_of_previously_assigned = len(intersection) / len(enemy_group.units.tags) s = 0.5 + (percentage_of_previously_assigned / 2) * priority return s if not priorities.isEmpty(): units = units.sorted(sort_by_diff, True) ## for unit in units: unit: Unit sorted_enemy_groups = PriorityQueue() for p in unit_to_priorities[unit].iterate2(): priority = p[1] own_val = d[p[0]].value enemy_val = p[0].value #should_fight, val = self.group_tactics.evaluate_engagement(d[p[0]], p[0], show_group_vals=True) #own_val, enemy_val = val # dont send lings vs voidrays if not unit.can_attack_air: # TODO performance: dont recalculate for every unit priority -= p[0].percentage_of_air_in_group * priority # group oversaturation oversaturation = 0 if own_val >= enemy_val: diff = own_val - enemy_val oversaturation = max(0.01, diff / (enemy_val if enemy_val else 1)) mult = max(0.01, 1 - oversaturation) priority *= 0.5 + (mult / 2) if self.unit_activation_function(unit, priority, p[0], oversaturation): sorted_enemy_groups.enqueue(p[0], priority) if sorted_enemy_groups.isEmpty(): continue enemy_group: UnitGroup = sorted_enemy_groups.peek() self.debug_service.text_world(f'{round(sorted_enemy_groups.peek2()[1],2)}', Point3((unit.position3d.x, unit.position3d.y - 0.35, unit.position3d.z)), Point3((0, 255, 0)), 12) if (not unit.can_attack_air and enemy_group.percentage_of_air_in_group > 0.8) or (unit.type_id in {UnitTypeId.DRONE} and d[enemy_group].value > enemy_group.value): d[enemy_group].retreaters.append(unit) else: d[enemy_group].units.append(unit) # TODO consider cloak values d[enemy_group].value += self.unit_type.get_unit_combat_value_enemy_group(unit.type_id, enemy_group.units) * sum(self.unit_type.get_resource_value(unit.type_id)) self.previously_assigned_units = {} for key, value in d.items(): a = AssignedGroup() a.enemies = key a.group = self.group_service.create_group(value.units) a.retreaters = self.group_service.create_group(value.retreaters) groups.append(a) for unit in a.group.units: self.previously_assigned_units[unit.tag] = a.enemies.units.tags return groups def get_builder_units(self, own_units: Units, enemy_groups: PriorityQueue) -> {'unit tags'}: '''Determines if any units in own group are in the ideal conditions to build into a different unit. Returns all units that can build.''' origins_build_queue = {get_unit_origin_type(unit_id) for unit_id in self.state.build_queue}.union({UnitTypeId.DRONE, UnitTypeId.PROBE, UnitTypeId.SCV}) return own_units.of_type(origins_build_queue) def append_proxy_scouts(self, own_units : Units) -> None: '''Will append a unit even if that unit is already in self.proxy_scouts, so be careful!''' for unit in own_units: self.give_scouting_order(unit) self.proxy_scouts.append(unit) def give_scouting_order(self, scout: Unit) -> None: '''Gives a scouting order to the given scout unit.''' if self.proxy_scout_idx == len(self.expansion_locations) - 1: self.proxy_scout_idx = 0 pos = self.expansion_locations[self.proxy_scout_idx] self.proxy_scout_idx += 1 self.action_service.add(scout.tag, scout.move(pos), 10) def reassign_proxy_scouts(self) -> None: '''Reassigns proxy scouts that have completed their mission. Deletes proxy scouts who have died.''' #remove dead scouts from self.proxy_scouts #TODO only do this when unit dies (on_unit_destroyed), however need to be careful about making this hookable because on_step is explicitly called self.proxy_scouts = self.proxy_scouts.tags_in({scout.tag for scout in self.proxy_scouts if scout in self.state.own_units}) #assign scouts that are done to a new task scouts_that_are_done: set = {scout for scout in self.proxy_scouts if scout.is_idle} for scout in scouts_that_are_done: self.give_scouting_order(scout) def is_scout(self, u: Unit) -> bool: '''Determines whether or not the given unit should be considered a scouting unit.''' return is_combat_unit(u) and u.type_id not in {UnitTypeId.DRONE, UnitTypeId.QUEEN} and not u in self.proxy_scouts
51.535484
250
0.668315
7a3d2044ddefd34afd795b0677e11a5e03eaca2a
13,963
py
Python
tests/ens/conftest.py
nathonNot/web3.py
5cf1fb7b84b590baa9b98a79d04e67b1554349a5
[ "MIT" ]
null
null
null
tests/ens/conftest.py
nathonNot/web3.py
5cf1fb7b84b590baa9b98a79d04e67b1554349a5
[ "MIT" ]
null
null
null
tests/ens/conftest.py
nathonNot/web3.py
5cf1fb7b84b590baa9b98a79d04e67b1554349a5
[ "MIT" ]
null
null
null
import json import pytest from eth_tester import ( EthereumTester, ) from ens import ENS from ens.contract_data import ( registrar_abi, registrar_bytecode, registrar_bytecode_runtime, resolver_abi, resolver_bytecode, resolver_bytecode_runtime, reverse_registrar_abi, reverse_registrar_bytecode, reverse_registrar_bytecode_runtime, reverse_resolver_abi, reverse_resolver_bytecode, reverse_resolver_bytecode_runtime, ) from web3 import Web3 from web3.contract import ( Contract, ) from web3.providers.eth_tester import ( EthereumTesterProvider, ) def bytes32(val): if isinstance(val, int): result = Web3.toBytes(val) else: raise TypeError('val %r could not be converted to bytes') if len(result) < 32: return result.rjust(32, b'\0') else: return result def deploy(w3, Factory, from_address, args=None): args = args or [] factory = Factory(w3) deploy_txn = factory.constructor(*args).transact({'from': from_address}) deploy_receipt = w3.eth.wait_for_transaction_receipt(deploy_txn) assert deploy_receipt is not None return factory(address=deploy_receipt['contractAddress']) def DefaultReverseResolver(w3): return w3.eth.contract( bytecode=reverse_resolver_bytecode, bytecode_runtime=reverse_resolver_bytecode_runtime, abi=reverse_resolver_abi, ContractFactoryClass=Contract, ) def ReverseRegistrar(w3): return w3.eth.contract( bytecode=reverse_registrar_bytecode, bytecode_runtime=reverse_registrar_bytecode_runtime, abi=reverse_registrar_abi, ContractFactoryClass=Contract, ) def PublicResolverFactory(w3): return w3.eth.contract( bytecode=resolver_bytecode, bytecode_runtime=resolver_bytecode_runtime, abi=resolver_abi, ContractFactoryClass=Contract, ) def ENSFactory(w3): return w3.eth.contract( bytecode="6060604052341561000f57600080fd5b60008080526020527fad3228b676f7d3cd4284a5443f17f1962b36e491b30a40b2405849e597ba5fb58054600160a060020a033316600160a060020a0319909116179055610501806100626000396000f300606060405236156100805763ffffffff7c01000000000000000000000000000000000000000000000000000000006000350416630178b8bf811461008557806302571be3146100b757806306ab5923146100cd57806314ab9038146100f457806316a25cbd146101175780631896f70a1461014a5780635b0fc9c31461016c575b600080fd5b341561009057600080fd5b61009b60043561018e565b604051600160a060020a03909116815260200160405180910390f35b34156100c257600080fd5b61009b6004356101ac565b34156100d857600080fd5b6100f2600435602435600160a060020a03604435166101c7565b005b34156100ff57600080fd5b6100f260043567ffffffffffffffff60243516610289565b341561012257600080fd5b61012d600435610355565b60405167ffffffffffffffff909116815260200160405180910390f35b341561015557600080fd5b6100f2600435600160a060020a036024351661038c565b341561017757600080fd5b6100f2600435600160a060020a0360243516610432565b600090815260208190526040902060010154600160a060020a031690565b600090815260208190526040902054600160a060020a031690565b600083815260208190526040812054849033600160a060020a039081169116146101f057600080fd5b8484604051918252602082015260409081019051908190039020915083857fce0457fe73731f824cc272376169235128c118b49d344817417c6d108d155e8285604051600160a060020a03909116815260200160405180910390a3506000908152602081905260409020805473ffffffffffffffffffffffffffffffffffffffff1916600160a060020a03929092169190911790555050565b600082815260208190526040902054829033600160a060020a039081169116146102b257600080fd5b827f1d4f9bbfc9cab89d66e1a1562f2233ccbf1308cb4f63de2ead5787adddb8fa688360405167ffffffffffffffff909116815260200160405180910390a250600091825260208290526040909120600101805467ffffffffffffffff90921674010000000000000000000000000000000000000000027fffffffff0000000000000000ffffffffffffffffffffffffffffffffffffffff909216919091179055565b60009081526020819052604090206001015474010000000000000000000000000000000000000000900467ffffffffffffffff1690565b600082815260208190526040902054829033600160a060020a039081169116146103b557600080fd5b827f335721b01866dc23fbee8b6b2c7b1e14d6f05c28cd35a2c934239f94095602a083604051600160a060020a03909116815260200160405180910390a250600091825260208290526040909120600101805473ffffffffffffffffffffffffffffffffffffffff1916600160a060020a03909216919091179055565b600082815260208190526040902054829033600160a060020a0390811691161461045b57600080fd5b827fd4735d920b0f87494915f556dd9b54c8f309026070caea5c737245152564d26683604051600160a060020a03909116815260200160405180910390a250600091825260208290526040909120805473ffffffffffffffffffffffffffffffffffffffff1916600160a060020a039092169190911790555600a165627a7a7230582050975b6c54a16d216b563f4c4960d6ebc5881eb1ec73c2ef1f87920a251159530029", # noqa: E501 bytecode_runtime="606060405236156100805763ffffffff7c01000000000000000000000000000000000000000000000000000000006000350416630178b8bf811461008557806302571be3146100b757806306ab5923146100cd57806314ab9038146100f457806316a25cbd146101175780631896f70a1461014a5780635b0fc9c31461016c575b600080fd5b341561009057600080fd5b61009b60043561018e565b604051600160a060020a03909116815260200160405180910390f35b34156100c257600080fd5b61009b6004356101ac565b34156100d857600080fd5b6100f2600435602435600160a060020a03604435166101c7565b005b34156100ff57600080fd5b6100f260043567ffffffffffffffff60243516610289565b341561012257600080fd5b61012d600435610355565b60405167ffffffffffffffff909116815260200160405180910390f35b341561015557600080fd5b6100f2600435600160a060020a036024351661038c565b341561017757600080fd5b6100f2600435600160a060020a0360243516610432565b600090815260208190526040902060010154600160a060020a031690565b600090815260208190526040902054600160a060020a031690565b600083815260208190526040812054849033600160a060020a039081169116146101f057600080fd5b8484604051918252602082015260409081019051908190039020915083857fce0457fe73731f824cc272376169235128c118b49d344817417c6d108d155e8285604051600160a060020a03909116815260200160405180910390a3506000908152602081905260409020805473ffffffffffffffffffffffffffffffffffffffff1916600160a060020a03929092169190911790555050565b600082815260208190526040902054829033600160a060020a039081169116146102b257600080fd5b827f1d4f9bbfc9cab89d66e1a1562f2233ccbf1308cb4f63de2ead5787adddb8fa688360405167ffffffffffffffff909116815260200160405180910390a250600091825260208290526040909120600101805467ffffffffffffffff90921674010000000000000000000000000000000000000000027fffffffff0000000000000000ffffffffffffffffffffffffffffffffffffffff909216919091179055565b60009081526020819052604090206001015474010000000000000000000000000000000000000000900467ffffffffffffffff1690565b600082815260208190526040902054829033600160a060020a039081169116146103b557600080fd5b827f335721b01866dc23fbee8b6b2c7b1e14d6f05c28cd35a2c934239f94095602a083604051600160a060020a03909116815260200160405180910390a250600091825260208290526040909120600101805473ffffffffffffffffffffffffffffffffffffffff1916600160a060020a03909216919091179055565b600082815260208190526040902054829033600160a060020a0390811691161461045b57600080fd5b827fd4735d920b0f87494915f556dd9b54c8f309026070caea5c737245152564d26683604051600160a060020a03909116815260200160405180910390a250600091825260208290526040909120805473ffffffffffffffffffffffffffffffffffffffff1916600160a060020a039092169190911790555600a165627a7a7230582050975b6c54a16d216b563f4c4960d6ebc5881eb1ec73c2ef1f87920a251159530029", # noqa: E501 abi=json.loads('[{"constant":true,"inputs":[{"name":"node","type":"bytes32"}],"name":"resolver","outputs":[{"name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"name":"node","type":"bytes32"}],"name":"owner","outputs":[{"name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"node","type":"bytes32"},{"name":"label","type":"bytes32"},{"name":"owner","type":"address"}],"name":"setSubnodeOwner","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"node","type":"bytes32"},{"name":"ttl","type":"uint64"}],"name":"setTTL","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"name":"node","type":"bytes32"}],"name":"ttl","outputs":[{"name":"","type":"uint64"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"node","type":"bytes32"},{"name":"resolver","type":"address"}],"name":"setResolver","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"node","type":"bytes32"},{"name":"owner","type":"address"}],"name":"setOwner","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"inputs":[],"payable":false,"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"name":"node","type":"bytes32"},{"indexed":true,"name":"label","type":"bytes32"},{"indexed":false,"name":"owner","type":"address"}],"name":"NewOwner","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"node","type":"bytes32"},{"indexed":false,"name":"owner","type":"address"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"node","type":"bytes32"},{"indexed":false,"name":"resolver","type":"address"}],"name":"NewResolver","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"node","type":"bytes32"},{"indexed":false,"name":"ttl","type":"uint64"}],"name":"NewTTL","type":"event"}]'), # noqa: E501 ContractFactoryClass=Contract, ) def ETHRegistrarFactory(w3): return w3.eth.contract( bytecode=registrar_bytecode, bytecode_runtime=registrar_bytecode_runtime, abi=registrar_abi, ContractFactoryClass=Contract, ) # session scope for performance @pytest.fixture(scope="session") def ens_setup(): w3 = Web3(EthereumTesterProvider(EthereumTester())) # ** Set up ENS contracts ** # remove account that creates ENS, so test transactions don't have write access accounts = w3.eth.accounts ens_key = accounts.pop() # create ENS contract eth_labelhash = w3.keccak(text='eth') eth_namehash = bytes32(0x93cdeb708b7545dc668eb9280176169d1c33cfd8ed6f04690a0bcc88a93fc4ae) resolver_namehash = bytes32(0xfdd5d5de6dd63db72bbc2d487944ba13bf775b50a80805fe6fcaba9b0fba88f5) reverse_tld_namehash = bytes32(0xa097f6721ce401e757d1223a763fef49b8b5f90bb18567ddb86fd205dff71d34) # noqa: E501 reverser_namehash = bytes32(0x91d1777781884d03a6757a803996e38de2a42967fb37eeaca72729271025a9e2) ens_contract = deploy(w3, ENSFactory, ens_key) # create public resolver public_resolver = deploy(w3, PublicResolverFactory, ens_key, args=[ens_contract.address]) # set 'resolver.eth' to resolve to public resolver ens_contract.functions.setSubnodeOwner( b'\0' * 32, eth_labelhash, ens_key ).transact({'from': ens_key}) ens_contract.functions.setSubnodeOwner( eth_namehash, w3.keccak(text='resolver'), ens_key ).transact({'from': ens_key}) ens_contract.functions.setResolver( resolver_namehash, public_resolver.address ).transact({'from': ens_key}) public_resolver.functions.setAddr( resolver_namehash, public_resolver.address ).transact({'from': ens_key}) # create .eth auction registrar eth_registrar = deploy( w3, ETHRegistrarFactory, ens_key, args=[ens_contract.address, eth_namehash, 1], ) # set '.eth' to resolve to the registrar ens_contract.functions.setResolver( eth_namehash, public_resolver.address ).transact({'from': ens_key}) public_resolver.functions.setAddr( eth_namehash, eth_registrar.address ).transact({'from': ens_key}) # create reverse resolver reverse_resolver = deploy(w3, DefaultReverseResolver, ens_key, args=[ens_contract.address]) # create reverse registrar reverse_registrar = deploy( w3, ReverseRegistrar, ens_key, args=[ens_contract.address, reverse_resolver.address] ) # set 'addr.reverse' to resolve to reverse registrar ens_contract.functions.setSubnodeOwner( b'\0' * 32, w3.keccak(text='reverse'), ens_key ).transact({'from': ens_key}) ens_contract.functions.setSubnodeOwner( reverse_tld_namehash, w3.keccak(text='addr'), ens_key ).transact({'from': ens_key}) ens_contract.functions.setResolver( reverser_namehash, public_resolver.address ).transact({'from': ens_key}) public_resolver.functions.setAddr( reverser_namehash, reverse_registrar.address ).transact({'from': ens_key}) # set owner of tester.eth to an account controlled by tests ens_contract.functions.setSubnodeOwner( eth_namehash, w3.keccak(text='tester'), w3.eth.accounts[2] # note that this does not have to be the default, only in the list ).transact({'from': ens_key}) # make the registrar the owner of the 'eth' name ens_contract.functions.setSubnodeOwner( b'\0' * 32, eth_labelhash, eth_registrar.address ).transact({'from': ens_key}) # make the reverse registrar the owner of the 'addr.reverse' name ens_contract.functions.setSubnodeOwner( reverse_tld_namehash, w3.keccak(text='addr'), reverse_registrar.address ).transact({'from': ens_key}) return ENS.fromWeb3(w3, ens_contract.address) @pytest.fixture def ens(ens_setup, mocker): mocker.patch('web3.middleware.stalecheck._isfresh', return_value=True) ens_setup.w3.eth.default_account = ens_setup.w3.eth.coinbase return ens_setup @pytest.fixture() def TEST_ADDRESS(address_conversion_func): return address_conversion_func("0x000000000000000000000000000000000000dEaD")
60.708696
2,792
0.80477
fb674597ad56189ac37eef75a7188f2742d97a7a
7,425
py
Python
src/lib/python/image/alibaba_client.py
memes/f5-bigip-image-generator
9684d185db3990fc966554c0611fe6369174303b
[ "Apache-2.0" ]
34
2019-08-21T01:28:27.000Z
2021-10-05T07:21:58.000Z
src/lib/python/image/alibaba_client.py
memes/f5-bigip-image-generator
9684d185db3990fc966554c0611fe6369174303b
[ "Apache-2.0" ]
34
2019-09-13T10:17:31.000Z
2022-03-09T00:01:00.000Z
src/lib/python/image/alibaba_client.py
memes/f5-bigip-image-generator
9684d185db3990fc966554c0611fe6369174303b
[ "Apache-2.0" ]
16
2019-08-21T20:06:17.000Z
2022-03-25T11:59:00.000Z
"""Alibaba client module""" # Copyright (C) 2019-2021 F5 Networks, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. import json import aliyunsdkcore.request from aliyunsdkcore.client import AcsClient from aliyunsdkcore.acs_exception.exceptions import ClientException, ServerException from aliyunsdkecs.request.v20140526.AddTagsRequest \ import AddTagsRequest from aliyunsdkecs.request.v20140526.DeleteImageRequest \ import DeleteImageRequest from aliyunsdkecs.request.v20140526.DescribeImagesRequest \ import DescribeImagesRequest from aliyunsdkecs.request.v20140526.ImportImageRequest \ import ImportImageRequest from aliyunsdkecs.request.v20140526.CancelTaskRequest \ import CancelTaskRequest from aliyunsdkecs.request.v20140526.DescribeTaskAttributeRequest \ import DescribeTaskAttributeRequest from aliyunsdkecs.request.v20140526.DescribeImageSharePermissionRequest \ import DescribeImageSharePermissionRequest from aliyunsdkecs.request.v20140526.ModifyImageSharePermissionRequest \ import ModifyImageSharePermissionRequest from util.config import get_config_value from util.logger import LOGGER class AlibabaClient(): """ Class for sending requests to Alibaba cloud services """ @staticmethod def __get_acs_client(): """ Setup and return a client to Alibaba cloud service. Requires ALIBABA_ACCESS_KEY_ID and ALIBABA_ACCESS_KEY_SECRET to be set. """ client = AcsClient(get_config_value('ALIBABA_ACCESS_KEY_ID'), get_config_value('ALIBABA_ACCESS_KEY_SECRET'), get_config_value('ALIBABA_REGION')) return client def __send_request(self, request): """ Send a request to Alibaba cloud services """ aliyunsdkcore.request.set_default_protocol_type('https') request.set_protocol_type('https') request.set_accept_format('json') client = self.__get_acs_client() try: response_str = client.do_action_with_exception(request) except ClientException as exc: LOGGER.exception(exc) raise RuntimeError('Check correctness of ALIBABA_REGION configuration variable') \ from exc except ServerException as exc: LOGGER.exception(exc) if exc.get_error_code() == 'InvalidAccessKeyId.NotFound' and \ exc.get_error_msg() == 'Specified access key is not found.': raise RuntimeError('InvalidAccessKeyId.NotFound: Check correctness of ' + 'ALIBABA_ACCESS_KEY_ID configuration variable') from exc if exc.get_error_code() == 'IncompleteSignature' and \ exc.get_error_msg().startswith('The request signature does not conform to ' + 'Aliyun standards'): raise RuntimeError('IncompleteSignature: Check correctness of ' + 'ALIBABA_ACCESS_KEY_SECRET configuration variable') from exc if exc.get_error_code() == 'InvalidAccessKeySecret' and \ exc.get_error_msg() == 'The AccessKeySecret is incorrect. Please check ' + \ 'your AccessKeyId and AccessKeySecret.': raise RuntimeError('InvalidAccessKeySecret: Check correctness of ' + 'ALIBABA_ACCESS_KEY_ID and ALIBABA_ACCESS_KEY_SECRET ' + 'configuration variables') from exc raise exc response = json.loads(response_str) if 'Code' in response.keys(): LOGGER.warning('Request to Alibaba has \'Code\' attribute. Full Alibaba response:') LOGGER.warning(json.dumps(response, sort_keys=True, indent=4, separators=(',', ': '))) return response def add_tags(self, resource_id, resource_type, tags): """ Add Resource Tags by resource id. Return Alibaba response """ # Transform tags dictionary to array of dictionaries tags_array = [] for key, value in tags.items(): array_entry = {"Key":key, "Value":value} tags_array.append(array_entry) request = AddTagsRequest() request.set_ResourceId(resource_id) request.set_ResourceType(resource_type) request.set_Tags(tags_array) return self.__send_request(request) def delete_image(self, image_id): """ Delete image by image id Return Alibaba response """ request = DeleteImageRequest() request.set_ImageId(image_id) return self.__send_request(request) def describe_images(self, image_id, image_name): """ Send request to get details of images Filter by image id and name Return Alibaba response """ request = DescribeImagesRequest() if image_id: request.set_ImageId(image_id) if image_name: request.set_ImageName(image_name) return self.__send_request(request) def import_image(self, oss_bucket, oss_object, image_name): """ Form and send request to to import image Return Alibaba response """ oss_image = [{'OSSBucket': oss_bucket, 'OSSObject': oss_object}] request = ImportImageRequest() request.set_DiskDeviceMappings(oss_image) request.set_OSType('Linux') request.set_Architecture('x86_64') request.set_Platform('Others Linux') request.set_ImageName(image_name) request.set_Description(image_name) return self.__send_request(request) def cancel_task(self, task_id): """ Send request to cancel task by task id Return Alibaba response """ request = CancelTaskRequest() request.set_TaskId(task_id) return self.__send_request(request) def describe_task_attribute(self, task_id): """ Send request to get task state with matching id Return Alibaba response """ request = DescribeTaskAttributeRequest() request.set_TaskId(task_id) return self.__send_request(request) def share_image_with_accounts(self, image_id, share_account_ids): """ Send request to share image with other alibaba accounts. Return Alibaba response """ request = ModifyImageSharePermissionRequest() request.set_ImageId(image_id) request.set_AddAccounts(share_account_ids) return self.__send_request(request) def describe_image_share_permission(self, image_id): """Print description of an image's share permissions""" if image_id is None or not image_id: raise Exception('No image id provided') request = DescribeImageSharePermissionRequest() if image_id: request.set_ImageId(image_id) return self.__send_request(request)
43.676471
98
0.673535
7a935222c69ac2494c1d534c23a37a47c35ae88d
15,969
py
Python
discretize/curvilinear_mesh.py
ckohnke/discretize
f414dd7ee7c5ba9a141cb2c37d4b71fdc531eae8
[ "MIT" ]
null
null
null
discretize/curvilinear_mesh.py
ckohnke/discretize
f414dd7ee7c5ba9a141cb2c37d4b71fdc531eae8
[ "MIT" ]
null
null
null
discretize/curvilinear_mesh.py
ckohnke/discretize
f414dd7ee7c5ba9a141cb2c37d4b71fdc531eae8
[ "MIT" ]
null
null
null
import numpy as np import properties from discretize.utils import mkvc, index_cube, face_info, volume_tetrahedron from discretize.base import BaseRectangularMesh from discretize.operators import DiffOperators, InnerProducts from discretize.utils.code_utils import deprecate_property # Some helper functions. def _length2D(x): return (x[:, 0] ** 2 + x[:, 1] ** 2) ** 0.5 def _length3D(x): return (x[:, 0] ** 2 + x[:, 1] ** 2 + x[:, 2] ** 2) ** 0.5 def _normalize2D(x): return x / np.kron(np.ones((1, 2)), mkvc(_length2D(x), 2)) def _normalize3D(x): return x / np.kron(np.ones((1, 3)), mkvc(_length3D(x), 2)) class CurvilinearMesh(BaseRectangularMesh, DiffOperators, InnerProducts): """CurvilinearMesh is a mesh class that deals with curvilinear meshes. Example of a curvilinear mesh: .. plot:: :include-source: import discretize X, Y = discretize.utils.exampleLrmGrid([3,3],'rotate') mesh = discretize.CurvilinearMesh([X, Y]) mesh.plot_grid(show_it=True) """ _meshType = "Curv" _aliases = { **DiffOperators._aliases, **BaseRectangularMesh._aliases, **{ "gridCC": "cell_centers", "gridN": "nodes", "gridFx": "faces_x", "gridFy": "faces_y", "gridFz": "faces_z", "gridEx": "edges_x", "gridEy": "edges_y", "gridEz": "edges_z", }, } node_list = properties.List( "List of arrays describing the node locations", prop=properties.Array( "node locations in an n-dimensional array", shape={("*", "*"), ("*", "*", "*")}, ), min_length=2, max_length=3, ) def __init__(self, node_list=None, **kwargs): if 'nodes' in kwargs: node_list = kwargs.pop('nodes') self.node_list = node_list if "_n" in kwargs.keys(): n = kwargs.pop("_n") if np.any(n != np.array(self.node_list[0].shape) - 1): raise ValueError( "Unexpected n-values. {} was provided, {} was expected".format( n, np.array(self.node_list[0].shape) - 1 ) ) else: n = np.array(self.node_list[0].shape) - 1 BaseRectangularMesh.__init__(self, n, **kwargs) # Save nodes to private variable _nodes as vectors self._nodes = np.ones((self.node_list[0].size, self.dim)) for i, node_i in enumerate(self.node_list): self._nodes[:, i] = mkvc(node_i.astype(float)) self.origin = self.nodes.min(axis=0) @properties.validator("node_list") def _check_nodes(self, change): if len(change["value"]) <= 1: raise ValueError("len(node) must be greater than 1") for i, change["value"][i] in enumerate(change["value"]): if change["value"][i].shape != change["value"][0].shape: raise ValueError( "change['value'][{0:d}] is not the same shape as " "change['value'][0]".format(i) ) if len(change["value"][0].shape) != len(change["value"]): raise ValueError("Dimension mismatch") @classmethod def deserialize(cls, value, **kwargs): if "nodes" in value: value["node_list"] = value.pop("nodes") return super().deserialize(value, **kwargs) @property def cell_centers(self): """ Cell-centered grid """ if getattr(self, "_cell_centers", None) is None: self._cell_centers = np.concatenate( [self.aveN2CC * self.gridN[:, i] for i in range(self.dim)] ).reshape((-1, self.dim), order="F") return self._cell_centers @property def nodes(self): """ Nodal grid. """ if getattr(self, "_nodes", None) is None: raise Exception("Someone deleted this. I blame you.") return self._nodes @property def faces_x(self): """ Face staggered grid in the x direction. """ if getattr(self, "_faces_x", None) is None: N = self.reshape(self.gridN, "N", "N", "M") if self.dim == 2: XY = [mkvc(0.5 * (n[:, :-1] + n[:, 1:])) for n in N] self._faces_x = np.c_[XY[0], XY[1]] elif self.dim == 3: XYZ = [ mkvc( 0.25 * ( n[:, :-1, :-1] + n[:, :-1, 1:] + n[:, 1:, :-1] + n[:, 1:, 1:] ) ) for n in N ] self._faces_x = np.c_[XYZ[0], XYZ[1], XYZ[2]] return self._faces_x @property def faces_y(self): """ Face staggered grid in the y direction. """ if getattr(self, "_faces_y", None) is None: N = self.reshape(self.gridN, "N", "N", "M") if self.dim == 2: XY = [mkvc(0.5 * (n[:-1, :] + n[1:, :])) for n in N] self._faces_y = np.c_[XY[0], XY[1]] elif self.dim == 3: XYZ = [ mkvc( 0.25 * ( n[:-1, :, :-1] + n[:-1, :, 1:] + n[1:, :, :-1] + n[1:, :, 1:] ) ) for n in N ] self._faces_y = np.c_[XYZ[0], XYZ[1], XYZ[2]] return self._faces_y @property def faces_z(self): """ Face staggered grid in the y direction. """ if getattr(self, "_faces_z", None) is None: N = self.reshape(self.gridN, "N", "N", "M") XYZ = [ mkvc( 0.25 * (n[:-1, :-1, :] + n[:-1, 1:, :] + n[1:, :-1, :] + n[1:, 1:, :]) ) for n in N ] self._faces_z = np.c_[XYZ[0], XYZ[1], XYZ[2]] return self._faces_z @property def edges_x(self): """ Edge staggered grid in the x direction. """ if getattr(self, "_edges_x", None) is None: N = self.reshape(self.gridN, "N", "N", "M") if self.dim == 2: XY = [mkvc(0.5 * (n[:-1, :] + n[1:, :])) for n in N] self._edges_x = np.c_[XY[0], XY[1]] elif self.dim == 3: XYZ = [mkvc(0.5 * (n[:-1, :, :] + n[1:, :, :])) for n in N] self._edges_x = np.c_[XYZ[0], XYZ[1], XYZ[2]] return self._edges_x @property def edges_y(self): """ Edge staggered grid in the y direction. """ if getattr(self, "_edges_y", None) is None: N = self.reshape(self.gridN, "N", "N", "M") if self.dim == 2: XY = [mkvc(0.5 * (n[:, :-1] + n[:, 1:])) for n in N] self._edges_y = np.c_[XY[0], XY[1]] elif self.dim == 3: XYZ = [mkvc(0.5 * (n[:, :-1, :] + n[:, 1:, :])) for n in N] self._edges_y = np.c_[XYZ[0], XYZ[1], XYZ[2]] return self._edges_y @property def edges_z(self): """ Edge staggered grid in the z direction. """ if getattr(self, "_edges_z", None) is None and self.dim == 3: N = self.reshape(self.gridN, "N", "N", "M") XYZ = [mkvc(0.5 * (n[:, :, :-1] + n[:, :, 1:])) for n in N] self._edges_z = np.c_[XYZ[0], XYZ[1], XYZ[2]] return self._edges_z # --------------- Geometries --------------------- # # # ------------------- 2D ------------------------- # # node(i,j) node(i,j+1) # A -------------- B # | | # | cell(i,j) | # | I | # | | # D -------------- C # node(i+1,j) node(i+1,j+1) # # ------------------- 3D ------------------------- # # # node(i,j,k+1) node(i,j+1,k+1) # E --------------- F # /| / | # / | / | # / | / | # node(i,j,k) node(i,j+1,k) # A -------------- B | # | H ----------|---- G # | /cell(i,j) | / # | / I | / # | / | / # D -------------- C # node(i+1,j,k) node(i+1,j+1,k) @property def cell_volumes(self): """ Construct cell volumes of the 3D model as 1d array """ if getattr(self, "_cell_volumes", None) is None: if self.dim == 2: A, B, C, D = index_cube("ABCD", self.vnN) normal, area = face_info( np.c_[self.gridN, np.zeros((self.nN, 1))], A, B, C, D ) self._cell_volumes = area elif self.dim == 3: # Each polyhedron can be decomposed into 5 tetrahedrons # However, this presents a choice so we may as well divide in # two ways and average. A, B, C, D, E, F, G, H = index_cube("ABCDEFGH", self.vnN) vol1 = ( volume_tetrahedron(self.gridN, A, B, D, E) + volume_tetrahedron(self.gridN, B, E, F, G) # cutted edge top + volume_tetrahedron(self.gridN, B, D, E, G) # cutted edge top + volume_tetrahedron(self.gridN, B, C, D, G) # middle + volume_tetrahedron(self.gridN, D, E, G, H) # cutted edge bottom ) # cutted edge bottom vol2 = ( volume_tetrahedron(self.gridN, A, F, B, C) + volume_tetrahedron(self.gridN, A, E, F, H) # cutted edge top + volume_tetrahedron(self.gridN, A, H, F, C) # cutted edge top + volume_tetrahedron(self.gridN, C, H, D, A) # middle + volume_tetrahedron(self.gridN, C, G, H, F) # cutted edge bottom ) # cutted edge bottom self._cell_volumes = (vol1 + vol2) / 2 return self._cell_volumes @property def face_areas(self): """ Area of the faces """ if ( getattr(self, "_face_areas", None) is None or getattr(self, "_normals", None) is None ): # Compute areas of cell faces if self.dim == 2: xy = self.gridN A, B = index_cube("AB", self.vnN, self.vnFx) edge1 = xy[B, :] - xy[A, :] normal1 = np.c_[edge1[:, 1], -edge1[:, 0]] area1 = _length2D(edge1) A, D = index_cube("AD", self.vnN, self.vnFy) # Note that we are doing A-D to make sure the normal points the # right way. # Think about it. Look at the picture. Normal points towards C # iff you do this. edge2 = xy[A, :] - xy[D, :] normal2 = np.c_[edge2[:, 1], -edge2[:, 0]] area2 = _length2D(edge2) self._face_areas = np.r_[mkvc(area1), mkvc(area2)] self._normals = [_normalize2D(normal1), _normalize2D(normal2)] elif self.dim == 3: A, E, F, B = index_cube("AEFB", self.vnN, self.vnFx) normal1, area1 = face_info( self.gridN, A, E, F, B, average=False, normalizeNormals=False ) A, D, H, E = index_cube("ADHE", self.vnN, self.vnFy) normal2, area2 = face_info( self.gridN, A, D, H, E, average=False, normalizeNormals=False ) A, B, C, D = index_cube("ABCD", self.vnN, self.vnFz) normal3, area3 = face_info( self.gridN, A, B, C, D, average=False, normalizeNormals=False ) self._face_areas = np.r_[mkvc(area1), mkvc(area2), mkvc(area3)] self._normals = [normal1, normal2, normal3] return self._face_areas @property def face_normals(self): """ Face normals: calling this will average the computed normals so that there is one per face. This is especially relevant in 3D, as there are up to 4 different normals for each face that will be different. To reshape the normals into a matrix and get the y component:: NyX, NyY, NyZ = M.reshape(M.face_normals, 'F', 'Fy', 'M') """ if getattr(self, "_normals", None) is None: self.face_areas # calling .face_areas will create the face normals if self.dim == 2: return _normalize2D(np.r_[self._normals[0], self._normals[1]]) elif self.dim == 3: normal1 = ( self._normals[0][0] + self._normals[0][1] + self._normals[0][2] + self._normals[0][3] ) / 4 normal2 = ( self._normals[1][0] + self._normals[1][1] + self._normals[1][2] + self._normals[1][3] ) / 4 normal3 = ( self._normals[2][0] + self._normals[2][1] + self._normals[2][2] + self._normals[2][3] ) / 4 return _normalize3D(np.r_[normal1, normal2, normal3]) @property def edge_lengths(self): """Edge lengths""" if getattr(self, "_edge_lengths", None) is None: if self.dim == 2: xy = self.gridN A, D = index_cube("AD", self.vnN, self.vnEx) edge1 = xy[D, :] - xy[A, :] A, B = index_cube("AB", self.vnN, self.vnEy) edge2 = xy[B, :] - xy[A, :] self._edge_lengths = np.r_[mkvc(_length2D(edge1)), mkvc(_length2D(edge2))] self._edge_tangents = np.r_[edge1, edge2] / np.c_[self._edge_lengths, self._edge_lengths] elif self.dim == 3: xyz = self.gridN A, D = index_cube("AD", self.vnN, self.vnEx) edge1 = xyz[D, :] - xyz[A, :] A, B = index_cube("AB", self.vnN, self.vnEy) edge2 = xyz[B, :] - xyz[A, :] A, E = index_cube("AE", self.vnN, self.vnEz) edge3 = xyz[E, :] - xyz[A, :] self._edge_lengths = np.r_[ mkvc(_length3D(edge1)), mkvc(_length3D(edge2)), mkvc(_length3D(edge3)), ] self._edge_tangents = ( np.r_[edge1, edge2, edge3] / np.c_[self._edge_lengths, self._edge_lengths, self._edge_lengths] ) return self._edge_lengths @property def edge_tangents(self): """Edge tangents""" if getattr(self, "_edge_tangents", None) is None: self.edge_lengths # calling .edge_lengths will create the tangents return self._edge_tangents # DEPRECATIONS vol = deprecate_property("cell_volumes", "vol", removal_version="1.0.0") area = deprecate_property("face_areas", "area", removal_version="1.0.0") edge = deprecate_property("edge_lengths", "edge", removal_version="1.0.0") # tangent already deprecated in BaseMesh # normals already deprecated in BaseMesh
35.804933
105
0.450686
aaaf433fe278a9910cd1bad3df2a801d2f72ee30
13,830
py
Python
Archive (old files)/pypress(alpha)-20151205.py
avisma/pypress
07f9d0db175f773453c383ef95401f7ee5623cc9
[ "MIT" ]
null
null
null
Archive (old files)/pypress(alpha)-20151205.py
avisma/pypress
07f9d0db175f773453c383ef95401f7ee5623cc9
[ "MIT" ]
null
null
null
Archive (old files)/pypress(alpha)-20151205.py
avisma/pypress
07f9d0db175f773453c383ef95401f7ee5623cc9
[ "MIT" ]
null
null
null
# pypress.py # Designed by Ben Underwood and Justin Kim # A version of Letterpress for Python # Original game designed and published by atebits from graphics import * import string import random import lib_button as button def setAllActive(ButtonList): for i in ButtonList: i.activate() def turnSwitch(): global color global lastColor if color == "blue": color = "red" lastColor = "blue" elif color == "red": color = "blue" lastColor = "red" def makeScore(chosenLetters): letterList = [] for i in range(len(chosenLetters)): letterList.append(chosenLetters[i]) return letterList def isClicked(click, box): boxClicked = None global oldColor print(oldColor) totalButtonClicks = [0] * 25 wasClicked = [False] * 25 #global lastColor #print(lastColor) if box[0].clicked(click): letter = box[0].getLabel() box[0].deactivate() oldColor[0] = lastColor box[0].setFill(color, color) boxClicked = 0 elif box[1].clicked(click): letter = box[1].getLabel() box[1].deactivate() oldColor[1] = lastColor box[1].setFill(color, color) boxClicked = 1 elif box[2].clicked(click): letter = box[2].getLabel() box[2].deactivate() oldColor[2] = lastColor box[2].setFill(color, color) boxClicked = 2 elif box[3].clicked(click): letter = box[3].getLabel() box[3].deactivate() oldColor[3] = lastColor box[3].setFill(color, color) boxClicked = 3 elif box[4].clicked(click): letter = box[4].getLabel() box[4].deactivate() oldColor[4] = lastColor box[4].setFill(color, color) boxClicked = 4 elif box[5].clicked(click): letter = box[5].getLabel() box[5].deactivate() oldColor[5] = lastColor box[5].setFill(color, color) boxClicked = 5 elif box[6].clicked(click): letter = box[6].getLabel() box[6].deactivate() oldColor[6] = lastColor box[6].setFill(color, color) boxClicked = 6 elif box[7].clicked(click): letter = box[7].getLabel() box[7].deactivate() oldColor[7] = lastColor box[7].setFill(color, color) boxClicked = 7 elif box[8].clicked(click): letter = box[8].getLabel() box[8].deactivate() oldColor[8] = lastColor box[8].setFill(color, color) boxClicked = 8 elif box[9].clicked(click): letter = box[9].getLabel() box[9].deactivate() oldColor[9] = lastColor box[9].setFill(color, color) boxClicked = 9 elif box[10].clicked(click): letter = box[10].getLabel() box[10].deactivate() oldColor[10] = lastColor box[10].setFill(color, color) boxClicked = 10 elif box[11].clicked(click): letter = box[11].getLabel() box[11].deactivate() oldColor[11] = lastColor box[11].setFill(color, color) boxClicked = 11 elif box[12].clicked(click): letter = box[12].getLabel() box[12].deactivate() oldColor[12] = lastColor box[12].setFill(color, color) boxClicked = 12 elif box[13].clicked(click): letter = box[13].getLabel() box[13].deactivate() oldColor[13] = lastColor box[13].setFill(color, color) boxClicked = 13 elif box[14].clicked(click): letter = box[14].getLabel() box[14].deactivate() oldColor[14] = lastColor box[14].setFill(color, color) boxClicked = 14 elif box[15].clicked(click): letter = box[15].getLabel() box[15].deactivate() oldColor[15] = lastColor box[15].setFill(color, color) boxClicked = 15 elif box[16].clicked(click): letter = box[16].getLabel() box[16].deactivate() oldColor[16] = lastColor box[16].setFill(color, color) boxClicked = 16 elif box[17].clicked(click): letter = box[17].getLabel() box[17].deactivate() oldColor[17] = lastColor box[17].setFill(color, color) boxClicked = 17 elif box[18].clicked(click): letter = box[18].getLabel() box[18].deactivate() oldColor[18] = lastColor box[18].setFill(color, color) boxClicked = 18 elif box[19].clicked(click): letter = box[19].getLabel() box[19].deactivate() oldColor[19] = lastColor box[19].setFill(color, color) boxClicked = 19 elif box[20].clicked(click): letter = box[20].getLabel() box[20].deactivate() oldColor[20] = lastColor box[20].setFill(color, color) boxClicked = 20 elif box[21].clicked(click): letter = box[21].getLabel() box[21].deactivate() oldColor[21] = lastColor box[21].setFill(color, color) boxClicked = 21 elif box[22].clicked(click): letter = box[22].getLabel() box[22].deactivate() oldColor[22] = lastColor box[22].setFill(color, color) boxClicked = 22 elif box[23].clicked(click): letter = box[23].getLabel() box[23].deactivate() oldColor[23] = lastColor box[23].setFill(color, color) boxClicked = 23 elif box[24].clicked(click): letter = box[24].getLabel() box[24].deactivate() oldColor[24] = lastColor box[24].setFill(color, color) boxClicked = 24 else: letter = None return letter, boxClicked def main(): ####### Make Function? ##### win = GraphWin("pypress.py", 700, 600) win.setCoords(0, 0, 700, 600) box = ["","","","","","","","","","","","","", "","","","","","","","","","","",""] upLeft = Point(100, 500) downRight = Point(150, 450) width = 100# downRight.getX() - upLeft.getX() height = 100# upLeft.getY() - downRight.getY() center = Point(150, 50) ##Revert if needed## for i in range(25): # Draw Buttons box[i] = button.Button(win, center, width, height, str(box[i])) ## box[i] = Rectangle(upLeft, Point(200, 400)) ## box[i].draw(win) if not i in [4, 9, 14, 19]: if round(center.getX()) in [150, 350, 550]: center.move(0, 100) else: center.move(0, -100) else: center.move(100, 0) #center.move(dx, dy) ## box[i].move(100 * i - (500 * (int(i/5))), -100 * (int(i/5))) ## for click in range(10): ## x = win.getMouse() ## x.draw(win) ## print(x.getX(), x.getY()) ## ######## ######## Make Function? ##### global letters letters = [] for i in range(25): # Label buttons letters.append(random.choice(string.ascii_uppercase)) box[i].label.setSize(20) box[i].label.setText(letters[i]) box[i].activate() print(letters, "\n") ## tile = Text(downRight, letters[i]) ## ## tile.move(100 * i - (500 * (int(i/5))), -100 * (int(i/5))) ## ## tile.setSize(20) ## ## tile.draw(win) ######## submitButton = button.Button(win, Point(650, 550), 70, 30, "submit!") submitButton.activate() #submitText.draw(win) #Rectangle(Point(615, 565), Point(685, 535)).draw(win) ####### Make Function? ### chosenLetters = "" drawChosenLetters = Text(Point(350, 550), chosenLetters) drawChosenLetters.setSize(20) drawChosenLetters.draw(win) ####### #boxIndex = list(range(25)) global color global lastColor global oldColor color = "blue" lastColor = "light gray" oldColor = [None] * 25 testCount = 0 submit = False invalidText = Text(Point(650, 515), "Not a valid word!") redLetters = [] blueLetters = [] wordlist = open("wordlist.txt") while (len(redLetters) + len(blueLetters)) < 25: while True: click = win.getMouse() if submitButton.clicked(click): if chosenLetters.lower() not in wordlist.read(): invalidText.draw(win) print(chosenLetters) else: submitButton.deactivate() print("Breaking...") break ## if 620 < click.getX() < 680: ## ## if 520 < click.getY() < 580: ## submit = True ## for i in range(25): ## letters.append(box[i].getLabel()) ## ## print(letters) letter, boxClicked = isClicked(click, box) if letter != None: chosenLetters = chosenLetters + letter try: if letters[boxClicked] != None: print("Removing from 'letters'") print(boxClicked) letters[boxClicked] = None else: print("valueError... Redirecting...") if color == 'blue': try: if oldColor[boxClicked] == color: blueLetters.remove(letter) print("Blue clicked their own letter.") else: print("Removing from Red") redLetters.remove(letter) print("No more of this letter? " "removed letter from Red") except ValueError: if letter in blueLetters: print("Never mind") blueLetters.remove(letter) # See below comment pass elif color == 'red': try: if oldColor[boxClicked] == color: redLetters.remove(letter) print("Red clicked their own letter.") else: print("Removing from Blue") blueLetters.remove(letter) print("No more of this letter? " 'removed letter from Blue') except ValueError: if letter in redLetters: print("Never mind") redLetters.remove(letter) #At this point, the # letter has already been # added to 'chosenLetters'. # Removing the existing # letter from the list # prevents the program from # duplicating the letter, # as the letter will be # re-added as part of the # new word. pass else: print('Neither team\n',letters) except IndexError: print("Index Error, Redirecting...") print(letters) print(len(letters)) drawChosenLetters.setText(chosenLetters) ## if 500 > click.getY() > 400: ## ## if 100 < click.getX() < 200: ## ## chosenLetters = chosenLetters + (letters[0]) ## ## letters[0] = "" ## ## drawChosenLetters.setText(chosenLetters) ## ## elif click.getX() < 300: ## ## chosenLetters = chosenLetters + (letters[1]) ## letters[1] = "" ## drawChosenLetters.setText(chosenLetters) ## ## elif click.getX() < 400: ## chosenLetters = chosenLetters letterList = makeScore(chosenLetters) if color == 'blue': blueLetters = blueLetters + letterList elif color == 'red': redLetters = redLetters + letterList print(blueLetters, redLetters) turnSwitch() chosenLetters = "" drawChosenLetters.setText(chosenLetters) print("Switching Turns") testCount = testCount + 1 submit = True submitButton.activate() setAllActive(box) print("Finished!") print(letters) print(len(blueLetters), len(redLetters)) print(len(letters)) print("Exiting...") win.getMouse() win.close() if __name__ == "__main__": main()
13,830
13,830
0.464208
feb98ce1b41e302847a5e10389f9d6d3e747abad
1,822
py
Python
python_koans/python3/koans/about_dice_project.py
kipel/koans
752ce65a99c27a0e766276039bf48b4a5e98e62a
[ "MIT" ]
null
null
null
python_koans/python3/koans/about_dice_project.py
kipel/koans
752ce65a99c27a0e766276039bf48b4a5e98e62a
[ "MIT" ]
null
null
null
python_koans/python3/koans/about_dice_project.py
kipel/koans
752ce65a99c27a0e766276039bf48b4a5e98e62a
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from runner.koan import * import random class DiceSet: def __init__(self): self._values = None @property def values(self): return self._values def roll(self, n): from random import randint self._values = [randint(1, 6) for _ in range(n)] class AboutDiceProject(Koan): def test_can_create_a_dice_set(self): dice = DiceSet() self.assertTrue(dice) def test_rolling_the_dice_returns_a_set_of_integers_between_1_and_6(self): dice = DiceSet() dice.roll(5) self.assertTrue(isinstance(dice.values, list), "should be a list") self.assertEqual(5, len(dice.values)) for value in dice.values: self.assertTrue(value >= 1 and value <= 6, "value " + str(value) + " must be between 1 and 6") def test_dice_values_do_not_change_unless_explicitly_rolled(self): dice = DiceSet() dice.roll(5) first_time = dice.values second_time = dice.values self.assertEqual(first_time, second_time) def test_dice_values_should_change_between_rolls(self): dice = DiceSet() dice.roll(5) first_time = dice.values dice.roll(5) second_time = dice.values self.assertNotEqual(first_time, second_time, \ "Two rolls should not be equal") # THINK ABOUT IT: # # If the rolls are random, then it is possible (although not # likely) that two consecutive rolls are equal. What would be a # better way to test this? def test_you_can_roll_different_numbers_of_dice(self): dice = DiceSet() dice.roll(3) self.assertEqual(3, len(dice.values)) dice.roll(1) self.assertEqual(1, len(dice.values))
27.19403
106
0.629528
c4a3dfabddf483ac731b96b800cddbc7386067bf
60
py
Python
Tutorial/Python Bootcamp/Src/Day #17/game.py
lzzzam/Python_Scripts
f35c1acef13642e444b50d21dc94d9de2ce5d322
[ "MIT" ]
null
null
null
Tutorial/Python Bootcamp/Src/Day #17/game.py
lzzzam/Python_Scripts
f35c1acef13642e444b50d21dc94d9de2ce5d322
[ "MIT" ]
null
null
null
Tutorial/Python Bootcamp/Src/Day #17/game.py
lzzzam/Python_Scripts
f35c1acef13642e444b50d21dc94d9de2ce5d322
[ "MIT" ]
null
null
null
import quiz game = quiz.game(quiz.questionTable) game.run()
15
36
0.766667
9103716f240ebb685edfea1d7dd588c839f6b9f0
1,712
py
Python
examples/plot_trajectory.py
rock-learning/approxik
877d50d4d045457593a2fafefd267339a11de20f
[ "BSD-3-Clause" ]
1
2020-03-27T01:53:57.000Z
2020-03-27T01:53:57.000Z
examples/plot_trajectory.py
rock-learning/approxik
877d50d4d045457593a2fafefd267339a11de20f
[ "BSD-3-Clause" ]
null
null
null
examples/plot_trajectory.py
rock-learning/approxik
877d50d4d045457593a2fafefd267339a11de20f
[ "BSD-3-Clause" ]
1
2020-12-18T02:09:21.000Z
2020-12-18T02:09:21.000Z
import sys import pytransform.rotations as pyrot from visualization import * from utils import parse_args from convert import trajectory_ik, trajectory_fk, timing_report, reaching_report from approxik import ApproxInvKin, ExactInvKin def print_usage(): print("Usage: <script> <filename> [<base_link> <endeffector_link>] " "trajectory <file>") if __name__ == "__main__": try: i = sys.argv.index("trajectory") except ValueError: print_usage() exit(1) if len(sys.argv) < i + 2: print_usage() exit(1) trajectory_filename = sys.argv[i + 1] print("Using trajectory from file '%s'" % trajectory_filename) filename, base_link, ee_link = parse_args() aik = ApproxInvKin(filename, base_link, ee_link, 1.0, 0.001, verbose=0) eik = ExactInvKin(filename, base_link, ee_link, 1e-4, 200, verbose=0) P = np.loadtxt(trajectory_filename) Qa, timings = trajectory_ik(P, aik) reaching_report(P, Qa, aik, label="Approximate IK") timing_report(timings, "Approximate IK") Pa = trajectory_fk(Qa, aik) Qe, timings, reachable = trajectory_ik(P, eik, return_reachable=True) reaching_report(P, Qe, eik, label="Exact IK") timing_report(timings, "Exact IK") Pe = trajectory_fk(Qe, eik) Pe[np.logical_not(reachable)] = np.nan Qe[np.logical_not(reachable)] = np.nan ax = plot_pose_trajectory(P, Pa) ax.set_xlim((0.2, 0.7)) ax.set_ylim((-0.25, 0.25)) ax.set_zlim((0.5, 1.0)) ax = plot_pose_trajectory(P, Pe) ax.set_xlim((0.2, 0.7)) ax.set_ylim((-0.25, 0.25)) ax.set_zlim((0.5, 1.0)) plot_joint_trajectories([Qa, Qe], labels=["Approximation", "Exact"]) plt.show()
30.035088
80
0.663551
8ea8db2352a0314c9858182ef4ae7682d7b0b322
847
py
Python
kadro/tests/test_composability.py
koaning/kadro
cbf993e5142d1ade26ac5922d7d15784d56b3db6
[ "MIT" ]
13
2017-03-01T15:19:43.000Z
2021-09-23T21:02:27.000Z
kadro/tests/test_composability.py
koaning/kadro
cbf993e5142d1ade26ac5922d7d15784d56b3db6
[ "MIT" ]
9
2017-02-03T10:13:22.000Z
2018-05-28T21:26:10.000Z
kadro/tests/test_composability.py
koaning/kadro
cbf993e5142d1ade26ac5922d7d15784d56b3db6
[ "MIT" ]
3
2018-03-20T03:41:28.000Z
2020-07-03T06:00:16.000Z
import unittest import numpy as np import pandas as pd import kadro as kd np.random.seed(42) n = 20 df = pd.DataFrame({ 'a': np.random.randn(n), 'b': np.random.randn(n), 'c': ['foo' if x > 0.5 else 'bar' for x in np.random.rand(n)], 'd': ['fizz' if x > 0.6 else 'bo' for x in np.random.rand(n)] }) df = df.sort_values(['c', 'd']) kf = kd.Frame(df) class Composables(unittest.TestCase): def test_compose1(self): """Test that grouping has an effect on mutate.""" new = (kf .group_by('c', 'd') .mutate(e = lambda _: _['a'].shift()) .ungroup()) self.assertEqual(len(new.groups), 0) self.assertEqual(new.df.iloc[0]['a'], new.df.iloc[1]['e']) self.assertEqual(np.isnan(new.df.iloc[0]['e']), True) if __name__ == '__main__': unittest.main()
27.322581
66
0.566706
2d803caf4c2e033c8297442743477ec654ed993f
11,750
py
Python
Assets/Python/BUG/UnitGrouper.py
Imperator-Knoedel/Sunset
19c95f4844586b96341f3474b58e0dacaae485b9
[ "MIT" ]
1
2019-08-05T18:36:14.000Z
2019-08-05T18:36:14.000Z
Assets/Python/BUG/UnitGrouper.py
Imperator-Knoedel/Sunset
19c95f4844586b96341f3474b58e0dacaae485b9
[ "MIT" ]
null
null
null
Assets/Python/BUG/UnitGrouper.py
Imperator-Knoedel/Sunset
19c95f4844586b96341f3474b58e0dacaae485b9
[ "MIT" ]
null
null
null
## UnitGrouper ## ## Builds groups of units for use in reporting or screens. ## ## Copyright (c) 2008 The BUG Mod. ## ## Author: EmperorFool from CvPythonExtensions import * import BugUtil import UnitUtil from Consts import * from RFCUtils import utils # BUG - Mac Support - start BugUtil.fixSets(globals()) # BUG - Mac Support - end # globals gc = CyGlobalContext() # Base grouping classes class Grouper: """ Holds all Grouping definitions. """ def __init__(self): self.groupings = [] self.groupingsByKey = {} def _addGrouping(self, grouping): grouping.index = len(self.groupings) self.groupings.append(grouping) self.groupingsByKey[grouping.key] = grouping def getGrouping(self, key): if key in self.groupingsByKey: return self.groupingsByKey[key] else: return None def __getitem__(self, key): if isinstance(key, int): return self.groupings[key] else: return self.groupingsByKey(key) def __iter__(self): return self.groupings.__iter__() def iterkeys(self): return self.groupingsByKey.iterkeys() def itervalues(self): return self.groupingsByKey.itervalues() def iteritems(self): return self.groupingsByKey.iteritems() class Grouping: """ Applies a formula to place units into groups. key: used for sorting groupings; must be in the range [0, 999] inclusive title: used to display the group """ def __init__(self, key, title): self.index = None self.key = key if title.startswith("TXT_KEY_"): self.title = BugUtil.getPlainText(title) else: self.title = title self.groups = {} def _addGroup(self, group): self.groups[group.key] = group def calcGroupKeys(self, unit, player, team): return None class Group: """ Represents a single group value within a grouping. key: used for sorting groups; must be in the range [0, 999] inclusive title: used to display the group """ def __init__(self, grouping, key, title): self.grouping = grouping self.key = key if title.startswith("TXT_KEY_"): self.title = BugUtil.getPlainText(title) else: self.title = title def getTitle(self): return self.title # Grouping definitions class UnitTypeGrouping(Grouping): """ Groups units by their unit type. Ex: Warrior, Maceman, Panzer """ def __init__(self): Grouping.__init__(self, "type", "TXT_KEY_UNIT_GROUPER_TYPE_GROUPING") for i in range(gc.getNumUnitInfos()): if i in dFemaleGreatPeople.values(): continue # combine female and male units info = gc.getUnitInfo(i) if info: self._addGroup(Group(self, i, info.getDescription())) def calcGroupKeys(self, unit, player, team): iUnitType = utils.getDefaultGreatPerson(unit.getUnitType()) # merge male and female GP return (iUnitType,) class UnitCombatGrouping(Grouping): """ Groups units by their combat type. Ex: None, Melee, Gunpowder, Naval """ def __init__(self): Grouping.__init__(self, "combat", "TXT_KEY_UNIT_GROUPER_COMBAT_GROUPING") self.NONE = 0 self._addGroup(Group(self, self.NONE, "TXT_KEY_UNIT_GROUPER_COMBAT_GROUP_NONE")) for i in range(gc.getNumUnitCombatInfos()): info = gc.getUnitCombatInfo(i) if info: self._addGroup(Group(self, i + 1, info.getDescription())) def calcGroupKeys(self, unit, player, team): return (gc.getUnitInfo(unit.getUnitType()).getUnitCombatType() + 1,) class LevelGrouping(Grouping): """ Groups units by their level, 1 to MAX_LEVEL (50). Units over level MAX_LEVEL are put into the MAX_LEVEL group. """ def __init__(self): Grouping.__init__(self, "level", "TXT_KEY_UNIT_GROUPER_LEVEL_GROUPING") self.MAX_LEVEL = 50 for i in range(self.MAX_LEVEL): self._addGroup(Group(self, i, BugUtil.getText("TXT_KEY_UNIT_GROUPER_LEVEL_GROUP", (str(i),)))) self._addGroup(Group(self, self.MAX_LEVEL, BugUtil.getText("TXT_KEY_UNIT_GROUPER_LEVEL_GROUP", ("%d+" % self.MAX_LEVEL,)))) def calcGroupKeys(self, unit, player, team): return (max(0, min(unit.getLevel(), self.MAX_LEVEL)),) class PromotionGrouping(Grouping): """ Groups units by their promotions. Ex: Combat 1, Cover, Tactics """ def __init__(self): Grouping.__init__(self, "promo", "TXT_KEY_UNIT_GROUPER_PROMOTION_GROUPING") self.NONE = 0 self.NO_PROMOS = (0,) self._addGroup(Group(self, self.NONE, "TXT_KEY_UNIT_GROUPER_PROMOTION_GROUP_NONE")) for i in range(gc.getNumPromotionInfos()): info = gc.getPromotionInfo(i) if info: self._addGroup(Group(self, i + 1, '<img=%s size=16></img> %s' % (info.getButton(), info.getDescription()))) def calcGroupKeys(self, unit, player, team): promos = [] for iPromo in range(gc.getNumPromotionInfos()): if unit.isHasPromotion(iPromo): promos.append(iPromo + 1) if not promos: promos = self.NO_PROMOS return promos class LocationGrouping(Grouping): """ Groups units by their location on the map. Ex: Domestic City, Friendly City, Enemy Territory """ def __init__(self): Grouping.__init__(self, "loc", "TXT_KEY_UNIT_GROUPER_LOCATION_GROUPING") ( self.DOMESTIC_CITY, self.DOMESTIC_TERRITORY, self.TEAM_CITY, self.TEAM_TERRITORY, self.FRIENDLY_CITY, self.FRIENDLY_TERRITORY, self.NEUTRAL_TERRITORY, self.ENEMY_TERRITORY, self.BARBARIAN_TERRITORY ) = range(9) self._addGroup(Group(self, self.DOMESTIC_CITY, "TXT_KEY_UNIT_GROUPER_LOCATION_GROUP_DOMESTIC_CITY")) self._addGroup(Group(self, self.DOMESTIC_TERRITORY, "TXT_KEY_UNIT_GROUPER_LOCATION_GROUP_DOMESTIC_TERRITORY")) self._addGroup(Group(self, self.TEAM_CITY, "TXT_KEY_UNIT_GROUPER_LOCATION_GROUP_TEAM_CITY")) self._addGroup(Group(self, self.TEAM_TERRITORY, "TXT_KEY_UNIT_GROUPER_LOCATION_GROUP_TEAM_TERRITORY")) self._addGroup(Group(self, self.FRIENDLY_CITY, "TXT_KEY_UNIT_GROUPER_LOCATION_GROUP_FRIENDLY_CITY")) self._addGroup(Group(self, self.FRIENDLY_TERRITORY, "TXT_KEY_UNIT_GROUPER_LOCATION_GROUP_FRIENDLY_TERRITORY")) self._addGroup(Group(self, self.NEUTRAL_TERRITORY, "TXT_KEY_UNIT_GROUPER_LOCATION_GROUP_NEUTRAL_TERRITORY")) self._addGroup(Group(self, self.ENEMY_TERRITORY, "TXT_KEY_UNIT_GROUPER_LOCATION_GROUP_ENEMY_TERRITORY")) self._addGroup(Group(self, self.BARBARIAN_TERRITORY, "TXT_KEY_UNIT_GROUPER_LOCATION_GROUP_BARBARIAN_TERRITORY")) def calcGroupKeys(self, unit, player, team): plot = unit.plot() if not plot or plot.isNone(): return None if plot.isBarbarian(): return (self.BARBARIAN_TERRITORY,) teamId = team.getID() ownerId = plot.getRevealedOwner(teamId, False) if ownerId == -1: return (self.NEUTRAL_TERRITORY,) elif ownerId == player.getID(): if plot.isCity(): return (self.DOMESTIC_CITY,) else: return (self.DOMESTIC_TERRITORY,) else: owner = gc.getPlayer(ownerId) ownerTeamId = owner.getTeam() if ownerTeamId == teamId: if plot.isCity(): return (self.TEAM_CITY,) else: return (self.TEAM_TERRITORY,) elif team.isAtWar(ownerTeamId): return (self.ENEMY_TERRITORY,) else: if plot.isCity(): return (self.FRIENDLY_CITY,) else: return (self.FRIENDLY_TERRITORY,) class OrderGrouping(Grouping): """ Groups units by their current order/action. Ex: Fortify, Go To, Blockade """ def __init__(self): Grouping.__init__(self, "order", "TXT_KEY_UNIT_GROUPER_ORDER_GROUPING") ( self.ORDER_NONE, self.ORDER_SKIP, self.ORDER_SLEEP, self.ORDER_FORTIFY, self.ORDER_HEAL, self.ORDER_SENTRY, self.ORDER_INTERCEPT, self.ORDER_PATROL, self.ORDER_PLUNDER, self.ORDER_BUILD, self.ORDER_CONSTRUCT, self.ORDER_GOTO, self.ORDER_EXPLORE, self.ORDER_AUTO_BUILD, self.ORDER_AUTO_NETWORK, self.ORDER_AUTO_CITY, self.ORDER_AUTO_RELIGION, self.ORDER_OTHER, ) = range(18) self._addGroup(Group(self, self.ORDER_NONE, "TXT_KEY_UNIT_GROUPER_ORDER_GROUP_NONE")) self._addGroup(Group(self, self.ORDER_SKIP, "TXT_KEY_UNIT_GROUPER_ORDER_GROUP_SKIP")) self._addGroup(Group(self, self.ORDER_SLEEP, "TXT_KEY_UNIT_GROUPER_ORDER_GROUP_SLEEP")) self._addGroup(Group(self, self.ORDER_FORTIFY, "TXT_KEY_UNIT_GROUPER_ORDER_GROUP_FORTIFY")) self._addGroup(Group(self, self.ORDER_HEAL, "TXT_KEY_UNIT_GROUPER_ORDER_GROUP_HEAL")) self._addGroup(Group(self, self.ORDER_SENTRY, "TXT_KEY_UNIT_GROUPER_ORDER_GROUP_SENTRY")) self._addGroup(Group(self, self.ORDER_INTERCEPT, "TXT_KEY_UNIT_GROUPER_ORDER_GROUP_INTERCEPT")) self._addGroup(Group(self, self.ORDER_PATROL, "TXT_KEY_UNIT_GROUPER_ORDER_GROUP_PATROL")) self._addGroup(Group(self, self.ORDER_PLUNDER, "TXT_KEY_UNIT_GROUPER_ORDER_GROUP_PLUNDER")) self._addGroup(Group(self, self.ORDER_BUILD, "TXT_KEY_UNIT_GROUPER_ORDER_GROUP_BUILD")) self._addGroup(Group(self, self.ORDER_CONSTRUCT, "TXT_KEY_UNIT_GROUPER_ORDER_GROUP_CONSTRUCT")) self._addGroup(Group(self, self.ORDER_GOTO, "TXT_KEY_UNIT_GROUPER_ORDER_GROUP_GOTO")) self._addGroup(Group(self, self.ORDER_EXPLORE, "TXT_KEY_UNIT_GROUPER_ORDER_GROUP_EXPLORE")) self._addGroup(Group(self, self.ORDER_AUTO_BUILD, "TXT_KEY_UNIT_GROUPER_ORDER_GROUP_AUTO_BUILD")) self._addGroup(Group(self, self.ORDER_AUTO_NETWORK, "TXT_KEY_UNIT_GROUPER_ORDER_GROUP_AUTO_NETWORK")) self._addGroup(Group(self, self.ORDER_AUTO_CITY, "TXT_KEY_UNIT_GROUPER_ORDER_GROUP_AUTO_CITY")) self._addGroup(Group(self, self.ORDER_AUTO_RELIGION, "TXT_KEY_UNIT_GROUPER_ORDER_GROUP_AUTO_RELIGION")) self._addGroup(Group(self, self.ORDER_OTHER, "TXT_KEY_UNIT_GROUPER_ORDER_GROUP_OTHER")) def calcGroupKeys(self, unit, player, team): eOrder = UnitUtil.getOrder(unit) if eOrder >= self.ORDER_OTHER: return (self.ORDER_OTHER,) else: return (eOrder,) class StandardGrouper(Grouper): def __init__(self): Grouper.__init__(self) self._addGrouping(UnitTypeGrouping()) self._addGrouping(UnitCombatGrouping()) self._addGrouping(LevelGrouping()) self._addGrouping(PromotionGrouping()) self._addGrouping(LocationGrouping()) self._addGrouping(OrderGrouping()) # Classes for tracking stats about groups and units class GrouperStats: """ Holds stats for a set of groupings. """ def __init__(self, grouper): self.grouper = grouper self.groupings = {} for grouping in self.grouper.groupings: self._addGrouping(GroupingStats(grouping)) def _addGrouping(self, grouping): self.groupings[grouping.grouping.key] = grouping def processUnit(self, player, team, unit): stats = UnitStats(unit.getOwner(), unit.getID(), unit) for grouping in self.groupings.itervalues(): grouping._processUnit(player, team, stats) return stats def getGrouping(self, key): if key in self.groupings: return self.groupings[key] else: return None def itergroupings(self): return self.groupings.itervalues() class GroupingStats: """ Holds stats for a grouping. """ def __init__(self, grouping): self.grouping = grouping self.groups = {} for group in self.grouping.groups.itervalues(): self._addGroup(GroupStats(group)) def _addGroup(self, group): self.groups[group.group.key] = group def _processUnit(self, player, team, unitStats): keys = self.grouping.calcGroupKeys(unitStats.unit, player, team) for key in keys: self.groups[key]._addUnit(unitStats) def itergroups(self): return self.groups.itervalues() class GroupStats: """ Holds stats for a group of units. """ def __init__(self, group): self.group = group self.units = set() def _addUnit(self, unitStats): self.units.add(unitStats) def title(self): return self.group.title def size(self): return len(self.units) def isEmpty(self): return self.size() == 0 class UnitStats: """ Holds stats about a single unit. """ def __init__(self, playerId, unitId, unit): self.key = (playerId, unitId) self.unit = unit def __hash__(self): return hash(self.key) def __eq__(self, other): return self.key == other.key
29.822335
125
0.743574
69a5ae3999413d7872c2555766cda7fb0cfbd396
3,480
py
Python
biotracks/createdp.py
sbesson/biotracks
1adc6f954e2a29fcc250c45e7b463752d06dd5ab
[ "BSD-2-Clause" ]
10
2017-05-24T07:41:04.000Z
2019-10-28T14:32:01.000Z
biotracks/createdp.py
pcmasuzzo/dpkg
5c7d067232f10c786c85b96b18cc56dd7d6d019f
[ "BSD-2-Clause" ]
40
2017-05-02T16:30:42.000Z
2020-04-30T13:19:35.000Z
biotracks/createdp.py
pcmasuzzo/dpkg
5c7d067232f10c786c85b96b18cc56dd7d6d019f
[ "BSD-2-Clause" ]
6
2017-06-19T13:55:28.000Z
2018-09-18T09:03:45.000Z
# #%L # Copyright (c) 2016-2017 Cell Migration Standardisation Organization # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # #L% import json import csv import os import re import datapackage from jsontableschema import infer from . import cmso, config from .utils import get_logger, mkdir_p # https://specs.frictionlessdata.io/data-package/#metadata NAME_PATTERN = re.compile(r"^[a-z0-9_.-]+$") FOREIGN_KEYS = [{ "fields": cmso.OBJECT_ID, "reference": { "datapackage": "", "resource": cmso.OBJECTS_TABLE, "fields": cmso.OBJECT_ID } }] def infer_from_df(df, **kwargs): # df.iterrows does not preserve types h = df.head() fields = list(df) iterrows = ([str(h[_].values[i]) for _ in fields] for i in range(h.shape[0])) return infer(fields, iterrows, **kwargs) def to_json(dp): return json.dumps(dp.to_dict(), indent=4, sort_keys=True) def create(reader, out_dir, log_level=None): logger = get_logger("createdp.create", level=log_level) top_level_dict = reader.conf[config.TOP_LEVEL] try: name = top_level_dict["name"] except KeyError: raise ValueError("'name' is a required property") if not NAME_PATTERN.match(name): raise ValueError("invalid name: %r" % (name,)) dp = datapackage.DataPackage() for k, v in top_level_dict.items(): dp.descriptor[k] = v dp.descriptor['resources'] = [] mkdir_p(out_dir) logger.info("writing to '%s'", out_dir) for a in "objects", "links": out_bn = "%s.csv" % a out_fn = os.path.join(out_dir, out_bn) df = getattr(reader, a) df.to_csv(out_fn, index=False, quoting=csv.QUOTE_NONE) if a == "objects": name = cmso.OBJECTS_TABLE infer_kwargs = {"primary_key": cmso.OBJECT_ID} else: name = cmso.LINKS_TABLE infer_kwargs = {} schema = infer_from_df(df, **infer_kwargs) if a == "links": schema['foreignKeys'] = FOREIGN_KEYS res = {"name": name, "path": out_bn, "schema": schema} dp.descriptor['resources'].append(res) with open(os.path.join(out_dir, 'dp.json'), 'w') as f: f.write(to_json(dp) + '\n') return dp
35.876289
78
0.682471
c834796649da4ccb7176af438c1217c012994d6f
902
py
Python
isi_sdk_8_0_1/test/test_antivirus_server.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
24
2018-06-22T14:13:23.000Z
2022-03-23T01:21:26.000Z
isi_sdk_8_0_1/test/test_antivirus_server.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
46
2018-04-30T13:28:22.000Z
2022-03-21T21:11:07.000Z
isi_sdk_8_0_1/test/test_antivirus_server.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
29
2018-06-19T00:14:04.000Z
2022-02-08T17:51:19.000Z
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 4 Contact: sdk@isilon.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import isi_sdk_8_0_1 from isi_sdk_8_0_1.models.antivirus_server import AntivirusServer # noqa: E501 from isi_sdk_8_0_1.rest import ApiException class TestAntivirusServer(unittest.TestCase): """AntivirusServer unit test stubs""" def setUp(self): pass def tearDown(self): pass def testAntivirusServer(self): """Test AntivirusServer""" # FIXME: construct object with mandatory attributes with example values # model = isi_sdk_8_0_1.models.antivirus_server.AntivirusServer() # noqa: E501 pass if __name__ == '__main__': unittest.main()
22
87
0.7051
2b42959576884c0c390ecf9837aeae4f42e29e4f
18,759
py
Python
bin/start-impala-cluster.py
im0nk3y/Impala
f40f81639d0121925b71a1cbb85e1c9c51230058
[ "Apache-2.0" ]
null
null
null
bin/start-impala-cluster.py
im0nk3y/Impala
f40f81639d0121925b71a1cbb85e1c9c51230058
[ "Apache-2.0" ]
null
null
null
bin/start-impala-cluster.py
im0nk3y/Impala
f40f81639d0121925b71a1cbb85e1c9c51230058
[ "Apache-2.0" ]
1
2018-08-22T15:33:23.000Z
2018-08-22T15:33:23.000Z
#!/usr/bin/env impala-python # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # Starts up an Impala cluster (ImpalaD + State Store) with the specified number of # ImpalaD instances. Each ImpalaD runs on a different port allowing this to be run # on a single machine. import os import psutil import sys from getpass import getuser from time import sleep, time from optparse import OptionParser from testdata.common import cgroups KUDU_MASTER_HOSTS = os.getenv('KUDU_MASTER_HOSTS', '127.0.0.1') DEFAULT_IMPALA_MAX_LOG_FILES = os.environ.get('IMPALA_MAX_LOG_FILES', 10) # Options parser = OptionParser() parser.add_option("-s", "--cluster_size", type="int", dest="cluster_size", default=3, help="Size of the cluster (number of impalad instances to start).") parser.add_option("-c", "--num_coordinators", type="int", dest="num_coordinators", default=3, help="Number of coordinators.") parser.add_option("--use_exclusive_coordinators", dest="use_exclusive_coordinators", action="store_true", default=False, help="If true, coordinators only " "coordinate queries and execute coordinator fragments. If false, " "coordinators also act as executors.") parser.add_option("--build_type", dest="build_type", default= 'latest', help="Build type to use - debug / release / latest") parser.add_option("--impalad_args", dest="impalad_args", action="append", type="string", default=[], help="Additional arguments to pass to each Impalad during startup") parser.add_option("--state_store_args", dest="state_store_args", action="append", type="string", default=[], help="Additional arguments to pass to State Store during startup") parser.add_option("--catalogd_args", dest="catalogd_args", action="append", type="string", default=[], help="Additional arguments to pass to the Catalog Service at startup") parser.add_option("--kill", "--kill_only", dest="kill_only", action="store_true", default=False, help="Instead of starting the cluster, just kill all" " the running impalads and the statestored.") parser.add_option("--force_kill", dest="force_kill", action="store_true", default=False, help="Force kill impalad and statestore processes.") parser.add_option("-r", "--restart_impalad_only", dest="restart_impalad_only", action="store_true", default=False, help="Restarts only the impalad processes") parser.add_option("--in-process", dest="inprocess", action="store_true", default=False, help="Start all Impala backends and state store in a single process.") parser.add_option("--log_dir", dest="log_dir", default=os.environ['IMPALA_CLUSTER_LOGS_DIR'], help="Directory to store output logs to.") parser.add_option('--max_log_files', default=DEFAULT_IMPALA_MAX_LOG_FILES, help='Max number of log files before rotation occurs.') parser.add_option("-v", "--verbose", dest="verbose", action="store_true", default=False, help="Prints all output to stderr/stdout.") parser.add_option("--wait_for_cluster", dest="wait_for_cluster", action="store_true", default=False, help="Wait until the cluster is ready to accept " "queries before returning.") parser.add_option("--log_level", type="int", dest="log_level", default=1, help="Set the impalad backend logging level") parser.add_option("--jvm_args", dest="jvm_args", default="", help="Additional arguments to pass to the JVM(s) during startup.") parser.add_option("--kudu_master_hosts", default=KUDU_MASTER_HOSTS, help="The host name or address of the Kudu master. Multiple masters " "can be specified using a comma separated list.") options, args = parser.parse_args() IMPALA_HOME = os.environ['IMPALA_HOME'] KNOWN_BUILD_TYPES = ['debug', 'release', 'latest'] IMPALAD_PATH = os.path.join(IMPALA_HOME, 'bin/start-impalad.sh -build_type=%s' % options.build_type) STATE_STORE_PATH = os.path.join(IMPALA_HOME, 'bin/start-statestored.sh -build_type=%s' % options.build_type) CATALOGD_PATH = os.path.join(IMPALA_HOME, 'bin/start-catalogd.sh -build_type=%s' % options.build_type) MINI_IMPALA_CLUSTER_PATH = IMPALAD_PATH + " -in-process" IMPALA_SHELL = os.path.join(IMPALA_HOME, 'bin/impala-shell.sh') IMPALAD_PORTS = ("-beeswax_port=%d -hs2_port=%d -be_port=%d " "-state_store_subscriber_port=%d -webserver_port=%d") JVM_ARGS = "-jvm_debug_port=%s -jvm_args=%s" BE_LOGGING_ARGS = "-log_filename=%s -log_dir=%s -v=%s -logbufsecs=5 -max_log_files=%s" CLUSTER_WAIT_TIMEOUT_IN_SECONDS = 240 # Kills have a timeout to prevent automated scripts from hanging indefinitely. # It is set to a high value to avoid failing if processes are slow to shut down. KILL_TIMEOUT_IN_SECONDS = 240 def find_user_processes(binaries): """Returns an iterator over all processes owned by the current user with a matching binary name from the provided list.""" for pid in psutil.get_pid_list(): try: process = psutil.Process(pid) if process.username == getuser() and process.name in binaries: yield process except KeyError, e: if "uid not found" not in str(e): raise except psutil.NoSuchProcess, e: # Ignore the case when a process no longer exists. pass def check_process_exists(binary, attempts=1): """Checks if a process exists given the binary name. The `attempts` count allows us to control the time a process needs to settle until it becomes available. After each try the script will sleep for one second and retry. Returns True if it exists and False otherwise. """ for _ in range(attempts): for proc in find_user_processes([binary]): return True sleep(1) return False def exec_impala_process(cmd, args, stderr_log_file_path): redirect_output = str() if options.verbose: args += ' -logtostderr=1' else: redirect_output = "1>%s" % stderr_log_file_path cmd = '%s %s %s 2>&1 &' % (cmd, args, redirect_output) os.system(cmd) def kill_cluster_processes(force=False): binaries = ['catalogd', 'impalad', 'statestored', 'mini-impala-cluster'] kill_matching_processes(binaries, force) def kill_matching_processes(binary_names, force=False): """Kills all processes with the given binary name, waiting for them to exit""" # Send all the signals before waiting so that processes can clean up in parallel. processes = list(find_user_processes(binary_names)) for process in processes: try: if force: process.kill() else: process.terminate() except psutil.NoSuchProcess: pass for process in processes: try: process.wait(KILL_TIMEOUT_IN_SECONDS) except psutil.TimeoutExpired: raise RuntimeError("Unable to kill %s (pid %d) after %d seconds." % (process.name, process.pid, KILL_TIMEOUT_IN_SECONDS)) def start_statestore(): print "Starting State Store logging to %s/statestored.INFO" % options.log_dir stderr_log_file_path = os.path.join(options.log_dir, "statestore-error.log") args = "%s %s" % (build_impalad_logging_args(0, "statestored"), " ".join(options.state_store_args)) exec_impala_process(STATE_STORE_PATH, args, stderr_log_file_path) if not check_process_exists("statestored", 10): raise RuntimeError("Unable to start statestored. Check log or file permissions" " for more details.") def start_catalogd(): print "Starting Catalog Service logging to %s/catalogd.INFO" % options.log_dir stderr_log_file_path = os.path.join(options.log_dir, "catalogd-error.log") args = "%s %s %s" % (build_impalad_logging_args(0, "catalogd"), " ".join(options.catalogd_args), build_jvm_args(options.cluster_size)) exec_impala_process(CATALOGD_PATH, args, stderr_log_file_path) if not check_process_exists("catalogd", 10): raise RuntimeError("Unable to start catalogd. Check log or file permissions" " for more details.") def start_mini_impala_cluster(cluster_size): print ("Starting in-process Impala Cluster logging " "to %s/mini-impala-cluster.INFO" % options.log_dir) args = "-num_backends=%s %s" %\ (cluster_size, build_impalad_logging_args(0, 'mini-impala-cluster')) stderr_log_file_path = os.path.join(options.log_dir, 'mini-impala-cluster-error.log') exec_impala_process(MINI_IMPALA_CLUSTER_PATH, args, stderr_log_file_path) def build_impalad_port_args(instance_num): BASE_BEESWAX_PORT = 21000 BASE_HS2_PORT = 21050 BASE_BE_PORT = 22000 BASE_STATE_STORE_SUBSCRIBER_PORT = 23000 BASE_WEBSERVER_PORT = 25000 return IMPALAD_PORTS % (BASE_BEESWAX_PORT + instance_num, BASE_HS2_PORT + instance_num, BASE_BE_PORT + instance_num, BASE_STATE_STORE_SUBSCRIBER_PORT + instance_num, BASE_WEBSERVER_PORT + instance_num) def build_impalad_logging_args(instance_num, service_name): return BE_LOGGING_ARGS % (service_name, options.log_dir, options.log_level, options.max_log_files) def build_jvm_args(instance_num): BASE_JVM_DEBUG_PORT = 30000 return JVM_ARGS % (BASE_JVM_DEBUG_PORT + instance_num, options.jvm_args) def start_impalad_instances(cluster_size, num_coordinators, use_exclusive_coordinators): """Start 'cluster_size' impalad instances. The first 'num_coordinator' instances will act as coordinators. 'use_exclusive_coordinators' specifies whether the coordinators will only execute coordinator fragments.""" if cluster_size == 0: # No impalad instances should be started. return # The default memory limit for an impalad is 80% of the total system memory. On a # mini-cluster with 3 impalads that means 240%. Since having an impalad be OOM killed # is very annoying, the mem limit will be reduced. This can be overridden using the # --impalad_args flag. virtual_memory().total returns the total physical memory. mem_limit = int(0.8 * psutil.virtual_memory().total / cluster_size) # Start each impalad instance and optionally redirect the output to a log file. for i in range(cluster_size): if i == 0: # The first impalad always logs to impalad.INFO service_name = "impalad" else: service_name = "impalad_node%s" % i # Sleep between instance startup: simultaneous starts hurt the minikdc # Yes, this is a hack, but it's easier than modifying the minikdc... # TODO: is this really necessary? sleep(1) print "Starting Impala Daemon logging to %s/%s.INFO" % (options.log_dir, service_name) # impalad args from the --impalad_args flag. Also replacing '#ID' with the instance. param_args = (" ".join(options.impalad_args)).replace("#ID", str(i)) args = "--mem_limit=%s %s %s %s %s" %\ (mem_limit, # Goes first so --impalad_args will override it. build_impalad_logging_args(i, service_name), build_jvm_args(i), build_impalad_port_args(i), param_args) if options.kudu_master_hosts: # Must be prepended, otherwise the java options interfere. args = "-kudu_master_hosts %s %s" % (options.kudu_master_hosts, args) if i >= num_coordinators: args = "-is_coordinator=false %s" % (args) elif use_exclusive_coordinators: # Coordinator instance that doesn't execute non-coordinator fragments args = "-is_executor=false %s" % (args) stderr_log_file_path = os.path.join(options.log_dir, '%s-error.log' % service_name) exec_impala_process(IMPALAD_PATH, args, stderr_log_file_path) def wait_for_impala_process_count(impala_cluster, retries=10): """Checks that the desired number of impalad/statestored processes are running. Refresh until the number running impalad/statestored processes reaches the expected number based on CLUSTER_SIZE, or the retry limit is hit. Failing this, raise a RuntimeError. """ for i in range(retries): if len(impala_cluster.impalads) < options.cluster_size or \ not impala_cluster.statestored or not impala_cluster.catalogd: sleep(1) impala_cluster.refresh() msg = str() if len(impala_cluster.impalads) < options.cluster_size: impalads_found = len(impala_cluster.impalads) msg += "Expected %d impalad(s), only %d found\n" %\ (options.cluster_size, impalads_found) if not impala_cluster.statestored: msg += "statestored failed to start.\n" if not impala_cluster.catalogd: msg += "catalogd failed to start.\n" if msg: raise RuntimeError(msg) def wait_for_cluster_web(timeout_in_seconds=CLUSTER_WAIT_TIMEOUT_IN_SECONDS): """Checks if the cluster is "ready" A cluster is deemed "ready" if: - All backends are registered with the statestore. - Each impalad knows about all other impalads. This information is retrieved by querying the statestore debug webpage and each individual impalad's metrics webpage. """ impala_cluster = ImpalaCluster() # impalad processes may take a while to come up. wait_for_impala_process_count(impala_cluster) for impalad in impala_cluster.impalads: impalad.service.wait_for_num_known_live_backends(options.cluster_size, timeout=CLUSTER_WAIT_TIMEOUT_IN_SECONDS, interval=2) if impalad._get_arg_value('is_coordinator', default='true') == 'true': wait_for_catalog(impalad, timeout_in_seconds=CLUSTER_WAIT_TIMEOUT_IN_SECONDS) def wait_for_catalog(impalad, timeout_in_seconds): """Waits for the impalad catalog to become ready""" start_time = time() catalog_ready = False attempt = 0 while (time() - start_time < timeout_in_seconds and not catalog_ready): try: num_dbs = impalad.service.get_metric_value('catalog.num-databases') num_tbls = impalad.service.get_metric_value('catalog.num-tables') catalog_ready = impalad.service.get_metric_value('catalog.ready') if catalog_ready or attempt % 4 == 0: print 'Waiting for Catalog... Status: %s DBs / %s tables (ready=%s)' %\ (num_dbs, num_tbls, catalog_ready) attempt += 1 except Exception, e: print e sleep(0.5) if not catalog_ready: raise RuntimeError('Catalog was not initialized in expected time period.') def wait_for_cluster_cmdline(timeout_in_seconds=CLUSTER_WAIT_TIMEOUT_IN_SECONDS): """Checks if the cluster is "ready" by executing a simple query in a loop""" start_time = time() while os.system('%s -i localhost:21000 -q "%s"' % (IMPALA_SHELL, 'select 1')) != 0: if time() - timeout_in_seconds > start_time: raise RuntimeError('Cluster did not start within %d seconds' % timeout_in_seconds) print 'Cluster not yet available. Sleeping...' sleep(2) if __name__ == "__main__": if options.kill_only: kill_cluster_processes(force=options.force_kill) sys.exit(0) if options.build_type not in KNOWN_BUILD_TYPES: print 'Invalid build type %s' % options.build_type print 'Valid values: %s' % ', '.join(KNOWN_BUILD_TYPES) sys.exit(1) if options.cluster_size < 0: print 'Please specify a cluster size >= 0' sys.exit(1) if options.num_coordinators <= 0: print 'Please specify a valid number of coordinators > 0' sys.exit(1) if options.use_exclusive_coordinators and options.num_coordinators >= options.cluster_size: print 'Cannot start an Impala cluster with no executors' sys.exit(1) if not os.path.isdir(options.log_dir): print 'Log dir does not exist or is not a directory: %s' % options.log_dir sys.exit(1) # Kill existing cluster processes based on the current configuration. if options.restart_impalad_only: if options.inprocess: print 'Cannot perform individual component restarts using an in-process cluster' sys.exit(1) kill_matching_processes(['impalad'], force=options.force_kill) else: kill_cluster_processes(force=options.force_kill) try: import json wait_for_cluster = wait_for_cluster_web except ImportError: print "json module not found, checking for cluster startup through the command-line" wait_for_cluster = wait_for_cluster_cmdline # If ImpalaCluster cannot be imported, fall back to the command-line to check # whether impalads/statestore are up. try: from tests.common.impala_cluster import ImpalaCluster if options.restart_impalad_only: impala_cluster = ImpalaCluster() if not impala_cluster.statestored or not impala_cluster.catalogd: print 'No running statestored or catalogd detected. Restarting entire cluster.' options.restart_impalad_only = False except ImportError: print 'ImpalaCluster module not found.' # TODO: Update this code path to work similar to the ImpalaCluster code path when # restarting only impalad processes. Specifically, we should do a full cluster # restart if either the statestored or catalogd processes are down, even if # restart_only_impalad=True. wait_for_cluster = wait_for_cluster_cmdline if options.inprocess: # The statestore and the impalads start in the same process. start_mini_impala_cluster(options.cluster_size) wait_for_cluster_cmdline() else: try: if not options.restart_impalad_only: start_statestore() start_catalogd() start_impalad_instances(options.cluster_size, options.num_coordinators, options.use_exclusive_coordinators) # Sleep briefly to reduce log spam: the cluster takes some time to start up. sleep(3) wait_for_cluster() except Exception, e: print 'Error starting cluster: %s' % e sys.exit(1) print 'Impala Cluster Running with %d nodes and %d coordinators.' % ( options.cluster_size, options.num_coordinators)
45.642336
93
0.712298
dccf2e0af1754ed81394a72acb053a98eb4ead3b
437
py
Python
data/scripts/templates/object/tangible/lair/murra/shared_lair_murra.py
obi-two/GameServer
7d37024e2291a97d49522610cd8f1dbe5666afc2
[ "MIT" ]
20
2015-02-23T15:11:56.000Z
2022-03-18T20:56:48.000Z
data/scripts/templates/object/tangible/lair/murra/shared_lair_murra.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
null
null
null
data/scripts/templates/object/tangible/lair/murra/shared_lair_murra.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
20
2015-04-04T16:35:59.000Z
2022-03-24T14:54:37.000Z
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Tangible() result.template = "object/tangible/lair/murra/shared_lair_murra.iff" result.attribute_template_id = -1 result.stfName("lair_n","murra") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
25.705882
69
0.718535
c5cc5495d894deffd11e576f414b0c3d09eac59b
64
py
Python
epytodo_2017/lib/python3.6/copy.py
ltabis/epitech-projects
e38b3f00a4ac44c969d5e4880cd65084dc2c870a
[ "MIT" ]
null
null
null
epytodo_2017/lib/python3.6/copy.py
ltabis/epitech-projects
e38b3f00a4ac44c969d5e4880cd65084dc2c870a
[ "MIT" ]
null
null
null
epytodo_2017/lib/python3.6/copy.py
ltabis/epitech-projects
e38b3f00a4ac44c969d5e4880cd65084dc2c870a
[ "MIT" ]
1
2021-01-07T17:41:14.000Z
2021-01-07T17:41:14.000Z
IntxLNK/usr/lib64/python3.6/copy.py
64
64
0.453125
f59218e14f693924b645493166ea31bff2cd6bca
13,299
py
Python
nipy/algorithms/clustering/von_mises_fisher_mixture.py
neurospin/nipy
cc54600a0dca1e003ad393bc05c46f91eef30a68
[ "BSD-3-Clause" ]
1
2016-03-08T15:01:06.000Z
2016-03-08T15:01:06.000Z
nipy/algorithms/clustering/von_mises_fisher_mixture.py
neurospin/nipy
cc54600a0dca1e003ad393bc05c46f91eef30a68
[ "BSD-3-Clause" ]
null
null
null
nipy/algorithms/clustering/von_mises_fisher_mixture.py
neurospin/nipy
cc54600a0dca1e003ad393bc05c46f91eef30a68
[ "BSD-3-Clause" ]
null
null
null
""" Implementation of Von-Mises-Fisher Mixture models, i.e. the equaivalent of mixture of Gaussian on the sphere. Author: Bertrand Thirion, 2010-2011 """ import numpy as np class VonMisesMixture(object): """ Model for Von Mises mixture distribution with fixed variance on a two-dimensional sphere """ def __init__(self, k, precision, means=None, weights=None, null_class=False): """ Initialize Von Mises mixture Parameters ---------- k: int, number of components precision: float, the fixed precision parameter means: array of shape(self.k, 3), optional input component centers weights: array of shape(self.k), optional input components weights null_class: bool, optional Inclusion of a null class within the model (related to k=0) fixme ----- consistency checks """ self.k = k self.dim = 2 self.em_dim = 3 self.means = means self.precision = precision self.weights = weights self.null_class = null_class def log_density_per_component(self, x): """Compute the per-component density of the data Parameters ---------- x: array fo shape(n,3) should be on the unit sphere Returns ------- like: array of shape(n, self.k), with non-neagtive values the density """ n = x.shape[0] constant = self.precision / (2 * np.pi * (1 - np.exp( - \ 2 * self.precision))) loglike = np.log(constant) + \ (np.dot(x, self.means.T) - 1) * self.precision if self.null_class: loglike = np.hstack((np.log(1. / (4 * np.pi)) * np.ones((n, 1)), loglike)) return loglike def density_per_component(self, x): """ Compute the per-component density of the data Parameters ---------- x: array fo shape(n,3) should be on the unit sphere Returns ------- like: array of shape(n, self.k), with non-neagtive values the density """ return np.exp(self.log_density_per_component(x)) def weighted_density(self, x): """ Return weighted density Parameters ---------- x: array shape(n,3) should be on the unit sphere Returns ------- like: array of shape(n, self.k) """ return(self.density_per_component(x) * self.weights) def log_weighted_density(self, x): """ Return log weighted density Parameters ---------- x: array fo shape(n,3) should be on the unit sphere Returns ------- log_like: array of shape(n, self.k) """ return(self.log_density_per_component(x) + np.log(self.weights)) def mixture_density(self, x): """ Return mixture density Parameters ---------- x: array fo shape(n,3) should be on the unit sphere Returns ------- like: array of shape(n) """ wl = self.weighted_density(x) return np.sum(wl, 1) def responsibilities(self, x): """ Return responsibilities Parameters ---------- x: array fo shape(n,3) should be on the unit sphere Returns ------- resp: array of shape(n, self.k) """ lwl = self.log_weighted_density(x) wl = np.exp(lwl.T - lwl.mean(1)).T swl = np.sum(wl, 1) resp = (wl.T / swl).T return resp def estimate_weights(self, z): """ Calculate and set weights from `z` Parameters ---------- z: array of shape(self.k) """ self.weights = np.sum(z, 0) / z.sum() def estimate_means(self, x, z): """ Calculate and set means from `x` and `z` Parameters ---------- x: array fo shape(n,3) should be on the unit sphere z: array of shape(self.k) """ m = np.dot(z.T, x) self.means = (m.T / np.sqrt(np.sum(m ** 2, 1))).T def estimate(self, x, maxiter=100, miniter=1, bias=None): """ Return average log density across samples Parameters ---------- x: array fo shape(n,3) should be on the unit sphere maxiter: int, optional, maximum number of iterations of the algorithms miniter=1: int, optional, minimum number of iterations bias: array of shape(n), optional prior probability of being in a non-null class Return ------ ll: float, average (across samples) log-density """ # initialization with random positions and constant weights if self.weights is None: self.weights = np.ones(self.k) / self.k if self.null_class: self.weights = np.ones(self.k + 1) / (self.k + 1) if self.means is None: aux = np.arange(x.shape[0]) np.random.shuffle(aux) self.means = x[aux[:self.k]] # EM algorithm assert not(np.isnan(self.means).any()) pll = - np.infty for i in range(maxiter): ll = np.log(self.mixture_density(x)).mean() z = self.responsibilities(x) assert not(np.isnan(z).any()) # bias z if bias is not None: z[:, 0] *= (1 - bias) z[:, 1:] = ((z[:, 1:].T) * bias).T z = (z.T / np.sum(z, 1)).T self.estimate_weights(z) if self.null_class: self.estimate_means(x, z[:, 1:]) else: self.estimate_means(x, z) assert not(np.isnan(self.means).any()) if (i > miniter) and (ll < pll + 1.e-6): break pll = ll return ll def show(self, x): """ Visualization utility Parameters ---------- x: array fo shape(n,3) should be on the unit sphere """ # label the data z = np.argmax(self.responsibilities(x), 1) import pylab import mpl_toolkits.mplot3d.axes3d as p3 fig = pylab.figure() ax = p3.Axes3D(fig) colors = (['b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'] * \ (1 + (1 + self.k) / 8))[:self.k + 1] if (self.null_class) and (z == 0).any(): ax.plot3D(x[z == 0, 0], x[z == 0, 1], x[z == 0, 2], '.', color=colors[0]) for k in range(self.k): if self.null_class: if np.sum(z == (k + 1)) == 0: continue uk = z == (k + 1) ax.plot3D(x[uk, 0], x[uk, 1], x[uk, 2], '.', color=colors[k + 1]) ax.plot3D([self.means[k, 0]], [self.means[k, 1]], [self.means[k, 2]], 'o', color=colors[k + 1]) else: if np.sum(z == k) == 0: continue ax.plot3D(x[z == k, 0], x[z == k, 1], x[z == k, 2], '.', color=colors[k]) ax.plot3D([self.means[k, 0]], [self.means[k, 1]], [self.means[k, 2]], 'o', color=colors[k]) pylab.show() def estimate_robust_vmm(k, precision, null_class, x, ninit=10, bias=None, maxiter=100): """ Return the best von_mises mixture after severla initialization Parameters ---------- k: int, number of classes precision: float, priori precision parameter null class: bool, optional, should a null class be included or not x: array fo shape(n,3) input data, should be on the unit sphere ninit: int, optional, number of iterations bias: array of shape(n), optional prior probability of being in a non-null class maxiter: int, optional, maximum number of iterations after each initialization """ score = - np.infty for i in range(ninit): aux = VonMisesMixture(k, precision, null_class=null_class) ll = aux.estimate(x, bias=bias) if ll > score: best_model = aux score = ll return best_model def select_vmm(krange, precision, null_class, x, ninit=10, bias=None, maxiter=100, verbose=0): """Return the best von_mises mixture after severla initialization Parameters ---------- krange: list of ints, number of classes to consider precision: null class: x: array fo shape(n,3) should be on the unit sphere ninit: int, optional, number of iterations maxiter: int, optional, bias: array of shape(n), a prior probability of not being in the null class verbose: Bool, optional """ score = - np.infty for k in krange: aux = estimate_robust_vmm(k, precision, null_class, x, ninit, bias, maxiter) ll = aux.estimate(x) if null_class: bic = ll - np.log(x.shape[0]) * k * 3 / x.shape[0] else: bic = ll - np.log(x.shape[0]) * (k * 3 - 1) / x.shape[0] if verbose: print k, bic if bic > score: best_model = aux score = bic return best_model def select_vmm_cv(krange, precision, x, null_class, cv_index, ninit=5, maxiter=100, bias=None, verbose=0): """Return the best von_mises mixture after severla initialization Parameters ---------- krange: list of ints, number of classes to consider precision: float, precision parameter of the von-mises densities x: array fo shape(n, 3) should be on the unit sphere null class: bool, whether a null class should be included or not cv_index: set of indices for cross validation ninit: int, optional, number of iterations maxiter: int, optional, bias: array of shape (n), prior """ score = - np.infty mll = [] for k in krange: mll.append( - np.infty) for j in range(1): ll = np.zeros_like(cv_index).astype(np.float) for i in np.unique(cv_index): xl = x[cv_index != i] xt = x[cv_index == i] bias_l = None if bias is not None: bias_l = bias[cv_index != i] aux = estimate_robust_vmm(k, precision, null_class, xl, ninit=ninit, bias=bias_l, maxiter=maxiter) if bias is None: ll[cv_index == i] = np.log(aux.mixture_density(xt)) else: bias_t = bias[cv_index == i] lwd = aux.weighted_density(xt) ll[cv_index == i] = np.log(lwd[:, 0] * (1 - bias_t) + \ lwd[:, 1:].sum(1) * bias_t) if ll.mean() > mll[-1]: mll[-1] = ll.mean() aux = estimate_robust_vmm(k, precision, null_class, x, ninit, bias=bias, maxiter=maxiter) if verbose: print k, mll[ - 1] if mll[ - 1] > score: best_model = aux score = mll[ - 1] return best_model def sphere_density(npoints): """Return the points and area of a npoints**2 points sampled on a sphere Returns ------- s : array of shape(npoints ** 2, 3) area: array of shape(npoints) """ u = np.linspace(0, 2 * np.pi, npoints + 1)[:npoints] v = np.linspace(0, np.pi, npoints + 1)[:npoints] s = np.vstack((np.ravel(np.outer(np.cos(u), np.sin(v))), np.ravel(np.outer(np.sin(u), np.sin(v))), np.ravel(np.outer(np.ones(np.size(u)), np.cos(v))))).T area = np.abs(np.ravel(np.outer(np.ones(np.size(u)), np.sin(v)))) * \ np.pi ** 2 * 2 * 1. / (npoints ** 2) return s, area def example_noisy(): x1 = [0.6, 0.48, 0.64] x2 = [-0.8, 0.48, 0.36] x3 = [0.48, 0.64, -0.6] x = np.random.randn(200, 3) * .1 x[:30] += x1 x[40:150] += x2 x[150:] += x3 x = (x.T / np.sqrt(np.sum(x ** 2, 1))).T precision = 100. vmm = select_vmm(range(2, 7), precision, True, x) vmm.show(x) # check that it sums to 1 s, area = sphere_density(100) print (vmm.mixture_density(s) * area).sum() def example_cv_nonoise(): x1 = [0.6, 0.48, 0.64] x2 = [-0.8, 0.48, 0.36] x3 = [0.48, 0.64, -0.6] x = np.random.randn(30, 3) * .1 x[0::3] += x1 x[1::3] += x2 x[2::3] += x3 x = (x.T / np.sqrt(np.sum(x ** 2, 1))).T precision = 50. sub = np.repeat(np.arange(10), 3) vmm = select_vmm_cv(range(1, 8), precision, x, cv_index=sub, null_class=False, ninit=20) vmm.show(x) # check that it sums to 1 s, area = sphere_density(100) return vmm
30.432494
76
0.501466
dbfb4cf457e5004a491a3c5ca35f5144c053495e
5,777
py
Python
code/torch/models/ap_glue/__main__hyperopt.py
siduojiang/BERTVision
9d0d4856300973488ead67e2d06e243bf07447ad
[ "MIT" ]
5
2020-08-06T10:12:08.000Z
2022-03-17T10:38:40.000Z
code/torch/models/ap_glue/__main__hyperopt.py
siduojiang/BERTVision
9d0d4856300973488ead67e2d06e243bf07447ad
[ "MIT" ]
9
2020-06-23T16:57:52.000Z
2021-01-17T01:52:45.000Z
code/torch/models/ap_glue/__main__hyperopt.py
cbenge509/BERTVision
01519bea0882fa72e86a1b62f2d0d52d22c26dfc
[ "MIT" ]
null
null
null
# packages import sys, os, random sys.path.append("C:/BERTVision/code/torch") from data.h5_processors.h5_processors import * from utils.compress_utils import AdapterPooler, AP_GLUE from common.trainers.H5_glue_trainer import H5_GLUE_Trainer from models.ap_glue.args import get_args import numpy as np import torch import torch.nn as nn from torch.cuda.amp import GradScaler from transformers import AdamW, get_linear_schedule_with_warmup, BertTokenizerFast from loguru import logger from torch.nn import MSELoss if __name__ == '__main__': # define an objective function def objective(opt_args): args = get_args() adapter_dim, learning_rate, seed = opt_args print("adapter_dim: %s, learning_rate: %s, seed: %s" %(str(adapter_dim), str(learning_rate), str(seed))) # add some configs depending on checkpoint chosen if args.checkpoint == 'bert-base-uncased': args.n_layers = 13 args.n_features = 768 elif args.checkpoint == 'bert-large-uncased': args.n_layers = 25 args.n_features = 1024 # instantiate data set map; pulls the right processor / data for the task dataset_map = { 'AP_MSR': MSRH5Processor, 'AP_CoLA': COLAH5Processor, 'AP_MNLI': MNLIH5Processor, 'AP_QNLI': QNLIH5Processor, 'AP_QQP': QQPH5Processor, 'AP_RTE': RTEH5Processor, 'AP_SST': SSTH5Processor, 'AP_STSB': STSBH5Processor, 'AP_WNLI': WNLIH5Processor } # tell the CLI user that they mistyped the data set if args.model not in dataset_map: raise ValueError('Unrecognized dataset') # set the location for saving the model save_path = os.path.join(args.save_path, args.checkpoint, args.model) os.makedirs(save_path, exist_ok=True) # set the location for saving the log log_path = os.path.join(args.log_path, args.checkpoint, args.model) os.makedirs(log_path, exist_ok=True) # initialize logging logger.add(log_path + '\\' + args.model + '.log', rotation="10 MB") logger.info(f"Training model {args.model} on this checkpoint: {args.checkpoint}") # set device to gpu/cpu device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # detect number of gpus n_gpu = torch.cuda.device_count() args.device = device args.n_gpu = n_gpu # turn on autocast for fp16 torch.cuda.amp.autocast(enabled=True) # set grad scaler scaler = GradScaler() # set seed for reproducibility torch.backends.cudnn.deterministic = True random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) # set seed for multi-gpu if n_gpu > 0: torch.cuda.manual_seed_all(seed) # instantiate model and attach it to device model = AP_GLUE(n_layers=args.n_layers, n_batch_sz=args.batch_size, n_tokens=args.max_seq_length, n_features=args.n_features, n_labels=args.num_labels, adapter_dim = adapter_dim).to(device) # set data set processor processor = dataset_map[args.model] # use it to create the train set train_processor = processor(type='train', args=args) # set loss if args.num_labels == 1: criterion = nn.MSELoss() else: criterion = nn.CrossEntropyLoss() # find number of optim. steps num_train_optimization_steps = int(len(train_processor) / args.batch_size) * args.epochs # print metrics logger.info(f"Device: {str(device).upper()}") logger.info(f"Number of GPUs: {n_gpu}") # for multi-GPU if n_gpu > 1: model = torch.nn.DataParallel(model) # set optimizer param_optimizer = list(model.named_parameters()) # exclude these from regularization no_decay = ['bias'] # give l2 regularization to any parameter that is not named after no_decay list # give no l2 regulariation to any bias parameter or layernorm bias/weight optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.l2}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}] # set optimizer optimizer = AdamW(optimizer_grouped_parameters, lr=learning_rate, correct_bias=False, weight_decay=args.l2) # set linear scheduler scheduler = get_linear_schedule_with_warmup(optimizer, num_training_steps=num_train_optimization_steps, num_warmup_steps=args.warmup_proportion * num_train_optimization_steps) # initialize the trainer trainer = H5_GLUE_Trainer(model, criterion, optimizer, processor, scheduler, args, scaler, logger) # begin training / shift to trainer class trainer.train() # load the checkpoint model = torch.load(trainer.snapshot_path) return -trainer.dev_acc # define a search space from hyperopt import hp adapter_dims = [2**x for x in range(3,9)] space = [hp.choice('adapter_size', adapter_dims), hp.uniform('learning_rate', 1e-6, 1e-3), hp.uniformint("seed",1,2000)] # minimize the objective over the space from hyperopt import fmin, tpe best = fmin(objective, space, algo=tpe.suggest, max_evals=8 * 60 * 60 / 60) print (best) # main fun. # set default configuration in args.py
37.75817
197
0.634759
24faba8878e69e1ebd8cbacabcc9566295c6dcab
2,769
py
Python
mmcv/ops/__init__.py
liuyanyi/mmcv
f021af6000a52ad3108873f124d89dad93512863
[ "Apache-2.0" ]
null
null
null
mmcv/ops/__init__.py
liuyanyi/mmcv
f021af6000a52ad3108873f124d89dad93512863
[ "Apache-2.0" ]
null
null
null
mmcv/ops/__init__.py
liuyanyi/mmcv
f021af6000a52ad3108873f124d89dad93512863
[ "Apache-2.0" ]
null
null
null
from .bbox import bbox_overlaps from .box_iou_rotated import box_iou_rotated from .carafe import CARAFE, CARAFENaive, CARAFEPack, carafe, carafe_naive from .cc_attention import CrissCrossAttention from .corner_pool import CornerPool from .deform_conv import DeformConv2d, DeformConv2dPack, deform_conv2d from .deform_roi_pool import (DeformRoIPool, DeformRoIPoolPack, ModulatedDeformRoIPoolPack, deform_roi_pool) from .deprecated_wrappers import Conv2d_deprecated as Conv2d from .deprecated_wrappers import ConvTranspose2d_deprecated as ConvTranspose2d from .deprecated_wrappers import Linear_deprecated as Linear from .deprecated_wrappers import MaxPool2d_deprecated as MaxPool2d from .focal_loss import (SigmoidFocalLoss, SoftmaxFocalLoss, sigmoid_focal_loss, softmax_focal_loss) from .info import (get_compiler_version, get_compiling_cuda_version, get_onnxruntime_op_path) from .masked_conv import MaskedConv2d, masked_conv2d from .modulated_deform_conv import (ModulatedDeformConv2d, ModulatedDeformConv2dPack, modulated_deform_conv2d) from .nms import batched_nms, nms, nms_match, nms_rotated, soft_nms from .point_sample import (SimpleRoIAlign, point_sample, rel_roi_point_to_rel_img_point) from .psa_mask import PSAMask from .roi_align import RoIAlign, roi_align from .roi_pool import RoIPool, roi_pool from .saconv import SAConv2d from .sync_bn import SyncBatchNorm from .tin_shift import TINShift, tin_shift from .batched_rnms import batched_nms_rotated, batched_nms_rotated_ver2 from .polygon_geo import polygon_iou from .feature_refine_module import FeatureRefineModule __all__ = [ 'bbox_overlaps', 'CARAFE', 'CARAFENaive', 'CARAFEPack', 'carafe', 'carafe_naive', 'CornerPool', 'DeformConv2d', 'DeformConv2dPack', 'deform_conv2d', 'DeformRoIPool', 'DeformRoIPoolPack', 'ModulatedDeformRoIPoolPack', 'deform_roi_pool', 'SigmoidFocalLoss', 'SoftmaxFocalLoss', 'sigmoid_focal_loss', 'softmax_focal_loss', 'get_compiler_version', 'get_compiling_cuda_version', 'get_onnxruntime_op_path', 'MaskedConv2d', 'masked_conv2d', 'ModulatedDeformConv2d', 'ModulatedDeformConv2dPack', 'modulated_deform_conv2d', 'batched_nms', 'nms', 'soft_nms', 'nms_match', 'RoIAlign', 'roi_align', 'RoIPool', 'roi_pool', 'SyncBatchNorm', 'Conv2d', 'ConvTranspose2d', 'Linear', 'MaxPool2d', 'CrissCrossAttention', 'PSAMask', 'point_sample', 'rel_roi_point_to_rel_img_point', 'SimpleRoIAlign', 'SAConv2d', 'TINShift', 'tin_shift', 'box_iou_rotated', 'nms_rotated', 'batched_nms_rotated', 'batched_nms_rotated_ver2', 'polygon_iou', 'FeatureRefineModule' ]
54.294118
79
0.763814
66fadaab0951d411432e75b7096de1d7cb006fa0
6,526
py
Python
polog/handlers/file/base_formatter.py
pomponchik/polog
104c5068a65b0eaeab59327aac1a583e2606e77e
[ "MIT" ]
30
2020-07-16T16:52:46.000Z
2022-03-24T16:56:29.000Z
polog/handlers/file/base_formatter.py
pomponchik/polog
104c5068a65b0eaeab59327aac1a583e2606e77e
[ "MIT" ]
6
2021-02-07T22:08:01.000Z
2021-12-07T21:56:46.000Z
polog/handlers/file/base_formatter.py
pomponchik/polog
104c5068a65b0eaeab59327aac1a583e2606e77e
[ "MIT" ]
4
2020-12-22T07:05:34.000Z
2022-03-24T16:56:50.000Z
from polog.core.stores.levels import Levels from polog.handlers.file.base_formatter_fields_extractors import BaseFormatterFieldsExtractors class BaseFormatter: """ Здесь происходит преобразование исходных данных в строку, которая будет записана в файл. """ # Названия полей исходного словаря с данными, которые игнорируются. # Их содержимое никак не видоизменяется. FORBIDDEN_EXTRA_FIELDS = { 'module', 'service_name', 'exception_type', 'exception_message', } def __init__(self, separator): """ Первый этап инициализации объекта - при его создании. Инициализация объекта разделена на 2 этапа. Первый этап - при создании объекта, второй - при записи первого лога. В данном случае мы опираемся на то, что пользователь обязан завершить настройку логгера до его первого вызова. То есть до первого вызова мы не знаем в точности все настройки. Поэтому окончательно все настройки фиксируются только при первом вызове. separator - разделитель между строками логов, обычно "\n". """ self.separator = separator def __init_on_run__(self): """ Второй этап инициализации объекта - при первом вызове метода .get_formatted_string(). Данный метод будет вызван только один раз, после чего он больше не будет нужен. """ self.FIELD_HANDLERS = self.get_base_field_handlers() self.ALIGN_NORMS = self.get_align_norms() def get_formatted_string(self, log): """ При первом вызове данного метода он будет переопределен методом _get_formatted_string(). Здесь происходит вызов вторичной инициализации объекта, после чего происходит запись лога и метод становится не нужным. """ self.__init_on_run__() result = self._get_formatted_string(log) self.get_formatted_string = self._get_formatted_string return result def _get_formatted_string(self, log): """ Начиная со второго вызова метода get_formatted_string(), будет сразу вызван данный метод, т. к. он заменит собою get_formatted_string(). Форматирование лога происходит в 3 этапа: 1. Формирование словаря с подстроками. 2. Форматирование подстрок по ширине. 3. Создание одной большой строки из нескольких "кусочков". """ data = self.get_dict(log) self.width_and_align(data) result = self.format(data) return result def get_base_field_handlers(self): """ Данный метод срабатывает на 2 этапе инициализации. Возвращает словарь, где ключи - названия исходных полей лога (не обязательно исходных полей, поле может быть создано с таким названием), а значения - некие функции, которые берут исходные данные и делают из них некую подстроку, т. е. кусочек будущего лога. Эти кусочки позднее будут склеены, в другом методе. """ result = { 'time': BaseFormatterFieldsExtractors.time, 'level': BaseFormatterFieldsExtractors.level, 'success': BaseFormatterFieldsExtractors.success, 'auto': BaseFormatterFieldsExtractors.auto, 'message': BaseFormatterFieldsExtractors.message, 'function': BaseFormatterFieldsExtractors.function, 'time_of_work': BaseFormatterFieldsExtractors.time_of_work, 'input_variables': BaseFormatterFieldsExtractors.input_variables, 'local_variables': BaseFormatterFieldsExtractors.local_variables, 'result': BaseFormatterFieldsExtractors.result, 'exception': BaseFormatterFieldsExtractors.exception, 'traceback': BaseFormatterFieldsExtractors.traceback, } return result def get_align_norms(self): """ Часть второго этапа инициализации. Возвращаем словарь с правилами выравнивания для отдельных полей. Значения в словаре - кортежи из 2-х элементов. Первый элемент каждого кортежа - ширина поля. Если исходный контент меньше, он будет дополнен пробелами. Второй элемент - индикатор выравнивания (см. https://www.python.org/dev/peps/pep-3101/#standard-format-specifiers). """ result = { 'level': (max(max([len(x) for x in Levels.get_all_names()], default=2), len('UNKNOWN')), '^'), # Длина самого длинного названия уровня логирования. 'success': (7, '^'), 'auto': (6, '^'), } return result def get_dict(self, log): """ Из исходных данных формируем словарь, заполненный только нужными полями, в уже отформатированном виде. Потом останется этот словарь только "склеить" в одну строку. """ result = {} self.add_base_fields(result, log) self.add_extra_fields(result, log) return result def add_base_fields(self, base, log): """ Базовые поля - это те, для которых прописаны специальные обработчики в self.FIELD_HANDLERS. Здесь мы вызываем все эти обработчики. """ for field_name, extractor in self.FIELD_HANDLERS.items(): try: value = extractor(log) except: try: value = str(log[field_name]) except: value = None if value is not None: base[field_name] = value def add_extra_fields(self, base, log): """ Добавляем в словарь с данными поля, отсутствующие в self.FIELD_HANDLERS. """ for field_name, value in log.items(): if field_name not in base: if field_name not in self.FORBIDDEN_EXTRA_FIELDS: if value is not None: base[field_name] = f'{field_name}: "{value}"' def format(self, data): """ Берем словарь с уже отформатированными данными и делаем из него строку. """ values = data.values() return ' | '.join(values) + self.separator def width_and_align(self, data): """ Для некоторых полей заданы нормы форматирования (self.ALIGN_NORMS). Здесь происходит применение этих норм. data - словарь с полями лога. """ for field_name in self.ALIGN_NORMS: item = data.get(field_name, None) if item is not None: width, align = self.ALIGN_NORMS[field_name] value = f'{item:{align}{width}}' data[field_name] = value
41.833333
316
0.646184
7a944e38333ac85d32ef53e74b9bb1188da86627
10,589
py
Python
dltk/io/augmentation.py
UncleStotheh/DLTK
e1591629d45459c0739ad89aea8cd5484221df7a
[ "Apache-2.0" ]
1,397
2017-05-02T15:41:18.000Z
2022-03-26T20:40:09.000Z
dltk/io/augmentation.py
UncleStotheh/DLTK
e1591629d45459c0739ad89aea8cd5484221df7a
[ "Apache-2.0" ]
50
2017-06-13T15:43:04.000Z
2022-02-09T23:26:31.000Z
dltk/io/augmentation.py
UncleStotheh/DLTK
e1591629d45459c0739ad89aea8cd5484221df7a
[ "Apache-2.0" ]
436
2017-06-12T20:56:02.000Z
2022-03-09T15:00:43.000Z
from __future__ import unicode_literals from __future__ import print_function from __future__ import division from __future__ import absolute_import import numpy as np from scipy.ndimage.interpolation import map_coordinates from scipy.ndimage.filters import gaussian_filter def flip(imagelist, axis=1): """Randomly flip spatial dimensions Args: imagelist (np.ndarray or list or tuple): image(s) to be flipped axis (int): axis along which to flip the images Returns: np.ndarray or list or tuple: same as imagelist but randomly flipped along axis """ # Check if a single image or a list of images has been passed was_singular = False if isinstance(imagelist, np.ndarray): imagelist = [imagelist] was_singular = True # With a probility of 0.5 flip the image(s) across `axis` do_flip = np.random.random(1) if do_flip > 0.5: for i in range(len(imagelist)): imagelist[i] = np.flip(imagelist[i], axis=axis) if was_singular: return imagelist[0] return imagelist def add_gaussian_offset(image, sigma=0.1): """ Add Gaussian offset to an image. Adds the offset to each channel independently. Args: image (np.ndarray): image to add noise to sigma (float): stddev of the Gaussian distribution to generate noise from Returns: np.ndarray: same as image but with added offset to each channel """ offsets = np.random.normal(0, sigma, ([1] * (image.ndim - 1) + [image.shape[-1]])) image += offsets return image def add_gaussian_noise(image, sigma=0.05): """ Add Gaussian noise to an image Args: image (np.ndarray): image to add noise to sigma (float): stddev of the Gaussian distribution to generate noise from Returns: np.ndarray: same as image but with added offset to each channel """ image += np.random.normal(0, sigma, image.shape) return image def elastic_transform(image, alpha, sigma): """ Elastic deformation of images as described in [1]. [1] Simard, Steinkraus and Platt, "Best Practices for Convolutional Neural Networks applied to Visual Document Analysis", in Proc. of the International Conference on Document Analysis and Recognition, 2003. Based on gist https://gist.github.com/erniejunior/601cdf56d2b424757de5 Args: image (np.ndarray): image to be deformed alpha (list): scale of transformation for each dimension, where larger values have more deformation sigma (list): Gaussian window of deformation for each dimension, where smaller values have more localised deformation Returns: np.ndarray: deformed image """ assert len(alpha) == len(sigma), \ "Dimensions of alpha and sigma are different" channelbool = image.ndim - len(alpha) out = np.zeros((len(alpha) + channelbool, ) + image.shape) # Generate a Gaussian filter, leaving channel dimensions zeroes for jj in range(len(alpha)): array = (np.random.rand(*image.shape) * 2 - 1) out[jj] = gaussian_filter(array, sigma[jj], mode="constant", cval=0) * alpha[jj] # Map mask to indices shapes = list(map(lambda x: slice(0, x, None), image.shape)) grid = np.broadcast_arrays(*np.ogrid[shapes]) indices = list(map((lambda x: np.reshape(x, (-1, 1))), grid + np.array(out))) # Transform image based on masked indices transformed_image = map_coordinates(image, indices, order=0, mode='reflect').reshape(image.shape) return transformed_image def extract_class_balanced_example_array(image, label, example_size=[1, 64, 64], n_examples=1, classes=2, class_weights=None): """Extract training examples from an image (and corresponding label) subject to class balancing. Returns an image example array and the corresponding label array. Args: image (np.ndarray): image to extract class-balanced patches from label (np.ndarray): labels to use for balancing the classes example_size (list or tuple): shape of the patches to extract n_examples (int): number of patches to extract in total classes (int or list or tuple): number of classes or list of classes to extract Returns: np.ndarray, np.ndarray: class-balanced patches extracted from full images with the shape [batch, example_size..., image_channels] """ assert image.shape[:-1] == label.shape, 'Image and label shape must match' assert image.ndim - 1 == len(example_size), \ 'Example size doesnt fit image size' assert all([i_s >= e_s for i_s, e_s in zip(image.shape, example_size)]), \ 'Image must be larger than example shape' rank = len(example_size) if isinstance(classes, int): classes = tuple(range(classes)) n_classes = len(classes) assert n_examples >= n_classes, \ 'n_examples need to be greater than n_classes' if class_weights is None: n_ex_per_class = np.ones(n_classes).astype(int) * int(np.round(n_examples / n_classes)) else: assert len(class_weights) == n_classes, \ 'Class_weights must match number of classes' class_weights = np.array(class_weights) n_ex_per_class = np.round((class_weights / class_weights.sum()) * n_examples).astype(int) # Compute an example radius to define the region to extract around a # center location ex_rad = np.array(list(zip(np.floor(np.array(example_size) / 2.0), np.ceil(np.array(example_size) / 2.0))), dtype=np.int) class_ex_images = [] class_ex_lbls = [] min_ratio = 1. for c_idx, c in enumerate(classes): # Get valid, random center locations belonging to that class idx = np.argwhere(label == c) ex_images = [] ex_lbls = [] if len(idx) == 0 or n_ex_per_class[c_idx] == 0: class_ex_images.append([]) class_ex_lbls.append([]) continue # Extract random locations r_idx_idx = np.random.choice(len(idx), size=min(n_ex_per_class[c_idx], len(idx)), replace=False).astype(int) r_idx = idx[r_idx_idx] # Shift the random to valid locations if necessary r_idx = np.array( [np.array([max(min(r[dim], image.shape[dim] - ex_rad[dim][1]), ex_rad[dim][0]) for dim in range(rank)]) for r in r_idx]) for i in range(len(r_idx)): # Extract class-balanced examples from the original image slicer = [slice(r_idx[i][dim] - ex_rad[dim][0], r_idx[i][dim] + ex_rad[dim][1]) for dim in range(rank)] ex_image = image[slicer][np.newaxis, :] ex_lbl = label[slicer][np.newaxis, :] # Concatenate them and return the examples ex_images = np.concatenate((ex_images, ex_image), axis=0) \ if (len(ex_images) != 0) else ex_image ex_lbls = np.concatenate((ex_lbls, ex_lbl), axis=0) \ if (len(ex_lbls) != 0) else ex_lbl class_ex_images.append(ex_images) class_ex_lbls.append(ex_lbls) ratio = n_ex_per_class[c_idx] / len(ex_images) min_ratio = ratio if ratio < min_ratio else min_ratio indices = np.floor(n_ex_per_class * min_ratio).astype(int) ex_images = np.concatenate([cimage[:idxs] for cimage, idxs in zip(class_ex_images, indices) if len(cimage) > 0], axis=0) ex_lbls = np.concatenate([clbl[:idxs] for clbl, idxs in zip(class_ex_lbls, indices) if len(clbl) > 0], axis=0) return ex_images, ex_lbls def extract_random_example_array(image_list, example_size=[1, 64, 64], n_examples=1): """Randomly extract training examples from image (and a corresponding label). Returns an image example array and the corresponding label array. Args: image_list (np.ndarray or list or tuple): image(s) to extract random patches from example_size (list or tuple): shape of the patches to extract n_examples (int): number of patches to extract in total Returns: np.ndarray, np.ndarray: class-balanced patches extracted from full images with the shape [batch, example_size..., image_channels] """ assert n_examples > 0 was_singular = False if isinstance(image_list, np.ndarray): image_list = [image_list] was_singular = True assert all([i_s >= e_s for i_s, e_s in zip(image_list[0].shape, example_size)]), \ 'Image must be bigger than example shape' assert (image_list[0].ndim - 1 == len(example_size) or image_list[0].ndim == len(example_size)), \ 'Example size doesnt fit image size' for i in image_list: if len(image_list) > 1: assert (i.ndim - 1 == image_list[0].ndim or i.ndim == image_list[0].ndim or i.ndim + 1 == image_list[0].ndim),\ 'Example size doesnt fit image size' assert all([i0_s == i_s for i0_s, i_s in zip(image_list[0].shape, i.shape)]), \ 'Image shapes must match' rank = len(example_size) # Extract random examples from image and label valid_loc_range = [image_list[0].shape[i] - example_size[i] for i in range(rank)] rnd_loc = [np.random.randint(valid_loc_range[dim], size=n_examples) if valid_loc_range[dim] > 0 else np.zeros(n_examples, dtype=int) for dim in range(rank)] examples = [[]] * len(image_list) for i in range(n_examples): slicer = [slice(rnd_loc[dim][i], rnd_loc[dim][i] + example_size[dim]) for dim in range(rank)] for j in range(len(image_list)): ex_image = image_list[j][slicer][np.newaxis] # Concatenate and return the examples examples[j] = np.concatenate((examples[j], ex_image), axis=0) \ if (len(examples[j]) != 0) else ex_image if was_singular: return examples[0] return examples
36.89547
123
0.615167
340f0c88d7b5d26db2a6fd1f8411a98f923e5dfe
12,813
py
Python
pysnmp/H3C-VOSIP-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
11
2021-02-02T16:27:16.000Z
2021-08-31T06:22:49.000Z
pysnmp/H3C-VOSIP-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
75
2021-02-24T17:30:31.000Z
2021-12-08T00:01:18.000Z
pysnmp/H3C-VOSIP-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module H3C-VOSIP-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/H3C-VOSIP-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 19:11:30 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, ConstraintsIntersection, ValueRangeConstraint, SingleValueConstraint, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ConstraintsIntersection", "ValueRangeConstraint", "SingleValueConstraint", "ConstraintsUnion") h3cVoice, = mibBuilder.importSymbols("HUAWEI-3COM-OID-MIB", "h3cVoice") InetAddress, InetAddressType = mibBuilder.importSymbols("INET-ADDRESS-MIB", "InetAddress", "InetAddressType") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") Bits, MibIdentifier, Counter32, ObjectIdentity, NotificationType, Unsigned32, IpAddress, Integer32, iso, TimeTicks, Counter64, ModuleIdentity, MibScalar, MibTable, MibTableRow, MibTableColumn, Gauge32 = mibBuilder.importSymbols("SNMPv2-SMI", "Bits", "MibIdentifier", "Counter32", "ObjectIdentity", "NotificationType", "Unsigned32", "IpAddress", "Integer32", "iso", "TimeTicks", "Counter64", "ModuleIdentity", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Gauge32") DisplayString, RowStatus, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "RowStatus", "TextualConvention") h3cVoSIP = ModuleIdentity((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12)) h3cVoSIP.setRevisions(('2005-03-15 00:00',)) if mibBuilder.loadTexts: h3cVoSIP.setLastUpdated('200503150000Z') if mibBuilder.loadTexts: h3cVoSIP.setOrganization('Huawei 3Com Technologies co., Ltd.') class SipMsgType(Integer32): subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8)) namedValues = NamedValues(("unknown", 1), ("register", 2), ("invite", 3), ("ack", 4), ("prack", 5), ("cancel", 6), ("bye", 7), ("info", 8)) h3cSIPClientMIB = MibIdentifier((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1)) h3cSIPClientConfigObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 1)) h3cSIPID = MibScalar((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 1, 1), OctetString().subtype(subtypeSpec=ValueSizeConstraint(1, 32))).setMaxAccess("readwrite") if mibBuilder.loadTexts: h3cSIPID.setStatus('current') h3cSIPPasswordType = MibScalar((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("simple", 1), ("cipher", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: h3cSIPPasswordType.setStatus('current') h3cSIPPassword = MibScalar((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 1, 3), OctetString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: h3cSIPPassword.setStatus('current') h3cSIPSourceIPAddressType = MibScalar((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 1, 4), InetAddressType()).setMaxAccess("readwrite") if mibBuilder.loadTexts: h3cSIPSourceIPAddressType.setStatus('current') h3cSIPSourceIP = MibScalar((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 1, 5), InetAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: h3cSIPSourceIP.setStatus('current') h3cSIPRegisterMode = MibScalar((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("gatewayAll", 1), ("gatewaySingle", 2), ("phoneNumber", 3)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: h3cSIPRegisterMode.setStatus('current') h3cSIPRegisterPhoneNumber = MibScalar((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 1, 7), OctetString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: h3cSIPRegisterPhoneNumber.setStatus('current') h3cSIPRegisterEnable = MibScalar((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("on", 1), ("off", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: h3cSIPRegisterEnable.setStatus('current') h3cSIPTrapsControl = MibScalar((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 1, 9), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("enabled", 1), ("disabled", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: h3cSIPTrapsControl.setStatus('current') h3cSIPStatisticClear = MibScalar((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 1, 10), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1))).clone(namedValues=NamedValues(("clear", 1)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: h3cSIPStatisticClear.setStatus('current') h3cSIPServerConfigTable = MibTable((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 2), ) if mibBuilder.loadTexts: h3cSIPServerConfigTable.setStatus('current') h3cSIPServerConfigEntry = MibTableRow((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 2, 1), ).setIndexNames((0, "H3C-VOSIP-MIB", "h3cSIPServerIPAddressType"), (0, "H3C-VOSIP-MIB", "h3cSIPServerIPAddress"), (0, "H3C-VOSIP-MIB", "h3cSIPServerPort")) if mibBuilder.loadTexts: h3cSIPServerConfigEntry.setStatus('current') h3cSIPServerIPAddressType = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 2, 1, 1), InetAddressType()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: h3cSIPServerIPAddressType.setStatus('current') h3cSIPServerIPAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 2, 1, 2), InetAddress()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: h3cSIPServerIPAddress.setStatus('current') h3cSIPServerPort = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 2, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535)).clone(5060)).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: h3cSIPServerPort.setStatus('current') h3cSIPServerType = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 2, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("master", 1), ("slave", 2)))).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cSIPServerType.setStatus('current') h3cSIPAcceptType = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 2, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("inbound", 1), ("all", 2)))).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cSIPAcceptType.setStatus('current') h3cSIPServerStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 2, 1, 6), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: h3cSIPServerStatus.setStatus('current') h3cSIPMsgStatTable = MibTable((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 3), ) if mibBuilder.loadTexts: h3cSIPMsgStatTable.setStatus('current') h3cSIPMsgStatEntry = MibTableRow((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 3, 1), ).setIndexNames((0, "H3C-VOSIP-MIB", "h3cSIPMsgIndex")) if mibBuilder.loadTexts: h3cSIPMsgStatEntry.setStatus('current') h3cSIPMsgIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 3, 1, 1), SipMsgType()) if mibBuilder.loadTexts: h3cSIPMsgIndex.setStatus('current') h3cSIPMsgName = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 3, 1, 2), OctetString()).setMaxAccess("readonly") if mibBuilder.loadTexts: h3cSIPMsgName.setStatus('current') h3cSIPMsgSend = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 3, 1, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: h3cSIPMsgSend.setStatus('current') h3cSIPMsgOKSend = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 3, 1, 4), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: h3cSIPMsgOKSend.setStatus('current') h3cSIPMsgReceive = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 3, 1, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: h3cSIPMsgReceive.setStatus('current') h3cSIPMsgOKReceive = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 3, 1, 6), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: h3cSIPMsgOKReceive.setStatus('current') h3cSIPMsgResponseStatTable = MibTable((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 4), ) if mibBuilder.loadTexts: h3cSIPMsgResponseStatTable.setStatus('current') h3cSIPMsgResponseStatEntry = MibTableRow((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 4, 1), ).setIndexNames((0, "H3C-VOSIP-MIB", "h3cSIPMsgResponseIndex")) if mibBuilder.loadTexts: h3cSIPMsgResponseStatEntry.setStatus('current') h3cSIPMsgResponseIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 4, 1, 1), Integer32()) if mibBuilder.loadTexts: h3cSIPMsgResponseIndex.setStatus('current') h3cSIPMsgResponseCode = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 4, 1, 2), OctetString()).setMaxAccess("readonly") if mibBuilder.loadTexts: h3cSIPMsgResponseCode.setStatus('current') h3cSIPResCodeRecvCount = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 4, 1, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: h3cSIPResCodeRecvCount.setStatus('current') h3cSIPResCodeSendCount = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 1, 4, 1, 4), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: h3cSIPResCodeSendCount.setStatus('current') h3cSIPTrapStubObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 3)) h3cSIPRegisterFailReason = MibScalar((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 3, 1), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 31))).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: h3cSIPRegisterFailReason.setStatus('current') h3cSIPAuthenReqMethod = MibScalar((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 3, 2), SipMsgType()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: h3cSIPAuthenReqMethod.setStatus('current') h3cSIPClientNotifications = MibIdentifier((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 4)) h3cSIPRegisterFailure = NotificationType((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 4, 1)).setObjects(("H3C-VOSIP-MIB", "h3cSIPID"), ("H3C-VOSIP-MIB", "h3cSIPServerIPAddressType"), ("H3C-VOSIP-MIB", "h3cSIPServerIPAddress"), ("H3C-VOSIP-MIB", "h3cSIPServerPort"), ("H3C-VOSIP-MIB", "h3cSIPRegisterFailReason")) if mibBuilder.loadTexts: h3cSIPRegisterFailure.setStatus('current') h3cSIPAuthenticateFailure = NotificationType((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 4, 2)).setObjects(("H3C-VOSIP-MIB", "h3cSIPID"), ("H3C-VOSIP-MIB", "h3cSIPAuthenReqMethod")) if mibBuilder.loadTexts: h3cSIPAuthenticateFailure.setStatus('current') h3cSIPServerSwitch = NotificationType((1, 3, 6, 1, 4, 1, 2011, 10, 2, 39, 12, 4, 3)) if mibBuilder.loadTexts: h3cSIPServerSwitch.setStatus('current') mibBuilder.exportSymbols("H3C-VOSIP-MIB", h3cSIPResCodeRecvCount=h3cSIPResCodeRecvCount, SipMsgType=SipMsgType, h3cSIPMsgResponseIndex=h3cSIPMsgResponseIndex, h3cSIPMsgOKSend=h3cSIPMsgOKSend, h3cSIPMsgResponseStatEntry=h3cSIPMsgResponseStatEntry, h3cSIPMsgResponseCode=h3cSIPMsgResponseCode, h3cSIPID=h3cSIPID, h3cSIPRegisterPhoneNumber=h3cSIPRegisterPhoneNumber, h3cVoSIP=h3cVoSIP, h3cSIPRegisterFailure=h3cSIPRegisterFailure, h3cSIPRegisterFailReason=h3cSIPRegisterFailReason, h3cSIPServerIPAddress=h3cSIPServerIPAddress, h3cSIPTrapStubObjects=h3cSIPTrapStubObjects, h3cSIPPasswordType=h3cSIPPasswordType, h3cSIPRegisterMode=h3cSIPRegisterMode, h3cSIPClientMIB=h3cSIPClientMIB, h3cSIPResCodeSendCount=h3cSIPResCodeSendCount, h3cSIPSourceIP=h3cSIPSourceIP, h3cSIPMsgStatTable=h3cSIPMsgStatTable, h3cSIPServerConfigTable=h3cSIPServerConfigTable, h3cSIPClientConfigObjects=h3cSIPClientConfigObjects, h3cSIPMsgIndex=h3cSIPMsgIndex, h3cSIPServerType=h3cSIPServerType, h3cSIPClientNotifications=h3cSIPClientNotifications, h3cSIPPassword=h3cSIPPassword, h3cSIPMsgStatEntry=h3cSIPMsgStatEntry, PYSNMP_MODULE_ID=h3cVoSIP, h3cSIPServerIPAddressType=h3cSIPServerIPAddressType, h3cSIPMsgName=h3cSIPMsgName, h3cSIPMsgOKReceive=h3cSIPMsgOKReceive, h3cSIPMsgReceive=h3cSIPMsgReceive, h3cSIPTrapsControl=h3cSIPTrapsControl, h3cSIPMsgSend=h3cSIPMsgSend, h3cSIPMsgResponseStatTable=h3cSIPMsgResponseStatTable, h3cSIPRegisterEnable=h3cSIPRegisterEnable, h3cSIPServerConfigEntry=h3cSIPServerConfigEntry, h3cSIPAuthenReqMethod=h3cSIPAuthenReqMethod, h3cSIPServerPort=h3cSIPServerPort, h3cSIPServerStatus=h3cSIPServerStatus, h3cSIPAuthenticateFailure=h3cSIPAuthenticateFailure, h3cSIPServerSwitch=h3cSIPServerSwitch, h3cSIPAcceptType=h3cSIPAcceptType, h3cSIPStatisticClear=h3cSIPStatisticClear, h3cSIPSourceIPAddressType=h3cSIPSourceIPAddressType)
124.398058
1,827
0.758448
3bffeafde604e3613f7ea1cfd8b0257afddeae33
1,092
py
Python
reinforcement_learning/dqn/output_path.py
AaratiAkkapeddi/nnabla-examples
db9e5ad850303c158773aeb275e5c3821b4a3935
[ "Apache-2.0" ]
228
2017-11-20T06:05:56.000Z
2022-03-23T12:40:05.000Z
reinforcement_learning/dqn/output_path.py
AaratiAkkapeddi/nnabla-examples
db9e5ad850303c158773aeb275e5c3821b4a3935
[ "Apache-2.0" ]
36
2018-01-11T23:26:20.000Z
2022-03-12T00:53:38.000Z
reinforcement_learning/dqn/output_path.py
AaratiAkkapeddi/nnabla-examples
db9e5ad850303c158773aeb275e5c3821b4a3935
[ "Apache-2.0" ]
76
2017-11-22T22:00:00.000Z
2022-03-28T05:58:57.000Z
# Copyright 2019,2020,2021 Sony Corporation. # Copyright 2021 Sony Group Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os class OutputPath(object): def __init__(self, path='./tmp.output/'): if not os.path.isdir(path): os.makedirs(path) self.path = path def get_filepath(self, name): return os.path.join(self.path, name) _default_output_path = None def default_output_path(): global _default_output_path if _default_output_path is None: _default_output_path = OutputPath() return _default_output_path
29.513514
74
0.728022
b27588331abbe7e533168e14108529e9a2864cb8
2,314
py
Python
CS-190/Homework/HW10.py
lividsubset3/College-CS
6f1eb6b10e43a37654335331758677c797034961
[ "MIT" ]
null
null
null
CS-190/Homework/HW10.py
lividsubset3/College-CS
6f1eb6b10e43a37654335331758677c797034961
[ "MIT" ]
null
null
null
CS-190/Homework/HW10.py
lividsubset3/College-CS
6f1eb6b10e43a37654335331758677c797034961
[ "MIT" ]
null
null
null
from tkinter import * root = Tk() root.title('Homework 10') canvas = Canvas(root, width=400, height=400) canvas.pack() def circle(x, y, radius, color): canvas.create_oval(x, y, x + radius, y + radius, fill=color, outline=color) def rectangle(x, y, width, height, color): canvas.create_rectangle(x, y, x + width, y + height, fill=color, outline=color) def triangle(x, y, size, color): canvas.create_polygon(x - size // 2, y, x + size // 2, y, x, y - size // 2, fill=color, outline=color) # do not modify code above this line! # =============================================================================================== def go(): try: init = input("Input File: ") # init = "HW10.txt" with open(init) as f: for line in f: L = line.split(' ') for shape_type in L: if shape_type == 'triangle': x = int(L[1]) y = int(L[2]) size = int(L[3]) color = L[4].rstrip() triangle(x, y, size, color) elif shape_type == 'rectangle': x = int(L[1]) y = int(L[2]) width = int(L[3]) height = int(L[4]) color = L[5].rstrip() rectangle(x, y, width, height, color) elif shape_type == 'circle': x = int(L[1]) y = int(L[2]) radius = int(L[3]) color = L[4].rstrip() circle(x, y, radius, color) elif shape_type == 'square': x = int(L[1]) y = int(L[2]) width = int(L[3]) height = int(L[3]) color = L[4].rstrip() rectangle(x, y, width, height, color) except Exception as e: print(e) print("Error | 404 | File Not found") # do not modify code below this line! # =============================================================================================== if __name__ == '__main__': go() root.mainloop()
33.057143
106
0.386776
d2050b106573523514b5e814277d3e77d1466622
12,740
py
Python
connexion/apis/flask_api.py
engsas/connexion
abb43a42fb62ef56cb1e0f06c2167cca2f5b9f96
[ "Apache-2.0" ]
1
2020-04-07T05:26:37.000Z
2020-04-07T05:26:37.000Z
connexion/apis/flask_api.py
engsas/connexion
abb43a42fb62ef56cb1e0f06c2167cca2f5b9f96
[ "Apache-2.0" ]
3
2021-08-30T16:30:50.000Z
2022-03-01T23:15:44.000Z
connexion/apis/flask_api.py
engsas/connexion
abb43a42fb62ef56cb1e0f06c2167cca2f5b9f96
[ "Apache-2.0" ]
3
2018-06-26T22:54:02.000Z
2019-04-03T20:54:17.000Z
import logging import warnings import flask import werkzeug.exceptions from connexion.apis import flask_utils from connexion.apis.abstract import AbstractAPI from connexion.handlers import AuthErrorHandler from connexion.jsonifier import Jsonifier from connexion.lifecycle import ConnexionRequest, ConnexionResponse from connexion.utils import is_json_mimetype, yamldumper from werkzeug.local import LocalProxy logger = logging.getLogger('connexion.apis.flask_api') class FlaskApi(AbstractAPI): def _set_base_path(self, base_path): super(FlaskApi, self)._set_base_path(base_path) self._set_blueprint() def _set_blueprint(self): logger.debug('Creating API blueprint: %s', self.base_path) endpoint = flask_utils.flaskify_endpoint(self.base_path) self.blueprint = flask.Blueprint(endpoint, __name__, url_prefix=self.base_path, template_folder=str(self.options.openapi_console_ui_from_dir)) def add_openapi_json(self): """ Adds spec json to {base_path}/swagger.json or {base_path}/openapi.json (for oas3) """ logger.debug('Adding spec json: %s/%s', self.base_path, self.options.openapi_spec_path) endpoint_name = "{name}_openapi_json".format(name=self.blueprint.name) self.blueprint.add_url_rule(self.options.openapi_spec_path, endpoint_name, self._handlers.get_json_spec) def add_openapi_yaml(self): """ Adds spec yaml to {base_path}/swagger.yaml or {base_path}/openapi.yaml (for oas3) """ if not self.options.openapi_spec_path.endswith("json"): return openapi_spec_path_yaml = \ self.options.openapi_spec_path[:-len("json")] + "yaml" logger.debug('Adding spec yaml: %s/%s', self.base_path, openapi_spec_path_yaml) endpoint_name = "{name}_openapi_yaml".format(name=self.blueprint.name) self.blueprint.add_url_rule( openapi_spec_path_yaml, endpoint_name, self._handlers.get_yaml_spec ) def add_swagger_ui(self): """ Adds swagger ui to {base_path}/ui/ """ console_ui_path = self.options.openapi_console_ui_path.strip('/') logger.debug('Adding swagger-ui: %s/%s/', self.base_path, console_ui_path) if self.options.openapi_console_ui_config is not None: config_endpoint_name = "{name}_swagger_ui_config".format(name=self.blueprint.name) config_file_url = '/{console_ui_path}/swagger-ui-config.json'.format( console_ui_path=console_ui_path) self.blueprint.add_url_rule(config_file_url, config_endpoint_name, lambda: flask.jsonify(self.options.openapi_console_ui_config)) static_endpoint_name = "{name}_swagger_ui_static".format(name=self.blueprint.name) static_files_url = '/{console_ui_path}/<path:filename>'.format( console_ui_path=console_ui_path) self.blueprint.add_url_rule(static_files_url, static_endpoint_name, self._handlers.console_ui_static_files) index_endpoint_name = "{name}_swagger_ui_index".format(name=self.blueprint.name) console_ui_url = '/{console_ui_path}/'.format( console_ui_path=console_ui_path) self.blueprint.add_url_rule(console_ui_url, index_endpoint_name, self._handlers.console_ui_home) def add_auth_on_not_found(self, security, security_definitions): """ Adds a 404 error handler to authenticate and only expose the 404 status if the security validation pass. """ logger.debug('Adding path not found authentication') not_found_error = AuthErrorHandler(self, werkzeug.exceptions.NotFound(), security=security, security_definitions=security_definitions) endpoint_name = "{name}_not_found".format(name=self.blueprint.name) self.blueprint.add_url_rule('/<path:invalid_path>', endpoint_name, not_found_error.function) def _add_operation_internal(self, method, path, operation): operation_id = operation.operation_id logger.debug('... Adding %s -> %s', method.upper(), operation_id, extra=vars(operation)) flask_path = flask_utils.flaskify_path(path, operation.get_path_parameter_types()) endpoint_name = flask_utils.flaskify_endpoint(operation.operation_id, operation.randomize_endpoint) function = operation.function self.blueprint.add_url_rule(flask_path, endpoint_name, function, methods=[method]) @property def _handlers(self): # type: () -> InternalHandlers if not hasattr(self, '_internal_handlers'): self._internal_handlers = InternalHandlers(self.base_path, self.options, self.specification) return self._internal_handlers @classmethod def get_response(cls, response, mimetype=None, request=None): """Gets ConnexionResponse instance for the operation handler result. Status Code and Headers for response. If only body data is returned by the endpoint function, then the status code will be set to 200 and no headers will be added. If the returned object is a flask.Response then it will just pass the information needed to recreate it. :type response: flask.Response | (flask.Response,) | (flask.Response, int) | (flask.Response, dict) | (flask.Response, int, dict) :rtype: ConnexionResponse """ return cls._get_response(response, mimetype=mimetype, extra_context={"url": flask.request.url}) @classmethod def _is_framework_response(cls, response): """ Return True if provided response is a framework type """ return flask_utils.is_flask_response(response) @classmethod def _framework_to_connexion_response(cls, response, mimetype): """ Cast framework response class to ConnexionResponse used for schema validation """ return ConnexionResponse( status_code=response.status_code, mimetype=response.mimetype, content_type=response.content_type, headers=response.headers, body=response.get_data(), ) @classmethod def _connexion_to_framework_response(cls, response, mimetype, extra_context=None): """ Cast ConnexionResponse to framework response class """ flask_response = cls._build_response( mimetype=response.mimetype or mimetype, content_type=response.content_type, headers=response.headers, status_code=response.status_code, data=response.body, extra_context=extra_context, ) return flask_response @classmethod def _build_response(cls, mimetype, content_type=None, headers=None, status_code=None, data=None, extra_context=None): if cls._is_framework_response(data): return flask.current_app.make_response((data, status_code, headers)) data, status_code, serialized_mimetype = cls._prepare_body_and_status_code(data=data, mimetype=mimetype, status_code=status_code, extra_context=extra_context) kwargs = { 'mimetype': mimetype or serialized_mimetype, 'content_type': content_type, 'headers': headers, 'response': data, 'status': status_code } kwargs = {k: v for k, v in kwargs.items() if v is not None} return flask.current_app.response_class(**kwargs) # type: flask.Response @classmethod def _serialize_data(cls, data, mimetype): # TODO: harmonize flask and aiohttp serialization when mimetype=None or mimetype is not JSON # (cases where it might not make sense to jsonify the data) if (isinstance(mimetype, str) and is_json_mimetype(mimetype)): body = cls.jsonifier.dumps(data) elif not (isinstance(data, bytes) or isinstance(data, str)): warnings.warn( "Implicit (flask) JSON serialization will change in the next major version. " "This is triggered because a response body is being serialized as JSON " "even though the mimetype is not a JSON type. " "This will be replaced by something that is mimetype-specific and may " "raise an error instead of silently converting everything to JSON. " "Please make sure to specify media/mime types in your specs.", FutureWarning # a Deprecation targeted at application users. ) body = cls.jsonifier.dumps(data) else: body = data return body, mimetype @classmethod def get_request(cls, *args, **params): # type: (*Any, **Any) -> ConnexionRequest """Gets ConnexionRequest instance for the operation handler result. Status Code and Headers for response. If only body data is returned by the endpoint function, then the status code will be set to 200 and no headers will be added. If the returned object is a flask.Response then it will just pass the information needed to recreate it. :rtype: ConnexionRequest """ context_dict = {} setattr(flask._request_ctx_stack.top, 'connexion_context', context_dict) flask_request = flask.request request = ConnexionRequest( flask_request.url, flask_request.method, headers=flask_request.headers, form=flask_request.form, query=flask_request.args, body=flask_request.get_data(), json_getter=lambda: flask_request.get_json(silent=True), files=flask_request.files, path_params=params, context=context_dict ) logger.debug('Getting data and status code', extra={ 'data': request.body, 'data_type': type(request.body), 'url': request.url }) return request @classmethod def _set_jsonifier(cls): """ Use Flask specific JSON loader """ cls.jsonifier = Jsonifier(flask.json, indent=2) def _get_context(): return getattr(flask._request_ctx_stack.top, 'connexion_context') context = LocalProxy(_get_context) class InternalHandlers(object): """ Flask handlers for internally registered endpoints. """ def __init__(self, base_path, options, specification): self.base_path = base_path self.options = options self.specification = specification def console_ui_home(self): """ Home page of the OpenAPI Console UI. :return: """ openapi_json_route_name = "{blueprint}.{prefix}_openapi_json" escaped = flask_utils.flaskify_endpoint(self.base_path) openapi_json_route_name = openapi_json_route_name.format( blueprint=escaped, prefix=escaped ) template_variables = { 'openapi_spec_url': flask.url_for(openapi_json_route_name) } if self.options.openapi_console_ui_config is not None: template_variables['configUrl'] = 'swagger-ui-config.json' return flask.render_template('index.j2', **template_variables) def console_ui_static_files(self, filename): """ Servers the static files for the OpenAPI Console UI. :param filename: Requested file contents. :return: """ # convert PosixPath to str static_dir = str(self.options.openapi_console_ui_from_dir) return flask.send_from_directory(static_dir, filename) def get_json_spec(self): return flask.jsonify(self._spec_for_prefix()) def get_yaml_spec(self): return yamldumper(self._spec_for_prefix()), 200, {"Content-Type": "text/yaml"} def _spec_for_prefix(self): """ Modify base_path in the spec based on incoming url This fixes problems with reverse proxies changing the path. """ base_path = flask.url_for(flask.request.endpoint).rsplit("/", 1)[0] return self.specification.with_base_path(base_path).raw
40.96463
166
0.642465
398e2a0343f16513abe3f17b2afc3f7f850931a5
30,839
py
Python
holoviews/plotting/bokeh/util.py
archiba/holoviews
8fe3ac1507793e51e2f9bbc020abb49f19b41b90
[ "BSD-3-Clause" ]
null
null
null
holoviews/plotting/bokeh/util.py
archiba/holoviews
8fe3ac1507793e51e2f9bbc020abb49f19b41b90
[ "BSD-3-Clause" ]
null
null
null
holoviews/plotting/bokeh/util.py
archiba/holoviews
8fe3ac1507793e51e2f9bbc020abb49f19b41b90
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import, division, unicode_literals import re import time import sys import calendar import datetime as dt from collections import defaultdict from contextlib import contextmanager import param import bokeh import numpy as np from bokeh.core.json_encoder import serialize_json # noqa (API import) from bokeh.core.properties import value from bokeh.core.validation import silence from bokeh.layouts import WidgetBox, Row, Column from bokeh.models import tools from bokeh.models import Model, ToolbarBox, FactorRange, Range1d, Plot, Spacer, CustomJS, GridBox from bokeh.models.widgets import DataTable, Tabs, Div from bokeh.plotting import Figure from bokeh.themes.theme import Theme try: from bokeh.themes import built_in_themes except: built_in_themes = {} try: from bkcharts import Chart except: Chart = type(None) # Create stub for isinstance check from ...core.ndmapping import NdMapping from ...core.overlay import Overlay from ...core.util import ( LooseVersion, _getargspec, basestring, callable_name, cftime_types, cftime_to_timestamp, pd, unique_array, isnumeric, arraylike_types) from ...core.spaces import get_nested_dmaps, DynamicMap from ..util import dim_axis_label bokeh_version = LooseVersion(bokeh.__version__) # noqa TOOL_TYPES = { 'pan': tools.PanTool, 'xpan': tools.PanTool, 'ypan': tools.PanTool, 'xwheel_pan': tools.WheelPanTool, 'ywheel_pan': tools.WheelPanTool, 'wheel_zoom': tools.WheelZoomTool, 'xwheel_zoom': tools.WheelZoomTool, 'ywheel_zoom': tools.WheelZoomTool, 'zoom_in': tools.ZoomInTool, 'xzoom_in': tools.ZoomInTool, 'yzoom_in': tools.ZoomInTool, 'zoom_out': tools.ZoomOutTool, 'xzoom_out': tools.ZoomOutTool, 'yzoom_out': tools.ZoomOutTool, 'click': tools.TapTool, 'tap': tools.TapTool, 'crosshair': tools.CrosshairTool, 'box_select': tools.BoxSelectTool, 'xbox_select': tools.BoxSelectTool, 'ybox_select': tools.BoxSelectTool, 'poly_select': tools.PolySelectTool, 'lasso_select': tools.LassoSelectTool, 'box_zoom': tools.BoxZoomTool, 'xbox_zoom': tools.BoxZoomTool, 'ybox_zoom': tools.BoxZoomTool, 'hover': tools.HoverTool, 'save': tools.SaveTool, 'undo': tools.UndoTool, 'redo': tools.RedoTool, 'reset': tools.ResetTool, 'help': tools.HelpTool, 'box_edit': tools.BoxEditTool, 'point_draw': tools.PointDrawTool, 'poly_draw': tools.PolyDrawTool, 'poly_edit': tools.PolyEditTool, 'freehand_draw': tools.FreehandDrawTool } def convert_timestamp(timestamp): """ Converts bokehJS timestamp to datetime64. """ datetime = dt.datetime.utcfromtimestamp(timestamp/1000.) return np.datetime64(datetime.replace(tzinfo=None)) def decode_bytes(array): """ Decodes an array, list or tuple of bytestrings to avoid python 3 bokeh serialization errors """ if (sys.version_info.major == 2 or not len(array) or (isinstance(array, arraylike_types) and array.dtype.kind != 'O')): return array decoded = [v.decode('utf-8') if isinstance(v, bytes) else v for v in array] if isinstance(array, np.ndarray): return np.asarray(decoded) elif isinstance(array, tuple): return tuple(decoded) return decoded def layout_padding(plots, renderer): """ Pads Nones in a list of lists of plots with empty plots. """ widths, heights = defaultdict(int), defaultdict(int) for r, row in enumerate(plots): for c, p in enumerate(row): if p is not None: width, height = renderer.get_size(p) widths[c] = max(widths[c], width) heights[r] = max(heights[r], height) expanded_plots = [] for r, row in enumerate(plots): expanded_plots.append([]) for c, p in enumerate(row): if p is None: p = empty_plot(widths[c], heights[r]) elif hasattr(p, 'plot_width') and p.plot_width == 0 and p.plot_height == 0: p.plot_width = widths[c] p.plot_height = heights[r] expanded_plots[r].append(p) return expanded_plots def compute_plot_size(plot): """ Computes the size of bokeh models that make up a layout such as figures, rows, columns, widgetboxes and Plot. """ if isinstance(plot, GridBox): ndmapping = NdMapping({(x, y): fig for fig, y, x in plot.children}, kdims=['x', 'y']) cols = ndmapping.groupby('x') rows = ndmapping.groupby('y') width = sum([max([compute_plot_size(f)[0] for f in col]) for col in cols]) height = sum([max([compute_plot_size(f)[1] for f in row]) for row in rows]) return width, height elif isinstance(plot, (Div, ToolbarBox)): # Cannot compute size for Div or ToolbarBox return 0, 0 elif isinstance(plot, (Row, Column, WidgetBox, Tabs)): if not plot.children: return 0, 0 if isinstance(plot, Row) or (isinstance(plot, ToolbarBox) and plot.toolbar_location not in ['right', 'left']): w_agg, h_agg = (np.sum, np.max) elif isinstance(plot, Tabs): w_agg, h_agg = (np.max, np.max) else: w_agg, h_agg = (np.max, np.sum) widths, heights = zip(*[compute_plot_size(child) for child in plot.children]) return w_agg(widths), h_agg(heights) elif isinstance(plot, (Figure, Chart)): if plot.plot_width: width = plot.plot_width else: width = plot.frame_width + plot.min_border_right + plot.min_border_left if plot.plot_height: height = plot.plot_height else: height = plot.frame_height + plot.min_border_bottom + plot.min_border_top return width, height elif isinstance(plot, (Plot, DataTable, Spacer)): return plot.width, plot.height else: return 0, 0 def compute_layout_properties( width, height, frame_width, frame_height, explicit_width, explicit_height, aspect, data_aspect, responsive, size_multiplier, logger=None): """ Utility to compute the aspect, plot width/height and sizing_mode behavior. Args: width (int): Plot width height (int): Plot height frame_width (int): Plot frame width frame_height (int): Plot frame height explicit_width (list): List of user supplied widths explicit_height (list): List of user supplied heights aspect (float): Plot aspect data_aspect (float): Scaling between x-axis and y-axis ranges responsive (boolean): Whether the plot should resize responsively size_multiplier (float): Multiplier for supplied plot dimensions logger (param.Parameters): Parameters object to issue warnings on Returns: Returns two dictionaries one for the aspect and sizing modes, and another for the plot dimensions. """ fixed_width = (explicit_width or frame_width) fixed_height = (explicit_height or frame_height) fixed_aspect = aspect or data_aspect if aspect == 'square': aspect = 1 elif aspect == 'equal': data_aspect = 1 # Plot dimensions height = None if height is None else int(height*size_multiplier) width = None if width is None else int(width*size_multiplier) frame_height = None if frame_height is None else int(frame_height*size_multiplier) frame_width = None if frame_width is None else int(frame_width*size_multiplier) actual_width = frame_width or width actual_height = frame_height or height if frame_width is not None: width = None if frame_height is not None: height = None sizing_mode = 'fixed' if responsive: if fixed_height and fixed_width: responsive = False if logger: logger.warning("responsive mode could not be enabled " "because fixed width and height were " "specified.") elif fixed_width: height = None sizing_mode = 'fixed' if fixed_aspect else 'stretch_height' elif fixed_height: width = None sizing_mode = 'fixed' if fixed_aspect else 'stretch_width' else: width, height = None, None if fixed_aspect: if responsive == 'width': sizing_mode = 'scale_width' elif responsive == 'height': sizing_mode = 'scale_height' else: sizing_mode = 'scale_both' else: if responsive == 'width': sizing_mode = 'stretch_both' elif responsive == 'height': sizing_mode = 'stretch_height' else: sizing_mode = 'stretch_both' if fixed_aspect: aspect_type = 'data_aspect' if data_aspect else 'aspect' if fixed_width and fixed_height and aspect: if aspect == 'equal': data_aspect = None if logger: logger.warning( "%s value was ignored because absolute width and " "height values were provided. To set the scaling " "between the x- and y-axis independent of the " "width and height values set the data_aspect." % aspect_type) elif not data_aspect: aspect = None if logger: logger.warning( "%s value was ignored because absolute width and " "height values were provided. Either supply " "explicit frame_width and frame_height to achieve " "desired aspect OR supply a combination of width " "or height and an aspect value." % aspect_type) elif fixed_width and responsive: height = None responsive = False if logger: logger.warning("responsive mode could not be enabled " "because fixed width and aspect were " "specified.") elif fixed_height and responsive: width = None responsive = False if logger: logger.warning("responsive mode could not be enabled " "because fixed height and aspect were " "specified.") elif responsive == 'width': sizing_mode = 'scale_width' elif responsive == 'height': sizing_mode = 'scale_height' if responsive == 'width' and fixed_width: responsive = False if logger: logger.warning("responsive width mode could not be enabled " "because a fixed width was defined.") if responsive == 'height' and fixed_height: responsive = False if logger: logger.warning("responsive height mode could not be enabled " "because a fixed height was defined.") match_aspect = False aspect_scale = 1 aspect_ratio = None if data_aspect: match_aspect = True if (fixed_width and fixed_height): frame_width, frame_height = frame_width or width, frame_height or height elif fixed_width or not fixed_height: height = None elif fixed_height or not fixed_width: width = None aspect_scale = data_aspect if aspect == 'equal': aspect_scale = 1 elif responsive: aspect_ratio = aspect elif (fixed_width and fixed_height): pass elif isnumeric(aspect): if responsive: aspect_ratio = aspect elif fixed_width: frame_width = actual_width frame_height = int(actual_width/aspect) width, height = None, None else: frame_width = int(actual_height*aspect) frame_height = actual_height width, height = None, None elif aspect is not None and logger: logger.warning('aspect value of type %s not recognized, ' 'provide a numeric value, \'equal\' or ' '\'square\'.') return ({'aspect_ratio': aspect_ratio, 'aspect_scale': aspect_scale, 'match_aspect': match_aspect, 'sizing_mode' : sizing_mode}, {'frame_width' : frame_width, 'frame_height': frame_height, 'plot_height' : height, 'plot_width' : width}) @contextmanager def silence_warnings(*warnings): """ Context manager for silencing bokeh validation warnings. """ for warning in warnings: silence(warning) try: yield finally: for warning in warnings: silence(warning, False) def empty_plot(width, height): """ Creates an empty and invisible plot of the specified size. """ return Spacer(width=width, height=height) def font_size_to_pixels(size): """ Convert a fontsize to a pixel value """ if size is None or not isinstance(size, basestring): return conversions = {'em': 16, 'pt': 16/12.} val = re.findall('\d+', size) unit = re.findall('[a-z]+', size) if (val and not unit) or (val and unit[0] == 'px'): return int(val[0]) elif val and unit[0] in conversions: return (int(int(val[0]) * conversions[unit[0]])) def make_axis(axis, size, factors, dim, flip=False, rotation=0, label_size=None, tick_size=None, axis_height=35): factors = list(map(dim.pprint_value, factors)) nchars = np.max([len(f) for f in factors]) ranges = FactorRange(factors=factors) ranges2 = Range1d(start=0, end=1) axis_label = dim_axis_label(dim) reset = "range.setv({start: 0, end: range.factors.length})" ranges.callback = CustomJS(args=dict(range=ranges), code=reset) axis_props = {} if label_size: axis_props['axis_label_text_font_size'] = value(label_size) if tick_size: axis_props['major_label_text_font_size'] = value(tick_size) tick_px = font_size_to_pixels(tick_size) if tick_px is None: tick_px = 8 label_px = font_size_to_pixels(label_size) if label_px is None: label_px = 10 rotation = np.radians(rotation) if axis == 'x': align = 'center' # Adjust height to compensate for label rotation height = int(axis_height + np.abs(np.sin(rotation)) * ((nchars*tick_px)*0.82)) + tick_px + label_px opts = dict(x_axis_type='auto', x_axis_label=axis_label, x_range=ranges, y_range=ranges2, plot_height=height, plot_width=size) else: # Adjust width to compensate for label rotation align = 'left' if flip else 'right' width = int(axis_height + np.abs(np.cos(rotation)) * ((nchars*tick_px)*0.82)) + tick_px + label_px opts = dict(y_axis_label=axis_label, x_range=ranges2, y_range=ranges, plot_width=width, plot_height=size) p = Figure(toolbar_location=None, tools=[], **opts) p.outline_line_alpha = 0 p.grid.grid_line_alpha = 0 if axis == 'x': p.yaxis.visible = False axis = p.xaxis[0] if flip: p.above = p.below p.below = [] p.xaxis[:] = p.above else: p.xaxis.visible = False axis = p.yaxis[0] if flip: p.right = p.left p.left = [] p.yaxis[:] = p.right axis.major_label_orientation = rotation axis.major_label_text_align = align axis.major_label_text_baseline = 'middle' axis.update(**axis_props) return p def hsv_to_rgb(hsv): """ Vectorized HSV to RGB conversion, adapted from: http://stackoverflow.com/questions/24852345/hsv-to-rgb-color-conversion """ h, s, v = (hsv[..., i] for i in range(3)) shape = h.shape i = np.int_(h*6.) f = h*6.-i q = f t = 1.-f i = np.ravel(i) f = np.ravel(f) i%=6 t = np.ravel(t) q = np.ravel(q) s = np.ravel(s) v = np.ravel(v) clist = (1-s*np.vstack([np.zeros_like(f),np.ones_like(f),q,t]))*v #0:v 1:p 2:q 3:t order = np.array([[0,3,1],[2,0,1],[1,0,3],[1,2,0],[3,1,0],[0,1,2]]) rgb = clist[order[i], np.arange(np.prod(shape))[:,None]] return rgb.reshape(shape+(3,)) def pad_width(model, table_padding=0.85, tabs_padding=1.2): """ Computes the width of a model and sets up appropriate padding for Tabs and DataTable types. """ if isinstance(model, Row): vals = [pad_width(child) for child in model.children] width = np.max([v for v in vals if v is not None]) elif isinstance(model, Column): vals = [pad_width(child) for child in model.children] width = np.sum([v for v in vals if v is not None]) elif isinstance(model, Tabs): vals = [pad_width(t) for t in model.tabs] width = np.max([v for v in vals if v is not None]) for model in model.tabs: model.width = width width = int(tabs_padding*width) elif isinstance(model, DataTable): width = model.width model.width = int(table_padding*width) elif isinstance(model, (WidgetBox, Div)): width = model.width elif model: width = model.plot_width else: width = 0 return width def pad_plots(plots): """ Accepts a grid of bokeh plots in form of a list of lists and wraps any DataTable or Tabs in a WidgetBox with appropriate padding. Required to avoid overlap in gridplot. """ widths = [] for row in plots: row_widths = [] for p in row: width = pad_width(p) row_widths.append(width) widths.append(row_widths) plots = [[WidgetBox(p, width=w) if isinstance(p, (DataTable, Tabs)) else p for p, w in zip(row, ws)] for row, ws in zip(plots, widths)] return plots def filter_toolboxes(plots): """ Filters out toolboxes out of a list of plots to be able to compose them into a larger plot. """ if isinstance(plots, list): plots = [filter_toolboxes(plot) for plot in plots] elif hasattr(plots, 'children'): plots.children = [filter_toolboxes(child) for child in plots.children if not isinstance(child, ToolbarBox)] return plots def py2js_tickformatter(formatter, msg=''): """ Uses py2js to compile a python tick formatter to JS code """ try: from pscript import py2js except ImportError: param.main.param.warning( msg+'Ensure pscript is installed ("conda install pscript" ' 'or "pip install pscript")') return try: jscode = py2js(formatter, 'formatter') except Exception as e: error = 'Pyscript raised an error: {0}'.format(e) error = error.replace('%', '%%') param.main.param.warning(msg+error) return args = _getargspec(formatter).args arg_define = 'var %s = tick;' % args[0] if args else '' return_js = 'return formatter();\n' jsfunc = '\n'.join([arg_define, jscode, return_js]) match = re.search('(formatter \= function \(.*\))', jsfunc ) return jsfunc[:match.start()] + 'formatter = function ()' + jsfunc[match.end():] def get_tab_title(key, frame, overlay): """ Computes a title for bokeh tabs from the key in the overlay, the element and the containing (Nd)Overlay. """ if isinstance(overlay, Overlay): if frame is not None: title = [] if frame.label: title.append(frame.label) if frame.group != frame.params('group').default: title.append(frame.group) else: title.append(frame.group) else: title = key title = ' '.join(title) else: title = ' | '.join([d.pprint_value_string(k) for d, k in zip(overlay.kdims, key)]) return title def filter_batched_data(data, mapping): """ Iterates over the data and mapping for a ColumnDataSource and replaces columns with repeating values with a scalar. This is purely and optimization for scalar types. """ for k, v in list(mapping.items()): if isinstance(v, dict) and 'field' in v: if 'transform' in v: continue v = v['field'] elif not isinstance(v, basestring): continue values = data[v] try: if len(unique_array(values)) == 1: mapping[k] = values[0] del data[v] except: pass def cds_column_replace(source, data): """ Determine if the CDS.data requires a full replacement or simply needs to be updated. A replacement is required if untouched columns are not the same length as the columns being updated. """ current_length = [len(v) for v in source.data.values() if isinstance(v, (list,)+arraylike_types)] new_length = [len(v) for v in data.values() if isinstance(v, (list, np.ndarray))] untouched = [k for k in source.data if k not in data] return bool(untouched and current_length and new_length and current_length[0] != new_length[0]) @contextmanager def hold_policy(document, policy, server=False): """ Context manager to temporary override the hold policy. """ old_policy = document._hold document._hold = policy try: yield finally: if server and not old_policy: document.unhold() else: document._hold = old_policy def recursive_model_update(model, props): """ Recursively updates attributes on a model including other models. If the type of the new model matches the old model properties are simply updated, otherwise the model is replaced. """ updates = {} valid_properties = model.properties_with_values() for k, v in props.items(): if isinstance(v, Model): nested_model = getattr(model, k) if type(v) is type(nested_model): nested_props = v.properties_with_values(include_defaults=False) recursive_model_update(nested_model, nested_props) else: setattr(model, k, v) elif k in valid_properties and v != valid_properties[k]: updates[k] = v model.update(**updates) def update_shared_sources(f): """ Context manager to ensures data sources shared between multiple plots are cleared and updated appropriately avoiding warnings and allowing empty frames on subplots. Expects a list of shared_sources and a mapping of the columns expected columns for each source in the plots handles. """ def wrapper(self, *args, **kwargs): source_cols = self.handles.get('source_cols', {}) shared_sources = self.handles.get('shared_sources', []) for source in shared_sources: source.data.clear() if self.document and self.document._held_events: self.document._held_events = self.document._held_events[:-1] ret = f(self, *args, **kwargs) for source in shared_sources: expected = source_cols[id(source)] found = [c for c in expected if c in source.data] empty = np.full_like(source.data[found[0]], np.NaN) if found else [] patch = {c: empty for c in expected if c not in source.data} source.data.update(patch) return ret return wrapper def categorize_array(array, dim): """ Uses a Dimension instance to convert an array of values to categorical (i.e. string) values and applies escaping for colons, which bokeh treats as a categorical suffix. """ return np.array([dim.pprint_value(x) for x in array]) class periodic(object): """ Mocks the API of periodic Thread in hv.core.util, allowing a smooth API transition on bokeh server. """ def __init__(self, document): self.document = document self.callback = None self.period = None self.count = None self.counter = None self._start_time = None self.timeout = None self._pcb = None @property def completed(self): return self.counter is None def start(self): self._start_time = time.time() if self.document is None: raise RuntimeError('periodic was registered to be run on bokeh' 'server but no document was found.') self._pcb = self.document.add_periodic_callback(self._periodic_callback, self.period) def __call__(self, period, count, callback, timeout=None, block=False): if isinstance(count, int): if count < 0: raise ValueError('Count value must be positive') elif not type(count) is type(None): raise ValueError('Count value must be a positive integer or None') self.callback = callback self.period = period*1000. self.timeout = timeout self.count = count self.counter = 0 return self def _periodic_callback(self): self.callback(self.counter) self.counter += 1 if self.timeout is not None: dt = (time.time() - self._start_time) if dt > self.timeout: self.stop() if self.counter == self.count: self.stop() def stop(self): self.counter = None self.timeout = None try: self.document.remove_periodic_callback(self._pcb) except ValueError: # Already stopped pass self._pcb = None def __repr__(self): return 'periodic(%s, %s, %s)' % (self.period, self.count, callable_name(self.callback)) def __str__(self): return repr(self) def attach_periodic(plot): """ Attaches plot refresh to all streams on the object. """ def append_refresh(dmap): for dmap in get_nested_dmaps(dmap): dmap.periodic._periodic_util = periodic(plot.document) return plot.hmap.traverse(append_refresh, [DynamicMap]) def date_to_integer(date): """Converts support date types to milliseconds since epoch Attempts highest precision conversion of different datetime formats to milliseconds since the epoch (1970-01-01 00:00:00). If datetime is a cftime with a non-standard calendar the caveats described in hv.core.util.cftime_to_timestamp apply. Args: date: Date- or datetime-like object Returns: Milliseconds since 1970-01-01 00:00:00 """ if pd and isinstance(date, pd.Timestamp): try: date = date.to_datetime64() except: date = date.to_datetime() if isinstance(date, np.datetime64): return date.astype('datetime64[ms]').astype(float) elif isinstance(date, cftime_types): return cftime_to_timestamp(date, 'ms') if hasattr(date, 'timetuple'): dt_int = calendar.timegm(date.timetuple())*1000 else: raise ValueError('Datetime type not recognized') return dt_int def glyph_order(keys, draw_order=[]): """ Orders a set of glyph handles using regular sort and an explicit sort order. The explicit draw order must take the form of a list of glyph names while the keys should be glyph names with a custom suffix. The draw order may only match subset of the keys and any matched items will take precedence over other entries. """ keys = sorted(keys) def order_fn(glyph): matches = [item for item in draw_order if glyph.startswith(item)] return ((draw_order.index(matches[0]), glyph) if matches else (1e9+keys.index(glyph), glyph)) return sorted(keys, key=order_fn) def colormesh(X, Y): """ Generates line paths for a quadmesh given 2D arrays of X and Y coordinates. """ X1 = X[0:-1, 0:-1].ravel() Y1 = Y[0:-1, 0:-1].ravel() X2 = X[1:, 0:-1].ravel() Y2 = Y[1:, 0:-1].ravel() X3 = X[1:, 1:].ravel() Y3 = Y[1:, 1:].ravel() X4 = X[0:-1, 1:].ravel() Y4 = Y[0:-1, 1:].ravel() X = np.column_stack([X1, X2, X3, X4, X1]) Y = np.column_stack([Y1, Y2, Y3, Y4, Y1]) return X, Y def theme_attr_json(theme, attr): if isinstance(theme, str) and theme in built_in_themes: return built_in_themes[theme]._json['attrs'].get(attr, {}) elif isinstance(theme, Theme): return theme._json['attrs'].get(attr, {}) else: return {} def multi_polygons_data(element): """ Expands polygon data which contains holes to a bokeh multi_polygons representation. Multi-polygons split by nans are expanded and the correct list of holes is assigned to each sub-polygon. """ paths = element.split(datatype='array', dimensions=element.kdims) xs, ys = ([path[:, idx] for path in paths] for idx in (0, 1)) holes = element.holes() xsh, ysh = [], [] for x, y, multi_hole in zip(xs, ys, holes): xhs = [[h[:, 0] for h in hole] for hole in multi_hole] yhs = [[h[:, 1] for h in hole] for hole in multi_hole] array = np.column_stack([x, y]) splits = np.where(np.isnan(array[:, :2].astype('float')).sum(axis=1))[0] arrays = np.split(array, splits+1) if len(splits) else [array] multi_xs, multi_ys = [], [] for i, (path, hx, hy) in enumerate(zip(arrays, xhs, yhs)): if i != (len(arrays)-1): path = path[:-1] multi_xs.append([path[:, 0]]+hx) multi_ys.append([path[:, 1]]+hy) xsh.append(multi_xs) ysh.append(multi_ys) return xsh, ysh def match_dim_specs(specs1, specs2): """Matches dimension specs used to link axes. Axis dimension specs consists of a list of tuples corresponding to each dimension, each tuple spec has the form (name, label, unit). The name and label must match exactly while the unit only has to match if both specs define one. """ if (specs1 is None or specs2 is None) or (len(specs1) != len(specs2)): return False for spec1, spec2 in zip(specs1, specs2): for s1, s2 in zip(spec1, spec2): if s1 is None or s2 is None: continue if s1 != s2: return False return True
34.303671
118
0.608904
26c463caa65b66df689bea6215288b6e4d454215
5,234
py
Python
kisensum/openadr/openadr/vtn/urls.py
ChargePoint/volttron-applications
8d99c01a93f7c1ea98d4e4b0cfcefe85fe26320b
[ "BSD-3-Clause" ]
null
null
null
kisensum/openadr/openadr/vtn/urls.py
ChargePoint/volttron-applications
8d99c01a93f7c1ea98d4e4b0cfcefe85fe26320b
[ "BSD-3-Clause" ]
4
2021-03-19T23:36:34.000Z
2021-12-13T19:45:54.000Z
kisensum/openadr/openadr/vtn/urls.py
ChargePoint/volttron-applications
8d99c01a93f7c1ea98d4e4b0cfcefe85fe26320b
[ "BSD-3-Clause" ]
1
2020-05-25T05:03:55.000Z
2020-05-25T05:03:55.000Z
# -*- coding: utf-8 -*- {{{ # vim: set fenc=utf-8 ft=python sw=4 ts=4 sts=4 et: # Copyright (c) 2017, Battelle Memorial Institute # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # The views and conclusions contained in the software and documentation # are those of the authors and should not be interpreted as representing # official policies, either expressed or implied, of the FreeBSD # Project. # # This material was prepared as an account of work sponsored by an # agency of the United States Government. Neither the United States # Government nor the United States Department of Energy, nor Battelle, # nor any of their employees, nor any jurisdiction or organization that # has cooperated in the development of these materials, makes any # warranty, express or implied, or assumes any legal liability or # responsibility for the accuracy, completeness, or usefulness or any # information, apparatus, product, software, or process disclosed, or # represents that its use would not infringe privately owned rights. # # Reference herein to any specific commercial product, process, or # service by trade name, trademark, manufacturer, or otherwise does not # necessarily constitute or imply its endorsement, recommendation, or # favoring by the United States Government or any agency thereof, or # Battelle Memorial Institute. The views and opinions of authors # expressed herein do not necessarily state or reflect those of the # United States Government or any agency thereof. # # PACIFIC NORTHWEST NATIONAL LABORATORY # operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY # under Contract DE-AC05-76RL01830 # }}} from django.conf.urls import url from django.views.generic import RedirectView from vtn import views from django.contrib.auth import views as auth_views from django.contrib.auth.decorators import login_required from rest_framework.routers import DefaultRouter router = DefaultRouter() app_name = 'vtn' urlpatterns = [ url(r'^$', RedirectView.as_view(url='/vtn/login')), url(r'^home/$',views.overview, name='home'), url(r'^login/$', auth_views.login, {'template_name': 'login.html'}, name='login'), url(r'^logout/$', auth_views.logout, {'template_name': 'logged_out.html'}, name='logout'), url(r'^customer-detail/(?P<pk>\w+)$', views.CustomerDetailView.as_view(), name='customer_detail'), url(r'^site-detail/(?P<pk>\w+)$', views.SiteDetailView.as_view(), name='site_detail'), url(r'^dr_event/$', login_required(views.DREventAdd.as_view()), name='dr_event'), url(r'^customer-edit/(?P<pk>[0-9]+)$', views.CustomerUpdate.as_view(), name='customer_update'), url(r'customer/add/$', views.CustomerCreate.as_view(), name='customer_add'), url(r'^export/(?P<pk>[0-9]+)/$', login_required(views.dr_event_export), name='export_dr_events_csv'), url(r'^report/$', login_required(views.report), name='report'), url(r'^export/filter/$', login_required(views.get_more_tables), name='get_more_tables'), url(r'^dr-event/add/$', login_required(views.get_dr_event_form), name='get_dr_event_form'), url(r'site/create/(?P<pk>[0-9]+)/$', login_required(views.CreateSiteView.as_view()), name='create_site'), url(r'^home/(?P<pk>[0-9]+)/$', login_required(views.delete_dr_event), name='dr_event_delete'), url(r'dr_event/(?P<pk>[0-9]+)/$', login_required(views.dr_event_dispatch), name='dr_event_dispatch'), url(r'dr_event/view/(?P<pk>[0-9]+)/$', login_required(views.DREventCreate.as_view()), name='dr_event_update'), url(r'dr_event/detail/(?P<pk>[0-9]+)/$', login_required(views.DREventDetail.as_view()), name='dr_event_detail'), url(r'dr_event/detail/(?P<pk>[0-9]+)/customer/$', login_required(views.get_dr_event_details), name='dr_event_get_details'), url(r'^home/(?P<pk>[0-9]+)/$', login_required(views.cancel_dr_event), name='dr_event_cancel'), url(r'password_change/$', login_required(views.change_password), name='change_password'), ] urlpatterns += router.urls
54.520833
127
0.748376
884783b3b22e9942259648a09e1d2dbe6ddfb654
210
py
Python
pommerman/agents/random_agent.py
alekseynp/playground
523cc924fe9fd269a8eb3e29c45ace1c5c85b12c
[ "Apache-2.0" ]
8
2019-06-11T16:08:25.000Z
2020-10-28T09:03:53.000Z
pommerman/agents/random_agent.py
alekseynp/playground
523cc924fe9fd269a8eb3e29c45ace1c5c85b12c
[ "Apache-2.0" ]
1
2019-06-21T03:57:35.000Z
2019-06-21T03:57:35.000Z
pommerman/agents/random_agent.py
alekseynp/playground
523cc924fe9fd269a8eb3e29c45ace1c5c85b12c
[ "Apache-2.0" ]
1
2018-03-21T15:21:52.000Z
2018-03-21T15:21:52.000Z
from . import BaseAgent class RandomAgent(BaseAgent): """The Random Agent that returns random actions given an action_space.""" def act(self, obs, action_space): return action_space.sample()
23.333333
77
0.714286
2ed9bfa7d05f8c8dc41dd4079a3e9afae6e955a4
507
py
Python
users/migrations/0023_auto_20201125_1018.py
ominicomdevgt/LaChalupa
3e7ea16fa97aa311bd3513dc463c30c37dfb5761
[ "MIT" ]
null
null
null
users/migrations/0023_auto_20201125_1018.py
ominicomdevgt/LaChalupa
3e7ea16fa97aa311bd3513dc463c30c37dfb5761
[ "MIT" ]
null
null
null
users/migrations/0023_auto_20201125_1018.py
ominicomdevgt/LaChalupa
3e7ea16fa97aa311bd3513dc463c30c37dfb5761
[ "MIT" ]
null
null
null
# Generated by Django 3.1.2 on 2020-11-25 16:18 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0022_auto_20201123_1624'), ] operations = [ migrations.AlterField( model_name='profile', name='comment', field=models.CharField(blank=True, default='Tu cuenta será verificada en un periodo máximo de 1 hora', max_length=1000, null=True, verbose_name='Commentario'), ), ]
26.684211
171
0.642998
e359f7b9dcabff9ab63d15cd678da2bceedff927
16,026
py
Python
chainercv/functions/psroi_pooling_2d.py
iory/chainercv
ecb1953f78c526dfd38308d68a4094c9f4df3a8d
[ "MIT" ]
1
2018-08-24T02:28:31.000Z
2018-08-24T02:28:31.000Z
chainercv/functions/psroi_pooling_2d.py
iory/chainercv
ecb1953f78c526dfd38308d68a4094c9f4df3a8d
[ "MIT" ]
null
null
null
chainercv/functions/psroi_pooling_2d.py
iory/chainercv
ecb1953f78c526dfd38308d68a4094c9f4df3a8d
[ "MIT" ]
2
2019-12-16T02:20:26.000Z
2022-01-17T02:00:49.000Z
# Modified work: # ------------------------------------------------------------------------ # Copyright (c) 2018 Preferred Networks, Inc. # ------------------------------------------------------------------------ # Original works of CUDA kernel in forward_gpu and forward_gpu: # ------------------------------------------------------------------------ # Copyright (c) 2017 Microsoft # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Written by Yi Li, Tairui Chen, Guodong Zhang, Haozhi Qi and Jifeng Dai # https://github.com/msracver/FCIS # ------------------------------------------------------------------------ from __future__ import division import numpy as np import six from chainer.backends import cuda from chainer import function from chainer.utils import type_check if cuda.available: import cupy as cp def _roi_pooling_slice(size, stride, max_size, roi_offset): start = int(np.floor(size * stride)) end = int(np.ceil((size + 1) * stride)) start = min(max(start + roi_offset, 0), max_size) end = min(max(end + roi_offset, 0), max_size) return slice(start, end), end - start class PSROIPooling2D(function.Function): def __init__(self, out_c, out_h, out_w, spatial_scale, group_size): self.out_c, self.out_h, self.out_w = out_c, out_h, out_w self.spatial_scale = spatial_scale self.group_size = group_size def check_type_forward(self, in_types): type_check.expect(in_types.size() == 3) x_type, roi_type, roi_index_type = in_types type_check.expect( x_type.dtype == np.float32, x_type.ndim == 4, roi_type.dtype == np.float32, roi_type.ndim == 2, roi_type.shape[1] == 4, roi_index_type.dtype == np.int32, roi_index_type.ndim == 1, roi_type.shape[0] == roi_index_type.shape[0] ) def forward_cpu(self, inputs): self.retain_inputs((1, 2)) self._bottom_data_shape = inputs[0].shape bottom_data, bottom_rois, bottom_roi_indices = inputs channels, height, width = bottom_data.shape[1:] n_roi = bottom_rois.shape[0] top_data = np.empty( (n_roi, self.out_c, self.out_h, self.out_w), dtype=np.float32) for i_roi in six.moves.range(n_roi): y_min, x_min, y_max, x_max = bottom_rois[i_roi] batch_index = bottom_roi_indices[i_roi] y_min = round(y_min * self.spatial_scale) x_min = round(x_min * self.spatial_scale) y_max = round(y_max * self.spatial_scale) x_max = round(x_max * self.spatial_scale) roi_height = max(y_max - y_min, 0.1) roi_width = max(x_max - x_min, 0.1) stride_c = channels / self.out_c stride_h = roi_height / self.out_h stride_w = roi_width / self.out_w group_h = int(round(self.out_h / self.group_size)) group_w = int(round(self.out_w / self.group_size)) for out_h in six.moves.range(self.out_h): slice_h, len_h = _roi_pooling_slice( out_h, stride_h, height, int(y_min)) if slice_h.stop <= slice_h.start: continue for out_w in six.moves.range(self.out_w): slice_w, len_w = _roi_pooling_slice( out_w, stride_w, width, int(x_min)) if slice_w.stop <= slice_w.start: continue for out_c in six.moves.range(self.out_c): slice_c, len_c = _roi_pooling_slice( out_c, stride_c, channels, 0) roi_data = bottom_data[ batch_index, slice_c, slice_h, slice_w]\ .reshape((len_c, -1)) c = (out_h // group_h) * self.group_size \ + (out_w // group_w) top_data[i_roi, out_c, out_h, out_w] = np.average( roi_data[c]) return top_data, def forward_gpu(self, inputs): self.retain_inputs((1, 2)) self._bottom_data_shape = inputs[0].shape bottom_data, bottom_rois, bottom_roi_indices = inputs channels, height, width = bottom_data.shape[1:] n_roi = bottom_rois.shape[0] top_data = cp.empty( (n_roi, self.out_c, self.out_h, self.out_w), dtype=np.float32) cuda.cupy.ElementwiseKernel( ''' raw float32 bottom_data, raw float32 bottom_rois, raw int32 bottom_roi_indices, float32 spatial_scale, int32 channels, int32 height, int32 width, int32 pooled_dim, int32 pooled_height, int32 pooled_width, int32 group_size ''', 'float32 top_data', ''' // pos in output filter int ph = (i / pooled_width) % pooled_height; int pw = i % pooled_width; int ctop = (i / pooled_width / pooled_height) % pooled_dim; int n = i / pooled_width / pooled_height / pooled_dim; int roi_batch_ind = bottom_roi_indices[n]; float roi_start_h = static_cast<float>( round(bottom_rois[n * 4 + 0])) * spatial_scale; float roi_start_w = static_cast<float>( round(bottom_rois[n * 4 + 1])) * spatial_scale; float roi_end_h = static_cast<float>( round(bottom_rois[n * 4 + 2])) * spatial_scale; float roi_end_w = static_cast<float>( round(bottom_rois[n * 4 + 3])) * spatial_scale; // Force too small ROIs to be 1x1 float roi_height = max(roi_end_h - roi_start_h, 0.1); float roi_width = max(roi_end_w - roi_start_w, 0.1); // avoid 0 // Compute w and h at bottom float bin_size_h = roi_height / static_cast<float>(pooled_height); float bin_size_w = roi_width / static_cast<float>(pooled_width); int hstart = static_cast<int>(floor(static_cast<float>(ph) * bin_size_h + roi_start_h)); int wstart = static_cast<int>(floor(static_cast<float>(pw) * bin_size_w + roi_start_w)); int hend = static_cast<int>(ceil(static_cast<float>(ph + 1) * bin_size_h + roi_start_h)); int wend = static_cast<int>(ceil(static_cast<float>(pw + 1) * bin_size_w + roi_start_w)); // Add roi offsets and clip to input boundaries hstart = min(max(hstart, 0), height); wstart = min(max(wstart, 0), width); hend = min(max(hend, 0), height); wend = min(max(wend, 0), width); bool is_empty = (hend <= hstart) || (wend <= wstart); // Compute c at bottom int gh = floor( static_cast<float>(ph) * group_size / pooled_height); int gw = floor( static_cast<float>(pw) * group_size / pooled_width); gh = min(max(gh, 0), group_size - 1); gw = min(max(gw, 0), group_size - 1); int c = (ctop * group_size + gh) * group_size + gw; int data_offset = (roi_batch_ind * channels + c) * height * width; float out_sum = 0; for (int h = hstart; h < hend; ++h){ for (int w = wstart; w < wend; ++w){ int bottom_index = h * width + w; out_sum += bottom_data[data_offset + bottom_index]; } } float bin_area = (hend - hstart) * (wend - wstart); top_data = is_empty? (float) 0. : out_sum / bin_area; ''', 'psroi_pooling_2d_fwd' )(bottom_data, bottom_rois, bottom_roi_indices, self.spatial_scale, channels, height, width, self.out_c, self.out_h, self.out_w, self.group_size, top_data) return top_data, def backward_cpu(self, inputs, gy): _, bottom_rois, bottom_roi_indices = inputs channels, height, width = self._bottom_data_shape[1:] n_roi = bottom_rois.shape[0] bottom_diff = np.zeros(self._bottom_data_shape, np.float32) for i_roi in six.moves.range(n_roi): y_min, x_min, y_max, x_max = bottom_rois[i_roi] batch_index = bottom_roi_indices[i_roi] y_min = round(y_min * self.spatial_scale) x_min = round(x_min * self.spatial_scale) y_max = round(y_max * self.spatial_scale) x_max = round(x_max * self.spatial_scale) roi_height = max(y_max - y_min, 0.1) roi_width = max(x_max - x_min, 0.1) stride_c = channels / self.out_c stride_h = roi_height / self.out_h stride_w = roi_width / self.out_w group_h = int(round(self.out_h / self.group_size)) group_w = int(round(self.out_w / self.group_size)) for out_h in six.moves.range(self.out_h): slice_h, len_h = _roi_pooling_slice( out_h, stride_h, height, int(y_min)) if slice_h.stop <= slice_h.start: continue for out_w in six.moves.range(self.out_w): slice_w, len_w = _roi_pooling_slice( out_w, stride_w, width, int(x_min)) if slice_w.stop <= slice_w.start: continue for out_c in six.moves.range(self.out_c): diff_val = gy[0][i_roi, out_c, out_h, out_w] diff_val = diff_val / len_h / len_w start_c = int(np.floor(out_c * stride_c)) start_c = min(max(start_c, 0), channels) c = (out_h // group_h) * self.group_size \ + (out_w // group_w) + start_c bottom_diff[batch_index, c, slice_h, slice_w] \ += diff_val return bottom_diff, None, None def backward_gpu(self, inputs, gy): _, bottom_rois, bottom_roi_indices = inputs channels, height, width = self._bottom_data_shape[1:] bottom_diff = cuda.cupy.zeros(self._bottom_data_shape, np.float32) cuda.cupy.ElementwiseKernel( ''' raw float32 bottom_diff, raw float32 bottom_rois, raw int32 bottom_roi_indices, float32 spatial_scale, int32 channels, int32 height, int32 width, int32 pooled_dim, int32 pooled_height, int32 pooled_width, int32 group_size ''', 'float32 top_diff', ''' int ph = (i / pooled_width) % pooled_height; int pw = i % pooled_width; int ctop = (i / pooled_width / pooled_height) % pooled_dim; int n = i / pooled_width / pooled_height / pooled_dim; // [start, end) interval for spatial sampling int roi_batch_ind = bottom_roi_indices[n]; float roi_start_h = static_cast<float>( round(bottom_rois[n * 4 + 0])) * spatial_scale; float roi_start_w = static_cast<float>( round(bottom_rois[n * 4 + 1])) * spatial_scale; float roi_end_h = static_cast<float>( round(bottom_rois[n * 4 + 2])) * spatial_scale; float roi_end_w = static_cast<float>( round(bottom_rois[n * 4 + 3])) * spatial_scale; // Force too small ROIs to be 1x1 float roi_height = max(roi_end_h - roi_start_h, 0.1); float roi_width = max(roi_end_w - roi_start_w, 0.1); // avoid 0 // Compute w and h at bottom float bin_size_h = roi_height / static_cast<float>(pooled_height); float bin_size_w = roi_width / static_cast<float>(pooled_width); int hstart = floor( static_cast<float>(ph) * bin_size_h + roi_start_h); int wstart = floor( static_cast<float>(pw) * bin_size_w + roi_start_w); int hend = ceil( static_cast<float>(ph + 1.0) * bin_size_h + roi_start_h); int wend = ceil( static_cast<float>(pw + 1.0) * bin_size_w + roi_start_w); // Add roi offsets and clip to input boundaries hstart = min(max(hstart, 0), height); wstart = min(max(wstart, 0), width); hend = min(max(hend, 0), height); wend = min(max(wend, 0), width); bool is_empty = (hend <= hstart) || (wend <= wstart); // Compute c at bottom int gh = floor( static_cast<float>(ph) * group_size / pooled_height); int gw = floor( static_cast<float>(pw) * group_size / pooled_width); gh = min(max(gh, 0), group_size - 1); gw = min(max(gw, 0), group_size - 1); int c = (ctop * group_size + gh) * group_size + gw; int bottom_diff_offset = (roi_batch_ind * channels + c); bottom_diff_offset = bottom_diff_offset * height * width; float bin_area = (hend - hstart) * (wend - wstart); float diff_val = is_empty ? (float) 0. : top_diff / bin_area; for (int h = hstart; h < hend; ++h){ for (int w = wstart; w < wend; ++w){ int bottom_index = h * width + w; atomicAdd( &bottom_diff[bottom_diff_offset + bottom_index], diff_val); } } ''', 'psroi_pooling_2d_bwd' )(bottom_diff, bottom_rois, bottom_roi_indices, self.spatial_scale, channels, height, width, self.out_c, self.out_h, self.out_w, self.group_size, gy[0]) return bottom_diff, None, None def psroi_pooling_2d( x, rois, roi_indices, out_c, out_h, out_w, spatial_scale, group_size ): """Position Sensitive Region of Interest (ROI) pooling function. This function computes position sensitive average of input spatial patch with the given region of interests. Each ROI is splitted into :math:`(group\_size, group\_size)` regions, and position sensitive values in each region is computed. Args: x (~chainer.Variable): Input variable. The shape is expected to be 4 dimentional: (n: batch, c: channel, h, height, w: width). rois (array): Input roi. The shape is expected to be :math:`(R, 4)`, and each datum is set as below: (y_min, x_min, y_max, x_max). The dtype is :obj:`numpy.float32`. roi_indices (array): Input roi indices. The shape is expected to be :math:`(R, )`. The dtype is :obj:`numpy.int32`. out_c (int): Channels of output image after pooled. out_h (int): Height of output image after pooled. out_w (int): Width of output image after pooled. spatial_scale (float): Scale of the roi is resized. group_size (int): Position sensitive group size. Returns: ~chainer.Variable: Output variable. See the original paper proposing PSROIPooling: `R-FCN <https://arxiv.org/abs/1605.06409>`_. """ return PSROIPooling2D(out_c, out_h, out_w, spatial_scale, group_size)(x, rois, roi_indices)
43.430894
79
0.556408
7bd33472561f0a566151b379605c302860cc8b96
454
py
Python
02_streamciphers/autocorrelation.py
StoneSwine/IMT4124-cryptology_software
f480ad40a02802d82fdf2a3b35bc2251d5241f89
[ "Unlicense" ]
null
null
null
02_streamciphers/autocorrelation.py
StoneSwine/IMT4124-cryptology_software
f480ad40a02802d82fdf2a3b35bc2251d5241f89
[ "Unlicense" ]
null
null
null
02_streamciphers/autocorrelation.py
StoneSwine/IMT4124-cryptology_software
f480ad40a02802d82fdf2a3b35bc2251d5241f89
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python3 # CHANGEME: S = "110010001111010" T = 15 k = [0, 2, 5, 14] def leftShift(text, n): return text[n:] + text[:n] def diff_letters(a, b): return sum(a[i] != b[i] for i in range(len(a))) print(f"Original: {S}") for i in k: acn = leftShift(S, i) D = diff_letters(S, acn) # A-D/T print(f"Shifted({i})={acn}\t|\tD={D},\tT={T}\tAC({i})={(((T - D) - D) / T):.2f}")
19.73913
91
0.477974
cabdab716025c06213b6ed0e3d92d8ba546f189d
15,601
py
Python
www/Scripts/pildriver.py
jeirych/myblog
d9452e50ebfbc94275014e60764ce244f9491733
[ "BSD-3-Clause" ]
null
null
null
www/Scripts/pildriver.py
jeirych/myblog
d9452e50ebfbc94275014e60764ce244f9491733
[ "BSD-3-Clause" ]
null
null
null
www/Scripts/pildriver.py
jeirych/myblog
d9452e50ebfbc94275014e60764ce244f9491733
[ "BSD-3-Clause" ]
null
null
null
#!f:\mysite\vmaig_blog\www\scripts\python.exe """PILdriver, an image-processing calculator using PIL. An instance of class PILDriver is essentially a software stack machine (Polish-notation interpreter) for sequencing PIL image transformations. The state of the instance is the interpreter stack. The only method one will normally invoke after initialization is the `execute' method. This takes an argument list of tokens, pushes them onto the instance's stack, and then tries to clear the stack by successive evaluation of PILdriver operators. Any part of the stack not cleaned off persists and is part of the evaluation context for the next call of the execute method. PILDriver doesn't catch any exceptions, on the theory that these are actually diagnostic information that should be interpreted by the calling code. When called as a script, the command-line arguments are passed to a PILDriver instance. If there are no command-line arguments, the module runs an interactive interpreter, each line of which is split into space-separated tokens and passed to the execute method. In the method descriptions below, a first line beginning with the string `usage:' means this method can be invoked with the token that follows it. Following <>-enclosed arguments describe how the method interprets the entries on the stack. Each argument specification begins with a type specification: either `int', `float', `string', or `image'. All operations consume their arguments off the stack (use `dup' to keep copies around). Use `verbose 1' to see the stack state displayed before each operation. Usage examples: `show crop 0 0 200 300 open test.png' loads test.png, crops out a portion of its upper-left-hand corner and displays the cropped portion. `save rotated.png rotate 30 open test.tiff' loads test.tiff, rotates it 30 degrees, and saves the result as rotated.png (in PNG format). """ # by Eric S. Raymond <esr@thyrsus.com> # $Id$ # TO DO: # 1. Add PILFont capabilities, once that's documented. # 2. Add PILDraw operations. # 3. Add support for composing and decomposing multiple-image files. # from __future__ import print_function from PIL import Image class PILDriver(object): verbose = 0 def do_verbose(self): """usage: verbose <int:num> Set verbosity flag from top of stack. """ self.verbose = int(self.do_pop()) # The evaluation stack (internal only) stack = [] # Stack of pending operations def push(self, item): "Push an argument onto the evaluation stack." self.stack = [item] + self.stack def top(self): "Return the top-of-stack element." return self.stack[0] # Stack manipulation (callable) def do_clear(self): """usage: clear Clear the stack. """ self.stack = [] def do_pop(self): """usage: pop Discard the top element on the stack. """ top = self.stack[0] self.stack = self.stack[1:] return top def do_dup(self): """usage: dup Duplicate the top-of-stack item. """ if hasattr(self, 'format'): # If it's an image, do a real copy dup = self.stack[0].copy() else: dup = self.stack[0] self.stack = [dup] + self.stack def do_swap(self): """usage: swap Swap the top-of-stack item with the next one down. """ self.stack = [self.stack[1], self.stack[0]] + self.stack[2:] # Image module functions (callable) def do_new(self): """usage: new <int:xsize> <int:ysize> <int:color>: Create and push a greyscale image of given size and color. """ xsize = int(self.do_pop()) ysize = int(self.do_pop()) color = int(self.do_pop()) self.push(Image.new("L", (xsize, ysize), color)) def do_open(self): """usage: open <string:filename> Open the indicated image, read it, push the image on the stack. """ self.push(Image.open(self.do_pop())) def do_blend(self): """usage: blend <image:pic1> <image:pic2> <float:alpha> Replace two images and an alpha with the blended image. """ image1 = self.do_pop() image2 = self.do_pop() alpha = float(self.do_pop()) self.push(Image.blend(image1, image2, alpha)) def do_composite(self): """usage: composite <image:pic1> <image:pic2> <image:mask> Replace two images and a mask with their composite. """ image1 = self.do_pop() image2 = self.do_pop() mask = self.do_pop() self.push(Image.composite(image1, image2, mask)) def do_merge(self): """usage: merge <string:mode> <image:pic1> [<image:pic2> [<image:pic3> [<image:pic4>]]] Merge top-of stack images in a way described by the mode. """ mode = self.do_pop() bandlist = [] for band in mode: bandlist.append(self.do_pop()) self.push(Image.merge(mode, bandlist)) # Image class methods def do_convert(self): """usage: convert <string:mode> <image:pic1> Convert the top image to the given mode. """ mode = self.do_pop() image = self.do_pop() self.push(image.convert(mode)) def do_copy(self): """usage: copy <image:pic1> Make and push a true copy of the top image. """ self.dup() def do_crop(self): """usage: crop <int:left> <int:upper> <int:right> <int:lower> <image:pic1> Crop and push a rectangular region from the current image. """ left = int(self.do_pop()) upper = int(self.do_pop()) right = int(self.do_pop()) lower = int(self.do_pop()) image = self.do_pop() self.push(image.crop((left, upper, right, lower))) def do_draft(self): """usage: draft <string:mode> <int:xsize> <int:ysize> Configure the loader for a given mode and size. """ mode = self.do_pop() xsize = int(self.do_pop()) ysize = int(self.do_pop()) self.push(self.draft(mode, (xsize, ysize))) def do_filter(self): """usage: filter <string:filtername> <image:pic1> Process the top image with the given filter. """ from PIL import ImageFilter filter = eval("ImageFilter." + self.do_pop().upper()) image = self.do_pop() self.push(image.filter(filter)) def do_getbbox(self): """usage: getbbox Push left, upper, right, and lower pixel coordinates of the top image. """ bounding_box = self.do_pop().getbbox() self.push(bounding_box[3]) self.push(bounding_box[2]) self.push(bounding_box[1]) self.push(bounding_box[0]) def do_getextrema(self): """usage: extrema Push minimum and maximum pixel values of the top image. """ extrema = self.do_pop().extrema() self.push(extrema[1]) self.push(extrema[0]) def do_offset(self): """usage: offset <int:xoffset> <int:yoffset> <image:pic1> Offset the pixels in the top image. """ xoff = int(self.do_pop()) yoff = int(self.do_pop()) image = self.do_pop() self.push(image.offset(xoff, yoff)) def do_paste(self): """usage: paste <image:figure> <int:xoffset> <int:yoffset> <image:ground> Paste figure image into ground with upper left at given offsets. """ figure = self.do_pop() xoff = int(self.do_pop()) yoff = int(self.do_pop()) ground = self.do_pop() if figure.mode == "RGBA": ground.paste(figure, (xoff, yoff), figure) else: ground.paste(figure, (xoff, yoff)) self.push(ground) def do_resize(self): """usage: resize <int:xsize> <int:ysize> <image:pic1> Resize the top image. """ ysize = int(self.do_pop()) xsize = int(self.do_pop()) image = self.do_pop() self.push(image.resize((xsize, ysize))) def do_rotate(self): """usage: rotate <int:angle> <image:pic1> Rotate image through a given angle """ angle = int(self.do_pop()) image = self.do_pop() self.push(image.rotate(angle)) def do_save(self): """usage: save <string:filename> <image:pic1> Save image with default options. """ filename = self.do_pop() image = self.do_pop() image.save(filename) def do_save2(self): """usage: save2 <string:filename> <string:options> <image:pic1> Save image with specified options. """ filename = self.do_pop() options = self.do_pop() image = self.do_pop() image.save(filename, None, options) def do_show(self): """usage: show <image:pic1> Display and pop the top image. """ self.do_pop().show() def do_thumbnail(self): """usage: thumbnail <int:xsize> <int:ysize> <image:pic1> Modify the top image in the stack to contain a thumbnail of itself. """ ysize = int(self.do_pop()) xsize = int(self.do_pop()) self.top().thumbnail((xsize, ysize)) def do_transpose(self): """usage: transpose <string:operator> <image:pic1> Transpose the top image. """ transpose = self.do_pop().upper() image = self.do_pop() self.push(image.transpose(transpose)) # Image attributes def do_format(self): """usage: format <image:pic1> Push the format of the top image onto the stack. """ self.push(self.do_pop().format) def do_mode(self): """usage: mode <image:pic1> Push the mode of the top image onto the stack. """ self.push(self.do_pop().mode) def do_size(self): """usage: size <image:pic1> Push the image size on the stack as (y, x). """ size = self.do_pop().size self.push(size[0]) self.push(size[1]) # ImageChops operations def do_invert(self): """usage: invert <image:pic1> Invert the top image. """ from PIL import ImageChops self.push(ImageChops.invert(self.do_pop())) def do_lighter(self): """usage: lighter <image:pic1> <image:pic2> Pop the two top images, push an image of the lighter pixels of both. """ from PIL import ImageChops image1 = self.do_pop() image2 = self.do_pop() self.push(ImageChops.lighter(image1, image2)) def do_darker(self): """usage: darker <image:pic1> <image:pic2> Pop the two top images, push an image of the darker pixels of both. """ from PIL import ImageChops image1 = self.do_pop() image2 = self.do_pop() self.push(ImageChops.darker(image1, image2)) def do_difference(self): """usage: difference <image:pic1> <image:pic2> Pop the two top images, push the difference image """ from PIL import ImageChops image1 = self.do_pop() image2 = self.do_pop() self.push(ImageChops.difference(image1, image2)) def do_multiply(self): """usage: multiply <image:pic1> <image:pic2> Pop the two top images, push the multiplication image. """ from PIL import ImageChops image1 = self.do_pop() image2 = self.do_pop() self.push(ImageChops.multiply(image1, image2)) def do_screen(self): """usage: screen <image:pic1> <image:pic2> Pop the two top images, superimpose their inverted versions. """ from PIL import ImageChops image2 = self.do_pop() image1 = self.do_pop() self.push(ImageChops.screen(image1, image2)) def do_add(self): """usage: add <image:pic1> <image:pic2> <int:offset> <float:scale> Pop the two top images, produce the scaled sum with offset. """ from PIL import ImageChops image1 = self.do_pop() image2 = self.do_pop() scale = float(self.do_pop()) offset = int(self.do_pop()) self.push(ImageChops.add(image1, image2, scale, offset)) def do_subtract(self): """usage: subtract <image:pic1> <image:pic2> <int:offset> <float:scale> Pop the two top images, produce the scaled difference with offset. """ from PIL import ImageChops image1 = self.do_pop() image2 = self.do_pop() scale = float(self.do_pop()) offset = int(self.do_pop()) self.push(ImageChops.subtract(image1, image2, scale, offset)) # ImageEnhance classes def do_color(self): """usage: color <image:pic1> Enhance color in the top image. """ from PIL import ImageEnhance factor = float(self.do_pop()) image = self.do_pop() enhancer = ImageEnhance.Color(image) self.push(enhancer.enhance(factor)) def do_contrast(self): """usage: contrast <image:pic1> Enhance contrast in the top image. """ from PIL import ImageEnhance factor = float(self.do_pop()) image = self.do_pop() enhancer = ImageEnhance.Contrast(image) self.push(enhancer.enhance(factor)) def do_brightness(self): """usage: brightness <image:pic1> Enhance brightness in the top image. """ from PIL import ImageEnhance factor = float(self.do_pop()) image = self.do_pop() enhancer = ImageEnhance.Brightness(image) self.push(enhancer.enhance(factor)) def do_sharpness(self): """usage: sharpness <image:pic1> Enhance sharpness in the top image. """ from PIL import ImageEnhance factor = float(self.do_pop()) image = self.do_pop() enhancer = ImageEnhance.Sharpness(image) self.push(enhancer.enhance(factor)) # The interpreter loop def execute(self, list): "Interpret a list of PILDriver commands." list.reverse() while len(list) > 0: self.push(list[0]) list = list[1:] if self.verbose: print("Stack: " + repr(self.stack)) top = self.top() if not isinstance(top, str): continue funcname = "do_" + top if not hasattr(self, funcname): continue else: self.do_pop() func = getattr(self, funcname) func() if __name__ == '__main__': import sys # If we see command-line arguments, interpret them as a stack state # and execute. Otherwise go interactive. driver = PILDriver() if len(sys.argv[1:]) > 0: driver.execute(sys.argv[1:]) else: print("PILDriver says hello.") while True: try: if sys.version_info[0] >= 3: line = input('pildriver> ') else: line = raw_input('pildriver> ') except EOFError: print("\nPILDriver says goodbye.") break driver.execute(line.split()) print(driver.stack) # The following sets edit modes for GNU EMACS # Local Variables: # mode:python # End:
29.491493
79
0.590411
da52a8d1d66aee9c4c49d8bb7fd443e5570ea6c6
615
py
Python
periodic.py
renuka28/media-sorter
48a7e31d42e71fa0fcca71114724d0c50969abd0
[ "MIT" ]
null
null
null
periodic.py
renuka28/media-sorter
48a7e31d42e71fa0fcca71114724d0c50969abd0
[ "MIT" ]
null
null
null
periodic.py
renuka28/media-sorter
48a7e31d42e71fa0fcca71114724d0c50969abd0
[ "MIT" ]
null
null
null
# Thank you https://gist.github.com/Depado/7925679 import threading # Function wrapper def periodic_task(interval, times = -1): def outer_wrap(function): def wrap(*args, **kwargs): stop = threading.Event() def inner_wrap(): i = 0 while i != times and not stop.isSet(): stop.wait(interval) function(*args, **kwargs) i += 1 t = threading.Timer(0, inner_wrap) t.daemon = True t.start() return stop return wrap return outer_wrap
29.285714
54
0.505691
585ee2bdc6bc5d049dd2fbc3b71536efac25ba30
3,369
py
Python
talks/map_filter/umpy_utils.py
KTLAI/UMpy
6b2af3e936699f5559ef648a36121376bf01a403
[ "BSD-3-Clause" ]
null
null
null
talks/map_filter/umpy_utils.py
KTLAI/UMpy
6b2af3e936699f5559ef648a36121376bf01a403
[ "BSD-3-Clause" ]
null
null
null
talks/map_filter/umpy_utils.py
KTLAI/UMpy
6b2af3e936699f5559ef648a36121376bf01a403
[ "BSD-3-Clause" ]
12
2020-06-15T13:35:15.000Z
2021-09-10T00:38:39.000Z
import csv def read_csv(filepath, delimiter=',', encoding='utf-8'): """ Reads a CSV file, parsing row values per the provided delimiter. Returns a list of lists, wherein each nested list represents a single row from the input file. Parameters: filepath (str): The location of the file to read. delimiter (str): delimiter that separates the row values encoding (str): character encoding Returns: list: contains nested "row" lists """ with open(filepath, 'r', newline='', encoding=encoding) as file_obj: data = [] reader = csv.reader(file_obj, delimiter=delimiter) for row in reader: data.append(row) return data def read_csv_into_dicts(filepath, delimiter=',', encoding='utf-8'): """Accepts a file path, creates a file object, and returns a list of dictionaries that represent the row values using the cvs.DictReader(). Note: The first row "header" line provides the key names. Parameters: filepath (str): path to file delimiter (str): delimiter that overrides the default delimiter encoding (str): character encoding Returns: list: nested dictionaries representing the file contents """ with open(filepath, 'r', newline='', encoding=encoding) as file_obj: data = [] reader = csv.DictReader(file_obj, delimiter=delimiter) for line in reader: data.append(line) # OrderedDict() # data.append(dict(line)) # convert OrderedDict() to dict return data def write_csv(filepath, data, headers=None, encoding='utf-8'): """ Writes data to a target CSV file. Column headers are written as the first row of the CSV file if optional headers are specified. Parameters: filepath (str): path to target file (if file does not exist it will be created) data (list): content to be written to the target file headers (seq): optional header row list or tuple. encoding (str): character encoding Returns: None """ with open(filepath, 'w', newline='', encoding=encoding) as file_obj: writer = csv.writer(file_obj) if headers: writer.writerow(headers) # add header row for row in data: writer.writerow(row) # iterable else: writer.writerows(data) # iterable def write_dicts_to_csv(filepath, data, fieldnames, encoding='utf-8'): """ Writes dictionary data to a target CSV file as row data using the csv.DictWriter(). The passed in fieldnames list is used by the DictWriter() to determine the order in which each dictionary's key-value pairs are written to the row. Parameters: filepath (str): path to target file (if file does not exist it will be created) data (list): dictionary content to be written to the target file fieldnames (seq): sequence specifing order in which key-value pairs are written to each row encoding (str): character encoding Returns: None """ with open(filepath, 'w', newline='', encoding=encoding) as file_obj: writer = csv.DictWriter(file_obj, fieldnames=fieldnames) writer.writeheader() # first row writer.writerows(data) # for row in data: # writer.writerow(row)
33.69
99
0.650045
bdcdff9f5a9cdcc85c1788a6c9d515b0884b470c
849
py
Python
analytics/backends/dummy.py
educreations/py-analytics
abbc814925c6cc200b3329c7de9f1868e1cb8c01
[ "Apache-2.0" ]
10
2015-01-25T20:29:55.000Z
2020-12-08T21:35:09.000Z
analytics/backends/dummy.py
educreations/py-analytics
abbc814925c6cc200b3329c7de9f1868e1cb8c01
[ "Apache-2.0" ]
3
2018-05-15T06:28:20.000Z
2021-03-30T17:47:45.000Z
analytics/backends/dummy.py
educreations/py-analytics
abbc814925c6cc200b3329c7de9f1868e1cb8c01
[ "Apache-2.0" ]
6
2017-07-03T16:28:29.000Z
2020-06-15T19:10:45.000Z
from analytics.backends.base import BaseAnalyticsBackend class Dummy(BaseAnalyticsBackend): def track_count(self, unique_identifier, metric, inc_amt=1, **kwargs): pass def track_metric(self, unique_identifier, metric, date, inc_amt=1, **kwargs): pass def get_metric_by_day(self, unique_identifier, metric, from_date, limit=10, **kwargs): pass def get_metric_by_week(self, unique_identifier, metric, from_date, limit=10, **kwargs): pass def get_metric_by_month(self, unique_identifier, metric, from_date, limit=10, **kwargs): pass def get_metrics(self, metric_identifiers, from_date, limit=10, group_by="week", **kwargs): pass def get_count(self, unique_identifier, metric, **kwargs): pass def get_counts(self, metric_identifiers, **kwargs): pass
32.653846
94
0.699647
ac47fe2fb325be700b323578c96d53f4a3b04649
32,608
py
Python
sdk/storage/azure-storage-file-share/tests/test_share.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
1
2020-05-12T23:29:15.000Z
2020-05-12T23:29:15.000Z
sdk/storage/azure-storage-file-share/tests/test_share.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
226
2019-07-24T07:57:21.000Z
2019-10-15T01:07:24.000Z
sdk/storage/azure-storage-file-share/tests/test_share.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
1
2020-07-05T21:13:37.000Z
2020-07-05T21:13:37.000Z
# coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import unittest from datetime import datetime, timedelta import pytest import requests from azure.core.pipeline.transport import RequestsTransport from azure.core.exceptions import ( HttpResponseError, ResourceNotFoundError, ResourceExistsError) from azure.storage.fileshare import ( AccessPolicy, ShareSasPermissions, ShareServiceClient, ShareDirectoryClient, ShareFileClient, ShareClient, generate_share_sas) from azure.storage.fileshare._generated.models import DeleteSnapshotsOptionType, ListSharesIncludeType from devtools_testutils import ResourceGroupPreparer, StorageAccountPreparer from _shared.testcase import ( StorageTestCase, LogCaptured, GlobalStorageAccountPreparer, GlobalResourceGroupPreparer ) # ------------------------------------------------------------------------------ TEST_SHARE_PREFIX = 'share' # ------------------------------------------------------------------------------ class StorageShareTest(StorageTestCase): def _setup(self, storage_account, storage_account_key): file_url = self.account_url(storage_account, "file") credentials = storage_account_key self.fsc = ShareServiceClient(account_url=file_url, credential=credentials) self.test_shares = [] def _teardown(self, FILE_PATH): if os.path.isfile(FILE_PATH): try: os.remove(FILE_PATH) except: pass # --Helpers----------------------------------------------------------------- def _get_share_reference(self, prefix=TEST_SHARE_PREFIX): share_name = self.get_resource_name(prefix) share = self.fsc.get_share_client(share_name) self.test_shares.append(share_name) return share def _create_share(self, prefix=TEST_SHARE_PREFIX): share_client = self._get_share_reference(prefix) share = share_client.create_share() return share_client def _delete_shares(self, prefix=TEST_SHARE_PREFIX): for l in self.fsc.list_shares(include_snapshots=True): try: self.fsc.delete_share(l.name, delete_snapshots=True) except: pass # --Test cases for shares ----------------------------------------- @GlobalStorageAccountPreparer() def test_create_share(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._get_share_reference() # Act created = self._create_share() # Assert self.assertTrue(created) self._delete_shares(share.share_name) @GlobalStorageAccountPreparer() def test_create_share_snapshot(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._get_share_reference() # Act created = share.create_share() snapshot = share.create_snapshot() # Assert self.assertTrue(created) self.assertIsNotNone(snapshot['snapshot']) self.assertIsNotNone(snapshot['etag']) self.assertIsNotNone(snapshot['last_modified']) self._delete_shares(share.share_name) @GlobalStorageAccountPreparer() def test_create_snapshot_with_metadata(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._get_share_reference() metadata = {"test1": "foo", "test2": "bar"} metadata2 = {"test100": "foo100", "test200": "bar200"} # Act created = share.create_share(metadata=metadata) snapshot = share.create_snapshot(metadata=metadata2) share_props = share.get_share_properties() snapshot_client = ShareClient( self.account_url(storage_account, "file"), share_name=share.share_name, snapshot=snapshot, credential=storage_account_key ) snapshot_props = snapshot_client.get_share_properties() # Assert self.assertTrue(created) self.assertIsNotNone(snapshot['snapshot']) self.assertIsNotNone(snapshot['etag']) self.assertIsNotNone(snapshot['last_modified']) self.assertEqual(share_props.metadata, metadata) self.assertEqual(snapshot_props.metadata, metadata2) self._delete_shares(share.share_name) @GlobalStorageAccountPreparer() def test_delete_share_with_snapshots(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._get_share_reference() share.create_share() snapshot = share.create_snapshot() # Act with self.assertRaises(HttpResponseError): share.delete_share() deleted = share.delete_share(delete_snapshots=True) self.assertIsNone(deleted) self._delete_shares() @GlobalStorageAccountPreparer() def test_delete_snapshot(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._get_share_reference() share.create_share() snapshot = share.create_snapshot() # Act with self.assertRaises(HttpResponseError): share.delete_share() snapshot_client = ShareClient( self.account_url(storage_account, "file"), share_name=share.share_name, snapshot=snapshot, credential=storage_account_key ) deleted = snapshot_client.delete_share() self.assertIsNone(deleted) self._delete_shares() @GlobalStorageAccountPreparer() def test_create_share_fail_on_exist(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._get_share_reference() # Act created = share.create_share() # Assert self.assertTrue(created) self._delete_shares() @GlobalStorageAccountPreparer() def test_create_share_with_already_existing_share_fail_on_exist(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._get_share_reference() # Act created = share.create_share() with self.assertRaises(HttpResponseError): share.create_share() # Assert self.assertTrue(created) self._delete_shares() @GlobalStorageAccountPreparer() def test_create_share_with_metadata(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) metadata = {'hello': 'world', 'number': '42'} # Act client = self._get_share_reference() created = client.create_share(metadata=metadata) # Assert self.assertTrue(created) md = client.get_share_properties().metadata self.assertDictEqual(md, metadata) self._delete_shares() @GlobalStorageAccountPreparer() def test_create_share_with_quota(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) # Act client = self._get_share_reference() created = client.create_share(quota=1) # Assert props = client.get_share_properties() self.assertTrue(created) self.assertEqual(props.quota, 1) self._delete_shares() @GlobalStorageAccountPreparer() def test_share_exists(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._create_share() # Act exists = share.get_share_properties() # Assert self.assertTrue(exists) self._delete_shares() @GlobalStorageAccountPreparer() def test_share_not_exists(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._get_share_reference() # Act with self.assertRaises(ResourceNotFoundError): share.get_share_properties() # Assert self._delete_shares() @GlobalStorageAccountPreparer() def test_share_snapshot_exists(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._create_share() snapshot = share.create_snapshot() # Act snapshot_client = self.fsc.get_share_client(share.share_name, snapshot=snapshot) exists = snapshot_client.get_share_properties() # Assert self.assertTrue(exists) self._delete_shares() @GlobalStorageAccountPreparer() def test_share_snapshot_not_exists(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._create_share() made_up_snapshot = '2017-07-19T06:53:46.0000000Z' # Act snapshot_client = self.fsc.get_share_client(share.share_name, snapshot=made_up_snapshot) with self.assertRaises(ResourceNotFoundError): snapshot_client.get_share_properties() # Assert self._delete_shares() @GlobalStorageAccountPreparer() def test_unicode_create_share_unicode_name(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share_name = u'啊齄丂狛狜' # Act with self.assertRaises(HttpResponseError): # not supported - share name must be alphanumeric, lowercase client = self.fsc.get_share_client(share_name) client.create_share() # Assert self._delete_shares() @GlobalStorageAccountPreparer() def test_list_shares_no_options(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._create_share() # Act shares = list(self.fsc.list_shares()) # Assert self.assertIsNotNone(shares) self.assertGreaterEqual(len(shares), 1) self.assertIsNotNone(shares[0]) self.assertNamedItemInContainer(shares, share.share_name) self._delete_shares() @GlobalResourceGroupPreparer() @StorageAccountPreparer(random_name_enabled=True, sku='premium_LRS', name_prefix='pyacrstorage', kind='FileStorage') def test_list_shares_no_options_for_premium_account(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._create_share() # Act shares = list(self.fsc.list_shares()) # Assert self.assertIsNotNone(shares) self.assertGreaterEqual(len(shares), 1) self.assertIsNotNone(shares[0]) self.assertIsNotNone(shares[0].provisioned_iops) self.assertIsNotNone(shares[0].provisioned_ingress_mbps) self.assertIsNotNone(shares[0].provisioned_egress_mbps) self.assertIsNotNone(shares[0].next_allowed_quota_downgrade_time) self._delete_shares() @GlobalStorageAccountPreparer() def test_list_shares_with_snapshot(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) #share = self._get_share_reference() share = self._create_share('random') snapshot1 = share.create_snapshot() snapshot2 = share.create_snapshot() # Act shares = self.fsc.list_shares(include_snapshots=True) # Assert self.assertIsNotNone(shares) all_shares = list(shares) self.assertEqual(len(all_shares), 3) self.assertNamedItemInContainer(all_shares, share.share_name) self.assertNamedItemInContainer(all_shares, snapshot1['snapshot']) self.assertNamedItemInContainer(all_shares, snapshot2['snapshot']) share.delete_share(delete_snapshots=True) self._delete_shares() @GlobalStorageAccountPreparer() def test_list_shares_with_prefix(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._get_share_reference() share.create_share() # Act shares = list(self.fsc.list_shares(name_starts_with=share.share_name)) # Assert self.assertEqual(len(shares), 1) self.assertIsNotNone(shares[0]) self.assertEqual(shares[0].name, share.share_name) self.assertIsNone(shares[0].metadata) self._delete_shares() @GlobalStorageAccountPreparer() def test_list_shares_with_include_metadata(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) metadata = {'hello': 'world', 'number': '42'} share = self._get_share_reference() share.create_share(metadata=metadata) # Act shares = list(self.fsc.list_shares(share.share_name, include_metadata=True)) # Assert self.assertIsNotNone(shares) self.assertGreaterEqual(len(shares), 1) self.assertIsNotNone(shares[0]) self.assertNamedItemInContainer(shares, share.share_name) self.assertDictEqual(shares[0].metadata, metadata) self._delete_shares() @GlobalStorageAccountPreparer() def test_list_shares_with_num_results_and_marker(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) prefix = 'listshare' share_names = [] for i in range(0, 4): share_names.append(self._create_share(prefix + str(i)).share_name) #share_names.sort() # Act generator1 = self.fsc.list_shares(prefix, results_per_page=2).by_page() shares1 = list(next(generator1)) generator2 = self.fsc.list_shares( prefix, results_per_page=2).by_page(continuation_token=generator1.continuation_token) shares2 = list(next(generator2)) # Assert self.assertIsNotNone(shares1) self.assertEqual(len(shares1), 2) self.assertNamedItemInContainer(shares1, share_names[0]) self.assertNamedItemInContainer(shares1, share_names[1]) self.assertIsNotNone(shares2) self.assertEqual(len(shares2), 2) self.assertNamedItemInContainer(shares2, share_names[2]) self.assertNamedItemInContainer(shares2, share_names[3]) self._delete_shares() @GlobalStorageAccountPreparer() def test_set_share_metadata(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._create_share() metadata = {'hello': 'world', 'number': '42'} # Act share.set_share_metadata(metadata) # Assert md = share.get_share_properties().metadata self.assertDictEqual(md, metadata) self._delete_shares() @GlobalStorageAccountPreparer() def test_get_share_metadata(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) metadata = {'hello': 'world', 'number': '42'} # Act client = self._get_share_reference() created = client.create_share(metadata=metadata) # Assert self.assertTrue(created) md = client.get_share_properties().metadata self.assertDictEqual(md, metadata) self._delete_shares() @GlobalStorageAccountPreparer() def test_get_share_metadata_with_snapshot(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) metadata = {'hello': 'world', 'number': '42'} # Act client = self._get_share_reference() created = client.create_share(metadata=metadata) snapshot = client.create_snapshot() snapshot_client = self.fsc.get_share_client(client.share_name, snapshot=snapshot) # Assert self.assertTrue(created) md = snapshot_client.get_share_properties().metadata self.assertDictEqual(md, metadata) self._delete_shares() @GlobalStorageAccountPreparer() def test_set_share_properties(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._create_share() share.set_share_quota(1) # Act props = share.get_share_properties() # Assert self.assertIsNotNone(props) self.assertEqual(props.quota, 1) self._delete_shares() @GlobalResourceGroupPreparer() @StorageAccountPreparer(random_name_enabled=True, sku='premium_LRS', name_prefix='pyacrstorage', kind='FileStorage') def test_get_share_properties_for_premium_account(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._create_share() # Act props = share.get_share_properties() # Assert self.assertIsNotNone(props) self.assertIsNotNone(props.quota) self.assertIsNotNone(props.provisioned_iops) self.assertIsNotNone(props.provisioned_ingress_mbps) self.assertIsNotNone(props.provisioned_egress_mbps) self.assertIsNotNone(props.next_allowed_quota_downgrade_time) self._delete_shares() @GlobalStorageAccountPreparer() def test_delete_share_with_existing_share(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._get_share_reference() share.create_share() # Act deleted = share.delete_share() # Assert self.assertIsNone(deleted) self._delete_shares() @GlobalStorageAccountPreparer() def test_delete_share_with_existing_share_fail_not_exist(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) client = self._get_share_reference() # Act with LogCaptured(self) as log_captured: with self.assertRaises(HttpResponseError): client.delete_share() log_as_str = log_captured.getvalue() self._delete_shares() @GlobalStorageAccountPreparer() def test_delete_share_with_non_existing_share(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) client = self._get_share_reference() # Act with LogCaptured(self) as log_captured: with self.assertRaises(HttpResponseError): deleted = client.delete_share() log_as_str = log_captured.getvalue() self.assertTrue('ERROR' not in log_as_str) self._delete_shares() @GlobalStorageAccountPreparer() def test_delete_share_with_non_existing_share_fail_not_exist(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) client = self._get_share_reference() # Act with LogCaptured(self) as log_captured: with self.assertRaises(HttpResponseError): client.delete_share() log_as_str = log_captured.getvalue() self._delete_shares() @GlobalStorageAccountPreparer() def test_get_share_stats(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._get_share_reference() share.create_share() # Act share_usage = share.get_share_stats() # Assert self.assertEqual(share_usage, 0) self._delete_shares() @GlobalStorageAccountPreparer() def test_set_share_acl(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._get_share_reference() share.create_share() # Act resp = share.set_share_access_policy(signed_identifiers=dict()) # Assert acl = share.get_share_access_policy() self.assertIsNotNone(acl) self._delete_shares() @GlobalStorageAccountPreparer() def test_set_share_acl_with_empty_signed_identifiers(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._get_share_reference() share.create_share() # Act resp = share.set_share_access_policy(dict()) # Assert acl = share.get_share_access_policy() self.assertIsNotNone(acl) self.assertEqual(len(acl.get('signed_identifiers')), 0) self._delete_shares() @GlobalStorageAccountPreparer() def test_set_share_acl_with_signed_identifiers(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._get_share_reference() share.create_share() # Act identifiers = dict() identifiers['testid'] = AccessPolicy( permission=ShareSasPermissions(write=True), expiry=datetime.utcnow() + timedelta(hours=1), start=datetime.utcnow() - timedelta(minutes=1), ) resp = share.set_share_access_policy(identifiers) # Assert acl = share.get_share_access_policy() self.assertIsNotNone(acl) self.assertEqual(len(acl['signed_identifiers']), 1) self.assertEqual(acl['signed_identifiers'][0].id, 'testid') self._delete_shares() @GlobalStorageAccountPreparer() def test_set_share_acl_too_many_ids(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._get_share_reference() share.create_share() # Act identifiers = dict() for i in range(0, 6): identifiers['id{}'.format(i)] = AccessPolicy() # Assert with self.assertRaises(ValueError) as e: share.set_share_access_policy(identifiers) self.assertEqual( str(e.exception), 'Too many access policies provided. The server does not support setting more than 5 access policies on a single resource.' ) self._delete_shares() @GlobalStorageAccountPreparer() def test_list_directories_and_files(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._create_share() dir0 = share.get_directory_client() dir0.upload_file('file1', 'data1') dir1 = share.get_directory_client('dir1') dir1.create_directory() dir1.upload_file('file2', 'data2') dir2 = share.get_directory_client('dir2') dir2.create_directory() # Act resp = list(share.list_directories_and_files()) # Assert self.assertIsNotNone(resp) self.assertEqual(len(resp), 3) self.assertIsNotNone(resp[0]) self.assertNamedItemInContainer(resp, 'dir1') self.assertNamedItemInContainer(resp, 'dir2') self.assertNamedItemInContainer(resp, 'file1') self._delete_shares() @GlobalStorageAccountPreparer() def test_list_directories_and_files_with_snapshot(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share_name = self._create_share() dir1 = share_name.get_directory_client('dir1') dir1.create_directory() dir2 = share_name.get_directory_client('dir2') dir2.create_directory() snapshot1 = share_name.create_snapshot() dir3 = share_name.get_directory_client('dir3') dir3.create_directory() file1 = share_name.get_file_client('file1') file1.upload_file('data') # Act snapshot_client = self.fsc.get_share_client(share_name.share_name, snapshot=snapshot1) resp = list(snapshot_client.list_directories_and_files()) # Assert self.assertIsNotNone(resp) self.assertEqual(len(resp), 2) self.assertIsNotNone(resp[0]) self.assertNamedItemInContainer(resp, 'dir1') self.assertNamedItemInContainer(resp, 'dir2') self._delete_shares() @GlobalStorageAccountPreparer() def test_list_directories_and_files_with_num_results(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share_name = self._create_share() dir1 = share_name.create_directory('dir1') root = share_name.get_directory_client() root.upload_file('filea1', '1024') root.upload_file('filea2', '1024') root.upload_file('filea3', '1024') root.upload_file('fileb1', '1024') # Act result = share_name.list_directories_and_files(results_per_page=2).by_page() result = list(next(result)) # Assert self.assertIsNotNone(result) self.assertEqual(len(result), 2) self.assertNamedItemInContainer(result, 'dir1') self.assertNamedItemInContainer(result, 'filea1') self._delete_shares() @GlobalStorageAccountPreparer() def test_list_directories_and_files_with_num_results_and_marker(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share_name = self._create_share() dir1 = share_name.get_directory_client('dir1') dir1.create_directory() dir1.upload_file('filea1', '1024') dir1.upload_file('filea2', '1024') dir1.upload_file('filea3', '1024') dir1.upload_file('fileb1', '1024') # Act generator1 = share_name.list_directories_and_files( 'dir1', results_per_page=2).by_page() result1 = list(next(generator1)) generator2 = share_name.list_directories_and_files( 'dir1', results_per_page=2).by_page(continuation_token=generator1.continuation_token) result2 = list(next(generator2)) # Assert self.assertEqual(len(result1), 2) self.assertEqual(len(result2), 2) self.assertNamedItemInContainer(result1, 'filea1') self.assertNamedItemInContainer(result1, 'filea2') self.assertNamedItemInContainer(result2, 'filea3') self.assertNamedItemInContainer(result2, 'fileb1') self.assertEqual(generator2.continuation_token, None) self._delete_shares() @GlobalStorageAccountPreparer() def test_list_directories_and_files_with_prefix(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._create_share() dir1 = share.create_directory('dir1') share.create_directory('dir1/pref_dir3') share.create_directory('dir2') root = share.get_directory_client() root.upload_file('file1', '1024') dir1.upload_file('pref_file2', '1025') dir1.upload_file('file3', '1025') # Act resp = list(share.list_directories_and_files('dir1', name_starts_with='pref')) # Assert self.assertIsNotNone(resp) self.assertEqual(len(resp), 2) self.assertIsNotNone(resp[0]) self.assertNamedItemInContainer(resp, 'pref_file2') self.assertNamedItemInContainer(resp, 'pref_dir3') self._delete_shares() @GlobalStorageAccountPreparer() def test_shared_access_share(self, resource_group, location, storage_account, storage_account_key): # SAS URL is calculated from storage key, so this test runs live only if not self.is_live: return self._setup(storage_account, storage_account_key) file_name = 'file1' dir_name = 'dir1' data = b'hello world' share = self._create_share() dir1 = share.create_directory(dir_name) dir1.upload_file(file_name, data) token = generate_share_sas( share.account_name, share.share_name, share.credential.account_key, expiry=datetime.utcnow() + timedelta(hours=1), permission=ShareSasPermissions(read=True), ) sas_client = ShareFileClient( self.account_url(storage_account, "file"), share_name=share.share_name, file_path=dir_name + '/' + file_name, credential=token, ) # Act print(sas_client.url) response = requests.get(sas_client.url) # Assert self.assertTrue(response.ok) self.assertEqual(data, response.content) self._delete_shares() @GlobalStorageAccountPreparer() def test_create_permission_for_share(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) user_given_permission = "O:S-1-5-21-2127521184-1604012920-1887927527-21560751G:S-1-5-21-2127521184-" \ "1604012920-1887927527-513D:AI(A;;FA;;;SY)(A;;FA;;;BA)(A;;0x1200a9;;;" \ "S-1-5-21-397955417-626881126-188441444-3053964)" share_client = self._create_share() permission_key = share_client.create_permission_for_share(user_given_permission) self.assertIsNotNone(permission_key) server_returned_permission = share_client.get_permission_for_share(permission_key) self.assertIsNotNone(server_returned_permission) permission_key2 = share_client.create_permission_for_share(server_returned_permission) # the permission key obtained from user_given_permission should be the same as the permission key obtained from # server returned permission self.assertEqual(permission_key, permission_key2) @GlobalStorageAccountPreparer() def test_transport_closed_only_once(self, resource_group, location, storage_account, storage_account_key): if not self.is_live: return self._setup(storage_account, storage_account_key) transport = RequestsTransport() url = self.account_url(storage_account, "file") credential = storage_account_key prefix = TEST_SHARE_PREFIX share_name = self.get_resource_name(prefix) with ShareServiceClient(url, credential=credential, transport=transport) as fsc: fsc.get_service_properties() assert transport.session is not None with fsc.get_share_client(share_name) as fc: assert transport.session is not None fsc.get_service_properties() assert transport.session is not None @GlobalStorageAccountPreparer() def test_delete_directory_from_share(self, resource_group, location, storage_account, storage_account_key): self._setup(storage_account, storage_account_key) share = self._create_share() dir1 = share.create_directory('dir1') share.create_directory('dir2') share.create_directory('dir3') # Act resp = list(share.list_directories_and_files()) self.assertEqual(len(resp), 3) share.delete_directory('dir3') # Assert resp = list(share.list_directories_and_files()) self.assertEqual(len(resp), 2) self._delete_shares() # ------------------------------------------------------------------------------ if __name__ == '__main__': unittest.main()
38.45283
138
0.679281
7abb3e22f902576952adf7712a0f6b66a2b5a84c
15,089
py
Python
stacks/XIAOMATECH/1.0/services/AMBARI_INFRA_SOLR/package/scripts/collection.py
tvorogme/dataops
acfa21df42a20768c004c6630a064f4e38e280b2
[ "Apache-2.0" ]
3
2019-08-13T01:44:16.000Z
2019-12-10T04:05:56.000Z
stacks/XIAOMATECH/1.0/services/AMBARI_INFRA_SOLR/package/scripts/collection.py
tvorogme/dataops
acfa21df42a20768c004c6630a064f4e38e280b2
[ "Apache-2.0" ]
null
null
null
stacks/XIAOMATECH/1.0/services/AMBARI_INFRA_SOLR/package/scripts/collection.py
tvorogme/dataops
acfa21df42a20768c004c6630a064f4e38e280b2
[ "Apache-2.0" ]
7
2019-05-29T17:35:25.000Z
2021-12-04T07:55:10.000Z
""" Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import time from resource_management.core.logger import Logger from resource_management.core.resources.system import Directory, Execute, File from resource_management.libraries.functions.format import format from resource_management.libraries.functions import solr_cloud_util from resource_management.libraries.resources.properties_file import PropertiesFile def backup_collection(env): """ Backup collections using replication API (as Solr Cloud Backup API is not available in Solr 5) If the cluster is not kerberized, it will be needed to resolve ip addresses to hostnames (as SOLR_HOST=`hostname -f` is not used by default in infra-solr-env) """ import params, command_commons env.set_params(command_commons) Directory( command_commons.index_location, mode=0755, cd_access='a', create_parents=True, owner=params.infra_solr_user, group=params.user_group) Logger.info( format("Backup Solr Collection {collection} to {index_location}")) host_core_map = command_commons.solr_backup_host_cores_map host_or_ip = params.hostname # IP resolve - for unsecure cluster host_ip_pairs = {} if not params.security_enabled: keys = host_core_map.keys() for key in keys: if command_commons.is_ip(key): resolved_hostname = command_commons.resolve_ip_to_hostname(key) host_ip_pairs[resolved_hostname] = key if params.hostname in host_ip_pairs: host_or_ip = host_ip_pairs[params.hostname] cores = host_core_map[host_or_ip] if host_or_ip in host_core_map else [] for core in cores: if core in command_commons.skip_cores: Logger.info(format("Core '{core}' is filtered out.")) continue solr_request_path = format( "{core}/replication?command=BACKUP&location={index_location}&name={core}&wt=json" ) backup_api_cmd = command_commons.create_solr_api_request_command( solr_request_path) Execute(backup_api_cmd, user=params.infra_solr_user, logoutput=True) if command_commons.request_async is False: Logger.info( "Sleep 5 seconds to wait until the backup request is executed." ) time.sleep(5) Logger.info("Check backup status ...") solr_status_request_path = format( "{core}/replication?command=details&wt=json") status_check_json_output = format( "{index_location}/backup_status.json") status_check_cmd = command_commons.create_solr_api_request_command( solr_status_request_path, status_check_json_output) command_commons.snapshot_status_check( status_check_cmd, status_check_json_output, core, True, log_output=command_commons.log_output, tries=command_commons.request_tries, time_interval=command_commons.request_time_interval) snapshot_folder = format("{index_location}/snapshot.{core}") if command_commons.check_folder_exists(snapshot_folder): command_commons.check_folder_until_size_not_changes( snapshot_folder) def restore_collection(env): """ Restore collections - by copying snapshots with backup_* prefix, then remove old one and remove backup_* prefixes from the folder names. """ import params, command_commons env.set_params(command_commons) if command_commons.solr_num_shards == 0: raise Exception( format("The 'solr_shards' command parameter is required to set.")) if not command_commons.solr_restore_config_set: raise Exception( format( "The 'solr_restore_config_set' command parameter is required to set." )) Logger.info("Original core / host map: " + str(command_commons.solr_backup_core_host_map)) Logger.info("New core / host map: " + str(command_commons.solr_restore_core_host_map)) original_core_host_pairs = command_commons.sort_core_host_pairs( command_commons.solr_backup_core_host_map) new_core_host_pairs = command_commons.sort_core_host_pairs( command_commons.solr_restore_core_host_map) core_pairs = command_commons.create_core_pairs(original_core_host_pairs, new_core_host_pairs) Logger.info("Generated core pairs: " + str(core_pairs)) Logger.info( format("Remove write.lock files from folder '{index_location}'")) for write_lock_file in command_commons.get_files_by_pattern( format("{index_location}"), 'write.lock'): File(write_lock_file, action="delete") Logger.info( format( "Restore Solr Collection {collection} from {index_location} ...")) if command_commons.collection in [ "ranger_audits", "history", "hadoop_logs", "audit_logs", "vertex_index", "edge_index", "fulltext_index" ]: # Make sure ambari wont delete an important collection raise Exception( format( "Selected collection for restore is: {collection}. It is not recommended to restore on default collections." )) hdfs_cores_on_host = [] for core_pair in core_pairs: src_core = core_pair['src_core'] target_core = core_pair['target_core'] if src_core in command_commons.skip_cores: Logger.info(format("Core '{src_core}' (src) is filtered out.")) continue elif target_core in command_commons.skip_cores: Logger.info( format("Core '{target_core}' (target) is filtered out.")) continue core_data = command_commons.solr_restore_core_data only_if_cmd = format("test -d {index_location}/snapshot.{src_core}") core_root_dir = format("{solr_datadir}/backup_{target_core}") core_root_without_backup_dir = format("{solr_datadir}/{target_core}") if command_commons.solr_hdfs_path: Directory([core_root_dir], mode=0755, cd_access='a', create_parents=True, owner=params.infra_solr_user, group=params.user_group, only_if=only_if_cmd) else: Directory([ format("{core_root_dir}/data/index"), format("{core_root_dir}/data/tlog"), format("{core_root_dir}/data/snapshot_metadata") ], mode=0755, cd_access='a', create_parents=True, owner=params.infra_solr_user, group=params.user_group, only_if=only_if_cmd) core_details = core_data[target_core]['properties'] core_properties = {} core_properties['numShards'] = core_details['numShards'] core_properties[ 'collection.configName'] = command_commons.solr_restore_config_set core_properties['name'] = target_core core_properties['replicaType'] = core_details['replicaType'] core_properties['collection'] = command_commons.collection if command_commons.solr_hdfs_path: core_properties[ 'coreNodeName'] = 'backup_' + core_details['coreNodeName'] else: core_properties['coreNodeName'] = core_details['coreNodeName'] core_properties['shard'] = core_details['shard'] if command_commons.solr_hdfs_path: hdfs_solr_node_folder = command_commons.solr_hdfs_path + format( "/backup_{collection}/") + core_details['coreNodeName'] source_folder = format("{index_location}/snapshot.{src_core}/") if command_commons.check_folder_exists(source_folder): hdfs_cores_on_host.append(target_core) command_commons.HdfsResource( format("{hdfs_solr_node_folder}/data/index/"), type="directory", action="create_on_execute", source=source_folder, owner=params.infra_solr_user, mode=0755, recursive_chown=True, recursive_chmod=True) command_commons.HdfsResource( format("{hdfs_solr_node_folder}/data/tlog"), type="directory", action="create_on_execute", owner=params.infra_solr_user, mode=0755) command_commons.HdfsResource( format("{hdfs_solr_node_folder}/data/snapshot_metadata"), type="directory", action="create_on_execute", owner=params.infra_solr_user, mode=0755) else: copy_cmd = format( "cp -r {index_location}/snapshot.{src_core}/* {core_root_dir}/data/index/") if command_commons.solr_keep_backup \ else format("mv {index_location}/snapshot.{src_core}/* {core_root_dir}/data/index/") Execute( copy_cmd, only_if=only_if_cmd, user=params.infra_solr_user, logoutput=True) PropertiesFile( core_root_dir + '/core.properties', properties=core_properties, owner=params.infra_solr_user, group=params.user_group, mode=0644, only_if=only_if_cmd) Execute( format("rm -rf {solr_datadir}/{collection}*"), user=params.infra_solr_user, logoutput=True) for core_pair in core_pairs: src_core = core_pair['src_core'] src_host = core_pair['src_host'] target_core = core_pair['target_core'] if src_core in command_commons.skip_cores: Logger.info(format("Core '{src_core}' (src) is filtered out.")) continue elif target_core in command_commons.skip_cores: Logger.info( format("Core '{target_core}' (target) is filtered out.")) continue if os.path.exists(format("{index_location}/snapshot.{src_core}")): data_to_save = {} host_core_data = command_commons.solr_restore_core_data core_details = host_core_data[target_core]['properties'] core_node = core_details['coreNodeName'] data_to_save['core'] = target_core data_to_save['core_node'] = core_node data_to_save['old_host'] = core_pair['target_host'] data_to_save['new_host'] = src_host if command_commons.solr_hdfs_path: data_to_save['new_core_node'] = "backup_" + core_node else: data_to_save['new_core_node'] = core_node command_commons.write_core_file(target_core, data_to_save) jaas_file = params.infra_solr_jaas_file if params.security_enabled else None core_json_location = format("{index_location}/{target_core}.json") znode_json_location = format( "/restore_metadata/{collection}/{target_core}.json") solr_cloud_util.copy_solr_znode_from_local( params.zookeeper_quorum, params.infra_solr_znode, params.java64_home, jaas_file, core_json_location, znode_json_location) core_root_dir = format("{solr_datadir}/backup_{target_core}") core_root_without_backup_dir = format("{solr_datadir}/{target_core}") if command_commons.solr_hdfs_path: if target_core in hdfs_cores_on_host: Logger.info( format( "Core data '{target_core}' is located on this host, processing..." )) host_core_data = command_commons.solr_restore_core_data core_details = host_core_data[target_core]['properties'] core_node = core_details['coreNodeName'] collection_core_dir = command_commons.solr_hdfs_path + format( "/{collection}/{core_node}") backup_collection_core_dir = command_commons.solr_hdfs_path + format( "/backup_{collection}/{core_node}") command_commons.HdfsResource( collection_core_dir, type="directory", action="delete_on_execute", owner=params.infra_solr_user) if command_commons.check_hdfs_folder_exists( backup_collection_core_dir): collection_backup_core_dir = command_commons.solr_hdfs_path + format( "/{collection}/backup_{core_node}") command_commons.move_hdfs_folder( backup_collection_core_dir, collection_backup_core_dir) else: Logger.info( format( "Core data '{target_core}' is not located on this host, skipping..." )) Execute( format("mv {core_root_dir} {core_root_without_backup_dir}"), user=params.infra_solr_user, logoutput=True, only_if=format("test -d {core_root_dir}")) Directory([format("{core_root_without_backup_dir}")], mode=0755, cd_access='a', create_parents=True, owner=params.infra_solr_user, group=params.user_group, recursive_ownership=True, only_if=format("test -d {core_root_without_backup_dir}")) if command_commons.solr_hdfs_path and not command_commons.solr_keep_backup: only_if_cmd = format( "test -d {index_location}/snapshot.{src_core}") Directory( format("{index_location}/snapshot.{src_core}"), action="delete", only_if=only_if_cmd, owner=params.infra_solr_user)
43.111429
162
0.619325
4a4e29b33d782e1cd998ef1451869c55ac9fcbce
4,539
py
Python
Game_of_Life/board.py
Moomoo-pls/NLP_Game_of_Life
afe6bb6ccd4a83b6ffeccc8ac257872251bd39bb
[ "MIT" ]
null
null
null
Game_of_Life/board.py
Moomoo-pls/NLP_Game_of_Life
afe6bb6ccd4a83b6ffeccc8ac257872251bd39bb
[ "MIT" ]
null
null
null
Game_of_Life/board.py
Moomoo-pls/NLP_Game_of_Life
afe6bb6ccd4a83b6ffeccc8ac257872251bd39bb
[ "MIT" ]
null
null
null
from Game_of_Life.cell import Cell from random import randint class Board: def __init__(self, rows, columns): # The rows and columns will be initialized by the size of the console self.rows = rows self.columns = columns self.allDead = False # initialize a cell object in every row self.grid = [[Cell() for column_cells in range(self.columns)] for row_cells in range(self.rows)] self.generate_board() def isAllDead(self): ''' Check to see if all the cells died Only returns true if they all died. ''' for row in self.grid: for column in row: if column.is_alive() == True: return False return True def generate_board(self): ''' Goes through each row and randomly sets a cell alive ''' for row in self.grid: for column in row: #there is a 20% chance the cells spawn alive. chance_number = randint(0,4) if chance_number == 1: column.set_alive() def draw_board(self): ''' Draw the current state of the board in the terminal ''' for row in self.grid: for column in row: print (column.print_status_character(),end='') print () # to create a new line pr. row. def update_board(self): ''' Updates the state of the board based on the check of each cell. The cells react according to the state they were in on the board, not dynamically. Ex. If a cell flips, it's neighbours still process it in it's unflipped state. ''' #cells list for living cells to kill and cells to resurrect or keep alive goes_alive = [] gets_killed = [] for row in range(len(self.grid)): for column in range(len(self.grid[row])): # Check neighbour square: check_neighbour = self.find_neighbour(row , column) living_neighbours_count = [] for neighbour_cell in check_neighbour: # Check live status for neighbour_cell: if neighbour_cell.is_alive(): living_neighbours_count.append(neighbour_cell) cell_object = self.grid[row][column] status_main_cell = cell_object.is_alive() #If the cell is alive, check the neighbour status. if status_main_cell == True: if len(living_neighbours_count) < 2 or len(living_neighbours_count) > 3: gets_killed.append(cell_object) if len(living_neighbours_count) == 3 or len(living_neighbours_count) == 2: goes_alive.append(cell_object) else: if len(living_neighbours_count) == 3: goes_alive.append(cell_object) # Set cell statuses for cell_items in goes_alive: cell_items.set_alive() for cell_items in gets_killed: cell_items.set_dead() def find_neighbour(self,check_row,check_column): ''' method that checks all the neighbours for all the cells and returns the list of the valid neighbours so the update method can set the new status ''' # To only search neighbouring cells, we search through -1 to 1. search_min = -1 search_max = 2 neighbour_list = [] # Neighbors are only invalid if they are outside the boards bounds # This logic basically filters them out. for row in range(search_min,search_max): for column in range(search_min,search_max): neighbour_row = check_row + row neighbour_column = check_column + column valid_neighbour = True if (neighbour_row) == check_row and (neighbour_column) == check_column: valid_neighbour = False if (neighbour_row) < 0 or (neighbour_row) >= self.rows: valid_neighbour = False if (neighbour_column) < 0 or (neighbour_column) >= self.columns: valid_neighbour = False if valid_neighbour: neighbour_list.append(self.grid[neighbour_row][neighbour_column]) return neighbour_list
35.186047
104
0.564662
a2e1a18fb0392ac84e691b3ab2220a441ecf5347
4,195
py
Python
feature_pu_model_evl.py
CharrierFlorent/BioNER-PU-learning
9a2003d5eeffa1997550199a9dc541cbd074f7e3
[ "Apache-2.0" ]
139
2019-05-27T02:14:39.000Z
2022-03-28T09:26:17.000Z
feature_pu_model_evl.py
marvinstanley/LexiconNER
8814d2e4badc5ec25dff35ea4a3e98372256ac7c
[ "Apache-2.0" ]
12
2019-06-18T08:13:10.000Z
2022-02-09T12:33:17.000Z
feature_pu_model_evl.py
marvinstanley/LexiconNER
8814d2e4badc5ec25dff35ea4a3e98372256ac7c
[ "Apache-2.0" ]
29
2019-05-26T08:47:15.000Z
2020-10-11T09:11:46.000Z
# -*- coding: utf-8 -*- # @Time : 2018/8/7 16:48 # @Author : Xiaoyu Xing # @File : feature_pu_model_evl.py from utils.feature_pu_model_utils import FeaturedDetectionModelUtils from utils.data_utils import DataPrepare import torch import argparse from feature_pu_model import PULSTMCNN, Trainer from sub_model import CharCNN, CaseNet, WordNet, FeatureNet import numpy as np torch.manual_seed(1013) parser = argparse.ArgumentParser(description="PU NER EVL") parser.add_argument('--model', default="", help='saved model name') parser.add_argument('--output', default=0, help='write the test result, set 1 for writing result to file') parser.add_argument('--set', type=int, default=0, help='test set or valid set') parser.add_argument('--flag', default="PER", help='entity type (PER/LOC/ORG/MISC)') parser.add_argument('--lr_rate', type=int, default=1e-4, help='learning rate') parser.add_argument('--dataset', default="conll2003", help='name of the dataset') parser.add_argument('--type', default="bnpu", help='pu learning type (bnpu/bpu/upu)') args = parser.parse_args() dp = DataPrepare(args.dataset) mutils = FeaturedDetectionModelUtils(dp) trainSet, validSet, testSet, prior = mutils.load_dataset(args.flag, args.dataset, 1.0) setIter = [testSet, validSet] detectionSet = setIter[args.set] fileNameIter = ["data/" + args.dataset + "/test.txt", "data/" + args.dataset + "/valid.txt"] fileName = fileNameIter[args.set] charcnn = CharCNN(dp.char2Idx) wordnet = WordNet(dp.wordEmbeddings, dp.word2Idx) casenet = CaseNet(dp.caseEmbeddings, dp.case2Idx) featurenet = FeatureNet() pulstmcnn = PULSTMCNN(dp, charcnn, wordnet, casenet, featurenet, 150, 200, 1, 0.5) if torch.cuda.is_available: charcnn.cuda() wordnet.cuda() casenet.cuda() featurenet.cuda() pulstmcnn.cuda() pred_test = [] corr_test = [] prob_test = [] trainer = Trainer(pulstmcnn, prior, 0, 1, 1e-4, 4) pulstmcnn.load_state_dict(torch.load(args.model)) for step, (x_word_test_batch, x_case_test_batch, x_char_test_batch, x_feature_batch, y_test_batch) in enumerate( mutils.iterateSet(detectionSet, batchSize=100, mode="TEST", shuffle=False)): testBatch = [x_word_test_batch, x_case_test_batch, x_char_test_batch, x_feature_batch] correcLabels = [] for x in y_test_batch: for xi in x: correcLabels.append(xi) lengths = [len(x) for x in x_word_test_batch] predLabels, probLabels = trainer.test(testBatch, lengths) correcLabels = np.array(correcLabels) assert len(predLabels) == len(correcLabels) == len(probLabels) start = 0 for i, l in enumerate(lengths): end = start + l p = predLabels[start:end] c = correcLabels[start:end] r = probLabels[start:end] pred_test.append(p) corr_test.append(c) prob_test.append(r) start = end assert len(pred_test) == len(corr_test) == len(prob_test) test_sentences = dp.read_origin_file(fileName) test_words = [] test_efs = [] for s in test_sentences: temp = [] temp2 = [] for word, ef, lf in s: temp.append(word) temp2.append(ef) test_words.append(temp) test_efs.append(temp2) newSentencesTest = [] for i, s in enumerate(test_words): sent = [] for j, item in enumerate(s): sent.append([item, test_efs[i][j], pred_test[i][j], prob_test[i][j]]) newSentencesTest.append(sent) newSentencesTest_, newLabelsTest, newPredsTest, newProbTest = dp.wordLevelGeneration2(newSentencesTest) p, r, f1 = dp.compute_precision_recall_f1(newLabelsTest, newPredsTest, args.flag, 1) print("Precision: {}, Recall: {}, F1: {}".format(p, r, f1)) if args.output: outputFile = "result/" + args.type + "_feature_pu_" + args.dataset + "_" + args.flag + "_" + str(args.set) + ".txt" with open(outputFile, "w") as fw: for i, sent in enumerate(test_words): preds = pred_test[i] probs = prob_test[i] corrs = test_efs[i] for j, w in enumerate(sent): pred = preds[j] corr = corrs[j] prob = probs[j] fw.write(("{} {} {} {}\n").format(w, corr, pred, prob)) fw.write("\n")
35.854701
119
0.67652
9af66f013c14bd0ec1c49b79206bc8f4b50daff4
761
py
Python
geo/filters.py
cmc333333/mapusaurus
1d7ccef90d0ed832d52f797cbe68057057cd0177
[ "CC0-1.0" ]
null
null
null
geo/filters.py
cmc333333/mapusaurus
1d7ccef90d0ed832d52f797cbe68057057cd0177
[ "CC0-1.0" ]
55
2018-02-09T04:11:31.000Z
2018-07-04T18:30:29.000Z
geo/filters.py
cmc333333/mapusaurus
1d7ccef90d0ed832d52f797cbe68057057cd0177
[ "CC0-1.0" ]
null
null
null
import django_filters from django.contrib.postgres.search import TrigramSimilarity from geo.models import CoreBasedStatisticalArea, County def filter_to_search_term(queryset, name, value): return queryset\ .annotate(similarity=TrigramSimilarity("name", value))\ .filter(similarity__gte=0.01)\ .order_by("-similarity") class CBSAFilters(django_filters.FilterSet): q = django_filters.CharFilter(method=filter_to_search_term) class Meta: model = CoreBasedStatisticalArea fields = {"geoid": ["in"]} class CountyFilters(django_filters.FilterSet): q = django_filters.CharFilter(method=filter_to_search_term) class Meta: model = County fields = {"geoid": ["in"], "state": ["exact"]}
27.178571
63
0.712221
47852fc2662970b3f8f435ab1355ebabfecea169
3,776
py
Python
interpret_adb.py
CodeBishop/beholder
ca25d961c534c0a8ccc1ce2c9cec11b791ed2976
[ "MIT" ]
null
null
null
interpret_adb.py
CodeBishop/beholder
ca25d961c534c0a8ccc1ce2c9cec11b791ed2976
[ "MIT" ]
null
null
null
interpret_adb.py
CodeBishop/beholder
ca25d961c534c0a8ccc1ce2c9cec11b791ed2976
[ "MIT" ]
null
null
null
import re def interpretProcessInfo(commandOutput, appId): '''Takes in the output of a `ps -wel` and a process name, returns a string describing that process or None if the process was not found''' processDict = interpretProcessInfoIntoDict(commandOutput, appId) if processDict != None: return processDict['cmd'] + " (pid " + processDict['pid'] + ") " + processDict['runTime'] + " Nice: " + processDict['nice'] return None def interpretProcessInfoIntoDict(commandOutput, appId): '''Takes in the output of a `ps -wel` and a process name, returns a dictionary of info about that process or None if the process was not found''' processDict = {} for line in commandOutput.split('\n'): if line.find(appId) != -1: values = [s for s in line.split()] processDict['pid'] = values[3] processDict['nice'] = values[7] processDict['runTime'] = values[12] processDict['cmd'] = values[13] return processDict return None def interpretActivityInfo(commandOutput, appId): '''Takes in the output of a `dumpsys activity <appId>` and an application ID, returns a string describing that app's Activity''' activityDict = {} for line in commandOutput.split('\n'): if 'ACTIVITY' in line: activityDict['activityName'] = line.split()[1] activityDict['pidInfo'] = line.split()[3] if 'mResumed' in line: flagEntries = line.split() activityDict['resumedFlag'] = 'true' in flagEntries[0] activityDict['stoppedFlag'] = 'true' in flagEntries[1] activityDict['finishedFlag'] = 'true' in flagEntries[2] if 'mLastFrameTime' in line: activityDict['timeSinceLastRender'] = re.search(r"\b.*(\b\d+) ms ago\)", line).group(1) if activityDict != {}: activityString = "" activityString += activityDict['activityName'] + " (" + activityDict['pidInfo'] + ")" if 'timeSinceLastRender' in activityDict.keys() and activityDict['timeSinceLastRender'] != None: activityString += " updated " + activityDict['timeSinceLastRender'] + " ms ago" activityString += " state: " if 'resumedFlag' in activityDict.keys() and activityDict['resumedFlag']: activityString += "foreground " if 'stoppedFlag' in activityDict.keys() and activityDict['stoppedFlag']: activityString += "stopped " if 'finishedFlag' in activityDict.keys() and activityDict['finishedFlag']: activityString += "finished " return activityString return "" '''Replaces this command: hero deaths % watch -n 0.3 'adb shell dumpsys activity <appId> | grep -E "mResumed|astFrameT|hasService|ebView|CTIVITY"' ''' return "hello" def interpretRunningServiceList(commandOutput, appId): '''Takes in the output of a `dumpsys activity services <appId>` and an application ID, returns a list of strings naming all the Android services that app is running''' output = commandOutput.split('\n') # Strip out newlines for i in range(len(output)): output[i] = output[i].strip() # Filter out everything but the active ServiceRecords for the specified app filteredOutput = [] for line in output: if '* ServiceRecord' in line and appId in line: filteredOutput.append(line) # Strip the ServiceRecord lines down to just the last part of the Service identifier serviceNames = [] for line in filteredOutput: # Take last part of Service identifier and truncate final char (should be a close brace) # TODO: Rewrite this as a regex serviceNames.append(line.split('.')[-1][:-1]) return serviceNames
48.410256
171
0.645392
29a86c66d2b0477164fa489b3c7f8439735a6ec8
589
py
Python
sdk/datamigration/azure-mgmt-datamigration/azure/mgmt/datamigration/aio/__init__.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
2,728
2015-01-09T10:19:32.000Z
2022-03-31T14:50:33.000Z
sdk/datamigration/azure-mgmt-datamigration/azure/mgmt/datamigration/aio/__init__.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
17,773
2015-01-05T15:57:17.000Z
2022-03-31T23:50:25.000Z
sdk/datamigration/azure-mgmt-datamigration/azure/mgmt/datamigration/aio/__init__.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
1,916
2015-01-19T05:05:41.000Z
2022-03-31T19:36:44.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from ._data_migration_management_client import DataMigrationManagementClient __all__ = ['DataMigrationManagementClient']
53.545455
94
0.601019
6d754deb817aa614eed207dfb0aea08702501257
946
py
Python
kubernetes/test/test_v1_endpoint_port.py
redjohn/python
5e512ff564c244c50cab780d821542ed56aa965a
[ "Apache-2.0" ]
1
2019-04-14T23:51:35.000Z
2019-04-14T23:51:35.000Z
kubernetes/test/test_v1_endpoint_port.py
redjohn/python
5e512ff564c244c50cab780d821542ed56aa965a
[ "Apache-2.0" ]
null
null
null
kubernetes/test/test_v1_endpoint_port.py
redjohn/python
5e512ff564c244c50cab780d821542ed56aa965a
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.14.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import kubernetes.client from kubernetes.client.rest import ApiException from kubernetes.client.models.v1_endpoint_port import V1EndpointPort class TestV1EndpointPort(unittest.TestCase): """ V1EndpointPort unit test stubs """ def setUp(self): pass def tearDown(self): pass def testV1EndpointPort(self): """ Test V1EndpointPort """ # FIXME: construct object with mandatory attributes with example values #model = kubernetes.client.models.v1_endpoint_port.V1EndpointPort() pass if __name__ == '__main__': unittest.main()
21.022222
105
0.704017
6276e19e31d59a19d2db936e5b7464317ec3e301
1,531
py
Python
Chapter09/server_ckpt.py
PacktPublishing/Deep-Learning-with-PyTorch-Lightning
4eb607200281323383413eaad4fcb7a3feaa7502
[ "MIT" ]
22
2021-08-31T21:59:02.000Z
2022-03-29T21:26:31.000Z
Chapter09/server_ckpt.py
PacktPublishing/-Getting-Started-with-PyTorch-Lightning
4eb607200281323383413eaad4fcb7a3feaa7502
[ "MIT" ]
6
2021-11-20T10:11:30.000Z
2022-03-30T06:45:05.000Z
Chapter09/server_ckpt.py
PacktPublishing/-Getting-Started-with-PyTorch-Lightning
4eb607200281323383413eaad4fcb7a3feaa7502
[ "MIT" ]
17
2021-04-10T16:26:08.000Z
2022-03-17T07:45:52.000Z
# Important Note: # # For your convenience, we have copied the notebook named "Cats and Dogs Classifier.ipynb" from Chapter 2 to the # GitHub folder for this chapter. Only change in the notebook is that the ImageClassifier class is now defined in its own # file named "image_classifier.py"; so we have removed that cell and added an import statement instead. # # Run the "Cats and Dogs Classifier.ipynb" notebook in this folder before launching this server program. import torch.nn.functional as functional import torchvision.transforms as transforms from PIL import Image from flask import Flask, request, jsonify from image_classifier import ImageClassifier model = ImageClassifier.load_from_checkpoint("./lightning_logs/version_0/checkpoints/epoch=99-step=3199.ckpt") IMAGE_SIZE = 64 def transform_image(img): transform = transforms.Compose([ transforms.Resize(IMAGE_SIZE), transforms.CenterCrop(IMAGE_SIZE), transforms.ToTensor() ]) return transform(img).unsqueeze(0) def get_prediction(img): result = model(img) return functional.softmax(result, dim=1)[:, 1].tolist()[0] app = Flask(__name__) @app.route("/predict", methods=["POST"]) def predict(): img_file = request.files['image'] img = Image.open(img_file.stream) img = transform_image(img) prediction = get_prediction(img) if prediction >= 0.5: cat_or_dog = "dog" else: cat_or_dog = "cat" return jsonify({'cat_or_dog': cat_or_dog}) if __name__ == '__main__': app.run()
31.244898
121
0.727629
53bbe4dbfa3148c14c08561e4190ff438ecfc006
2,129
py
Python
nfv/nfv-common/nfv_common/timers/_timer.py
SidneyAn/nfv
5f0262a5b6ea4be59f977b9c587c483cbe0e373d
[ "Apache-2.0" ]
null
null
null
nfv/nfv-common/nfv_common/timers/_timer.py
SidneyAn/nfv
5f0262a5b6ea4be59f977b9c587c483cbe0e373d
[ "Apache-2.0" ]
null
null
null
nfv/nfv-common/nfv_common/timers/_timer.py
SidneyAn/nfv
5f0262a5b6ea4be59f977b9c587c483cbe0e373d
[ "Apache-2.0" ]
null
null
null
# # Copyright (c) 2015-2016 Wind River Systems, Inc. # # SPDX-License-Identifier: Apache-2.0 # from nfv_common import debug from nfv_common.timers._timestamp import get_monotonic_timestamp_in_ms DLOG = debug.debug_get_logger('nfv_common.timers.timer') class Timer(object): """ Timer """ _id = 1 def __init__(self, timer_name, initial_delay_secs, interval_secs, callback, *callback_args, **callback_kwargs): """ Create timer """ self._timer_id = Timer._id self._timer_name = timer_name self._interval_secs = interval_secs self._arm_timestamp = get_monotonic_timestamp_in_ms() self._callback = callback(*callback_args, **callback_kwargs) if initial_delay_secs is None: self._next_expiry_in_secs = interval_secs else: self._next_expiry_in_secs = initial_delay_secs Timer._id += 1 @property def timer_id(self): """ Returns the unique timer identifier """ return self._timer_id @property def timer_name(self): """ Returns the name of the timer """ return self._timer_name def reschedule(self, interval_secs): """ Reschedule a timer """ self._interval_secs = interval_secs self._next_expiry_in_secs = self._interval_secs def callback(self, now_ms): """ Execute the callback associated with this timer if enough time has elapsed """ rearm = True secs_expired = (now_ms - self._arm_timestamp) / 1000 if secs_expired > self._next_expiry_in_secs: DLOG.verbose("Timer %s with timer id %s fired." % (self._timer_name, self._timer_id)) try: self._callback.send(self._timer_id) self._arm_timestamp = get_monotonic_timestamp_in_ms() self._next_expiry_in_secs = self._interval_secs except StopIteration: rearm = False return rearm
28.77027
80
0.600282
f05f0a5651b3001a47bbcc7a5be9e6e0e6882b1c
20,240
py
Python
pytype/tests/test_inference.py
yang/pytype-hack
093d69c9a6f6144f0209cdeb8eed6c7e832bbee0
[ "Apache-2.0" ]
null
null
null
pytype/tests/test_inference.py
yang/pytype-hack
093d69c9a6f6144f0209cdeb8eed6c7e832bbee0
[ "Apache-2.0" ]
null
null
null
pytype/tests/test_inference.py
yang/pytype-hack
093d69c9a6f6144f0209cdeb8eed6c7e832bbee0
[ "Apache-2.0" ]
null
null
null
"""Common methods for tests of infer.py.""" import logging import re import sys import textwrap from pytype import convert_structural from pytype import errors from pytype import infer from pytype.pyc import loadmarshal from pytype.pytd import optimize from pytype.pytd import pytd from pytype.pytd import utils as pytd_utils from pytype.pytd.parse import parser from pytype.pytd.parse import visitors import unittest log = logging.getLogger(__name__) # Make this false if you need to run the debugger inside a test. CAPTURE_STDOUT = ("-s" not in sys.argv) class Infer(object): """Calls infer, produces useful output on failure. Typically called indirectly from InferenceTest.Infer, which has the same args. This implements the 'with' protocol. Typical use is (where 'self' is the test instance, e.g. test_inference.InferenceTest (below)): with self.Infer(src) as ty: self.assertOnlyHasReturnType(ty.Lookup("f"), self.bool) This code catches exceptions that happen inside Infer(src), so no need to test for ty being non-None (although if it is None, the failed method call will be caught and reported nicely). Comments on the flags: The type inferencer has three layers: 1. Run concrete bytecode 2. Run abstract bytecode 3. Convert ("solve") unknowns It's useful to be able to test all three things in isolation. Solving unknowns in a test where you don't expect unknowns will give you more complex debug output and make tests slower. It might also be confusing, since the output you're checking is the one from the type converter, causing you to suspect the latter as the cause of bugs even though it's not actually doing anything. As for "deep": this causes all public functions to be called with __any_object__ args, so for precise control, you can set deep=False and explicitly make the calls. """ # TODO(pludemann): This is possibly a slightly less magical paradigm: # with self.Inferencer(deep=False, solve_unknowns=False) as ty: # ty = i.Infer("""....""") # self.assertOnlyHasReturnType(ty.Lookup(...), ...) def __init__(self, test, srccode, deep=False, solve_unknowns=False, extract_locals=False, extra_verbose=False, report_errors=True, **kwargs): """Constructor for Infer. Args: test: the Testcase (see inferenceTest.Infer) srccode: the Python source code to do type inferencing on deep: see class comments (assume --api - analyize all methods, even those that don't have a caller) solve_unknowns: try to solve for all ~unknown types extract_locals: strip ~unknown types from the output pytd extra_verbose: extra intermeidate output (for debugging) report_errors: Whether to fail if the type inferencer reports any erros. **kwargs: Additional options to pass through to infer_types(). """ # TODO(pludemann): There are eight possible combinations of these three # boolean flags. Do all of these combinations make sense? Or would it be # possible to simplify this into something like a "mode" parameter: # mode="solve" => deep=True, solve_unknowns=True # mode="structural" => deep=True, solve_unknowns=False, extract_locals=False # mode="deep" => deep=True, solve_unknowns=False, extract_locals=True # mode="main" => deep=False, solve_unknowns=False, extract_locals=True self.srccode = textwrap.dedent(srccode) self.inferred = None self.optimized_types = None self.extract_locals = None # gets set if extract_locals is set (below) self.extra_verbose = extra_verbose self.canonical_types = None # We need to catch any exceptions here and preserve them for __exit__. # Exceptions raised in the body of 'with' will be presented to __exit__. try: self.types = test._InferAndVerify( self.srccode, deep=deep, cache_unknowns=True, solve_unknowns=solve_unknowns, report_errors=report_errors, **kwargs) self.inferred = self.types if extract_locals: # Rename "~unknown" to "?" self.types = self.types.Visit(visitors.RemoveUnknownClasses()) # Remove "~list" etc.: self.types = convert_structural.extract_local(self.types) self.extract_locals = self.types # TODO(pludemann): These flags are the same as those in main.py; there # should be a way of ensuring that they're the same. self.types = self.optimized_types = optimize.Optimize( self.types, lossy=False, use_abcs=False, max_union=7, remove_mutable=False) self.types = self.canonical_types = pytd_utils.CanonicalOrdering( self.types) except Exception: # pylint: disable=broad-except self.types = None if not self.__exit__(*sys.exc_info()): raise def __enter__(self): return self.types def __exit__(self, error_type, value, traceback): if not error_type: return log.error("*** unittest ERROR *** %s: %s", error_type.__name__, value) _PrintErrorDebug("source", self.srccode) if self.extra_verbose and self.inferred: _PrintErrorDebug("inferred PyTD", pytd.Print(self.inferred)) if self.extra_verbose and self.optimized_types: _PrintErrorDebug("optimized PyTD", pytd.Print(self.optimized_types)) if self.extra_verbose and self.extract_locals: _PrintErrorDebug("extract_locals (removed unknown) PyTD", pytd.Print(self.extract_locals)) if self.canonical_types: _PrintErrorDebug("canonical PyTD", pytd.Print(self.canonical_types)) return False # re-raise the exception that was passed in class InferenceTest(unittest.TestCase): """Base class for implementing tests that check PyTD output.""" PYTHON_VERSION = (2, 7) # can be overwritten by subclasses def setUp(self): self.bool = pytd.ClassType("bool") self.dict = pytd.ClassType("dict") self.float = pytd.ClassType("float") self.complex = pytd.ClassType("complex") self.int = pytd.ClassType("int") if self.PYTHON_VERSION[0] == 2: self.long = pytd.ClassType("long") self.list = pytd.ClassType("list") self.none_type = pytd.ClassType("NoneType") self.object = pytd.ClassType("object") self.set = pytd.ClassType("set") self.frozenset = pytd.ClassType("frozenset") self.str = pytd.ClassType("str") self.bytes = pytd.ClassType("bytes") self.bytearray = pytd.ClassType("bytearray") self.tuple = pytd.ClassType("tuple") self.unicode = pytd.ClassType("unicode") self.generator = pytd.ClassType("generator") self.function = pytd.ClassType("function") self.anything = pytd.AnythingType() self.nothing = pytd.NothingType() self.module = pytd.ClassType("module") self.file = pytd.ClassType("file") # The various union types use pytd_utils.CanonicalOrdering()'s ordering: self.intorstr = pytd.UnionType((self.int, self.str)) self.strorunicodeorbytes = pytd.UnionType( (self.str, self.unicode, self.bytes)) self.intorfloat = pytd.UnionType((self.float, self.int)) self.intorfloatorstr = pytd.UnionType((self.float, self.int, self.str)) self.complexorstr = pytd.UnionType((self.complex, self.str)) # TODO(pludemann): fix the boolorintor... stuff when __builtins__ # is modified to exclude bool from the result if self.PYTHON_VERSION[0] == 3: self.intorfloatorlong = self.intorfloat self.intorfloatorlongorcomplex = pytd.UnionType( (self.int, self.float, self.complex)) else: self.intorfloatorlong = pytd.UnionType((self.int, self.float, self.long)) self.boolorintorfloatorlongorcomplex = pytd.UnionType( (self.bool, self.int, self.float, self.long, self.complex)) self.int_tuple = pytd.HomogeneousContainerType(self.tuple, (self.int,)) self.nothing_tuple = pytd.HomogeneousContainerType(self.tuple, (self.nothing,)) self.intorfloat_tuple = pytd.HomogeneousContainerType(self.tuple, (self.intorfloat,)) self.int_set = pytd.HomogeneousContainerType(self.set, (self.int,)) self.intorfloat_set = pytd.HomogeneousContainerType(self.set, (self.intorfloat,)) # TODO(pludemann): simplify this (test_and2) self.unknown_frozenset = pytd.HomogeneousContainerType( self.frozenset, (self.anything,)) self.float_frozenset = pytd.HomogeneousContainerType(self.frozenset, (self.float,)) self.empty_frozenset = pytd.HomogeneousContainerType(self.frozenset, (self.nothing,)) self.int_list = pytd.HomogeneousContainerType(self.list, (self.int,)) self.str_list = pytd.HomogeneousContainerType(self.list, (self.str,)) self.intorfloat_list = pytd.HomogeneousContainerType(self.list, (self.intorfloat,)) self.intorstr_list = pytd.HomogeneousContainerType(self.list, (self.intorstr,)) self.anything_list = pytd.HomogeneousContainerType(self.list, (self.anything,)) self.nothing_list = pytd.HomogeneousContainerType(self.list, (self.nothing,)) self.int_int_dict = pytd.GenericType(self.dict, (self.int, self.int)) self.int_str_dict = pytd.GenericType(self.dict, (self.int, self.str)) self.str_int_dict = pytd.GenericType(self.dict, (self.str, self.int)) self.nothing_nothing_dict = pytd.GenericType(self.dict, (self.nothing, self.nothing)) # For historical reasons (byterun), this method name is snakecase: # TODO(kramm): Rename this function. # pylint: disable=invalid-name def assertNoErrors(self, code, raises=None, pythonpath=(), find_pytd_import_ext=".pytd", report_errors=True): """Run an inference smoke test for the given code.""" if raises is not None: # TODO(kramm): support this log.warning("Ignoring 'raises' parameter to assertNoErrors") errorlog = errors.ErrorLog() unit = infer.infer_types( textwrap.dedent(code), self.PYTHON_VERSION, errorlog, deep=False, solve_unknowns=False, reverse_operators=True, pythonpath=pythonpath, find_pytd_import_ext=find_pytd_import_ext, cache_unknowns=True) if report_errors and errorlog.errors: errorlog.print_to_stderr() self.fail("Inferencer found %d errors" % len(errorlog)) unit.Visit(visitors.VerifyVisitor()) return pytd_utils.CanonicalOrdering(unit) def assertNoCrash(self, code, **kwargs): self.assertNoErrors(code, report_errors=False, **kwargs) def InferAndCheck(self, code): errorlog = errors.ErrorLog() unit = infer.infer_types( textwrap.dedent(code), self.PYTHON_VERSION, errorlog, deep=True, reverse_operators=True, cache_unknowns=True) unit.Visit(visitors.VerifyVisitor()) return pytd_utils.CanonicalOrdering(unit), errorlog def InferFromFile(self, filename, pythonpath, find_pytd_import_ext=".pytd"): errorlog = errors.ErrorLog() with open(filename, "rb") as fi: unit = infer.infer_types(fi.read(), self.PYTHON_VERSION, errorlog, filename=filename, cache_unknowns=True, pythonpath=pythonpath, find_pytd_import_ext=find_pytd_import_ext) unit.Visit(visitors.VerifyVisitor()) return pytd_utils.CanonicalOrdering(unit) @classmethod def SignatureHasReturnType(cls, sig, return_type): for desired_type in pytd_utils.UnpackUnion(return_type): if desired_type == return_type: return True elif isinstance(sig.return_type, pytd.UnionType): return desired_type in sig.return_type.type_list else: return False @classmethod def HasSignature(cls, func, target): for sig in func.signatures: if (target.params == tuple(p.type for p in sig.params) and cls.SignatureHasReturnType(sig, target.return_type)): return True return False @classmethod def HasExactSignature(cls, func, target): for sig in func.signatures: if (target.params == tuple(p.type for p in sig.params) and target.return_type == sig.return_type): return True return False def assertHasOnlySignatures(self, func, *sigs): self.assertIsInstance(func, pytd.Function) for parameter_types, return_type in sigs: target = pytd.Signature(tuple(parameter_types), return_type, (), (), False) if not self.HasExactSignature(func, target): self.fail("Could not find signature: {name}{target} in {func}". format(name=func.name, target=pytd.Print(target), func=pytd.Print(func))) self.assertEqual(len(func.signatures), len(sigs), "{func} has the wrong number of signatures ({has}), " "expected {expect}". format(func=func, has=len(func.signatures), expect=len(sigs))) def assertHasSignature(self, func, parameter_types, return_type): target = pytd.Signature(tuple(parameter_types), return_type, (), (), False) if not self.HasSignature(func, target): # TODO(pludemann): don't assume function is 'f' self.fail("Could not find signature: f{} in {} ({} in {})". format(pytd.Print(target), pytd.Print(func), target, func)) def assertNotHasSignature(self, func, parameter_types, return_type): target = pytd.Signature(tuple(parameter_types), return_type, (), (), False) if self.HasSignature(func, target): # TODO(pludemann): don't assume function is 'f' self.fail("Found signature: f{} -> {} in {}". format(pytd.Print(target), pytd.Print(func))) def assertOnlyHasReturnType(self, func, t): """Test that a given return type is the only one.""" ret = pytd_utils.JoinTypes(sig.return_type for sig in func.signatures) self.assertEquals(t, ret, "Return type %r != %r" % (pytd.Print(t), pytd.Print(ret))) def assertHasReturnType(self, func, t): """Test that a given return type is present. Ignore extras.""" ret = pytd_utils.JoinTypes(sig.return_type for sig in func.signatures) if isinstance(ret, pytd.UnionType): self.assertIn(t, ret.type_list, "Return type %r not found in %r" % (pytd.Print(t), pytd.Print(ret))) else: self.assertEquals(t, ret, "Return type %r != %r" % (pytd.Print(ret), pytd.Print(t))) def assertHasAllReturnTypes(self, func, types): """Test that all given return types are present. Ignore extras.""" for t in types: self.assertHasReturnType(func, t) def assertIsIdentity(self, func): """Tests whether a given function is equivalent to the identity function.""" self.assertGreaterEqual(len(func.signatures), 1) for sig in func.signatures: self.assertEquals(len(sig.params), 1) param1, = sig.params self.assertEquals(param1.type, sig.return_type, "Not identity: %r" % pytd.Print(func)) def assertErrorLogContains(self, errorlog, regexp): for error in errorlog: if re.compile(regexp, re.I | re.S).search(str(error)): return print >>sys.stderr, "Couldn't find regexp %r in errors:" % regexp errorlog.print_to_stderr() raise AssertionError("Couldn't find regexp %r in errors" % regexp) def assertErrorLogDoesNotContain(self, errorlog, regexp): for error in errorlog: if re.compile(regexp, re.I | re.S).search(str(error)): print >>sys.stderr, "Found regexp %r in errors:" % regexp errorlog.print_to_stderr() raise AssertionError("Found regexp %r in errors" % regexp) def Infer(self, srccode, deep=False, solve_unknowns=False, extract_locals=False, extra_verbose=False, report_errors=True, **kwargs): # Wraps Infer object to make it seem less magical # See class Infer for more on the arguments return Infer(self, srccode=srccode, deep=deep, solve_unknowns=solve_unknowns, extract_locals=extract_locals, extra_verbose=extra_verbose, report_errors=report_errors, **kwargs) def _InferAndVerify(self, src, report_errors=False, **kwargs): """Infer types for the source code treating it as a module. Used by class Infer (which sets up a 'with' framework) Args: src: The source code of a module. Treat it as "__main__". report_errors: Whether to fail if the type inferencer reports any errors in the program. **kwargs: Keyword paramters to pass through to the type inferencer. Raises: AssertionError: If report_errors is True and we found errors. Returns: A pytd.TypeDeclUnit """ errorlog = errors.ErrorLog() unit = infer.infer_types(src, self.PYTHON_VERSION, errorlog, **kwargs) unit = pytd_utils.CanonicalOrdering(unit.Visit(visitors.VerifyVisitor())) if report_errors and errorlog: errorlog.print_to_stderr() self.fail("Inferencer found %d errors" % len(errorlog)) return unit def assertTypesMatchPytd(self, ty, pytd_src, version=None): """Parses pytd_src and compares with ty.""" # TODO(pludemann): This is a copy of pytd.parse.parser_test.Parse() # TODO(pludemann): Consider using the pytd_tree to call # assertHasOnlySignatures (or similar) to guard against the # inferencer adding additional but harmless calls. pytd_tree = parser.TypeDeclParser(version=version).Parse( textwrap.dedent(pytd_src)) pytd_tree = pytd_tree.Visit( visitors.ClassTypeToNamedType()) pytd_tree = pytd_tree.Visit( visitors.CanonicalOrderingVisitor(sort_signatures=True)) pytd_tree.Visit(visitors.VerifyVisitor()) ty = ty.Visit(visitors.ClassTypeToNamedType()) ty = ty.Visit(visitors.AdjustSelf(force=True)) ty = ty.Visit(visitors.CanonicalOrderingVisitor(sort_signatures=True)) ty.Visit(visitors.VerifyVisitor()) ty_src = pytd.Print(ty) + "\n" pytd_tree_src = pytd.Print(pytd_tree) + "\n" log.info("====== ty ===") _LogLines(log.info, ty_src) log.info("=== TypeMatchPytd ===") _LogLines(log.info, pytd_tree_src) log.info("====== ====== ======") # In the diff output, mark expected with "-" and actual with "+". # (In other words, display a change from "working" to "broken") self.assertMultiLineEqual(pytd_tree_src, ty_src) def make_code(self, byte_array, name="testcode"): """Utility method for creating CodeType objects.""" return loadmarshal.CodeType( argcount=0, kwonlyargcount=0, nlocals=2, stacksize=2, flags=0, consts=[None, 1, 2], names=[], varnames=["x", "y"], filename="", name=name, firstlineno=1, lnotab=[], freevars=[], cellvars=[], code="".join(chr(c) for c in byte_array), python_version=self.PYTHON_VERSION) def _PrintErrorDebug(descr, value): log.error("=============== %s ===========", descr) _LogLines(log.error, value) log.error("=========== end %s ===========", descr) def _LogLines(log_cmd, lines): for l in lines.split("\n"): log_cmd("%s", l) def main(debugging=False): # TODO(ampere): This is just a useful hack. Should be replaced with real # argument handling. if debugging or len(sys.argv) > 1: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.WARNING) unittest.main() if __name__ == "__main__": main()
43.15565
80
0.655682
8c0d6a377ec6fa60638528d8ecdd8c638b5410f3
2,223
py
Python
src/gen_drum_kit/main.py
peter-zenk/genDrumkit
a74bae332443db6424be46ebd32b8fffeac14ce1
[ "MIT" ]
7
2020-06-25T15:36:17.000Z
2022-01-09T21:43:27.000Z
src/gen_drum_kit/main.py
peter-zenk/genDrumkit
a74bae332443db6424be46ebd32b8fffeac14ce1
[ "MIT" ]
3
2022-01-09T20:44:52.000Z
2022-02-02T10:43:23.000Z
src/gen_drum_kit/main.py
peter-zenk/genDrumkit
a74bae332443db6424be46ebd32b8fffeac14ce1
[ "MIT" ]
1
2020-08-16T18:17:26.000Z
2020-08-16T18:17:26.000Z
''' Created on Jun 14, 2020 @author: peter ''' import sys import logging from shutil import rmtree from platform import system from gen_drum_kit.parameter import Parameter from gen_drum_kit.factory import ImporterFactory, ExporterFactory logger = logging.getLogger(__name__) class Main(): """ The top level class handling the program flow """ def __init__(self): self._impFactory = ImporterFactory() self._expFactory = ExporterFactory() self._params = None # defined later @staticmethod def _check_environment(): if sys.hexversion < 50856688: #check python version print("INFO: Your version of python is " + str(sys.version_info)) sys.exit("ERROR: You must use at least python 3.8.2. Aborting ...") if system() != "Linux": # only Linux will be supported print("INFO: You are running on :", system()) sys.exit("ERROR: You must run on a 'Linux' system!") def _init_program(self): # initialize the program context self._check_environment() self._params = Parameter() def _cleanup(self): # cleaning up on exit logger.info("Cleaning up ...") for item in self._params.clean_rm: logger.debug("Removing '%s' ...", item) try: rmtree(item) except: logger.error("Could not remove '%s'!", item) def run(self): """ this is the main run() task to be called by the client script """ # command line, default settings, initial sanity checks self._init_program() logger.debug("Running in debug mode") # create the importer and import data Imp = self._impFactory.create(self._params) Imp.importData() # build the drum kit object based on the data read by the importer Drumkit = Imp.buildDrumkitDB() logger.debug(Drumkit) # create the exporter and export the output drum kit with the data # from the drum kit object Exp = self._expFactory.create(Drumkit, self._params) Exp.export() self._cleanup() logger.info("Finished program ...")
28.139241
79
0.615385
2514b11613ef6f87bf96bb9c3c0957d9d7b13f98
9,066
py
Python
pandas/tests/base/test_value_counts.py
monferrand/pandas
a3477c769b3d2ea4950ae69f8867e3b291b743c1
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1
2020-06-04T21:46:19.000Z
2020-06-04T21:46:19.000Z
pandas/tests/base/test_value_counts.py
monferrand/pandas
a3477c769b3d2ea4950ae69f8867e3b291b743c1
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
pandas/tests/base/test_value_counts.py
monferrand/pandas
a3477c769b3d2ea4950ae69f8867e3b291b743c1
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
import collections from datetime import timedelta from io import StringIO import numpy as np import pytest from pandas._libs.tslib import iNaT from pandas.compat.numpy import np_array_datetime64_compat from pandas.core.dtypes.common import needs_i8_conversion import pandas as pd from pandas import ( DatetimeIndex, Index, Interval, IntervalIndex, Series, Timedelta, TimedeltaIndex, ) import pandas._testing as tm from pandas.tests.base.common import allow_na_ops def test_value_counts(index_or_series_obj): obj = index_or_series_obj obj = np.repeat(obj, range(1, len(obj) + 1)) result = obj.value_counts() counter = collections.Counter(obj) expected = pd.Series(dict(counter.most_common()), dtype=np.int64, name=obj.name) expected.index = expected.index.astype(obj.dtype) if isinstance(obj, pd.MultiIndex): expected.index = pd.Index(expected.index) # TODO: Order of entries with the same count is inconsistent on CI (gh-32449) if obj.duplicated().any(): result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_value_counts_null(null_obj, index_or_series_obj): orig = index_or_series_obj obj = orig.copy() if not allow_na_ops(obj): pytest.skip("type doesn't allow for NA operations") elif len(obj) < 1: pytest.skip("Test doesn't make sense on empty data") elif isinstance(orig, pd.MultiIndex): pytest.skip(f"MultiIndex can't hold '{null_obj}'") values = obj.values if needs_i8_conversion(obj.dtype): values[0:2] = iNaT else: values[0:2] = null_obj klass = type(obj) repeated_values = np.repeat(values, range(1, len(values) + 1)) obj = klass(repeated_values, dtype=obj.dtype) # because np.nan == np.nan is False, but None == None is True # np.nan would be duplicated, whereas None wouldn't counter = collections.Counter(obj.dropna()) expected = pd.Series(dict(counter.most_common()), dtype=np.int64) expected.index = expected.index.astype(obj.dtype) result = obj.value_counts() if obj.duplicated().any(): # TODO: # Order of entries with the same count is inconsistent on CI (gh-32449) expected = expected.sort_index() result = result.sort_index() tm.assert_series_equal(result, expected) # can't use expected[null_obj] = 3 as # IntervalIndex doesn't allow assignment new_entry = pd.Series({np.nan: 3}, dtype=np.int64) expected = expected.append(new_entry) result = obj.value_counts(dropna=False) if obj.duplicated().any(): # TODO: # Order of entries with the same count is inconsistent on CI (gh-32449) expected = expected.sort_index() result = result.sort_index() tm.assert_series_equal(result, expected) def test_value_counts_inferred(index_or_series): klass = index_or_series s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) expected = Series([4, 3, 2, 1], index=["b", "a", "d", "c"]) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(np.unique(np.array(s_values, dtype=np.object_))) tm.assert_index_equal(s.unique(), exp) else: exp = np.unique(np.array(s_values, dtype=np.object_)) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 4 # don't sort, have to sort after the fact as not sorting is # platform-dep hist = s.value_counts(sort=False).sort_values() expected = Series([3, 1, 4, 2], index=list("acbd")).sort_values() tm.assert_series_equal(hist, expected) # sort ascending hist = s.value_counts(ascending=True) expected = Series([1, 2, 3, 4], index=list("cdab")) tm.assert_series_equal(hist, expected) # relative histogram. hist = s.value_counts(normalize=True) expected = Series([0.4, 0.3, 0.2, 0.1], index=["b", "a", "d", "c"]) tm.assert_series_equal(hist, expected) def test_value_counts_bins(index_or_series): klass = index_or_series s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) # bins msg = "bins argument only works with numeric data" with pytest.raises(TypeError, match=msg): s.value_counts(bins=1) s1 = Series([1, 1, 2, 3]) res1 = s1.value_counts(bins=1) exp1 = Series({Interval(0.997, 3.0): 4}) tm.assert_series_equal(res1, exp1) res1n = s1.value_counts(bins=1, normalize=True) exp1n = Series({Interval(0.997, 3.0): 1.0}) tm.assert_series_equal(res1n, exp1n) if isinstance(s1, Index): tm.assert_index_equal(s1.unique(), Index([1, 2, 3])) else: exp = np.array([1, 2, 3], dtype=np.int64) tm.assert_numpy_array_equal(s1.unique(), exp) assert s1.nunique() == 3 # these return the same res4 = s1.value_counts(bins=4, dropna=True) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4 = s1.value_counts(bins=4, dropna=False) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4n = s1.value_counts(bins=4, normalize=True) exp4n = Series([0.5, 0.25, 0.25, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4n, exp4n) # handle NA's properly s_values = ["a", "b", "b", "b", np.nan, np.nan, "d", "d", "a", "a", "b"] s = klass(s_values) expected = Series([4, 3, 2], index=["b", "a", "d"]) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(["a", "b", np.nan, "d"]) tm.assert_index_equal(s.unique(), exp) else: exp = np.array(["a", "b", np.nan, "d"], dtype=object) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 3 s = klass({}) if klass is dict else klass({}, dtype=object) expected = Series([], dtype=np.int64) tm.assert_series_equal(s.value_counts(), expected, check_index_type=False) # returned dtype differs depending on original if isinstance(s, Index): tm.assert_index_equal(s.unique(), Index([]), exact=False) else: tm.assert_numpy_array_equal(s.unique(), np.array([]), check_dtype=False) assert s.nunique() == 0 def test_value_counts_datetime64(index_or_series): klass = index_or_series # GH 3002, datetime64[ns] # don't test names though txt = "\n".join( [ "xxyyzz20100101PIE", "xxyyzz20100101GUM", "xxyyzz20100101EGG", "xxyyww20090101EGG", "foofoo20080909PIE", "foofoo20080909GUM", ] ) f = StringIO(txt) df = pd.read_fwf( f, widths=[6, 8, 3], names=["person_id", "dt", "food"], parse_dates=["dt"] ) s = klass(df["dt"].copy()) s.name = None idx = pd.to_datetime( ["2010-01-01 00:00:00", "2008-09-09 00:00:00", "2009-01-01 00:00:00"] ) expected_s = Series([3, 2, 1], index=idx) tm.assert_series_equal(s.value_counts(), expected_s) expected = np_array_datetime64_compat( ["2010-01-01 00:00:00", "2009-01-01 00:00:00", "2008-09-09 00:00:00"], dtype="datetime64[ns]", ) if isinstance(s, Index): tm.assert_index_equal(s.unique(), DatetimeIndex(expected)) else: tm.assert_numpy_array_equal(s.unique(), expected) assert s.nunique() == 3 # with NaT s = df["dt"].copy() s = klass(list(s.values) + [pd.NaT]) result = s.value_counts() assert result.index.dtype == "datetime64[ns]" tm.assert_series_equal(result, expected_s) result = s.value_counts(dropna=False) expected_s[pd.NaT] = 1 tm.assert_series_equal(result, expected_s) unique = s.unique() assert unique.dtype == "datetime64[ns]" # numpy_array_equal cannot compare pd.NaT if isinstance(s, Index): exp_idx = DatetimeIndex(expected.tolist() + [pd.NaT]) tm.assert_index_equal(unique, exp_idx) else: tm.assert_numpy_array_equal(unique[:3], expected) assert pd.isna(unique[3]) assert s.nunique() == 3 assert s.nunique(dropna=False) == 4 # timedelta64[ns] td = df.dt - df.dt + timedelta(1) td = klass(td, name="dt") result = td.value_counts() expected_s = Series([6], index=[Timedelta("1day")], name="dt") tm.assert_series_equal(result, expected_s) expected = TimedeltaIndex(["1 days"], name="dt") if isinstance(td, Index): tm.assert_index_equal(td.unique(), expected) else: tm.assert_numpy_array_equal(td.unique(), expected.values) td2 = timedelta(1) + (df.dt - df.dt) td2 = klass(td2, name="dt") result2 = td2.value_counts() tm.assert_series_equal(result2, expected_s)
32.729242
84
0.637326
54ced15b7ea1cd138adc9c261eff66978dc4891f
337
py
Python
test_project/main/urls.py
CloudRunnerInc/django-admin-smoke-tests
8f83ce0f6f8947575040befbb8763de195c7d506
[ "BSD-3-Clause" ]
13
2015-01-12T09:32:38.000Z
2021-11-18T06:38:42.000Z
test_project/main/urls.py
CloudRunnerInc/django-admin-smoke-tests
8f83ce0f6f8947575040befbb8763de195c7d506
[ "BSD-3-Clause" ]
18
2015-06-12T18:07:55.000Z
2020-09-05T09:29:45.000Z
test_project/main/urls.py
CloudRunnerInc/django-admin-smoke-tests
8f83ce0f6f8947575040befbb8763de195c7d506
[ "BSD-3-Clause" ]
9
2015-06-15T16:40:52.000Z
2020-06-16T01:07:28.000Z
from django.conf.urls import url urlpatterns = [ url(r'^posts/(?P<pk>.+)/$', lambda **kwargs: '', name="post-detail"), url(r'^hasprimaryslug/(?P<pk>[\w-]+)/$', lambda **kwargs: '', name="hasprimaryslug-detail"), url(r'^hasprimaryuuid/(?P<pk>[\w-]+)/$', lambda **kwargs: '', name="hasprimaryuuid-detail"), ]
30.636364
73
0.569733
0ef0211db90dc033de056523d5abaf4d80827327
225
py
Python
tests/parser/wellfounded.10.test.py
veltri/DLV2
944aaef803aa75e7ec51d7e0c2b0d964687fdd0e
[ "Apache-2.0" ]
null
null
null
tests/parser/wellfounded.10.test.py
veltri/DLV2
944aaef803aa75e7ec51d7e0c2b0d964687fdd0e
[ "Apache-2.0" ]
null
null
null
tests/parser/wellfounded.10.test.py
veltri/DLV2
944aaef803aa75e7ec51d7e0c2b0d964687fdd0e
[ "Apache-2.0" ]
null
null
null
input = """ t(Z) :- t0(Z). t(Z) :- g(X,Y,Z), t(X), not t(Y). t0(2). g(5,1,3). g(1,2,4). g(3,4,5). """ output = """ t(Z) :- t0(Z). t(Z) :- g(X,Y,Z), t(X), not t(Y). t0(2). g(5,1,3). g(1,2,4). g(3,4,5). """
10.714286
34
0.342222
1fed3a8fb5f00cbed51ba9fbbffb1a44c47b986a
7,145
py
Python
zhihu/activity.py
xiaoxing1120/zhihu-spider
6ab2a0391523d04bd5d537560bb4836a16b3de47
[ "MIT" ]
1
2016-10-10T12:28:08.000Z
2016-10-10T12:28:08.000Z
zhihu/activity.py
evsward/zhihu-py3
6ab2a0391523d04bd5d537560bb4836a16b3de47
[ "MIT" ]
null
null
null
zhihu/activity.py
evsward/zhihu-py3
6ab2a0391523d04bd5d537560bb4836a16b3de47
[ "MIT" ]
1
2016-09-15T09:01:16.000Z
2016-09-15T09:01:16.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from datetime import datetime from .common import * from .acttype import ActType from .question import Question from .answer import Answer from .column import Column from .post import Post from .topic import Topic from .author import Author, ANONYMOUS from .collection import Collection class Activity: """用户动态类,请使用Author.activities获取.""" def __init__(self, act, session, author): """创建用户动态类实例. :param bs4.element.Tag act: 表示用户动态的页面元素 :param Session session: 使用的网络会话 :param Author author: Activity 所属的用户对象 :return: 用户动态对象 :rtype: Activity :说明: 根据Activity.type不同可以获取不同属性,具体请看 :class:`.ActType` """ self._session = session self._author = author self._type = ActType.from_str(act.attrs['data-type-detail']) useless_tag = act.div.find('a', class_='zg-link') if useless_tag is not None: useless_tag.extract() attribute = self._get_assemble_method(self.type)(act) self._attr = attribute.__class__.__name__.lower() setattr(self, self._attr, attribute) self._time = datetime.fromtimestamp(int(act['data-time'])) @property def type(self): """ :return: 用户动态类型, 具体参见 :class:`.ActType` :rtype: class:`.ActType` """ return self._type @property def content(self): """获取此对象中能提供的那个属性,对应表请查看 :class:`.ActType` 类. :return: 对象提供的对象 :rtype: Author or Question or Answer or Topic or Column or Post """ return getattr(self, self._attr) @property def time(self): """ :return: 返回用户执行 Activity 操作的时间 :rtype: datetime.datetime """ return self._time def __find_post(self, act): try: column_url = act.find('a', class_='column_link')['href'] column_name = act.find('a', class_='column_link').text column = Column(column_url, column_name, session=self._session) except TypeError: column = None try: author_tag = act.find('div', class_='author-info') author_url = Zhihu_URL + author_tag.a['href'] author_name = author_tag.a.text author_motto = author_tag.span.text if author_tag.span else '' author = Author(author_url, author_name, author_motto, session=self._session) except TypeError: author = ANONYMOUS post_url = act.find('a', class_='post-link')['href'] post_title = act.find('a', class_='post-link').text post_comment_num, post_upvote_num = self._parse_un_cn(act) return Post(post_url, column, author, post_title, post_upvote_num, post_comment_num, session=self._session) def _assemble_create_post(self, act): return self.__find_post(act) def _assemble_voteup_post(self, act): return self.__find_post(act) def _assemble_follow_column(self, act): return Column(act.div.a['href'], act.div.a.text, session=self._session) def _assemble_follow_topic(self, act): topic_url = Zhihu_URL + act.div.a['href'] topic_name = act.div.a['title'] return Topic(topic_url, topic_name, session=self._session) def _assemble_answer_question(self, act): question_url = Zhihu_URL + re_a2q.match(act.div.find_all('a')[-1]['href']).group(1) question_title = act.div.find_all('a')[-1].text question = Question(question_url, question_title, session=self._session) answer_url = Zhihu_URL + act.div.find_all('a')[-1]['href'] answer_comment_num, answer_upvote_num = self._parse_un_cn(act) return Answer(answer_url, question, self._author, answer_upvote_num, session=self._session) def _assemble_voteup_answer(self, act): question_url = Zhihu_URL + re_a2q.match(act.div.a['href']).group(1) question_title = act.div.a.text question = Question(question_url, question_title, session=self._session) try_find_author = act.find_all('a', class_='author-link', href=re.compile('^/people/[^/]*$')) if len(try_find_author) == 0: author_url = None author_name = '匿名用户' author_motto = '' photo_url = None else: try_find_author = try_find_author[-1] author_url = Zhihu_URL + try_find_author['href'] author_name = try_find_author.text try_find_motto = try_find_author.parent.span if try_find_motto is None: author_motto = '' else: author_motto = try_find_motto['title'] photo_url = PROTOCOL + try_find_author.parent.a.img[ 'src'].replace('_s', '_r') author = Author(author_url, author_name, author_motto, photo_url=photo_url, session=self._session) answer_url = Zhihu_URL + act.div.a['href'] answer_comment_num, answer_upvote_num = self._parse_un_cn(act) return Answer(answer_url, question, author, answer_upvote_num, session=self._session) def _assemble_ask_question(self, act): return Question(Zhihu_URL + act.div.contents[3]['href'], list(act.div.children)[3].text, session=self._session) def _assemble_follow_question(self, act): return Question(Zhihu_URL + act.div.a['href'], act.div.a.text, session=self._session) def _assemble_follow_collection(self, act): url = act.div.a['href'] if not url.startswith('http'): url = Zhihu_URL + url return Collection(url, session=self._session) def _get_assemble_method(self, act_type): assemble_methods = { ActType.UPVOTE_POST: self._assemble_voteup_post, ActType.FOLLOW_COLUMN: self._assemble_follow_column, ActType.UPVOTE_ANSWER: self._assemble_voteup_answer, ActType.ANSWER_QUESTION: self._assemble_answer_question, ActType.ASK_QUESTION: self._assemble_ask_question, ActType.FOLLOW_QUESTION: self._assemble_follow_question, ActType.FOLLOW_TOPIC: self._assemble_follow_topic, ActType.PUBLISH_POST: self._assemble_create_post, ActType.FOLLOW_COLLECTION: self._assemble_follow_collection } if act_type in assemble_methods: return assemble_methods[act_type] else: raise ValueError('invalid activity type') @staticmethod def _parse_un_cn(act): upvote_num = act.find('a', class_='zm-item-vote-count').text if upvote_num.isdigit(): upvote_num = int(upvote_num) else: upvote_num = None comment = act.find('a', class_='toggle-comment') comment_text = next(comment.stripped_strings) comment_num_match = re_get_number.match(comment_text) comment_num = int(comment_num_match.group(1)) if comment_num_match is not None else 0 return comment_num, upvote_num
37.804233
101
0.630931
5dd08ae61bb79be9a062edf8089b922ef67c3224
2,058
py
Python
sudoku_scraper_bs.py
isaacwen/sudoku
10a625033aa115f07c4a638736b357539bb2bf86
[ "MIT" ]
null
null
null
sudoku_scraper_bs.py
isaacwen/sudoku
10a625033aa115f07c4a638736b357539bb2bf86
[ "MIT" ]
null
null
null
sudoku_scraper_bs.py
isaacwen/sudoku
10a625033aa115f07c4a638736b357539bb2bf86
[ "MIT" ]
null
null
null
# Isaac Wen # This program gets sudoku puzzles from nine.websudoku.com and stores them # locally import urllib.request from sudoku_backtracking import * from bs4 import BeautifulSoup # Produces the HTML for a specified difficulty of sudoku puzzle def get_html(num): url = "https://nine.websudoku.com/?level=" + str(num) data = urllib.request.urlopen(url) data = data.read() return str(data) # Produces the 81 digits representing the solution to a sudoku puzzle and # the mask from the HTML produces by get_html def get_sol(str): soup = BeautifulSoup(str, 'html.parser') puzzle_html = soup.select("#cheat") puzzle = puzzle_html[0]['value'] mask_html = soup.select("#editmask") mask = mask_html[0]['value'] return (puzzle, mask) # Masks a given sudoku puzzle using a given mask def mask_sol(sol_mask): (sol, mask) = sol_mask actual_puz = "" for i in range(81): if mask[i] == "1": actual_puz = actual_puz + "0" else: actual_puz = actual_puz + sol[i] return actual_puz # Generates a puzzle and its solution given a difficulty from 1 - 4 def get_puzzle(num): html = get_html(num) sol_mask = get_sol(html) (sol, mask) = sol_mask puzzle = mask_sol(sol_mask) return (puzzle, sol) # Generates puzzles based on the user's difficulty specification def generate_main(): difficulty = str(input("What difficulty puzzle would you like?\n(Enter" " a difficulty from 1 to 4, 1 being the " "easiest): ")) (puz, sol) = get_puzzle(difficulty) puzzle = SudokuAI(puz) solution = SudokuAI(sol) print("The following is a puzzle of difficulty {0}:".format(difficulty)) print(puzzle) next = input("Press ENTER to view the solution.") print(solution) choice = input("Would you like to view another puzzle? (Y to view): ") if choice == "Y": generate_main() else: return # generate_main()
32.666667
77
0.635083
dba1c0e68d0b8d01198764d41703ab41afda5b2b
833
py
Python
aliyun/log/cursor_time_response.py
TylerTemp/aliyun-log-sdk-python
c2935027df8efc0088e3369c00839fc80f615ef2
[ "BSD-3-Clause" ]
null
null
null
aliyun/log/cursor_time_response.py
TylerTemp/aliyun-log-sdk-python
c2935027df8efc0088e3369c00839fc80f615ef2
[ "BSD-3-Clause" ]
null
null
null
aliyun/log/cursor_time_response.py
TylerTemp/aliyun-log-sdk-python
c2935027df8efc0088e3369c00839fc80f615ef2
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python #encoding: utf-8 # Copyright (C) Alibaba Cloud Computing # All rights reserved. from aliyun.log.util import Util from logresponse import LogResponse class GetCursorTimeResponse(LogResponse) : """ The response of the get_cursor_time API from log. :type header: dict :param header: GetCursorTimeResponse HTTP response header :type resp: dict :param resp: the HTTP response body """ def __init__(self, resp, header): LogResponse.__init__(self, header) self.cursor_time = resp['cursor_time'] def get_cursor_time(self) : return self.cursor_time def log_print(self): print 'GetCursorTimeResponse' print 'headers:', self.get_all_headers() print 'cursor_time:', self.cursor_time
25.242424
62
0.656663
c015a79711de28bda18df5b58fd732efa7552d38
18,087
py
Python
openstates/importers/tests/test_bill_importer.py
washabstract/openstates-core
ea69564f1f56fe4a80181b0aa715731bbc47e3f5
[ "MIT" ]
9
2020-04-04T00:19:07.000Z
2022-02-27T02:24:12.000Z
openstates/importers/tests/test_bill_importer.py
washabstract/openstates-core
ea69564f1f56fe4a80181b0aa715731bbc47e3f5
[ "MIT" ]
17
2020-03-31T18:19:59.000Z
2022-01-03T15:18:48.000Z
openstates/importers/tests/test_bill_importer.py
washabstract/openstates-core
ea69564f1f56fe4a80181b0aa715731bbc47e3f5
[ "MIT" ]
19
2020-04-10T21:32:21.000Z
2022-03-02T20:23:21.000Z
import pytest from openstates.scrape import Bill as ScrapeBill from openstates.importers import BillImporter from openstates.data.models import ( Jurisdiction, Person, Organization, Membership, Division, Bill, ) from openstates.utils.transformers import fix_bill_id from openstates.utils.generic import _make_pseudo_id from openstates.exceptions import DuplicateItemError def create_jurisdiction() -> Jurisdiction: Division.objects.create(id="ocd-division/country:us", name="USA") j = Jurisdiction.objects.create(id="jid", division_id="ocd-division/country:us") j.legislative_sessions.create( identifier="1899", name="1899", start_date="1899", end_date="1900" ) j.legislative_sessions.create( identifier="1900", name="1900", start_date="1900", end_date="1901" ) return j def create_org(): return Organization.objects.create( id="org-id", name="House", classification="lower", jurisdiction_id="jid" ) @pytest.mark.django_db def test_full_bill(): create_jurisdiction() person = Person.objects.create(name="Adam Smith") lower = Organization.objects.create( jurisdiction_id="jid", name="House", classification="lower" ) Membership.objects.create(person_id=person.id, organization_id=lower.id) Organization.objects.create( jurisdiction_id="jid", name="Arbitrary Committee", classification="committee", parent=lower, ) oldbill = ScrapeBill( "HB 99", "1899", "Axe & Tack Tax Act", classification="tax bill", chamber="lower", ) bill = ScrapeBill( "HB 1", "1900", "Axe & Tack Tax Act", classification="tax bill", chamber="lower" ) bill.subject = ["taxes", "axes"] bill.add_identifier("SB 9") bill.add_title("Tack & Axe Tax Act") bill.add_action("introduced in house", "1900-04-01", chamber="lower") act = bill.add_action("sent to arbitrary committee", "1900-04-04", chamber="lower") act.add_related_entity( "arbitrary committee", "organization", _make_pseudo_id(name="Arbitrary Committee"), ) bill.add_related_bill( "HB 99", legislative_session="1899", relation_type="prior-session" ) bill.add_sponsorship( "Adam Smith", classification="extra sponsor", entity_type="person", primary=False, entity_id=_make_pseudo_id(name="Adam Smith"), ) bill.add_sponsorship( "Jane Smith", classification="lead sponsor", entity_type="person", primary=True ) bill.add_abstract( "This is an act about axes and taxes and tacks.", note="official", ) bill.add_document_link( "Fiscal Note", "http://example.com/fn.pdf", media_type="application/pdf" ) bill.add_document_link( "Fiscal Note", "http://example.com/fn.html", media_type="text/html" ) bill.add_version_link( "Fiscal Note", "http://example.com/v/1", media_type="text/html" ) bill.add_source("http://example.com/source") # import bill BillImporter("jid").import_data([oldbill.as_dict(), bill.as_dict()]) # get bill from db and assert it imported correctly b = Bill.objects.get(identifier="HB 1") assert b.from_organization.classification == "lower" assert b.identifier == bill.identifier assert b.title == bill.title assert b.classification == bill.classification assert b.subject == ["taxes", "axes"] assert b.abstracts.get().note == "official" # other_title, other_identifier added assert b.other_titles.get().title == "Tack & Axe Tax Act" assert b.other_identifiers.get().identifier == "SB 9" # actions actions = list(b.actions.all()) assert len(actions) == 2 # ensure order was preserved (if this breaks it'll be intermittent) assert actions[0].organization == Organization.objects.get(classification="lower") assert actions[0].description == "introduced in house" assert actions[1].description == "sent to arbitrary committee" assert actions[1].related_entities.get().organization == Organization.objects.get( classification="committee" ) # action computed fields assert b.first_action_date == "1900-04-01" assert b.latest_action_date == "1900-04-04" assert b.latest_action_description == "sent to arbitrary committee" # related_bills were added rb = b.related_bills.get() assert rb.identifier == "HB 99" # and bill got resolved assert rb.related_bill.identifier == "HB 99" # sponsors added, linked & unlinked sponsorships = b.sponsorships.all() assert len(sponsorships) == 2 person = Person.objects.get(name="Adam Smith") for ss in sponsorships: if ss.primary: assert ss.person is None assert ss.organization is None else: assert ss.person == person # versions & documents with their links versions = b.versions.all() assert len(versions) == 1 assert versions[0].links.count() == 1 documents = b.documents.all() assert len(documents) == 1 assert documents[0].links.count() == 2 # sources assert b.sources.count() == 1 @pytest.mark.django_db def test_bill_chamber_param(): create_jurisdiction() org = create_org() bill = ScrapeBill( "HB 1", "1900", "Axe & Tack Tax Act", classification="tax bill", chamber="lower" ) BillImporter("jid").import_data([bill.as_dict()]) assert Bill.objects.get().from_organization_id == org.id @pytest.mark.django_db def test_duplicate_bill_different_chamber(): create_jurisdiction() create_org() Organization.objects.create( id="upper-id", name="Senate", classification="upper", jurisdiction_id="jid" ) b1 = ScrapeBill("HB 1", "1900", "Axe & Tack Tax Act", chamber="lower") b2 = ScrapeBill("HB 1", "1900", "Axe & Tack Tax Act", chamber="upper") with pytest.raises(DuplicateItemError): BillImporter("jid").import_data([b1.as_dict(), b2.as_dict()]) @pytest.mark.django_db def test_bill_update(): create_jurisdiction() create_org() bill = ScrapeBill("HB 1", "1900", "First Bill", chamber="lower") _, what = BillImporter("jid").import_item(bill.as_dict()) assert what == "insert" _, what = BillImporter("jid").import_item(bill.as_dict()) assert what == "noop" # ensure no new object was created assert Bill.objects.count() == 1 # test basic update bill = ScrapeBill("HB 1", "1900", "1st Bill", chamber="lower") _, what = BillImporter("jid").import_item(bill.as_dict()) assert what == "update" assert Bill.objects.get().title == "1st Bill" @pytest.mark.django_db def test_bill_update_because_of_subitem(): create_jurisdiction() create_org() # initial bill bill = ScrapeBill("HB 1", "1900", "First Bill", chamber="lower") bill.add_action("this is an action", chamber="lower", date="1900-01-01") result = BillImporter("jid").import_data([bill.as_dict()]) assert result["bill"]["insert"] == 1 obj = Bill.objects.get() assert obj.actions.count() == 1 last_updated = obj.updated_at # now let's make sure we get updated when there are second actions bill = ScrapeBill("HB 1", "1900", "First Bill", chamber="lower") bill.add_action("this is an action", chamber="lower", date="1900-01-01") bill.add_action("this is a second action", chamber="lower", date="1900-01-02") result = BillImporter("jid").import_data([bill.as_dict()]) assert result["bill"]["update"] == 1 obj = Bill.objects.get() assert obj.actions.count() == 2 assert obj.updated_at > last_updated # same 2 actions, noop bill = ScrapeBill("HB 1", "1900", "First Bill", chamber="lower") bill.add_action("this is an action", chamber="lower", date="1900-01-01") bill.add_action("this is a second action", chamber="lower", date="1900-01-02") result = BillImporter("jid").import_data([bill.as_dict()]) assert result["bill"]["noop"] == 1 obj = Bill.objects.get() assert obj.actions.count() == 2 # same 2 actions, different order, update bill = ScrapeBill("HB 1", "1900", "First Bill", chamber="lower") bill.add_action("this is a second action", chamber="lower", date="1900-01-02") bill.add_action("this is an action", chamber="lower", date="1900-01-01") result = BillImporter("jid").import_data([bill.as_dict()]) assert result["bill"]["update"] == 1 obj = Bill.objects.get() assert obj.actions.count() == 2 # different 2 actions, update bill = ScrapeBill("HB 1", "1900", "First Bill", chamber="lower") bill.add_action("this is an action", chamber="lower", date="1900-01-01") bill.add_action( "this is a different second action", chamber="lower", date="1900-01-02" ) result = BillImporter("jid").import_data([bill.as_dict()]) assert result["bill"]["update"] == 1 obj = Bill.objects.get() assert obj.actions.count() == 2 # delete an action, update bill = ScrapeBill("HB 1", "1900", "First Bill", chamber="lower") bill.add_action("this is a second action", chamber="lower", date="1900-01-02") result = BillImporter("jid").import_data([bill.as_dict()]) assert result["bill"]["update"] == 1 obj = Bill.objects.get() assert obj.actions.count() == 1 # delete all actions, update bill = ScrapeBill("HB 1", "1900", "First Bill", chamber="lower") result = BillImporter("jid").import_data([bill.as_dict()]) assert result["bill"]["update"] == 1 obj = Bill.objects.get() assert obj.actions.count() == 0 # and back to initial status, update bill = ScrapeBill("HB 1", "1900", "First Bill", chamber="lower") bill.add_action("this is an action", chamber="lower", date="1900-01-01") result = BillImporter("jid").import_data([bill.as_dict()]) assert result["bill"]["update"] == 1 obj = Bill.objects.get() assert obj.actions.count() == 1 @pytest.mark.django_db def test_bill_update_subsubitem(): create_jurisdiction() create_org() # initial sub-subitem bill = ScrapeBill("HB 1", "1900", "First Bill", chamber="lower") bill.add_version_link( "printing", "http://example.com/test.pdf", media_type="application/pdf" ) result = BillImporter("jid").import_data([bill.as_dict()]) assert result["bill"]["insert"] == 1 obj = Bill.objects.get() assert obj.versions.count() == 1 assert obj.versions.get().links.count() == 1 # a second subsubitem, update bill = ScrapeBill("HB 1", "1900", "First Bill", chamber="lower") bill.add_version_link( "printing", "http://example.com/test.pdf", media_type="application/pdf" ) bill.add_version_link( "printing", "http://example.com/test.text", media_type="text/plain" ) result = BillImporter("jid").import_data([bill.as_dict()]) assert result["bill"]["update"] == 1 obj = Bill.objects.get() assert obj.versions.count() == 1 assert obj.versions.get().links.count() == 2 # same thing, noop bill = ScrapeBill("HB 1", "1900", "First Bill", chamber="lower") bill.add_version_link( "printing", "http://example.com/test.pdf", media_type="application/pdf" ) bill.add_version_link( "printing", "http://example.com/test.text", media_type="text/plain" ) result = BillImporter("jid").import_data([bill.as_dict()]) assert result["bill"]["noop"] == 1 obj = Bill.objects.get() assert obj.versions.count() == 1 assert obj.versions.get().links.count() == 2 # different link for second one, update bill = ScrapeBill("HB 1", "1900", "First Bill", chamber="lower") bill.add_version_link( "printing", "http://example.com/test.pdf", media_type="application/pdf" ) bill.add_version_link( "printing", "http://example.com/diff-link.txt", media_type="text/plain" ) result = BillImporter("jid").import_data([bill.as_dict()]) assert result["bill"]["update"] == 1 obj = Bill.objects.get() assert obj.versions.count() == 1 assert obj.versions.get().links.count() == 2 # delete one, update bill = ScrapeBill("HB 1", "1900", "First Bill", chamber="lower") bill.add_version_link( "printing", "http://example.com/test.pdf", media_type="application/pdf" ) result = BillImporter("jid").import_data([bill.as_dict()]) assert result["bill"]["update"] == 1 obj = Bill.objects.get() assert obj.versions.count() == 1 assert obj.versions.get().links.count() == 1 @pytest.mark.django_db def test_bill_sponsor_by_identifier(): create_jurisdiction() org = create_org() bill = ScrapeBill( "HB 1", "1900", "Axe & Tack Tax Act", classification="tax bill", chamber="lower" ) bill.add_sponsorship_by_identifier( name="SNODGRASS", classification="sponsor", entity_type="person", primary=True, identifier="TOTALLY_REAL_ID", scheme="TOTALLY_REAL_SCHEME", ) za_db = Person.objects.create(name="Zadock Snodgrass") za_db.identifiers.create(identifier="TOTALLY_REAL_ID", scheme="TOTALLY_REAL_SCHEME") Membership.objects.create(person_id=za_db.id, organization_id=org.id) BillImporter("jid").import_data([bill.as_dict()]) obj = Bill.objects.get() (entry,) = obj.sponsorships.all() assert entry.person.name == "Zadock Snodgrass" @pytest.mark.django_db def test_bill_sponsor_limit_lookup_by_jurisdiction(): create_jurisdiction() org = create_org() bill = ScrapeBill( "HB 1", "1900", "Axe & Tack Tax Act", classification="tax bill", chamber="lower" ) bill.add_sponsorship_by_identifier( name="SNODGRASS", classification="sponsor", entity_type="person", primary=True, identifier="TOTALLY_REAL_ID", scheme="TOTALLY_REAL_SCHEME", ) za_db = Person.objects.create(name="Zadock Snodgrass", birth_date="1800-01-01") za_db.identifiers.create(identifier="TOTALLY_REAL_ID", scheme="TOTALLY_REAL_SCHEME") Membership.objects.create(person_id=za_db.id, organization_id=org.id) # This is contrived and perhaps broken, but we're going to check this. # We *really* don't want to *ever* cross jurisdiction bounds. za2 = Person.objects.create(name="Zadock Snodgrass") za2.identifiers.create(identifier="TOTALLY_REAL_ID", scheme="TOTALLY_REAL_SCHEME") assert Person.objects.count() == 2 BillImporter("jid").import_data([bill.as_dict()]) obj = Bill.objects.get() (entry,) = obj.sponsorships.all() assert entry.person.name == "Zadock Snodgrass" assert entry.person.birth_date == "1800-01-01" @pytest.mark.django_db def test_bill_sponsor_limit_lookup_within_session(): j = create_jurisdiction() org = create_org() j.legislative_sessions.create( identifier="2021", name="2021", start_date="2021", end_date="2022" ) old_bill = ScrapeBill( "HB 1", "1900", "Axe & Tack Tax Act", classification="tax bill", chamber="lower" ) old_bill.add_sponsorship( name="Springfield", classification="sponsor", entity_type="person", primary=True, ) new_bill = ScrapeBill( "HB 9000", "2021", "Laser Regulations", classification="tax bill", chamber="lower", ) new_bill.add_sponsorship( name="Springfield", classification="sponsor", entity_type="person", primary=True, ) jeb = Person.objects.create( name="Jebediah Springfield", birth_date="1850-01-01", family_name="Springfield" ) Membership.objects.create( person_id=jeb.id, organization_id=org.id, end_date="1910-01-01" ) futuro = Person.objects.create( name="Futuro Springfield", birth_date="2000-01-01", family_name="Springfield" ) Membership.objects.create( person_id=futuro.id, organization_id=org.id, start_date="2020-04-01" ) BillImporter("jid").import_data([old_bill.as_dict(), new_bill.as_dict()]) # get old bill and ensure Jeb is sponsor old_bill_obj = Bill.objects.get(identifier="HB 1") (entry,) = old_bill_obj.sponsorships.all() assert entry.person.name == jeb.name # get new bill and ensure Futuro is sponsor new_bill_obj = Bill.objects.get(identifier="HB 9000") (entry,) = new_bill_obj.sponsorships.all() assert entry.person.name == futuro.name @pytest.mark.django_db def test_fix_bill_id(): create_jurisdiction() create_org() bill = ScrapeBill( "hb1", "1900", "Test Bill ID", classification="bill", chamber="lower" ) from openstates.settings import IMPORT_TRANSFORMERS IMPORT_TRANSFORMERS["bill"] = { "identifier": fix_bill_id, } bi = BillImporter("jid") bi.import_data([bill.as_dict()]) IMPORT_TRANSFORMERS["bill"] = {} b = Bill.objects.get() assert b.identifier == "HB 1" @pytest.mark.django_db def test_bill_duplicate_actions_ordering(): create_jurisdiction() create_org() def _problem_bill(): bill = ScrapeBill( "HB 1", "1900", "Axe & Tack Tax Act", classification="tax bill", chamber="lower", ) # two identical actions, and one differs bill.add_action("identical action", "1900-04-01", chamber="lower") bill.add_action("different action", "1900-04-01", chamber="lower") bill.add_action("identical action", "1900-04-01", chamber="lower") return bill # import bill bill = _problem_bill() result = BillImporter("jid").import_data([bill.as_dict()]) assert result["bill"]["insert"] == 1 assert result["bill"]["update"] == 0 assert result["bill"]["noop"] == 0 bill = _problem_bill() result = BillImporter("jid").import_data([bill.as_dict()]) assert result["bill"]["insert"] == 0 assert result["bill"]["update"] == 0 assert result["bill"]["noop"] == 1
33.934334
88
0.650965
6359c038d599fb2cc221c2649199aa5f53947c9f
3,970
py
Python
src/fhir_types/FHIR_SubstanceSpecification_Relationship.py
anthem-ai/fhir-types
42348655fb3a9b3f131b911d6bc0782da8c14ce4
[ "Apache-2.0" ]
2
2022-02-03T00:51:30.000Z
2022-02-03T18:42:43.000Z
src/fhir_types/FHIR_SubstanceSpecification_Relationship.py
anthem-ai/fhir-types
42348655fb3a9b3f131b911d6bc0782da8c14ce4
[ "Apache-2.0" ]
null
null
null
src/fhir_types/FHIR_SubstanceSpecification_Relationship.py
anthem-ai/fhir-types
42348655fb3a9b3f131b911d6bc0782da8c14ce4
[ "Apache-2.0" ]
null
null
null
from typing import Any, List, Literal, TypedDict from .FHIR_boolean import FHIR_boolean from .FHIR_CodeableConcept import FHIR_CodeableConcept from .FHIR_Element import FHIR_Element from .FHIR_Quantity import FHIR_Quantity from .FHIR_Range import FHIR_Range from .FHIR_Ratio import FHIR_Ratio from .FHIR_Reference import FHIR_Reference from .FHIR_string import FHIR_string # The detailed description of a substance, typically at a level beyond what is used for prescribing. FHIR_SubstanceSpecification_Relationship = TypedDict( "FHIR_SubstanceSpecification_Relationship", { # Unique id for the element within a resource (for internal references). This may be any string value that does not contain spaces. "id": FHIR_string, # May be used to represent additional information that is not part of the basic definition of the element. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. "extension": List[Any], # May be used to represent additional information that is not part of the basic definition of the element and that modifies the understanding of the element in which it is contained and/or the understanding of the containing element's descendants. Usually modifier elements provide negation or qualification. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. Applications processing a resource are required to check for modifier extensions.Modifier extensions SHALL NOT change the meaning of any elements on Resource or DomainResource (including cannot change the meaning of modifierExtension itself). "modifierExtension": List[Any], # A pointer to another substance, as a resource or just a representational code. "substanceReference": FHIR_Reference, # A pointer to another substance, as a resource or just a representational code. "substanceCodeableConcept": FHIR_CodeableConcept, # For example "salt to parent", "active moiety", "starting material". "relationship": FHIR_CodeableConcept, # For example where an enzyme strongly bonds with a particular substance, this is a defining relationship for that enzyme, out of several possible substance relationships. "isDefining": FHIR_boolean, # Extensions for isDefining "_isDefining": FHIR_Element, # A numeric factor for the relationship, for instance to express that the salt of a substance has some percentage of the active substance in relation to some other. "amountQuantity": FHIR_Quantity, # A numeric factor for the relationship, for instance to express that the salt of a substance has some percentage of the active substance in relation to some other. "amountRange": FHIR_Range, # A numeric factor for the relationship, for instance to express that the salt of a substance has some percentage of the active substance in relation to some other. "amountRatio": FHIR_Ratio, # A numeric factor for the relationship, for instance to express that the salt of a substance has some percentage of the active substance in relation to some other. "amountString": str, # Extensions for amountString "_amountString": FHIR_Element, # For use when the numeric. "amountRatioLowLimit": FHIR_Ratio, # An operator for the amount, for example "average", "approximately", "less than". "amountType": FHIR_CodeableConcept, # Supporting literature. "source": List[FHIR_Reference], }, total=False, )
77.843137
836
0.756423
8f4b210dbe60358a33aeab0b4611f3235d4c7c37
7,644
py
Python
pyqaserver/vmat_module.py
brjdenis/qaserver
93a4c3272cf38199e7ef67d1285a9ffacef46883
[ "MIT" ]
11
2019-12-02T04:27:48.000Z
2020-06-10T09:18:11.000Z
pyqaserver/vmat_module.py
brjdenis/pyqaserver
93a4c3272cf38199e7ef67d1285a9ffacef46883
[ "MIT" ]
13
2020-10-19T16:38:56.000Z
2021-05-04T19:44:01.000Z
pyqaserver/vmat_module.py
brjdenis/qaserver
93a4c3272cf38199e7ef67d1285a9ffacef46883
[ "MIT" ]
2
2020-01-13T17:00:41.000Z
2020-01-28T21:32:58.000Z
import sys import os import numpy as np from multiprocessing import Pool import tempfile import matplotlib.style import matplotlib matplotlib.use('Agg') from matplotlib.figure import Figure # To revert back to matplotlib 1.0 style matplotlib.style.use('classic') from pylinac import DRGS, DRMLC parent_module = sys.modules['.'.join(__name__.split('.')[:-1]) or '__main__'] if __name__ == '__main__' or parent_module.__name__ == '__main__': #sys.path.append(os.path.abspath(os.path.realpath("python_packages"))) import config from python_packages.bottlepy.bottle import Bottle, request, TEMPLATE_PATH, template, redirect, response import general_functions import RestToolbox_modified as RestToolbox from python_packages import mpld3 else: from . import config from .python_packages.bottlepy.bottle import Bottle, request, TEMPLATE_PATH, template, redirect, response from . import general_functions from . import RestToolbox_modified as RestToolbox from .python_packages import mpld3 CUR_DIR = os.path.realpath(os.path.dirname(__file__)) # Path to Bottle templates TEMPLATE_PATH.insert(0, os.path.join(CUR_DIR, 'views')) # Url to some mpld3 library D3_URL = config.D3_URL MPLD3_URL = config.MPLD3_URL PI = np.pi # MLC type for PicketFence analysis: LEAF_TYPE = ["Varian_120", "Varian_120HD", "Varian_80", "Elekta_80", "Elekta_160"] # Here starts the bottle server vmat_app = Bottle() @vmat_app.route('/vvmat', method="POST") def vvmat(): displayname = request.forms.hidden_displayname username = request.get_cookie("account", secret=config.SECRET_KEY) if not username: redirect("/login") try: variables = general_functions.Read_from_dcm_database() variables["displayname"] = displayname response.set_cookie("account", username, secret=config.SECRET_KEY, samesite="lax") except ConnectionError: return template("error_template", {"error_message": "Orthanc is refusing connection."}) return template("vvmat", variables) def vmat_helperf_catch_error(args): try: return vmat_helperf(args) except Exception as e: return template("error_template", {"error_message": str(e)}) def vmat_helperf(args): testtype = args["testtype"] w1 = args["w1"] w2 = args["w2"] imgdescription = args["imgdescription"] station = args["station"] displayname = args["displayname"] acquisition_datetime = args["acquisition_datetime"] general_functions.set_configuration(args["config"]) # Collect data for "save results" dicomenergy = general_functions.get_energy_from_imgdescription(imgdescription) user_machine, user_energy = general_functions.get_user_machine_and_energy(station, dicomenergy) machines_and_energies = general_functions.get_machines_and_energies(general_functions.get_treatmentunits_vmat()) tolerances = general_functions.get_tolerance_user_machine_vmat(user_machine) # If user_machne has specific tolerance if not tolerances: tolerance, pdf_report_enable = general_functions.get_settings_vmat() else: tolerance, pdf_report_enable = tolerances[0] tolerance = float(tolerance) save_results = { "user_machine": user_machine, "user_energy": user_energy, "machines_and_energies": machines_and_energies, "testtype": [testtype], "displayname": displayname } if w1==w2: return template("error_template", {"error_message": "Selected images must not be equal. One image should be an open field,"\ " the other DRGS or DRMLC."}) try: temp_folder1, file_path1 = RestToolbox.GetSingleDcm(config.ORTHANC_URL, w1) temp_folder2, file_path2 = RestToolbox.GetSingleDcm(config.ORTHANC_URL, w2) except: return template("error_template", {"error_message": "Cannot read images."}) try: if testtype == "DRGS": myvmat = DRGS(image_paths=(file_path1, file_path2)) else: myvmat = DRMLC(image_paths=(file_path1, file_path2)) myvmat.analyze(tolerance=tolerance) except Exception as e: return template("error_template", {"error_message": "Cannot analyze images. "+str(e)}) fig1 = Figure(figsize=(10.5, 5), tight_layout={"w_pad":3, "pad": 3}) ax1 = fig1.add_subplot(1,2,1) ax2 = fig1.add_subplot(1,2,2) ax1.imshow(myvmat.open_image.array, cmap=matplotlib.cm.gray, interpolation="none", aspect="equal", origin='upper') ax1.set_title('Open') ax1.axis('off') myvmat._draw_segments(ax1) ax2.imshow(myvmat.dmlc_image, cmap=matplotlib.cm.gray, interpolation="none", aspect="equal", origin='upper') ax2.set_title('DMLC') ax2.axis('off') myvmat._draw_segments(ax2) mpld3.plugins.connect(fig1, mpld3.plugins.MousePosition(fontsize=14, fmt=".2f")) script1 = mpld3.fig_to_html(fig1, d3_url=D3_URL, mpld3_url=MPLD3_URL) fig2 = Figure(figsize=(10.5, 5), tight_layout={"w_pad":1, "pad": 1}) ax3 = fig2.add_subplot(1,1,1) dmlc_prof, open_prof = myvmat._median_profiles((myvmat.dmlc_image, myvmat.open_image)) # Taken from pylinac: ax3.plot(dmlc_prof.values, label='DMLC') ax3.plot(open_prof.values, label='Open') ax3.autoscale(axis='x', tight=True) ax3.legend(loc=8, fontsize='large') ax3.grid() ax3.set_title("Median profiles") ax3.margins(0.05) mpld3.plugins.connect(fig2, mpld3.plugins.MousePosition(fontsize=14, fmt=".2f")) script2 = mpld3.fig_to_html(fig2, d3_url=D3_URL, mpld3_url=MPLD3_URL) # Collect data Rcorr = [roi.r_corr for roi in myvmat.segments] diff_corr = myvmat.r_devs diff_avg_abs = round(myvmat.avg_abs_r_deviation, 2) max_diff_abs = round(myvmat.max_r_deviation, 2) segment_passed = [roi.passed for roi in myvmat.segments] test_passed = myvmat.passed variables = { "script1": script1, "script2": script2, "Rcorr": Rcorr, "diff_corr": diff_corr, "diff_avg_abs": diff_avg_abs, "max_diff_abs": max_diff_abs, "segment_passed": segment_passed, "test_passed": test_passed, "save_results": save_results, "pdf_report_enable": pdf_report_enable, "acquisition_datetime": acquisition_datetime } # Generate pylinac report: if pdf_report_enable == "True": pdf_file = tempfile.NamedTemporaryFile(delete=False, prefix="VMAT", suffix=".pdf", dir=config.PDF_REPORT_FOLDER) myvmat.publish_pdf(pdf_file) variables["pdf_report_filename"] = os.path.basename(pdf_file.name) general_functions.delete_files_in_subfolders([temp_folder1, temp_folder2]) # Delete image return template("vmat_results", variables) @vmat_app.route('/vvmat/<w1>/<w2>/<testtype>', method="POST") def vvmat_calculate(w1, w2, testtype): imgdescription = request.forms.hidden_imgdescription station = request.forms.hidden_station displayname = request.forms.hidden_displayname acquisition_datetime = request.forms.hidden_datetime args = {"w1": w1, "w2": w2, "testtype": testtype, "imgdescription": imgdescription, "station": station, "displayname": displayname, "acquisition_datetime": acquisition_datetime, "config": general_functions.get_configuration()} p = Pool(1) data = p.map(vmat_helperf_catch_error, [args]) p.close() p.join() return data
39.2
132
0.685897
93ad718a419912709307979bcc1d7642105608e5
8,377
py
Python
slippi_ai/data.py
supersteph/slippi-ai
97e0845789e95c1511295bad626a514fff46ce74
[ "MIT" ]
12
2020-11-11T06:39:23.000Z
2022-02-26T04:55:31.000Z
slippi_ai/data.py
supersteph/slippi-ai
97e0845789e95c1511295bad626a514fff46ce74
[ "MIT" ]
5
2020-11-26T18:17:17.000Z
2022-02-07T16:48:34.000Z
slippi_ai/data.py
supersteph/slippi-ai
97e0845789e95c1511295bad626a514fff46ce74
[ "MIT" ]
9
2020-11-15T18:24:47.000Z
2022-01-15T18:00:18.000Z
import atexit import itertools import multiprocessing as mp import os import pickle import random from typing import Any, Iterable, List, Optional, Sequence, Set, Tuple, Iterator, NamedTuple import zlib import numpy as np import tree import melee from slippi_ai import embed, reward, stats, utils Nest = Any Controller = Nest Game = Nest class CompressedGame(NamedTuple): states: Game counts: Sequence[int] rewards: Sequence[float] class Batch(NamedTuple): game: CompressedGame needs_reset: bool def train_test_split(data_dir, subset=None, test_ratio=.1): if subset: print("Using subset:", subset) filenames = stats.get_subset(subset) filenames = [name + '.pkl' for name in filenames] else: print("Using all replays in", data_dir) filenames = sorted(os.listdir(data_dir)) print(f"Found {len(filenames)} replays.") # reproducible train/test split rng = random.Random() rng.shuffle(filenames) test_files = rng.sample(filenames, int(test_ratio * len(filenames))) test_set = set(test_files) train_files = [f for f in filenames if f not in test_set] train_paths = [os.path.join(data_dir, f) for f in train_files] test_paths = [os.path.join(data_dir, f) for f in test_files] if not test_paths: test_paths = train_paths return train_paths, test_paths def game_len(game: CompressedGame): return len(game.counts) class TrajectoryManager: # TODO: manage recurrent state? can also do it in the learner def __init__(self, source: Iterator[CompressedGame]): self.source = source self.game: CompressedGame = None def find_game(self, n): while True: game = next(self.source) if game_len(game) >= n: break self.game = game self.frame = 0 def grab_chunk(self, n) -> Tuple[CompressedGame, bool]: # TODO: write a unit test for this needs_reset = self.game is None or game_len(self.game) - self.frame < n if needs_reset: self.find_game(n) new_frame = self.frame + n slice = lambda a: a[self.frame:new_frame] chunk = tree.map_structure(slice, self.game) self.frame = new_frame return Batch(chunk, needs_reset) def swap_players(game: Game) -> Game: old_players = game['player'] new_players = {1: old_players[2], 2: old_players[1]} new_game = game.copy() new_game['player'] = new_players return new_game def detect_repeated_actions(controllers: Nest) -> Sequence[bool]: """Labels actions as repeated or not. Args: controllers: A nest of numpy arrays with shape [T]. Returns: A boolean numpy array `repeats` with shape [T-1]. repeats[i] is True iff controllers[i+1] equals controllers[i] """ is_same = lambda a: a[:-1] == a[1:] repeats = tree.map_structure(is_same, controllers) repeats = np.stack(tree.flatten(repeats), -1) repeats = np.all(repeats, -1) return repeats def indices_and_counts( repeats: Sequence[bool], max_repeat=15, ) -> Tuple[Sequence[int], Sequence[int]]: """Finds the indices and counts of repeated actions. `repeats` is meant to be produced by `detect_repeated_actions` If `controllers` is [a, a, a, c, b, b], then repeats = [T, T, F, F, T] indices = [2, 3, 5] counts = [2, 0, 1] Args: repeats: A boolean array with shape [T-1]. max_repeat: Maximum number of consecutive repeated actions before a repeat is considered a non-repeat. Returns: A tuple (indices, counts). """ indices = [] counts = [] count = 0 for i, is_repeat in enumerate(repeats): if not is_repeat or count == max_repeat: indices.append(i) # index of the last repeated action counts.append(count) count = 0 else: count += 1 indices.append(len(repeats)) counts.append(count) return np.array(indices), np.array(counts) def compress_repeated_actions( game: Game, rewards: Sequence[float], embed_controller: embed.Embedding, max_repeat: int, ) -> CompressedGame: controllers = game['player'][1]['controller_state'] controllers = embed_controller.map(lambda e, a: e.preprocess(a), controllers) repeats = detect_repeated_actions(controllers) indices, counts = indices_and_counts(repeats, max_repeat) compressed_game = tree.map_structure(lambda a: a[indices], game) reward_indices = np.concatenate([[0], indices[:-1]]) compressed_rewards = np.add.reduceat(rewards, reward_indices) compressed_game = CompressedGame(compressed_game, counts, compressed_rewards) shapes = [x.shape for x in tree.flatten(compressed_game)] for s in shapes: assert s == shapes[0] return compressed_game def _charset(chars: Optional[Iterable[melee.Character]]) -> Set[int]: if chars is None: chars = list(melee.Character) return set(c.value for c in chars) class DataSource: def __init__( self, filenames, compressed=True, batch_size=64, unroll_length=64, max_action_repeat=15, # preprocesses (discretizes) actions before repeat detection embed_controller=None, # Lists of melee.Character. None means all allowed. allowed_characters=None, allowed_opponents=None, ): self.filenames = filenames self.batch_size = batch_size self.unroll_length = unroll_length self.compressed = compressed self.max_action_repeat = max_action_repeat self.embed_controller = embed_controller trajectories = self.produce_trajectories() self.managers = [ TrajectoryManager(trajectories) for _ in range(batch_size)] self.allowed_characters = _charset(allowed_characters) self.allowed_opponents = _charset(allowed_opponents) def produce_trajectories(self) -> Iterator[CompressedGame]: raw_games = self.produce_raw_games() allowed_games = filter(self.is_allowed, raw_games) processed_games = map(self.process_game, allowed_games) return processed_games def process_game(self, game: Game) -> CompressedGame: rewards = reward.compute_rewards(game) return compress_repeated_actions( game, rewards, self.embed_controller, self.max_action_repeat) def produce_raw_games(self) -> Iterator[Game]: """Raw games without post-processing.""" self.file_counter = 0 for path in itertools.cycle(self.filenames): self.file_counter += 1 with open(path, 'rb') as f: obj_bytes = f.read() if self.compressed: obj_bytes = zlib.decompress(obj_bytes) game = pickle.loads(obj_bytes) yield game yield swap_players(game) def is_allowed(self, game: Game) -> bool: return ( game['player'][1]['character'][0] in self.allowed_characters and game['player'][2]['character'][0] in self.allowed_opponents) def __next__(self) -> Tuple[Batch, float]: next_batch = utils.batch_nest( [m.grab_chunk(self.unroll_length) for m in self.managers]) epoch = self.file_counter / len(self.filenames) return next_batch, epoch def produce_batches(data_source_kwargs, batch_queue): data_source = DataSource(**data_source_kwargs) while True: batch_queue.put(next(data_source)) class DataSourceMP: def __init__(self, buffer=4, **kwargs): for k, v in kwargs.items(): setattr(self, k, v) self.batch_queue = mp.Queue(buffer) self.process = mp.Process( target=produce_batches, args=(kwargs, self.batch_queue)) self.process.start() atexit.register(self.batch_queue.close) atexit.register(self.process.terminate) def __next__(self) -> Tuple[Batch, float]: return self.batch_queue.get() _name_to_character = {c.name.lower(): c for c in melee.Character} def _chars_from_string(chars: str) -> List[melee.Character]: if chars == 'all': return list(melee.Character) chars = chars.split(',') return [_name_to_character[c] for c in chars] CONFIG = dict( batch_size=32, unroll_length=64, compressed=True, max_action_repeat=15, in_parallel=True, # comma-separated lists of characters, or "all" allowed_characters='all', allowed_opponents='all', ) def make_source( allowed_characters: str, allowed_opponents: str, in_parallel: bool, **kwargs): constructor = DataSourceMP if in_parallel else DataSource return constructor( allowed_characters=_chars_from_string(allowed_characters), allowed_opponents=_chars_from_string(allowed_opponents), **kwargs)
29.600707
92
0.701922
59d6cb7fe1c2e0697da77ed684195fa971ed4549
5,109
py
Python
sdks/python/gen_protos.py
Sil1991/gcpdf-demo
88ecd538a30f009b239a1b320ab6ad75f6901ae0
[ "Apache-2.0" ]
1
2018-04-14T15:56:19.000Z
2018-04-14T15:56:19.000Z
sdks/python/gen_protos.py
Sil1991/gcpdf-demo
88ecd538a30f009b239a1b320ab6ad75f6901ae0
[ "Apache-2.0" ]
13
2019-11-13T03:56:36.000Z
2021-12-14T21:12:07.000Z
sdks/python/gen_protos.py
Sil1991/gcpdf-demo
88ecd538a30f009b239a1b320ab6ad75f6901ae0
[ "Apache-2.0" ]
null
null
null
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Generates Python proto modules and grpc stubs for Beam protos.""" import glob import logging import multiprocessing import os import pkg_resources import shutil import subprocess import sys import time import warnings GRPC_TOOLS = 'grpcio-tools>=1.3.5' BEAM_PROTO_PATHS = [ os.path.join('..', '..', 'model', 'pipeline', 'src', 'main', 'proto'), os.path.join('..', '..', 'model', 'job-management', 'src', 'main', 'proto'), os.path.join('..', '..', 'model', 'fn-execution', 'src', 'main', 'proto'), ] PYTHON_OUTPUT_PATH = os.path.join('apache_beam', 'portability', 'api') def generate_proto_files(force=False): try: import grpc_tools except ImportError: warnings.warn('Installing grpcio-tools is recommended for development.') py_sdk_root = os.path.dirname(os.path.abspath(__file__)) common = os.path.join(py_sdk_root, '..', 'common') proto_dirs = [os.path.join(py_sdk_root, path) for path in BEAM_PROTO_PATHS] proto_files = sum( [glob.glob(os.path.join(d, '*.proto')) for d in proto_dirs], []) out_dir = os.path.join(py_sdk_root, PYTHON_OUTPUT_PATH) out_files = [path for path in glob.glob(os.path.join(out_dir, '*_pb2.py'))] if out_files and not proto_files and not force: # We have out_files but no protos; assume they're up to date. # This is actually the common case (e.g. installation from an sdist). logging.info('No proto files; using existing generated files.') return elif not out_files and not proto_files: if not os.path.exists(common): raise RuntimeError( 'Not in apache git tree; unable to find proto definitions.') else: raise RuntimeError( 'No proto files found in %s.' % proto_dirs) # Regenerate iff the proto files are newer. elif force or not out_files or len(out_files) < len(proto_files) or ( min(os.path.getmtime(path) for path in out_files) <= max(os.path.getmtime(path) for path in proto_files)): try: from grpc_tools import protoc except ImportError: # Use a subprocess to avoid messing with this process' path and imports. # Note that this requires a separate module from setup.py for Windows: # https://docs.python.org/2/library/multiprocessing.html#windows p = multiprocessing.Process( target=_install_grpcio_tools_and_generate_proto_files) p.start() p.join() if p.exitcode: raise ValueError("Proto generation failed (see log for details).") else: logging.info('Regenerating out-of-date Python proto definitions.') builtin_protos = pkg_resources.resource_filename('grpc_tools', '_proto') args = ( [sys.executable] + # expecting to be called from command line ['--proto_path=%s' % builtin_protos] + ['--proto_path=%s' % d for d in proto_dirs] + ['--python_out=%s' % out_dir] + # TODO(robertwb): Remove the prefix once it's the default. ['--grpc_python_out=grpc_2_0:%s' % out_dir] + proto_files) ret_code = protoc.main(args) if ret_code: raise RuntimeError( 'Protoc returned non-zero status (see logs for details): ' '%s' % ret_code) # Though wheels are available for grpcio-tools, setup_requires uses # easy_install which doesn't understand them. This means that it is # compiled from scratch (which is expensive as it compiles the full # protoc compiler). Instead, we attempt to install a wheel in a temporary # directory and add it to the path as needed. # See https://github.com/pypa/setuptools/issues/377 def _install_grpcio_tools_and_generate_proto_files(): install_path = os.path.join( os.path.dirname(os.path.abspath(__file__)), '.eggs', 'grpcio-wheels') build_path = install_path + '-build' if os.path.exists(build_path): shutil.rmtree(build_path) logging.warning('Installing grpcio-tools into %s' % install_path) try: start = time.time() subprocess.check_call( ['pip', 'install', '--target', install_path, '--build', build_path, '--upgrade', GRPC_TOOLS]) logging.warning( 'Installing grpcio-tools took %0.2f seconds.' % (time.time() - start)) finally: shutil.rmtree(build_path) sys.path.append(install_path) generate_proto_files() if __name__ == '__main__': generate_proto_files(force=True)
38.126866
78
0.695831
be4f1cb0b7d7607159fd3b7ea853d4ce0b3a4003
10,268
py
Python
conrad/cli.py
ca-pettarelli/conrad
ff8edaa2f3053d6bababff883946067e3469635a
[ "Apache-2.0" ]
null
null
null
conrad/cli.py
ca-pettarelli/conrad
ff8edaa2f3053d6bababff883946067e3469635a
[ "Apache-2.0" ]
null
null
null
conrad/cli.py
ca-pettarelli/conrad
ff8edaa2f3053d6bababff883946067e3469635a
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import os import json import hashlib import datetime as dt import click import requests import sqlalchemy from colorama import Fore, Style from cli_helpers import tabular_output from . import __version__, CONRAD_HOME from .db import engine, Session from .models import Base, Event, Reminder from .utils import initialize_database, validate def set_default_pager(): os_environ_pager = os.environ.get("PAGER") if os_environ_pager == "less": os.environ["LESS"] = "-SRXF" def get_events(): response = requests.get( "https://raw.githubusercontent.com/vinayak-mehta/conrad/master/data/events.json" ) with open(os.path.join(CONRAD_HOME, "events.json"), "w") as f: f.write(json.dumps(response.json())) def refresh_database(events): session = Session() for event in events: event_id = hashlib.md5( (event["name"] + event["start_date"]).encode("utf-8") ).hexdigest() e = Event( id=event_id[:6], name=event["name"], url=event["url"], city=event["city"], state=event["state"], country=event["country"], cfp_open=event["cfp_open"], cfp_start_date=dt.datetime.strptime(event["cfp_start_date"], "%Y-%m-%d"), cfp_end_date=dt.datetime.strptime(event["cfp_end_date"], "%Y-%m-%d"), start_date=dt.datetime.strptime(event["start_date"], "%Y-%m-%d"), end_date=dt.datetime.strptime(event["end_date"], "%Y-%m-%d"), source=event["source"], tags=event["tags"], kind=event["kind"], ) session.add(e) session.commit() session.close() @click.group(name="conrad") @click.version_option(version=__version__) @click.pass_context def cli(ctx, *args, **kwargs): """conrad: Track conferences and meetups on your terminal!""" set_default_pager() @cli.command("refresh", short_help="Refresh event database.") @click.confirmation_option(prompt="Would you like conrad to look for new events?") @click.pass_context def _refresh(ctx, *args, **kwargs): if not os.path.exists(CONRAD_HOME): os.makedirs(CONRAD_HOME) get_events() if not os.path.exists(os.path.join(CONRAD_HOME, "conrad.db")): initialize_database() else: Event.__table__.drop(engine) Base.metadata.tables["event"].create(bind=engine) with open(os.path.join(CONRAD_HOME, "events.json"), "r") as f: events = json.load(f) refresh_database(events) # TODO: print("10 new events found!") click.echo("Event database updated!") @cli.command("show", short_help="Show all saved events.") @click.option( "--cfp", "-c", is_flag=True, help="Show only events which have an open CFP (call for proposals).", ) @click.option( "--tag", "-t", default="", help="Look at conferences with a specific tag." ) @click.option( "--name", "-n", default="", help="Look at conferences containing a specific word in their name.", ) @click.option( "--location", "-l", default="", help="Look at conferences in a specific city, state or country.", ) @click.option( "--date", "-d", default=[], multiple=True, help='Look at conferences based on when they\'re happening. For example: conrad show --date ">= 2019-10-01" --date "<= 2020-01-01".', ) @click.pass_context def _show(ctx, *args, **kwargs): # TODO: conrad show --new if not os.path.exists(CONRAD_HOME): os.makedirs(CONRAD_HOME) if not os.path.exists(os.path.join(CONRAD_HOME, "conrad.db")): click.echo("Event database not found, fetching it!") get_events() initialize_database() with open(os.path.join(CONRAD_HOME, "events.json"), "r") as f: events = json.load(f) refresh_database(events) cfp = kwargs["cfp"] tag = kwargs["tag"] name = kwargs["name"] date = list(kwargs["date"]) location = kwargs["location"] filters = [] if cfp: filters.append(Event.cfp_open.is_(cfp)) if tag: filters.append(Event.tags.contains(tag)) if name: filters.append(Event.name.ilike("%{}%".format(name))) if date: date_filters = [] for d in date: cmp, date = d.split(" ") if not (">" in cmp or "<" in cmp): raise click.UsageError("Wrong comparison operator!") try: __ = dt.datetime.strptime(date, "%Y-%m-%d") except ValueError: raise click.UsageError("Wrong date format!") if ">" in cmp: date_filters.append(Event.start_date >= date) elif "<" in cmp: date_filters.append(Event.start_date <= date) filters.append(sqlalchemy.and_(*date_filters)) if location: filters.append( sqlalchemy.or_( Event.city.ilike("%{}%".format(location)), Event.state.ilike("%{}%".format(location)), Event.country.ilike("%{}%".format(location)), ) ) session = Session() events = list( session.query(Event).filter(*filters).order_by(Event.start_date).all() ) if len(events): header = [ "id", "name", "url", "city", "state", "country", "start_date", "end_date", ] events_output = [] for event in events: events_output.append( [ event.id, event.name, event.url, event.city, event.state, event.country, event.start_date.strftime("%Y-%m-%d"), event.end_date.strftime("%Y-%m-%d"), ] ) session.close() formatted = tabular_output.format_output( events_output, header, format_name="ascii" ) click.echo_via_pager("\n".join(formatted)) else: click.echo("No events found!") @cli.command("remind", short_help="Set and display reminders.") @click.option("--id", "-i", default=None, help="Conference identifier.") @click.pass_context def _remind(ctx, *args, **kwargs): _id = kwargs["id"] if _id is None: session = Session() reminders = list( session.query(Event, Reminder) .filter(Event.id == Reminder.id) .order_by(Event.start_date) .all() ) if len(reminders): header = ["id", "name", "start_date", "days_left"] reminders_output = [] for reminder, __ in reminders: start = dt.datetime.now() if reminder.cfp_open: delta_days = (reminder.cfp_end_date - start).days days_left = "{} days left to cfp deadline!".format(delta_days) else: delta_days = (reminder.start_date - start).days days_left = "{} days left!".format(delta_days) if delta_days > 30: days_left = Fore.GREEN + Style.BRIGHT + days_left + Style.RESET_ALL elif delta_days < 30 and delta_days > 10: days_left = Fore.YELLOW + Style.BRIGHT + days_left + Style.RESET_ALL elif delta_days < 10: days_left = Fore.RED + Style.BRIGHT + days_left + Style.RESET_ALL reminders_output.append( [ reminder.id, reminder.name, reminder.start_date.strftime("%Y-%m-%d"), days_left, ] ) session.close() formatted = tabular_output.format_output( reminders_output, header, format_name="ascii" ) click.echo("\n".join(formatted)) else: click.echo("No reminders found!") else: try: session = Session() reminder = Reminder(id=_id) session.add(reminder) session.commit() session.close() click.echo("Reminder set!") except sqlalchemy.exc.IntegrityError: session.rollback() if click.confirm("Do you want to remove this reminder?"): session = Session() session.query(Reminder).filter(Reminder.id == _id).delete() session.commit() session.close() click.echo("Reminder removed!") @cli.command("import", short_help="Import new events into conrad.") @click.option("--file", "-f", default=None, help="JSON file to import.") @click.pass_context def _import(ctx, *args, **kwargs): file = kwargs["file"] EVENTS_PATH = os.path.join(os.getcwd(), "data", "events.json") if file is None: raise click.UsageError("No file provided!") if not os.path.exists(file): raise click.UsageError("File does not exist!") with open(file, "r") as f: input_events = json.load(f) failures = validate(input_events) if len(failures): raise click.UsageError( "The following validations failed!\n{}".format( "".join( list(map(lambda x: "- " + x + "\n", failures[:-1])) + list(map(lambda x: "- " + x, failures[-1:])) ) ) ) with open(EVENTS_PATH, "r") as f: events = json.load(f) new_events = [] for ie in input_events: match = False for e in events: if ( ie["name"].replace(" ", "").lower() in e["name"].replace(" ", "").lower() ): click.echo("Updating {}".format(e["name"])) e.update(ie) match = True if not match: new_events.append(ie) events.extend(new_events) click.echo("Added {} new events!".format(len(new_events))) with open(EVENTS_PATH, "w") as f: f.write(json.dumps(events, indent=4, sort_keys=True))
31.304878
137
0.546552
3c7ce3c8de69dd9451104db562f1c93cd29b3eac
8,961
py
Python
opentelekom/otc_resource.py
tsdicloud/python-opentelekom-sdk
809f3796dba48ad0535990caf7519bb9afa71d2d
[ "Apache-2.0" ]
null
null
null
opentelekom/otc_resource.py
tsdicloud/python-opentelekom-sdk
809f3796dba48ad0535990caf7519bb9afa71d2d
[ "Apache-2.0" ]
null
null
null
opentelekom/otc_resource.py
tsdicloud/python-opentelekom-sdk
809f3796dba48ad0535990caf7519bb9afa71d2d
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import re from openstack import resource from openstack import exceptions from openstack import utils def filter_none(d): if isinstance(d, dict): return { k: filter_none(v) for k, v in d.items() if v is not None } elif isinstance(d, list): return [ filter_none(elem) for elem in d ] else: return d class OtcResource(resource.Resource): # ===== adaptions of standard methods for OTC def fetch(self, session, requires_id=True, base_path=None, error_message=None, **params): """ Open Telekom Cloud sometimes throws an Bad Request exception.although a NotFound is required to make find or fetch working """ try: return super().fetch(session=session, requires_id=requires_id, base_path=base_path, error_message=error_message, **params) except exceptions.BadRequestException as bad: raise exceptions.ResourceNotFound(details=bad.details, http_status=404, request_id=bad.request_id) def _prepare_request(self, requires_id=None, prepend_key=False, patch=False, base_path=None): """ Enhance requets preparation by None value elimination """ request = super()._prepare_request(requires_id=requires_id, prepend_key=prepend_key, patch=patch, base_path=base_path) request.body = filter_none(request.body) return request def _translate_response(self, response, has_body=None, error_message=None): """ Open Telekom has non-uniform formats for error details, so we try to adapt the different formats to get useful information out of exceptions """ isError = False if has_body is None: has_body = self.has_body if has_body: content_type = response.headers.get('content-type', '') if response.content and 'application/json' in content_type: oerror = response.json() emsg = "" # Normalize to dict if error is described as a sub-structure if "error" in oerror: isError = True oerror = oerror['error'] # first: extract some know code,value pairs if "code" in oerror: isError = True emsg += "[" + str(oerror['code']) + "]" if "message" in oerror: emsg += " " + oerror['message'] + "\n" else: emsg += "\n" if "error_code" in oerror: isError = True if "error_msg" in oerror: emsg += " " + oerror['error_msg'] + "\n" else: emsg += "\n" if "errorCode" in oerror: isError = True emsg += "[" + oerror['errorCode'] + "]" if "message" in oerror: emsg += " " + oerror['message'] + "\n" else: emsg += "\n" # second: collect reasons in case of error to not loose information if isError: for reason, msg in oerror.items(): if reason not in ['code', 'error_code', 'errorCode', 'message', 'error_msg']: emsg += reason + "=" + msg + '\n' super()._translate_response(response, has_body=has_body, error_message=emsg if isError else None) #==== additional convenience functions here ===== #==== OpenTelekom Cloud usage of sub-resources to have cleaner APIs ==== class OtcSubResource(resource.Resource): """ This is an extension for Open Telekom Cloud so that sub-dicts could be defined with resource fields for better documentation and type control """ def to_dict(self, body=True, headers=False, computed=True, ignore_none=True, **params): """ Just redefine behavior of to_dict to ignore Nones """ return super().to_dict(body=body, headers=headers, computed=computed, ignore_none=ignore_none, **params) #==== OpenTelekom Cloud key/value extended tag handling ==== class TagMixin(object): #: A list of associated tags #: *Type: list of tag strings* tags = resource.Body('tags', type=dict, default={}) _key_syntax = re.compile('^[0-9a-zA-Z_\-]{1,36}$') _value_syntax = re.compile('^[0-9a-zA-Z_\-]{0,43}$') def _checkOtcTagSyntax(self, key, value): if TagMixin._key_syntax.match(key) == None: raise exceptions.InvalidRequest( 'Key %s should have 1..36 characters a-zA_Z0-9_-' % key) if TagMixin._value_syntax.match(value) == None: raise exceptions.InvalidRequest( 'Value %s should have at most 43 characters a-zA_Z0-9_-' % value) def _fetch(self, session): url = utils.urljoin(self.base_path, self.id, 'tags') session = self._get_session(session) response = session.get(url) exceptions.raise_from_response(response) json = response.json() tags = {} if 'tags' in json: for t in json['tags']: tags[ t['key'] ] = t['value'] self._body.attributes.update({'tags': tags }) return response def fetch_tags(self, session): """Lists tags set on the entity. :param session: The session to use for making this request. :return: The list with tags attached to the entity """ # NOTE(gtema): since this is a common method # we can't rely on the resource_key, because tags are returned # without resource_key. Do parse response here self._fetch(session) return self def check_tag(self, session, key): """Checks if tag exists on the entity. If the tag does not exist a 404 will be returned :param session: The session to use for making this request. :param tag: The tag as a string. """ response = self._fetch(session) if key not in self.tags: exceptions.raise_from_response(response, error_message='Tag does not exist') return self def add_tag(self, session, key, value): """Adds a single key,value tag to the resource. :param session: The session to use for making this request. :param key: The tag key as a string. :param value: The tag value as a string. """ self._checkOtcTagSyntax(key, value) url = utils.urljoin(self.base_path, self.id, 'tags') session = self._get_session(session) response = session.post(url=url, json={ "tag": { "key": key, "value": value }}) exceptions.raise_from_response(response) # we do not want to update tags directly tags = self.tags tags[key] = value self._body.attributes.update({ 'tags': tags }) return self def remove_tag(self, session, key): url = utils.urljoin(self.base_path, self.id, 'tags', key) session = self._get_session(session) response = session.delete(url=url) exceptions.raise_from_response(response) # we do not want to update tags directly tags = self.tags del tags[key] self._body.attributes.update({ 'tags': tags }) return self def remove_all_tags(self, session): """Removes all tags on the entity. :param session: The session to use for making this request. """ self.fetch_tags(session) keys = list(self.tags.keys()) for key in keys: self.remove_tag(session, key) return self def set_tags(self, session, tags={}): """Sets/Replaces all tags on the resource. :param session: The session to use for making this request. :param list tags: List with tags to be set on the resource """ if len(tags)>10: raise exceptions.InvalidRequest('Not more than 10 tags allowed!') for key,value in tags.items(): self._checkOtcTagSyntax(key,value) self.remove_all_tags(session) for key,value in dict(tags).items(): self.add_tag(session, key, value) return self
38.625
110
0.58989
b0e95ac292fccb6ebc137c193e42b6a88688fc12
10,940
py
Python
layers/OctaveConv1.py
IlikeBB/Object-Detection-for-M-NBI
650fa1ca7b8860785f0a838dab0301a9cba121d6
[ "MIT" ]
633
2019-04-16T16:18:45.000Z
2022-03-17T13:39:47.000Z
libs/nn/OctaveConv1.py
m-and-ms/OctaveConv_pytorch
ef971222da74802d61ff2e401e5dcafc4e9233bb
[ "MIT" ]
26
2019-04-17T18:26:01.000Z
2020-05-29T12:09:26.000Z
libs/nn/OctaveConv1.py
m-and-ms/OctaveConv_pytorch
ef971222da74802d61ff2e401e5dcafc4e9233bb
[ "MIT" ]
99
2019-04-17T01:34:28.000Z
2021-02-23T02:01:04.000Z
#!/usr/bin/env python # -*- coding:utf-8 -*- # Author: Xiangtai Li(lxtpku@pku.edu.cn) # Pytorch Implementation of Octave Conv Operation # This version uses F.conv2d with learnable sampled weights import torch import torch.nn as nn import torch.nn.functional as F up_kwargs = {'mode': 'nearest'} class OctaveConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, alpha_in=0.5, alpha_out=0.5, stride=1, padding=1, dilation=1, groups=1, bias=False, up_kwargs = up_kwargs): super(OctaveConv, self).__init__() self.weights = nn.Parameter(torch.Tensor(out_channels, in_channels, kernel_size[0], kernel_size[1])) self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups if bias: self.bias = nn.Parameter(torch.Tensor(out_channels)) else: self.bias = torch.zeros(out_channels).cuda() self.up_kwargs = up_kwargs self.h2g_pool = nn.AvgPool2d(kernel_size=(2,2), stride=2) self.in_channels = in_channels self.out_channels = out_channels self.alpha_in = alpha_in self.alpha_out = alpha_out def forward(self, x): X_h, X_l = x if self.stride ==2: X_h, X_l = self.h2g_pool(X_h), self.h2g_pool(X_l) X_h2l = self.h2g_pool(X_h) end_h_x = int(self.in_channels*(1- self.alpha_in)) end_h_y = int(self.out_channels*(1- self.alpha_out)) X_h2h = F.conv2d(X_h, self.weights[0:end_h_y, 0:end_h_x, :,:], self.bias[0:end_h_y], 1, self.padding, self.dilation, self.groups) X_l2l = F.conv2d(X_l, self.weights[end_h_y:, end_h_x:, :,:], self.bias[end_h_y:], 1, self.padding, self.dilation, self.groups) X_h2l = F.conv2d(X_h2l, self.weights[end_h_y:, 0: end_h_x, :,:], self.bias[end_h_y:], 1, self.padding, self.dilation, self.groups) X_l2h = F.conv2d(X_l, self.weights[0:end_h_y, end_h_x:, :,:], self.bias[0:end_h_y], 1, self.padding, self.dilation, self.groups) X_l2h = F.upsample(X_l2h, scale_factor=2, **self.up_kwargs) X_h = X_h2h + X_l2h X_l = X_l2l + X_h2l return X_h, X_l class FirstOctaveConv(nn.Module): def __init__(self, in_channels, out_channels,kernel_size, alpha_in=0.0, alpha_out=0.5, stride=1, padding=1, dilation=1, groups=1, bias=False, up_kwargs = up_kwargs): super(FirstOctaveConv, self).__init__() self.weights = nn.Parameter(torch.Tensor(out_channels, in_channels, kernel_size[0], kernel_size[1])) self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups if bias: self.bias = nn.Parameter(torch.Tensor(out_channels)) else: self.bias = torch.zeros(out_channels).cuda() self.up_kwargs = up_kwargs self.h2g_pool = nn.AvgPool2d(kernel_size=(2,2), stride=2) self.in_channels = in_channels self.out_channels = out_channels self.alpha_in = alpha_in self.alpha_out = alpha_out def forward(self, x): if self.stride ==2: x = self.h2g_pool(x) X_h2l = self.h2g_pool(x) X_h = x end_h_x = int(self.in_channels*(1- self.alpha_in)) end_h_y = int(self.out_channels*(1- self.alpha_out)) X_h2h = F.conv2d(X_h, self.weights[0:end_h_y, 0: end_h_x, :,:], self.bias[0:end_h_y], 1, self.padding, self.dilation, self.groups) X_h2l = F.conv2d(X_h2l, self.weights[end_h_y:, 0: end_h_x, :,:], self.bias[end_h_y:], 1, self.padding, self.dilation, self.groups) X_h = X_h2h X_l = X_h2l return X_h, X_l class LastOctaveConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, alpha_in=0.5, alpha_out=0.0, stride=1, padding=1, dilation=1, groups=1, bias=False, up_kwargs = up_kwargs): super(LastOctaveConv, self).__init__() self.weights = nn.Parameter(torch.Tensor(out_channels, in_channels, kernel_size[0], kernel_size[1])) self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups if bias: self.bias = nn.Parameter(torch.Tensor(out_channels)) else: self.bias = torch.zeros(out_channels).cuda() self.up_kwargs = up_kwargs self.h2g_pool = nn.AvgPool2d(kernel_size=(2,2), stride=2) self.in_channels = in_channels self.out_channels = out_channels self.alpha_in = alpha_in self.alpha_out = alpha_out def forward(self, x): X_h, X_l = x if self.stride ==2: X_h, X_l = self.h2g_pool(X_h), self.h2g_pool(X_l) end_h_x = int(self.in_channels*(1- self.alpha_in)) end_h_y = int(self.out_channels*(1- self.alpha_out)) X_h2h = F.conv2d(X_h, self.weights[0:end_h_y, 0:end_h_x, :,:], self.bias[:end_h_y], 1, self.padding, self.dilation, self.groups) X_l2h = F.conv2d(X_l, self.weights[0:end_h_y, end_h_x:, :,:], self.bias[:end_h_y], 1, self.padding, self.dilation, self.groups) X_l2h = F.upsample(X_l2h, scale_factor=2, **self.up_kwargs) X_h = X_h2h + X_l2h return X_h class OctaveCBR(nn.Module): def __init__(self,in_channels, out_channels, kernel_size=(3,3),alpha_in=0.5, alpha_out=0.5, stride=1, padding=1, dilation=1, groups=1, bias=False, up_kwargs = up_kwargs, norm_layer=nn.BatchNorm2d): super(OctaveCBR, self).__init__() self.conv = OctaveConv(in_channels,out_channels,kernel_size, alpha_in,alpha_out, stride, padding, dilation, groups, bias, up_kwargs) self.bn_h = norm_layer(int(out_channels*(1-alpha_out))) self.bn_l = norm_layer(int(out_channels*alpha_out)) self.relu = nn.ReLU(inplace=True) def forward(self, x): x_h, x_l = self.conv(x) x_h = self.relu(self.bn_h(x_h)) x_l = self.relu(self.bn_l(x_l)) return x_h, x_l class OctaveCB(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=(3,3), alpha_in=0.5, alpha_out=0.5, stride=1, padding=1, dilation=1, groups=1, bias=False, up_kwargs=up_kwargs, norm_layer=nn.BatchNorm2d): super(OctaveCB, self).__init__() self.conv = OctaveConv(in_channels, out_channels, kernel_size, alpha_in, alpha_out, stride, padding, dilation, groups, bias, up_kwargs) self.bn_h = norm_layer(int(out_channels * (1 - alpha_out))) self.bn_l = norm_layer(int(out_channels * alpha_out)) def forward(self, x): x_h, x_l = self.conv(x) x_h = self.bn_h(x_h) x_l = self.bn_l(x_l) return x_h, x_l class FirstOctaveCBR(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=(3,3),alpha_in=0.0, alpha_out=0.5, stride=1, padding=1, dilation=1, groups=1, bias=False, up_kwargs = up_kwargs, norm_layer=nn.BatchNorm2d): super(FirstOctaveCBR, self).__init__() self.conv = FirstOctaveConv(in_channels,out_channels,kernel_size, alpha_in,alpha_out,stride,padding,dilation,groups,bias,up_kwargs) self.bn_h = norm_layer(int(out_channels * (1 - alpha_out))) self.bn_l = norm_layer(int(out_channels * alpha_out)) self.relu = nn.ReLU(inplace=True) def forward(self, x): x_h, x_l = self.conv(x) x_h = self.relu(self.bn_h(x_h)) x_l = self.relu(self.bn_l(x_l)) return x_h, x_l class LastOCtaveCBR(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=(3,3), alpha_in=0.5, alpha_out=0.0, stride=1, padding=1, dilation=1, groups=1, bias=False, up_kwargs = up_kwargs, norm_layer=nn.BatchNorm2d): super(LastOCtaveCBR, self).__init__() self.conv = LastOctaveConv(in_channels, out_channels, kernel_size, alpha_in, alpha_out, stride, padding, dilation, groups, bias, up_kwargs) self.bn_h = norm_layer(int(out_channels * (1 - alpha_out))) self.relu = nn.ReLU(inplace=True) def forward(self, x): x_h = self.conv(x) x_h = self.relu(self.bn_h(x_h)) return x_h class FirstOctaveCB(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=(3,3), alpha_in=0.0, alpha_out=0.5, stride=1, padding=1, dilation=1, groups=1, bias=False, up_kwargs = up_kwargs, norm_layer=nn.BatchNorm2d): super(FirstOctaveCB, self).__init__() self.conv = FirstOctaveConv(in_channels,out_channels,kernel_size, alpha_in,alpha_out,stride,padding,dilation,groups,bias,up_kwargs) self.bn_h = norm_layer(int(out_channels * (1 - alpha_out))) self.bn_l = norm_layer(int(out_channels * alpha_out)) self.relu = nn.ReLU(inplace=True) def forward(self, x): x_h, x_l = self.conv(x) x_h = self.bn_h(x_h) x_l = self.bn_l(x_l) return x_h, x_l class LastOCtaveCB(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, alpha_in=0.5, alpha_out=0.0, stride=1, padding=1, dilation=1, groups=1, bias=False, up_kwargs = up_kwargs, norm_layer=nn.BatchNorm2d): super(LastOCtaveCB, self).__init__() self.conv = LastOctaveConv( in_channels, out_channels, kernel_size, alpha_in, alpha_out, stride, padding, dilation, groups, bias, up_kwargs) self.bn_h = norm_layer(int(out_channels * (1 - alpha_out))) self.relu = nn.ReLU(inplace=True) def forward(self, x): x_h = self.conv(x) x_h = self.bn_h(x_h) return x_h if __name__ == '__main__': # nn.Conv2d high = torch.Tensor(1, 64, 32, 32).cuda() low = torch.Tensor(1, 192, 16, 16).cuda() # test Oc conv OCconv = OctaveConv(kernel_size=(3,3),in_channels=256,out_channels=512,bias=False,stride=2,alpha_in=0.75,alpha_out=0.75).cuda() i = high,low x_out,y_out = OCconv(i) print(x_out.size()) print(y_out.size()) # test First Octave Cov i = torch.Tensor(1, 3, 512, 512).cuda() FOCconv = FirstOctaveConv(kernel_size=(3,3), in_channels=3, out_channels=128).cuda() x_out, y_out = FOCconv(i) # test last Octave Cov LOCconv = LastOctaveConv(kernel_size=(3,3), in_channels=256, out_channels=128, alpha_out=0.75, alpha_in=0.75).cuda() i = high, low out = LOCconv(i) print(out.size()) # test OCB ocb = OctaveCB(in_channels=256, out_channels=128, alpha_out=0.75, alpha_in=0.75).cuda() i = high, low x_out_h, y_out_l = ocb(i) print(x_out_h.size()) print(y_out_l.size()) ocb_last = LastOCtaveCBR(256,128, alpha_out=0.0, alpha_in=0.75).cuda() i = high, low x_out_h = ocb_last(i) print(x_out_h.size())
39.781818
148
0.634186
199a68aef39dfbe1199c1a201f72939cf3134dfd
4,551
py
Python
Python-Game_Command_Interpreter/src/main.py
krzem5/Python-Fraction_Subtraction
f937b5a02f6425fb41bac9ddb882ca4a6999fd43
[ "BSD-3-Clause" ]
null
null
null
Python-Game_Command_Interpreter/src/main.py
krzem5/Python-Fraction_Subtraction
f937b5a02f6425fb41bac9ddb882ca4a6999fd43
[ "BSD-3-Clause" ]
null
null
null
Python-Game_Command_Interpreter/src/main.py
krzem5/Python-Fraction_Subtraction
f937b5a02f6425fb41bac9ddb882ca4a6999fd43
[ "BSD-3-Clause" ]
null
null
null
sayings={'xp amout':'Your Expirience Points:\t','coords':'%s:\tx=%s, y=%s, z=%s'} errors={'short error':'Number must be smaller than 100001 and greater than -100001','integrer error':'%s must be integrer','no cmd':"Command %s don't exists",'len error':'Invalid lenght of %slist','invalid string':'String %sis invalid','bolean error':'%s is not true or false'} help_={'xp':'/xp {add/delete} [amout]','help':'/help OR /help [cmd]','tp':'/tp [player] [x] [y] [z]','exit':'/exit','calculator':'/calculator','gamerule':'/gamerule [rule] [status]','effect':'/effect [effect] OR /effect [effect] [amplifier] [strenght]'} commands=('xp','tp','help','exit','calculator','gamerule','effect') gamerules={'chatOutput':True,'cheats':False,'characterLine':True} #PLAYER INPUT(cmd) # | # | # +------ not starting-Y------ chat shows input string # with "/" # | #+---------------N #+/xp add/delete [short] adds or deletes expirience points @ #+/tp [player] [x] [y] [z] teleports the player to x,y,z @ #+/help OR /help [cmd] show help chat @ #+/exit exits program @ #+/calculator opens calculator @ #+/gamerule [rule] [status] changes gamerules #+/effect [effect] OR /effect [effect] [amplifier] [strenght] #+ #+ #+ #+ def interpret_command(cmd,user='krzem'): output='\n' global EXP global coords if cmd[1:3]=='xp': if cmd[4:7]=='add': exp_=cmd[8:] if exp_.isnumeric(): if 100001>int(exp_)>-100001: EXP+=int(exp_) if EXP<0: EXP=0 output+=sayings['xp amout']+str(EXP) else: output+=errors['short error']+'\n' output+='Usage:\t'+help_['xp'] else: output+=errors['integrer error']%('Number')+'\n' output+='Usage:\t'+help_['xp'] elif cmd[4:10]=='delete': exp_=cmd[11:] if exp_.isnumeric(): exp_='-'+exp_ if 100001>int(exp_)>-100001: EXP+=int(exp_) if EXP<0: EXP=0 output+=sayings['xp amout']+str(EXP) else: output+=errors['short error']+'\n' output+='Usage:\t'+help_['xp'] else: output+=errors['integrer error']%('Number')+'\n' output+='Usage:\t'+help_['xp'] else: output+=errors['invalid string']%('')+'\n' output+='Usage:\t'+help_['xp'] elif cmd[1:3]=='tp': list_tp=cmd[4:].split(' ') cnt=1 exit_=False if len(list_tp)==4: for coord in list_tp: if not cnt==1: if not coord.isnumeric(): output+=errors['integrer error']%('Coord')+'\n' output+='Usage:\t',+help_['tp'] exit_=True break cnt+=1 if not exit_: coords[list_tp[0]]['x']=list_tp[1] coords[list_tp[0]]['y']=list_tp[2] coords[list_tp[0]]['z']=list_tp[3] output+=sayings['coords']%('krzem',coords['krzem']['x'],coords['krzem']['y'],coords['krzem']['z']) else: output+=errors['len error']%("coordinater's ")+'\n' output+='Usage:\t'+help_['tp'] elif cmd[1:5]=='help': if cmd[5]==' 'and cmd[6:].isalpha(): if cmd[6:] in commands: output+='Usage:\t'+help_[cmd[6:]] else: output+=errors['no cmd']%(cmd[6:]) else: output+='Commands:' for cmd_ in help_.keys(): output+='\n'+help_[cmd_] elif cmd[1:5]=='exit': exit() elif cmd[1:]=='calculator': import calculator elif cmd[1:9]=='gamerule': if cmd[10:20]=='chatOutput': if cmd[21:]=='false': gamerules['chatOutput']=False elif cmd[21:]=='true': gamerules['chatOutput']=True else: output+=errors['bolean error']%(cmd[21:])+'\n' output+='Usage:\t'+help_['gamerule'] if cmd[10:16]=='cheats': if cmd[17:]=='false': gamerules['cheats']=False elif cmd[17:]=='true': gamerules['cheats']=True else: output+=errors['bolean error']%(cmd[21:])+'\n' output+='Usage:\t'+help_['gamerule'] if cmd[10:23]=='characterLine': if cmd[24:]=='false': gamerules['ccharacterLine']=False elif cmd[24:]=='true': gamerules['characterLine']=True else: output+=errors['bolean error']%(cmd[21:])+'\n' output+='Usage:\t'+help_['gamerule'] elif cmd[1:7]=='effect': if cmd[8:16]=='strenght': output+='strenght' if cmd[16]==' ': if cmd[17:20].isnumeric(): output+=' '+int(cmd[17:20]) else: output+=errors['intiger error']%('Number')+'\n' output+='Usage:\t'+help_['effect'] else: output+=errors['intiger error']%('Number')+'\n' output+='Usage:\t'+help_['effect'] else: output+='<%s> '%(user) output+=cmd[0:] return output coords={'krzem':{'x':1,'y':1,'z':1}} EXP=100 for gamerule in gamerules.keys(): print(gamerule) while True: print(interpret_command(input('>>>'))) print()
28.803797
277
0.587343
f17c790d384bf44d1a800b5b075ced9cb5cd500f
6,586
py
Python
src/app/WrapPythonQt.py
edrumwri/director
c82aff0ed2ad0083dc5ac9cf4b90994d2d852be8
[ "BSD-3-Clause" ]
null
null
null
src/app/WrapPythonQt.py
edrumwri/director
c82aff0ed2ad0083dc5ac9cf4b90994d2d852be8
[ "BSD-3-Clause" ]
null
null
null
src/app/WrapPythonQt.py
edrumwri/director
c82aff0ed2ad0083dc5ac9cf4b90994d2d852be8
[ "BSD-3-Clause" ]
null
null
null
import os import re import sys import argparse def wrap(args): inFileNames = args.input_file outFileName = args.output_file exportSymbol = args.export_symbol exportHeader = args.export_header decoratorClassName = args.class_name classNamePrefixes = args.class_prefixes qtClassNamePrefixes = args.qt_class_prefixes moduleName = args.module_name autoClassIncludes = args.auto_class_includes if not decoratorClassName: if not outFileName.endswith('.h'): raise Exception('Error: when output class name is not provided then the' ' output file extension must be .h') decoratorClassName = os.path.basename(outFileName).replace('.h', '') lines = [] for inFileName in inFileNames: inFile = open(inFileName, 'r') lines += inFile.read().splitlines() inFile.close() classNameRegexes = [re.compile('\\b%s[a-zA-Z0-9]*' % prefix) for prefix in classNamePrefixes] qtClassNamePrefixes = tuple(qtClassNamePrefixes) moduleName = moduleName or 'PythonQt' exportInclude = '#include "%s"' % exportHeader if exportHeader else '' generatedCode = str() rePattern = re.compile('(?:(.+)\s+)?(\S+)::(\S+)\((.*)\).*') includeClasses = set() includeLines = list() for line in lines: if line.startswith("//"): generatedCode += " " + line + "\n" continue elif line.startswith("#include"): includeLines.append(line) continue elif not line.strip(): generatedCode += "\n" continue matchList = rePattern.findall(line) if not matchList or len(matchList[0]) != 4: raise Exception('Failed to match: "%s"' % line) matchList = list(matchList[0]) return_type = matchList[0].strip() class_name = matchList[1] method_name = matchList[2] args = matchList[3] arg_list = args.split(",") if args.strip() else [] is_static = return_type.startswith("static ") is_destructor = '~' == method_name[0] is_constructor = not is_destructor and return_type == '' if is_static: return_type = return_type[7:] decorator_method_name = "static_%s_%s" % (class_name, method_name) elif is_destructor: return_type = 'void' decorator_method_name = "delete_%s" % class_name elif is_constructor: return_type = '%s*' % class_name decorator_method_name = "new_%s" % class_name else: decorator_method_name = method_name includeClasses.add(class_name) for regex in classNameRegexes: classname_matches = regex.findall(return_type) for classname in classname_matches: includeClasses.add(classname) wrap_args = [] if not is_static and not is_constructor: wrap_args.append("%s* inst" % class_name) wrap_args_call = [] for i, arg_type in enumerate(arg_list): arg_name = "arg%d" % i wrap_args.append("%s %s" % (arg_type.strip(), arg_name)) wrap_args_call.append(arg_name) callStatement = "%s(%s)" % (method_name, ", ".join(wrap_args_call)) if is_static: callStatement = "%s::%s" % (class_name, callStatement) elif is_destructor: callStatement = 'delete inst' elif is_constructor: callStatement = 'new %s' % callStatement else: callStatement = "inst->%s" % callStatement if return_type == 'void': returnStatement = "%s;" % callStatement else: returnStatement = "return %s;" % callStatement outStr = \ ''' %s %s(%s) { %s } ''' outStr = outStr % (return_type, decorator_method_name, ", ".join(wrap_args), returnStatement) generatedCode += outStr sortedClasses = list(includeClasses) sortedClasses.sort() if autoClassIncludes: includeLines += ['#include "%s.h"' % className for className in sortedClasses] classIncludes = "\n".join(includeLines) classRegisters = "\n".join([' this->registerClassForPythonQt(&%s::staticMetaObject);' % className for className in sortedClasses if className.startswith(qtClassNamePrefixes)]) outFile = open(outFileName, 'w') outFile.write(''' #ifndef __%s_h #define __%s_h #include <QObject> #include <PythonQt.h> %s %s class %s %s : public QObject { Q_OBJECT public: %s(QObject* parent=0) : QObject(parent) { %s } inline void registerClassForPythonQt(const QMetaObject* metaobject) { PythonQt::self()->registerClass(metaobject, "%s"); } public Q_SLOTS: %s }; #endif''' % ( decoratorClassName, decoratorClassName, exportInclude, classIncludes, exportSymbol, decoratorClassName, decoratorClassName, classRegisters, moduleName, generatedCode)) outFile.close() def main(): parser = argparse.ArgumentParser(description='Generate a PythonQt decorator class file from a list of method signatures.') parser.add_argument('--input-file', '-i', nargs='+', required=True, help='A text file with method signatures, one per line.') parser.add_argument('--output-file', '-o', required=True, help='The output filename. The file extension should be .h') parser.add_argument('--module-name', default='', help='The Python module name under which Qt classes will be registered.') parser.add_argument('--class-name', default='', help='The C++ class name of the generated decorator.' ' If empty, it will be computed from the output filename.') parser.add_argument('--export-symbol', default='', help='An export symbol that will be added to the class declaration.') parser.add_argument('--export-header', default='', help='A header filename that defines an export symbol.') parser.add_argument('--class-prefixes', nargs='*', help='A list of class name prefixes.') parser.add_argument('--qt-class-prefixes', nargs='*', help='A list of Qt class name prefixes.') parser.add_argument('--auto-class-includes', action='store_true', help='Automatically generate include statements from class names.') args = parser.parse_args() wrap(args) if __name__ == '__main__': main()
31.970874
137
0.612967
2554db36b64be932128fcc6c521238fadbce4837
8,631
py
Python
asset_builder_py3.py
dnanexus/dx_app_builder
16cca82af6fe41afb4a74828fafbc3992de359c7
[ "Apache-2.0" ]
null
null
null
asset_builder_py3.py
dnanexus/dx_app_builder
16cca82af6fe41afb4a74828fafbc3992de359c7
[ "Apache-2.0" ]
16
2016-04-22T16:54:07.000Z
2021-12-15T04:45:59.000Z
asset_builder_py3.py
dnanexus/dx_app_builder
16cca82af6fe41afb4a74828fafbc3992de359c7
[ "Apache-2.0" ]
2
2017-06-16T08:58:06.000Z
2020-12-15T17:24:01.000Z
# Copyright (C) 2016 DNAnexus, Inc. # # This file is part of dx_asset_builder. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy # of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os from os import path import subprocess from subprocess import PIPE import tempfile import random import time import json import sys import re import lsb_release import dxpy from dxpy.utils.exec_utils import DXExecDependencyInstaller def install_run_spec(exec_depends): run_spec = {"runSpec": {"execDepends": exec_depends}} job_desc = dxpy.get_handler(dxpy.JOB_ID).describe() dx_installer = DXExecDependencyInstaller(run_spec, job_desc) dx_installer.install() def get_file_list(output_file, resources_to_ignore): """ This method find all the files in the system and writes it to the output file """ tmp_dir = path.dirname(output_file) + "*" skipped_paths = ["/proc*", tmp_dir, "/run*", "/boot*", "/home/dnanexus*", "/sys*", "/var/lib/lxc*", "/dev/ptmx", "/dev/pts/ptmx", "/dev/fuse", "/dev/net/tun"] if lsb_release.get_os_release().get("CODENAME", "xenial") == "focal": # Ubuntu 20.04 /bin and /sbin are symlinks to /usr/bin and /usr/sbin skipped_paths.extend(["/bin", "/sbin", "/snap/*", "/dev/*"]) cmd = ["sudo", "find", "/"] for ignore_dir in (skipped_paths + resources_to_ignore): cmd.extend(["-not", "-path", ignore_dir]) env = os.environ.copy() env['LC_ALL'] = 'C' ps_pipe = subprocess.Popen(cmd, stdout=subprocess.PIPE) ps_file = subprocess.Popen(["sort"], stdin=ps_pipe.stdout, stdout=PIPE, env=env) with open(output_file, "w") as bfile: for line in ps_file.stdout: sp_code = ps_file.poll() file_name = line.rstrip().decode() if file_name == "": if sp_code is not None: break else: continue if file_name == "/": continue try: mtime = str(os.path.getmtime(file_name)) except OSError as os_err: print(os_err) mtime = '' # file_name should not have special characters # TODO escape the file name bfile.write(file_name + "\t" + str(mtime) + '\n') ps_file.stdout.close() def get_file_diffs(first_file, second_file, diff_file): """ Get difference between two txt files and write the difference to the third file. """ cmd = ["sudo", "comm", "-13", first_file, second_file] ps_pipe = subprocess.Popen(cmd, stdout=subprocess.PIPE) with open(diff_file, "w") as bfile: for line in ps_pipe.stdout: line = line.rstrip().decode() file_name = '\t'.join(line.split('\t')[:-1]) bfile.write(file_name + '\n') ps_pipe.stdout.close() def get_system_snapshot(output_file_path, ignore_files): sys_tmp_dir = tempfile.gettempdir() tmp_file_name = "file_" + str(random.randint(0, 1000000)) + "_" + str(int(time.time() * 1000)) + ".txt" tmp_file_path = os.path.join(tempfile.gettempdir(), tmp_file_name) get_file_list(tmp_file_path, ignore_files) with open(output_file_path, 'w') as output_file_handle: proc = subprocess.Popen(['sort', tmp_file_path], stdout=output_file_handle) proc.communicate() def build_asset(conf_json_fh, asset_makefile_fh, custom_asset_fh): conf_json_fh = dxpy.DXFile(conf_json_fh) if asset_makefile_fh is not None: asset_makefile_fh = dxpy.DXFile(asset_makefile_fh) if custom_asset_fh is not None: custom_asset_fh = dxpy.DXFile(custom_asset_fh) asset_conffile_path = "assetLib.json" custom_assetfile_path = "asset-dl.tar.gz" asset_makefile_path = "Makefile" dxpy.download_dxfile(conf_json_fh, asset_conffile_path) if asset_makefile_fh is not None: dxpy.download_dxfile(asset_makefile_fh, asset_makefile_path) if custom_asset_fh is not None: dxpy.download_dxfile(custom_asset_fh, custom_assetfile_path) with open(asset_conffile_path) as asset: conf_data = json.load(asset) # get list of directories in resources to ignore ignore_dir = conf_data.get("excludeResource", []) before_file_path_sort = tempfile.gettempdir() + '/before-sorted.txt' print("Preparing the list of files in the system before installing any library.", file=sys.stderr) get_system_snapshot(before_file_path_sort, ignore_dir) if custom_asset_fh is not None: print("Installing custom resources given by the user in the tarball.", file=sys.stderr) subprocess.check_call(["sudo", "tar", "-xzf", custom_assetfile_path, '--no-same-owner', "-C", "/"]) if "execDepends" in conf_data: print("Installing execDepends.", file=sys.stderr) install_run_spec(conf_data['execDepends']) # when running make, grab the output and err before raising error if asset_makefile_fh is not None: print("Running make.", file=sys.stderr) mk_cmd = ["make", "-C", os.getcwd()] process = subprocess.Popen(mk_cmd, stdout=subprocess.PIPE) output, err = process.communicate() retcode = process.poll() if retcode: cmd = mk_cmd print(output, file=sys.stdout) print(err, file=sys.stderr) raise subprocess.CalledProcessError(retcode, cmd, output=output) after_file_path_sort = tempfile.gettempdir() + '/after-sorted.txt' print("Preparing the list of files in the system after installing user libraries.", file=sys.stderr) get_system_snapshot(after_file_path_sort, ignore_dir) diff_file_path = tempfile.gettempdir() + "/diff.txt" print("Preparing the list of new and updated files after the installation.", file=sys.stderr) get_file_diffs(before_file_path_sort, after_file_path_sort, diff_file_path) # TODO: temporary fix for dx-unpack not tokenizing its command line # correctly, resulting in being unable to extract filenames with whitespace # in them tar_output = re.sub(r"\s+", '-', conf_data["name"]) + ".tar.gz" print("Creating the tarball '" + tar_output + "' of files listed in: " + diff_file_path, file=sys.stderr) tar_cmd = ["tar", "-Pcz", "--no-recursion", "-T", diff_file_path, "-f", "-"] tar_ps = subprocess.Popen(tar_cmd, stdout=subprocess.PIPE) upload_ps = subprocess.Popen(["dx", "upload", "-", "--wait", "--brief", "-o", tar_output, "--visibility", "hidden"], stdin=tar_ps.stdout, stdout=subprocess.PIPE) tar_ps.stdout.close() asset_tarball_id = upload_ps.communicate()[0].rstrip().decode() tar_ps.wait() upload_ps.stdout.close() # Create a record object referring to this hidden file record_name = conf_data["name"] record_details = {"archiveFileId": {"$dnanexus_link": asset_tarball_id}} # Older clients do not provide the 'runSpecVersion' field in dxasset.json if "runSpecVersion" in conf_data: run_spec_version = str(conf_data["runSpecVersion"]) else: run_spec_version = "0" record_properties = { "title": conf_data["title"], "description": conf_data["description"], "version": conf_data["version"], "distribution": conf_data["distribution"], "release": conf_data["release"], "runSpecVersion": run_spec_version } asset_bundle = dxpy.new_dxrecord(name=record_name, types=["AssetBundle"], details=record_details, properties=record_properties, close=True) # Add a property called {"AssetBundle": record-xxx} to the hidden tarball asset_file = dxpy.DXFile(asset_tarball_id) asset_file.set_properties({"AssetBundle": asset_bundle.get_id()}) print(sys.stderr, "\n'" + record_name + "' asset bundle created!\n", file=sys.stderr) output = {} output["asset_bundle"] = dxpy.dxlink(asset_bundle) return output
41.296651
109
0.649056
56490d48aab4d78333b8e96c61b2b0c072c08bc1
3,423
py
Python
businesslayer/ai/deep-learning/tensorboard/scripts/TensorBoardGradientMnistDemo.py
dragomirdev/DataTachyonPlatform
733ce014b33942d1962b1d4c80aae47699e9ff15
[ "CC-BY-4.0", "MIT" ]
null
null
null
businesslayer/ai/deep-learning/tensorboard/scripts/TensorBoardGradientMnistDemo.py
dragomirdev/DataTachyonPlatform
733ce014b33942d1962b1d4c80aae47699e9ff15
[ "CC-BY-4.0", "MIT" ]
null
null
null
businesslayer/ai/deep-learning/tensorboard/scripts/TensorBoardGradientMnistDemo.py
dragomirdev/DataTachyonPlatform
733ce014b33942d1962b1d4c80aae47699e9ff15
[ "CC-BY-4.0", "MIT" ]
null
null
null
import tensorflow as tf import datetime # Clear any logs from previous runs # !rm -rf ./logs/ # Using the MNIST dataset, normalize the data and using simple Keras model for classifying the images into 10 classes. mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 def create_model(): return tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) # Using TensorBoard with other methods like Gradient Type train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)) train_dataset = train_dataset.shuffle(60000).batch(64) test_dataset = test_dataset.batch(64) loss_object = tf.keras.losses.SparseCategoricalCrossentropy() optimizer = tf.keras.optimizers.Adam() # Define our metrics train_loss = tf.keras.metrics.Mean('train_loss', dtype=tf.float32) train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy('train_accuracy') test_loss = tf.keras.metrics.Mean('test_loss', dtype=tf.float32) test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy('test_accuracy') # Define the training and test functions: def train_step(model, optimizer, x_train, y_train): with tf.GradientTape() as tape: predictions = model(x_train, training=True) loss = loss_object(y_train, predictions) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) train_loss(loss) train_accuracy(y_train, predictions) def test_step(model, x_test, y_test): predictions = model(x_test) loss = loss_object(y_test, predictions) test_loss(loss) test_accuracy(y_test, predictions) # Set up summary writers to write the summaries to disk in a different logs directory: current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") train_log_dir = 'logs/gradient_tape/' + current_time + '/train' test_log_dir = 'logs/gradient_tape/' + current_time + '/test' train_summary_writer = tf.summary.create_file_writer(train_log_dir) test_summary_writer = tf.summary.create_file_writer(test_log_dir) model = create_model() # reset our model EPOCHS = 5 for epoch in range(EPOCHS): for (x_train, y_train) in train_dataset: train_step(model, optimizer, x_train, y_train) with train_summary_writer.as_default(): tf.summary.scalar('loss', train_loss.result(), step=epoch) tf.summary.scalar('accuracy', train_accuracy.result(), step=epoch) for (x_test, y_test) in test_dataset: test_step(model, x_test, y_test) with test_summary_writer.as_default(): tf.summary.scalar('loss', test_loss.result(), step=epoch) tf.summary.scalar('accuracy', test_accuracy.result(), step=epoch) template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}' print(template.format(epoch + 1, train_loss.result(), train_accuracy.result() * 100, test_loss.result(), test_accuracy.result() * 100)) # Reset metrics every epoch train_loss.reset_states() test_loss.reset_states() train_accuracy.reset_states() test_accuracy.reset_states()
35.65625
118
0.722466
f1c255bab67aae84eecfe1d2afc1875ccb6ef0dd
9,389
py
Python
barbican/plugin/crypto/simple_crypto.py
mail2nsrajesh/barbican
d16d932b77486e9b2f8c6d30e628a6e66517b1a6
[ "Apache-2.0" ]
null
null
null
barbican/plugin/crypto/simple_crypto.py
mail2nsrajesh/barbican
d16d932b77486e9b2f8c6d30e628a6e66517b1a6
[ "Apache-2.0" ]
null
null
null
barbican/plugin/crypto/simple_crypto.py
mail2nsrajesh/barbican
d16d932b77486e9b2f8c6d30e628a6e66517b1a6
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import os from cryptography import fernet from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.asymmetric import dsa from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.hazmat.primitives import serialization from oslo_config import cfg from oslo_utils import encodeutils import six from barbican.common import config from barbican.common import utils from barbican import i18n as u from barbican.plugin.crypto import base as c CONF = config.new_config() LOG = utils.getLogger(__name__) simple_crypto_plugin_group = cfg.OptGroup(name='simple_crypto_plugin', title="Simple Crypto Plugin Options") simple_crypto_plugin_opts = [ cfg.StrOpt('kek', default='dGhpcnR5X3R3b19ieXRlX2tleWJsYWhibGFoYmxhaGg=', help=u._('Key encryption key to be used by Simple Crypto ' 'Plugin'), secret=True), cfg.StrOpt('plugin_name', help=u._('User friendly plugin name'), default='Software Only Crypto'), ] CONF.register_group(simple_crypto_plugin_group) CONF.register_opts(simple_crypto_plugin_opts, group=simple_crypto_plugin_group) config.parse_args(CONF) def list_opts(): yield simple_crypto_plugin_group, simple_crypto_plugin_opts class SimpleCryptoPlugin(c.CryptoPluginBase): """Insecure implementation of the crypto plugin.""" def __init__(self, conf=CONF): self.master_kek = conf.simple_crypto_plugin.kek self.plugin_name = conf.simple_crypto_plugin.plugin_name LOG.warning("This plugin is NOT meant for a production " "environment. This is meant just for development " "and testing purposes. Please use another plugin " "for production.") def get_plugin_name(self): return self.plugin_name def _get_kek(self, kek_meta_dto): if not kek_meta_dto.plugin_meta: raise ValueError(u._('KEK not yet created.')) # the kek is stored encrypted. Need to decrypt. encryptor = fernet.Fernet(self.master_kek) # Note : If plugin_meta type is unicode, encode to byte. if isinstance(kek_meta_dto.plugin_meta, six.text_type): kek_meta_dto.plugin_meta = kek_meta_dto.plugin_meta.encode('utf-8') return encryptor.decrypt(kek_meta_dto.plugin_meta) def encrypt(self, encrypt_dto, kek_meta_dto, project_id): kek = self._get_kek(kek_meta_dto) unencrypted = encrypt_dto.unencrypted if not isinstance(unencrypted, six.binary_type): raise ValueError( u._( 'Unencrypted data must be a byte type, but was ' '{unencrypted_type}' ).format( unencrypted_type=type(unencrypted) ) ) encryptor = fernet.Fernet(kek) cyphertext = encryptor.encrypt(unencrypted) return c.ResponseDTO(cyphertext, None) def decrypt(self, encrypted_dto, kek_meta_dto, kek_meta_extended, project_id): kek = self._get_kek(kek_meta_dto) encrypted = encrypted_dto.encrypted decryptor = fernet.Fernet(kek) return decryptor.decrypt(encrypted) def bind_kek_metadata(self, kek_meta_dto): kek_meta_dto.algorithm = 'aes' kek_meta_dto.bit_length = 128 kek_meta_dto.mode = 'cbc' if not kek_meta_dto.plugin_meta: # the kek is stored encrypted in the plugin_meta field encryptor = fernet.Fernet(self.master_kek) key = fernet.Fernet.generate_key() kek_meta_dto.plugin_meta = encryptor.encrypt(key) return kek_meta_dto def generate_symmetric(self, generate_dto, kek_meta_dto, project_id): byte_length = int(generate_dto.bit_length) // 8 unencrypted = os.urandom(byte_length) return self.encrypt(c.EncryptDTO(unencrypted), kek_meta_dto, project_id) def generate_asymmetric(self, generate_dto, kek_meta_dto, project_id): """Generate asymmetric keys based on below rules: - RSA, with passphrase (supported) - RSA, without passphrase (supported) - DSA, without passphrase (supported) - DSA, with passphrase (supported) """ if(generate_dto.algorithm is None or generate_dto .algorithm.lower() == 'rsa'): private_key = rsa.generate_private_key( public_exponent=65537, key_size=generate_dto.bit_length, backend=default_backend() ) elif generate_dto.algorithm.lower() == 'dsa': private_key = dsa.generate_private_key( key_size=generate_dto.bit_length, backend=default_backend() ) else: raise c.CryptoPrivateKeyFailureException() public_key = private_key.public_key() if generate_dto.algorithm.lower() == 'rsa': private_key = private_key.private_bytes( encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.PKCS8, encryption_algorithm=self._get_encryption_algorithm( generate_dto.passphrase) ) public_key = public_key.public_bytes( encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo ) if generate_dto.algorithm.lower() == 'dsa': private_key = private_key.private_bytes( encoding=serialization.Encoding.DER, format=serialization.PrivateFormat.PKCS8, encryption_algorithm=self._get_encryption_algorithm( generate_dto.passphrase) ) public_key = public_key.public_bytes( encoding=serialization.Encoding.DER, format=serialization.PublicFormat.SubjectPublicKeyInfo ) private_dto = self.encrypt(c.EncryptDTO(private_key), kek_meta_dto, project_id) public_dto = self.encrypt(c.EncryptDTO(public_key), kek_meta_dto, project_id) passphrase_dto = None if generate_dto.passphrase: if isinstance(generate_dto.passphrase, six.text_type): generate_dto.passphrase = generate_dto.passphrase.encode( 'utf-8') passphrase_dto = self.encrypt(c.EncryptDTO(generate_dto. passphrase), kek_meta_dto, project_id) return private_dto, public_dto, passphrase_dto def supports(self, type_enum, algorithm=None, bit_length=None, mode=None): if type_enum == c.PluginSupportTypes.ENCRYPT_DECRYPT: return True if type_enum == c.PluginSupportTypes.SYMMETRIC_KEY_GENERATION: return self._is_algorithm_supported(algorithm, bit_length) elif type_enum == c.PluginSupportTypes.ASYMMETRIC_KEY_GENERATION: return self._is_algorithm_supported(algorithm, bit_length) else: return False def _get_encryption_algorithm(self, passphrase): """Choose whether to use encryption or not based on passphrase serialization.BestAvailableEncryption fails if passphrase is not given or if less than one byte therefore we need to check if it is valid or not """ if passphrase: # encryption requires password in bytes format algorithm = serialization.BestAvailableEncryption( # default encoding is utf-8 encodeutils.safe_encode(passphrase) ) else: algorithm = serialization.NoEncryption() return algorithm def _is_algorithm_supported(self, algorithm=None, bit_length=None): """check if algorithm and bit_length combination is supported.""" if algorithm is None or bit_length is None: return False if (algorithm.lower() in c.PluginSupportTypes.SYMMETRIC_ALGORITHMS and bit_length in c.PluginSupportTypes.SYMMETRIC_KEY_LENGTHS): return True elif (algorithm.lower() in c.PluginSupportTypes.ASYMMETRIC_ALGORITHMS and bit_length in c.PluginSupportTypes.ASYMMETRIC_KEY_LENGTHS): return True else: return False
39.616034
79
0.629673
78204928e9e7ba0f0a1c584af1a758b0f0120aa1
2,413
py
Python
src/decoder_node.py
TienPoly/VO_duckiebot
b1ea4a7656d9d8e580f64584eb831e15b825a19c
[ "BSD-3-Clause" ]
null
null
null
src/decoder_node.py
TienPoly/VO_duckiebot
b1ea4a7656d9d8e580f64584eb831e15b825a19c
[ "BSD-3-Clause" ]
null
null
null
src/decoder_node.py
TienPoly/VO_duckiebot
b1ea4a7656d9d8e580f64584eb831e15b825a19c
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python import rospy from cv_bridge import CvBridge, CvBridgeError import cv2 import numpy as np from sensor_msgs.msg import CompressedImage,Image #from duckietown_msgs.msg import BoolStamped class DecoderNode(object): def __init__(self): self.node_name = rospy.get_name() self.active = True self.bridge = CvBridge() self.publish_freq = self.setupParam("~publish_freq", 30.0) self.publish_duration = rospy.Duration.from_sec(1.0/self.publish_freq) self.pub_raw = rospy.Publisher("~image/raw",Image,queue_size=1) self.pub_compressed = rospy.Publisher("~image/compressed", CompressedImage, queue_size=1) self.last_stamp = rospy.Time.now() self.sub_compressed_img = rospy.Subscriber("~compressed_image",CompressedImage,self.cbImg,queue_size=1) #self.sub_switch = rospy.Subscriber("~switch",BoolStamped, self.cbSwitch, queue_size=1) def setupParam(self,param_name,default_value): value = rospy.get_param(param_name,default_value) rospy.set_param(param_name,value) #Write to parameter server for transparancy rospy.loginfo("[%s] %s = %s " %(self.node_name,param_name,value)) return value #def cbSwitch(self,switch_msg): # self.active = switch_msg.data def cbImg(self,msg): if not self.active: return now = rospy.Time.now() if now - self.last_stamp < self.publish_duration: return else: self.last_stamp = now # time_start = time.time() np_arr = np.fromstring(msg.data, np.uint8) cv_image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR) # time_1 = time.time() img_msg = self.bridge.cv2_to_imgmsg(cv_image, "bgr8") # time_2 = time.time() img_msg.header.stamp = msg.header.stamp img_msg.header.frame_id = msg.header.frame_id self.pub_raw.publish(img_msg) self.pub_compressed.publish(msg) # time_3 = time.time() # rospy.loginfo("[%s] Took %f sec to decompress."%(self.node_name,time_1 - time_start)) # rospy.loginfo("[%s] Took %f sec to conver to Image."%(self.node_name,time_2 - time_1)) # rospy.loginfo("[%s] Took %f sec to publish."%(self.node_name,time_3 - time_2)) if __name__ == '__main__': rospy.init_node('decoder_low_freq',anonymous=False) node = DecoderNode() rospy.spin()
40.216667
111
0.665562
cb834d19f8cfdb7293a2595f88dfa764bc30d95f
3,069
py
Python
1_Tutorials/1_water_pes_api/model5_data/compute_energy.py
zero0911/PES-Learn
7a956db1aff368f978dd3c5c08ef99aec2613d53
[ "BSD-3-Clause" ]
2
2020-11-02T07:23:14.000Z
2020-11-05T10:21:59.000Z
1_Tutorials/1_water_pes_api/model5_data/compute_energy.py
zero0911/PES-Learn
7a956db1aff368f978dd3c5c08ef99aec2613d53
[ "BSD-3-Clause" ]
null
null
null
1_Tutorials/1_water_pes_api/model5_data/compute_energy.py
zero0911/PES-Learn
7a956db1aff368f978dd3c5c08ef99aec2613d53
[ "BSD-3-Clause" ]
null
null
null
from peslearn.ml import NeuralNetwork from peslearn import InputProcessor import torch import numpy as np from itertools import combinations nn = NeuralNetwork('PES.dat', InputProcessor(''), molecule_type='A2B') params = {'layers': (16,), 'morse_transform': {'morse': False}, 'pip': {'degree_reduction': False, 'pip': True}, 'scale_X': {'activation': 'tanh', 'scale_X': 'std'}, 'scale_y': 'mm11', 'lr': 0.5} X, y, Xscaler, yscaler = nn.preprocess(params, nn.raw_X, nn.raw_y) model = torch.load('model.pt') # How to use 'compute_energy()' function # -------------------------------------- # E = compute_energy(geom_vectors, cartesian=bool) # 'geom_vectors' is either: # 1. A list or tuple of coordinates for a single geometry. # 2. A column vector of one or more sets of 1d coordinate vectors as a list of lists or 2D NumPy array: # [[ coord1, coord2, ..., coordn], # [ coord1, coord2, ..., coordn], # : : : ], # [ coord1, coord2, ..., coordn]] # In all cases, coordinates should be supplied in the exact same format and exact same order the model was trained on. # If the coordinates format used to train the model was interatomic distances, each set of coordinates should be a 1d array of either interatom distances or cartesian coordinates. # If cartesian coordinates are supplied, cartesian=True should be passed and it will convert them to interatomic distances. # The order of coordinates matters. If PES-Learn datasets were used they should be in standard order; # i.e. cartesians should be supplied in the order x,y,z of most common atoms first, with alphabetical tiebreaker. # e.g., C2H3O2 --> H1x H1y H1z H2x H2y H2z H3x H3y H3z C1x C1y C1z C2x C2y C2z O1x O1y O1z O2x O2y O2z # and interatom distances should be the row-wise order of the lower triangle of the interatom distance matrix, with standard order atom axes: # H H H C C O O # H # H 1 # H 2 3 # C 4 5 6 # C 7 8 9 10 # O 11 12 13 14 15 # O 16 17 18 19 20 21 # The returned energy array is a column vector of corresponding energies. Elements can be accessed with E[0,0], E[0,1], E[0,2] # NOTE: Sending multiple geometries through at once is much faster than a loop of sending single geometries through. def pes(geom_vectors, cartesian=True): g = np.asarray(geom_vectors) if cartesian: axis = 1 if len(g.shape) < 2: axis = 0 g = np.apply_along_axis(cart1d_to_distances1d, axis, g) newX = nn.transform_new_X(g, params, Xscaler) x = torch.tensor(data=newX) with torch.no_grad(): E = model(x) e = nn.inverse_transform_new_y(E, yscaler) #e = e - (insert min energy here) #e *= 219474.63 ( convert units ) return e def cart1d_to_distances1d(vec): vec = vec.reshape(-1,3) n = len(vec) distance_matrix = np.zeros((n,n)) for i,j in combinations(range(len(vec)),2): R = np.linalg.norm(vec[i]-vec[j]) distance_matrix[j,i] = R distance_vector = distance_matrix[np.tril_indices(len(distance_matrix),-1)] return distance_vector
45.132353
195
0.677419
0537fb9a5bd7baac9ceb7be117af0d7776052385
7,629
py
Python
env/lib/python2.7/site-packages/django/contrib/auth/management/commands/createsuperuser.py
diego-d5000/MisValesMd
b641782bc2546776e9f55f452ec7fb48100dc482
[ "MIT" ]
null
null
null
env/lib/python2.7/site-packages/django/contrib/auth/management/commands/createsuperuser.py
diego-d5000/MisValesMd
b641782bc2546776e9f55f452ec7fb48100dc482
[ "MIT" ]
null
null
null
env/lib/python2.7/site-packages/django/contrib/auth/management/commands/createsuperuser.py
diego-d5000/MisValesMd
b641782bc2546776e9f55f452ec7fb48100dc482
[ "MIT" ]
null
null
null
""" Management utility to create superusers. """ from __future__ import unicode_literals import getpass import sys from django.contrib.auth import get_user_model from django.contrib.auth.management import get_default_username from django.core import exceptions from django.core.management.base import BaseCommand, CommandError from django.db import DEFAULT_DB_ALIAS from django.utils.encoding import force_str from django.utils.six.moves import input from django.utils.text import capfirst class NotRunningInTTYException(Exception): pass class Command(BaseCommand): help = 'Used to create a superuser.' def __init__(self, *args, **kwargs): super(Command, self).__init__(*args, **kwargs) self.UserModel = get_user_model() self.username_field = self.UserModel._meta.get_field(self.UserModel.USERNAME_FIELD) def add_arguments(self, parser): parser.add_argument('--%s' % self.UserModel.USERNAME_FIELD, dest=self.UserModel.USERNAME_FIELD, default=None, help='Specifies the login for the superuser.') parser.add_argument('--noinput', action='store_false', dest='interactive', default=True, help=('Tells Django to NOT prompt the user for input of any kind. ' 'You must use --%s with --noinput, along with an option for ' 'any other required field. Superusers created with --noinput will ' ' not be able to log in until they\'re given a valid password.' % self.UserModel.USERNAME_FIELD)) parser.add_argument('--database', action='store', dest='database', default=DEFAULT_DB_ALIAS, help='Specifies the database to use. Default is "default".') for field in self.UserModel.REQUIRED_FIELDS: parser.add_argument('--%s' % field, dest=field, default=None, help='Specifies the %s for the superuser.' % field) def execute(self, *args, **options): self.stdin = options.get('stdin', sys.stdin) # Used for testing return super(Command, self).execute(*args, **options) def handle(self, *args, **options): username = options.get(self.UserModel.USERNAME_FIELD, None) database = options.get('database') # If not provided, create the user with an unusable password password = None user_data = {} # Do quick and dirty validation if --noinput if not options['interactive']: try: if not username: raise CommandError("You must use --%s with --noinput." % self.UserModel.USERNAME_FIELD) username = self.username_field.clean(username, None) for field_name in self.UserModel.REQUIRED_FIELDS: if options.get(field_name): field = self.UserModel._meta.get_field(field_name) user_data[field_name] = field.clean(options[field_name], None) else: raise CommandError("You must use --%s with --noinput." % field_name) except exceptions.ValidationError as e: raise CommandError('; '.join(e.messages)) else: # Prompt for username/password, and any other required fields. # Enclose this whole thing in a try/except to catch # KeyboardInterrupt and exit gracefully. default_username = get_default_username() try: if hasattr(self.stdin, 'isatty') and not self.stdin.isatty(): raise NotRunningInTTYException("Not running in a TTY") # Get a username verbose_field_name = self.username_field.verbose_name while username is None: input_msg = capfirst(verbose_field_name) if default_username: input_msg += " (leave blank to use '%s')" % default_username username_rel = self.username_field.rel input_msg = force_str('%s%s: ' % ( input_msg, ' (%s.%s)' % ( username_rel.to._meta.object_name, username_rel.field_name ) if username_rel else '') ) username = self.get_input_data(self.username_field, input_msg, default_username) if not username: continue try: self.UserModel._default_manager.db_manager(database).get_by_natural_key(username) except self.UserModel.DoesNotExist: pass else: self.stderr.write("Error: That %s is already taken." % verbose_field_name) username = None for field_name in self.UserModel.REQUIRED_FIELDS: field = self.UserModel._meta.get_field(field_name) user_data[field_name] = options.get(field_name) while user_data[field_name] is None: message = force_str('%s%s: ' % (capfirst(field.verbose_name), ' (%s.%s)' % (field.rel.to._meta.object_name, field.rel.field_name) if field.rel else '')) user_data[field_name] = self.get_input_data(field, message) # Get a password while password is None: if not password: password = getpass.getpass() password2 = getpass.getpass(force_str('Password (again): ')) if password != password2: self.stderr.write("Error: Your passwords didn't match.") password = None continue if password.strip() == '': self.stderr.write("Error: Blank passwords aren't allowed.") password = None continue except KeyboardInterrupt: self.stderr.write("\nOperation cancelled.") sys.exit(1) except NotRunningInTTYException: self.stdout.write( "Superuser creation skipped due to not running in a TTY. " "You can run `manage.py createsuperuser` in your project " "to create one manually." ) if username: user_data[self.UserModel.USERNAME_FIELD] = username user_data['password'] = password self.UserModel._default_manager.db_manager(database).create_superuser(**user_data) if options['verbosity'] >= 1: self.stdout.write("Superuser created successfully.") def get_input_data(self, field, message, default=None): """ Override this method if you want to customize data inputs or validation exceptions. """ raw_value = input(message) if default and raw_value == '': raw_value = default try: val = field.clean(raw_value, None) except exceptions.ValidationError as e: self.stderr.write("Error: %s" % '; '.join(e.messages)) val = None return val
45.410714
119
0.551579
45cdcf84514e3ad3bde02684e5ebd9629f548833
1,326
py
Python
LeetCode/daily/1395.统计作战单位数.py
xmmmmmovo/MyAlgorithmSolutions
f5198d438f36f41cc4f72d53bb71d474365fa80d
[ "MIT" ]
1
2020-03-26T13:40:52.000Z
2020-03-26T13:40:52.000Z
LeetCode/daily/1395.统计作战单位数.py
xmmmmmovo/MyAlgorithmSolutions
f5198d438f36f41cc4f72d53bb71d474365fa80d
[ "MIT" ]
null
null
null
LeetCode/daily/1395.统计作战单位数.py
xmmmmmovo/MyAlgorithmSolutions
f5198d438f36f41cc4f72d53bb71d474365fa80d
[ "MIT" ]
null
null
null
from typing import List class Solution: def numTeams(self, rating: List[int]) -> int: res = 0 for i in range(len(rating) - 2): for j in range(i+1, len(rating)-1): for k in range(j+1, len(rating)): if (rating[i] < rating[j] and rating[j] < rating[k]) or (rating[i] > rating[j] and rating[j] > rating[k]): res += 1 return res class Solution2: def numTeams(self, rating: List[int]) -> int: """ 整体思想是遍历每个节点查看其本身可以当成中间节点的所有可能 """ if len(rating) < 3: return 0 res = 0 for j in range(len(rating) - 1): scl = 0 scr = 0 bcl = 0 bcr = 0 for i in range(j): if(rating[i] < rating[j]): scl += 1 else: bcl += 1 for k in range(j+1, len(rating)): if(rating[k] < rating[j]): scr += 1 else: bcr += 1 res += scl * bcr + bcl * scr # 左小右大 左大右小 return res if __name__ == "__main__": assert Solution2().numTeams([2, 5, 3, 4, 1]) == 3 assert Solution2().numTeams([2, 1, 3]) == 0 assert Solution2().numTeams([1, 2, 3, 4]) == 4
26
126
0.430618
dd891e183ca73404e6d211c901431159f14c9743
76,171
py
Python
nmostesting/suites/IS0401Test.py
maweit/nmos-testing
6d2a8337234038fd8b27a593d35f1e0d6cc95fed
[ "Apache-2.0" ]
null
null
null
nmostesting/suites/IS0401Test.py
maweit/nmos-testing
6d2a8337234038fd8b27a593d35f1e0d6cc95fed
[ "Apache-2.0" ]
null
null
null
nmostesting/suites/IS0401Test.py
maweit/nmos-testing
6d2a8337234038fd8b27a593d35f1e0d6cc95fed
[ "Apache-2.0" ]
null
null
null
# Copyright (C) 2018 Riedel Communications GmbH & Co. KG # # Modifications Copyright 2018 British Broadcasting Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import socket from requests.compat import json from urllib.parse import urlparse from dnslib import QTYPE from copy import deepcopy from zeroconf_monkey import ServiceBrowser, ServiceInfo, Zeroconf from .. import Config as CONFIG from ..MdnsListener import MdnsListener from ..GenericTest import GenericTest, NMOSTestException, NMOS_WIKI_URL from ..IS04Utils import IS04Utils from ..TestHelper import get_default_ip NODE_API_KEY = "node" class IS0401Test(GenericTest): """ Runs IS-04-01-Test """ def __init__(self, apis, registries, node, dns_server): GenericTest.__init__(self, apis) self.invalid_registry = registries[0] self.primary_registry = registries[1] self.registries = registries[1:] self.node = node self.dns_server = dns_server self.node_url = self.apis[NODE_API_KEY]["url"] self.registry_basics_done = False self.registry_basics_data = [] self.registry_primary_data = None self.registry_invalid_data = None self.node_basics_data = { "self": None, "devices": None, "sources": None, "flows": None, "senders": None, "receivers": None } self.is04_utils = IS04Utils(self.node_url) self.zc = None self.zc_listener = None def set_up_tests(self): self.zc = Zeroconf() self.zc_listener = MdnsListener(self.zc) if self.dns_server: self.dns_server.load_zone(self.apis[NODE_API_KEY]["version"], self.protocol) print(" * Waiting for up to {} seconds for a DNS query before executing tests" .format(CONFIG.DNS_SD_ADVERT_TIMEOUT)) self.dns_server.wait_for_query( QTYPE.PTR, [ "_nmos-register._tcp.{}.".format(CONFIG.DNS_DOMAIN), "_nmos-registration._tcp.{}.".format(CONFIG.DNS_DOMAIN) ], CONFIG.DNS_SD_ADVERT_TIMEOUT ) def tear_down_tests(self): if self.zc: self.zc.close() self.zc = None if self.dns_server: self.dns_server.reset() def _registry_mdns_info(self, port, priority=0, api_ver=None, api_proto=None, ip=None): """Get an mDNS ServiceInfo object in order to create an advertisement""" if api_ver is None: api_ver = self.apis[NODE_API_KEY]["version"] if api_proto is None: api_proto = self.protocol if ip is None: ip = get_default_ip() hostname = "nmos-mocks.local." else: hostname = ip.replace(".", "-") + ".local." # TODO: Add another test which checks support for parsing CSV string in api_ver txt = {'api_ver': api_ver, 'api_proto': api_proto, 'pri': str(priority), 'api_auth': 'false'} service_type = "_nmos-registration._tcp.local." if self.is04_utils.compare_api_version(self.apis[NODE_API_KEY]["version"], "v1.3") >= 0: service_type = "_nmos-register._tcp.local." info = ServiceInfo(service_type, "NMOSTestSuite{}{}.{}".format(port, api_proto, service_type), socket.inet_aton(ip), port, 0, 0, txt, hostname) return info def do_node_basics_prereqs(self): """Collect a copy of each of the Node's resources""" for resource in self.node_basics_data: url = "{}{}".format(self.node_url, resource) valid, r = self.do_request("GET", url) if valid and r.status_code == 200: try: self.node_basics_data[resource] = r.json() except Exception: pass def do_registry_basics_prereqs(self): """Advertise a registry and collect data from any Nodes which discover it""" if self.registry_basics_done: return if not CONFIG.ENABLE_DNS_SD: self.do_node_basics_prereqs() return if CONFIG.DNS_SD_MODE == "multicast": registry_mdns = [] priority = 0 # Add advertisement with invalid version info = self._registry_mdns_info(self.invalid_registry.get_data().port, priority, "v9.0") registry_mdns.append(info) # Add advertisement with invalid protocol info = self._registry_mdns_info(self.invalid_registry.get_data().port, priority, None, "invalid") registry_mdns.append(info) # Add advertisement for primary and failover registries for registry in self.registries[0:-1]: info = self._registry_mdns_info(registry.get_data().port, priority) registry_mdns.append(info) priority += 10 # Add a fake advertisement for a timeout simulating registry info = self._registry_mdns_info(444, priority, ip="192.0.2.1") registry_mdns.append(info) priority += 10 # Add the final real registry advertisement info = self._registry_mdns_info(self.registries[-1].get_data().port, priority) registry_mdns.append(info) # Reset all registries to clear previous heartbeats, etc. self.invalid_registry.reset() for registry in self.registries: registry.reset() self.invalid_registry.enable() self.primary_registry.enable() if CONFIG.DNS_SD_MODE == "multicast": # Advertise the primary registry and invalid ones at pri 0, and allow the Node to do a basic registration if self.is04_utils.compare_api_version(self.apis[NODE_API_KEY]["version"], "v1.0") != 0: self.zc.register_service(registry_mdns[0]) self.zc.register_service(registry_mdns[1]) self.zc.register_service(registry_mdns[2]) # Wait for n seconds after advertising the service for the first POST from a Node start_time = time.time() while time.time() < start_time + CONFIG.DNS_SD_ADVERT_TIMEOUT: if self.primary_registry.has_registrations(): break if self.invalid_registry.has_registrations(): break time.sleep(0.2) # Wait until we're sure the Node has registered everything it intends to, and we've had at least one heartbeat while (time.time() - self.primary_registry.last_time) < CONFIG.HEARTBEAT_INTERVAL + 1 or \ (time.time() - self.invalid_registry.last_time) < CONFIG.HEARTBEAT_INTERVAL + 1: time.sleep(0.2) # Collect matching resources from the Node self.do_node_basics_prereqs() # Ensure we have two heartbeats from the Node, assuming any are arriving (for test_05) if len(self.primary_registry.get_data().heartbeats) > 0 or len(self.invalid_registry.get_data().heartbeats) > 0: # It is heartbeating, but we don't have enough of them yet while len(self.primary_registry.get_data().heartbeats) < 2 and \ len(self.invalid_registry.get_data().heartbeats) < 2: time.sleep(0.2) # Once registered, advertise all other registries at different (ascending) priorities for index, registry in enumerate(self.registries[1:]): registry.enable() if CONFIG.DNS_SD_MODE == "multicast": for info in registry_mdns[3:]: self.zc.register_service(info) # Kill registries one by one to collect data around failover self.invalid_registry.disable() for index, registry in enumerate(self.registries): registry.disable() # Prevent access to an out of bounds index below if (index + 1) >= len(self.registries): break # in event of testing HTTPS support, the TLS handshake seems to take nearly 2 seconds, so # when the first registry is disabled, an additional few seconds is needed to ensure the node # has a chance to make a connection to it, receive the 5xx error, and make a connection to # the next one if CONFIG.ENABLE_HTTPS: heartbeat_countdown = CONFIG.HEARTBEAT_INTERVAL + 1 + 5 else: heartbeat_countdown = CONFIG.HEARTBEAT_INTERVAL + 1 # Wait an extra heartbeat interval when dealing with the timout test # This allows a Node's connection to time out and then register with the next mock registry if (index + 2) == len(self.registries): heartbeat_countdown += CONFIG.HEARTBEAT_INTERVAL while len(self.registries[index + 1].get_data().heartbeats) < 1 and heartbeat_countdown > 0: # Wait until the heartbeat interval has elapsed or a heartbeat has been received time.sleep(0.2) heartbeat_countdown -= 0.2 if len(self.registries[index + 1].get_data().heartbeats) < 1: # Testing has failed at this point, so we might as well abort break # Clean up mDNS advertisements and disable registries if CONFIG.DNS_SD_MODE == "multicast": for info in registry_mdns: self.zc.unregister_service(info) self.invalid_registry.disable() for index, registry in enumerate(self.registries): registry.disable() self.registry_basics_done = True for registry in self.registries: self.registry_basics_data.append(registry.get_data()) self.registry_invalid_data = self.invalid_registry.get_data() # If the Node preferred the invalid registry, don't penalise it for other tests which check the general # interactions are correct if len(self.registry_invalid_data.posts) > 0: self.registry_primary_data = self.registry_invalid_data else: self.registry_primary_data = self.registry_basics_data[0] def test_01(self, test): """Node can discover network registration service via multicast DNS""" if not CONFIG.ENABLE_DNS_SD or CONFIG.DNS_SD_MODE != "multicast": return test.DISABLED("This test cannot be performed when ENABLE_DNS_SD is False or DNS_SD_MODE is not " "'multicast'") self.do_registry_basics_prereqs() registry_data = self.registry_primary_data if len(registry_data.posts) > 0: return test.PASS() return test.FAIL("Node did not attempt to register with the advertised registry.") def test_01_01(self, test): """Node does not attempt to register with an unsuitable registry""" if self.is04_utils.compare_api_version(self.apis[NODE_API_KEY]["version"], "v1.0") == 0: return test.NA("Nodes running v1.0 do not check DNS-SD api_ver and api_proto TXT records") if not CONFIG.ENABLE_DNS_SD or CONFIG.DNS_SD_MODE != "multicast": return test.DISABLED("This test cannot be performed when ENABLE_DNS_SD is False or DNS_SD_MODE is not " "'multicast'") self.do_registry_basics_prereqs() if len(self.registry_invalid_data.posts) > 0: return test.FAIL("Node incorrectly registered with a registry advertising an invalid 'api_ver' or " "'api_proto'") return test.PASS() def test_02(self, test): """Node can discover network registration service via unicast DNS""" if not CONFIG.ENABLE_DNS_SD or CONFIG.DNS_SD_MODE != "unicast": return test.DISABLED("This test cannot be performed when ENABLE_DNS_SD is False or DNS_SD_MODE is not " "'unicast'") self.do_registry_basics_prereqs() registry_data = self.registry_primary_data if len(registry_data.posts) > 0: return test.PASS() return test.FAIL("Node did not attempt to register with the advertised registry.") def test_02_01(self, test): """Node does not attempt to register with an unsuitable registry""" if self.is04_utils.compare_api_version(self.apis[NODE_API_KEY]["version"], "v1.0") == 0: return test.NA("Nodes running v1.0 do not check DNS-SD api_ver and api_proto TXT records") if not CONFIG.ENABLE_DNS_SD or CONFIG.DNS_SD_MODE != "unicast": return test.DISABLED("This test cannot be performed when ENABLE_DNS_SD is False or DNS_SD_MODE is not " "'unicast'") self.do_registry_basics_prereqs() if len(self.registry_invalid_data.posts) > 0: return test.FAIL("Node incorrectly registered with a registry advertising an invalid 'api_ver' or " "'api_proto'") return test.PASS() def test_03(self, test): """Registration API interactions use the correct headers""" if not CONFIG.ENABLE_DNS_SD: return test.DISABLED("This test cannot be performed when ENABLE_DNS_SD is False") self.do_registry_basics_prereqs() registry_data = self.registry_primary_data if len(registry_data.posts) == 0: return test.UNCLEAR("No registrations found") ctype_warn = "" for resource in registry_data.posts: ctype_valid, ctype_message = self.check_content_type(resource[1]["headers"]) if not ctype_valid: return test.FAIL(ctype_message) elif ctype_message and not ctype_warn: ctype_warn = ctype_message accept_valid, accept_message = self.check_accept(resource[1]["headers"]) if not accept_valid: return test.FAIL(accept_message) if "Transfer-Encoding" not in resource[1]["headers"]: if "Content-Length" not in resource[1]["headers"]: return test.FAIL("One or more Node POSTs did not include Content-Length") else: if "Content-Length" in resource[1]["headers"]: return test.FAIL("API signalled both Transfer-Encoding and Content-Length") if ctype_warn: return test.WARNING(ctype_warn) else: return test.PASS() def test_03_01(self, test): """Registration API interactions use the correct versioned path""" if not CONFIG.ENABLE_DNS_SD: return test.DISABLED("This test cannot be performed when ENABLE_DNS_SD is False") api = self.apis[NODE_API_KEY] self.do_registry_basics_prereqs() registry_data = self.registry_primary_data if len(registry_data.posts) == 0: return test.UNCLEAR("No registrations found") for resource in registry_data.posts: if resource[1]["version"] != api["version"]: return test.FAIL("One or more Node POSTs used version '{}' instead of '{}'" .format(resource[1]["version"], api["version"])) for resource in registry_data.deletes: if resource[1]["version"] != api["version"]: return test.FAIL("One or more Node DELETEs used version '{}' instead of '{}'" .format(resource[1]["version"], api["version"])) for resource in registry_data.heartbeats: if resource[1]["version"] != api["version"]: return test.FAIL("One or more Node heartbeats used version '{}' instead of '{}'" .format(resource[1]["version"], api["version"])) return test.PASS() def get_registry_resource(self, res_type, res_id): """Get a specific resource ID from the mock registry, or a real registry if DNS-SD is disabled""" found_resource = None if CONFIG.ENABLE_DNS_SD: # Look up data in local mock registry registry_data = self.registry_primary_data for resource in registry_data.posts: if resource[1]["payload"]["type"] == res_type and resource[1]["payload"]["data"]["id"] == res_id: found_resource = resource[1]["payload"]["data"] else: # Look up data from a configured Query API url = "{}://{}:{}/x-nmos/query/{}/{}s/{}".format( self.protocol, CONFIG.QUERY_API_HOST, str(CONFIG.QUERY_API_PORT), self.apis[NODE_API_KEY]["version"], res_type, res_id ) try: valid, r = self.do_request("GET", url) if valid and r.status_code == 200: found_resource = r.json() else: raise Exception except Exception: print(" * ERROR: Unable to load resource from the configured Query API ({}:{})".format( CONFIG.QUERY_API_HOST, CONFIG.QUERY_API_PORT )) return found_resource def get_node_resources(self, res_type): """Get resources matching a specific type from the Node API""" if res_type == "node": res_type = "self" else: res_type = res_type + "s" resp_json = self.node_basics_data[res_type] resources = {} if resp_json is None: raise ValueError elif isinstance(resp_json, dict): resources[resp_json["id"]] = resp_json else: for resource in resp_json: resources[resource["id"]] = resource return resources def do_test_matching_resource(self, test, res_type): """Check that a resource held in the registry matches the resource held by the Node API""" try: node_resources = self.get_node_resources(res_type) if len(node_resources) == 0: return test.UNCLEAR("No {} resources were found on the Node.".format(res_type.title())) for res_id in node_resources: reg_resource = self.get_registry_resource(res_type, res_id) if not reg_resource: return test.FAIL("{} {} was not found in the registry.".format(res_type.title(), res_id)) elif reg_resource != node_resources[res_id]: return test.FAIL("Node API JSON does not match data in registry for " "{} {}.".format(res_type.title(), res_id)) return test.PASS() except ValueError: return test.FAIL("Failed to reach Node API or invalid JSON received!") def parent_resource_type(self, res_type): """Find the parent resource type required for a given resource type""" if res_type == "device": return "node" elif res_type == "flow" and \ self.is04_utils.compare_api_version(self.apis[NODE_API_KEY]["version"], "v1.0") <= 0: return "source" elif res_type in ["sender", "receiver", "source", "flow"]: return "device" else: return None def preceding_resource_type(self, res_type): """Find the preceding resource type recommended for a given resource type, if different than the parent resource type""" # The recommendation ensures e.g. that a Query API client would find the Source and Flow # associated with a particular Sender if res_type == "flow" and \ self.is04_utils.compare_api_version(self.apis[NODE_API_KEY]["version"], "v1.0") > 0: return "source" elif res_type == "sender": return "flow" else: return None def do_test_referential_integrity(self, test, res_type): """Check that the parents for a specific resource type are held in the mock registry, and the recommended order for referential integrity has been adhered to""" api = self.apis[NODE_API_KEY] # Look up data in local mock registry registry_data = self.registry_primary_data parent_type = self.parent_resource_type(res_type) registered_parents = [] preceding_type = self.preceding_resource_type(res_type) registered_preceding = [] preceding_warn = "" found_resource = False try: # Cycle over registrations in order for resource in registry_data.posts: rtype = resource[1]["payload"]["type"] rdata = resource[1]["payload"]["data"] if rtype == parent_type: registered_parents.append(rdata["id"]) elif preceding_type and rtype == preceding_type: registered_preceding.append(rdata["id"]) elif rtype == res_type: found_resource = True if rdata[parent_type + "_id"] not in registered_parents: return test.FAIL("{} '{}' was registered before its referenced '{}' '{}'" .format(res_type.title(), rdata["id"], parent_type + "_id", rdata[parent_type + "_id"])) if preceding_type and rdata[preceding_type + "_id"] not in registered_preceding \ and not preceding_warn: preceding_warn = "{} '{}' was registered before its referenced '{}' '{}'" \ .format(res_type.title(), rdata["id"], preceding_type + "_id", rdata[preceding_type + "_id"]) if preceding_warn: return test.WARNING(preceding_warn, "https://amwa-tv.github.io/nmos-discovery-registration/branches/{}" "/docs/4.1._Behaviour_-_Registration.html#referential-integrity" .format(api["spec_branch"])) elif found_resource: return test.PASS() else: return test.UNCLEAR("No {} resources were registered with the mock registry.".format(res_type.title())) except KeyError as e: return test.FAIL("Unable to find expected key in the registered {}: {}".format(res_type.title(), e)) def test_04(self, test): """Node can register a valid Node resource with the network registration service, matching its Node API self resource""" self.do_registry_basics_prereqs() return self.do_test_matching_resource(test, "node") def test_05(self, test): """Node maintains itself in the registry via periodic calls to the health resource""" if not CONFIG.ENABLE_DNS_SD: return test.DISABLED("This test cannot be performed when ENABLE_DNS_SD is False") api = self.apis[NODE_API_KEY] self.do_registry_basics_prereqs() registry_data = self.registry_primary_data if len(registry_data.heartbeats) < 2: return test.FAIL("Not enough heartbeats were made in the time period.") initial_node = registry_data.posts[0] last_hb = None for heartbeat in registry_data.heartbeats: # Ensure the Node ID for heartbeats matches the registrations if heartbeat[1]["node_id"] != initial_node[1]["payload"]["data"]["id"]: return test.FAIL("Heartbeats matched a different Node ID to the initial registration.") if last_hb: # Check frequency of heartbeats matches the defaults time_diff = heartbeat[0] - last_hb[0] if time_diff > CONFIG.HEARTBEAT_INTERVAL + 0.5: return test.FAIL("Heartbeats are not frequent enough.") elif time_diff < CONFIG.HEARTBEAT_INTERVAL - 0.5: return test.FAIL("Heartbeats are too frequent.") else: # For first heartbeat, check against Node registration if (heartbeat[0] - initial_node[0]) > CONFIG.HEARTBEAT_INTERVAL + 0.5: return test.FAIL("First heartbeat occurred too long after initial Node registration.") # Ensure the heartbeat request body is empty if heartbeat[1]["payload"] is not bytes(): return test.WARNING("Heartbeat POST contained a payload body.", "https://amwa-tv.github.io/nmos-discovery-registration/branches/{}" "/docs/2.2._APIs_-_Client_Side_Implementation_Notes.html#empty-request-bodies" .format(api["spec_branch"])) if "Content-Type" in heartbeat[1]["headers"]: return test.WARNING("Heartbeat POST contained a Content-Type header.", "https://amwa-tv.github.io/nmos-discovery-registration/branches/{}" "/docs/2.2._APIs_-_Client_Side_Implementation_Notes.html#empty-request-bodies" .format(api["spec_branch"])) if "Transfer-Encoding" not in heartbeat[1]["headers"]: if "Content-Length" not in heartbeat[1]["headers"] or \ int(heartbeat[1]["headers"]["Content-Length"]) != 0: # The NMOS spec currently says Content-Length: 0 is OPTIONAL, but it is RECOMMENDED in RFC 7230 # and omitting it causes problems for commonly deployed HTTP servers return test.WARNING("Heartbeat POST did not contain a valid Content-Length header.", "https://amwa-tv.github.io/nmos-discovery-registration/branches/{}" "/docs/2.2._APIs_-_Client_Side_Implementation_Notes.html#empty-request-bodies" .format(api["spec_branch"])) else: if "Content-Length" in heartbeat[1]["headers"]: return test.FAIL("API signalled both Transfer-Encoding and Content-Length") accept_valid, accept_message = self.check_accept(heartbeat[1]["headers"]) if not accept_valid: return test.FAIL(accept_message) last_hb = heartbeat return test.PASS() def test_07(self, test): """Node can register a valid Device resource with the network registration service, matching its Node API Device resource""" self.do_registry_basics_prereqs() return self.do_test_matching_resource(test, "device") def test_07_01(self, test): """Registered Device was POSTed after a matching referenced Node""" if not CONFIG.ENABLE_DNS_SD: return test.DISABLED("This test cannot be performed when ENABLE_DNS_SD is False") self.do_registry_basics_prereqs() return self.do_test_referential_integrity(test, "device") def test_08(self, test): """Node can register a valid Source resource with the network registration service, matching its Node API Source resource""" self.do_registry_basics_prereqs() return self.do_test_matching_resource(test, "source") def test_08_01(self, test): """Registered Source was POSTed after a matching referenced Device""" if not CONFIG.ENABLE_DNS_SD: return test.DISABLED("This test cannot be performed when ENABLE_DNS_SD is False") self.do_registry_basics_prereqs() return self.do_test_referential_integrity(test, "source") def test_09(self, test): """Node can register a valid Flow resource with the network registration service, matching its Node API Flow resource""" self.do_registry_basics_prereqs() return self.do_test_matching_resource(test, "flow") def test_09_01(self, test): """Registered Flow was POSTed after a matching referenced Device or Source""" if not CONFIG.ENABLE_DNS_SD: return test.DISABLED("This test cannot be performed when ENABLE_DNS_SD is False") self.do_registry_basics_prereqs() return self.do_test_referential_integrity(test, "flow") def test_10(self, test): """Node can register a valid Sender resource with the network registration service, matching its Node API Sender resource""" self.do_registry_basics_prereqs() return self.do_test_matching_resource(test, "sender") def test_10_01(self, test): """Registered Sender was POSTed after a matching referenced Device""" if not CONFIG.ENABLE_DNS_SD: return test.DISABLED("This test cannot be performed when ENABLE_DNS_SD is False") self.do_registry_basics_prereqs() return self.do_test_referential_integrity(test, "sender") def test_11(self, test): """Node can register a valid Receiver resource with the network registration service, matching its Node API Receiver resource""" self.do_registry_basics_prereqs() return self.do_test_matching_resource(test, "receiver") def test_11_01(self, test): """Registered Receiver was POSTed after a matching referenced Device""" if not CONFIG.ENABLE_DNS_SD: return test.DISABLED("This test cannot be performed when ENABLE_DNS_SD is False") self.do_registry_basics_prereqs() return self.do_test_referential_integrity(test, "receiver") def test_12(self, test): """Node advertises a Node type mDNS announcement with no ver_* TXT records in the presence of a Registration API (v1.0, v1.1 and v1.2)""" if not CONFIG.ENABLE_DNS_SD: return test.DISABLED("This test cannot be performed when ENABLE_DNS_SD is False") api = self.apis[NODE_API_KEY] if self.is04_utils.compare_api_version(api["version"], "v1.3") >= 0: return test.DISABLED("This test is disabled for Nodes >= v1.3") node_list = self.collect_mdns_announcements() for node in node_list: address = socket.inet_ntoa(node.address) port = node.port if address == api["ip"] and port == api["port"]: properties = self.convert_bytes(node.properties) for prop in properties: if "ver_" in prop: return test.FAIL("Found 'ver_' TXT record while Node is registered.") if self.is04_utils.compare_api_version(api["version"], "v1.1") >= 0: if "api_ver" not in properties: return test.FAIL("No 'api_ver' TXT record found in Node API advertisement.") elif api["version"] not in properties["api_ver"].split(","): return test.FAIL("Node does not claim to support version under test.") if "api_proto" not in properties: return test.FAIL("No 'api_proto' TXT record found in Node API advertisement.") elif properties["api_proto"] != self.protocol: return test.FAIL("API protocol ('api_proto') TXT record is not '{}'.".format(self.protocol)) if self.is04_utils.compare_api_version(api["version"], "v1.3") >= 0: if "api_auth" not in properties: return test.FAIL("No 'api_auth' TXT record found in Node API advertisement.") elif not isinstance(properties["api_auth"], bool): # zeroconf translates 'true' to True and 'false' to False automatically return test.FAIL("API authorization ('api_auth') TXT record is not one of 'true' or 'false'.") return test.PASS() return test.WARNING("No matching mDNS announcement found for Node with IP/Port {}:{}. This will not affect " "operation in registered mode but may indicate a lack of support for peer to peer " "operation.".format(api["ip"], api["port"]), NMOS_WIKI_URL + "/IS-04#nodes-peer-to-peer-mode") def test_12_01(self, test): """Node does not advertise a Node type mDNS announcement in the presence of a Registration API (v1.3+)""" if not CONFIG.ENABLE_DNS_SD: return test.DISABLED("This test cannot be performed when ENABLE_DNS_SD is False") api = self.apis[NODE_API_KEY] if self.is04_utils.compare_api_version(api["version"], "v1.3") < 0: return test.DISABLED("This test is disabled for Nodes < v1.3") node_list = self.collect_mdns_announcements() for node in node_list: address = socket.inet_ntoa(node.address) port = node.port if address == api["ip"] and port == api["port"]: properties = self.convert_bytes(node.properties) if "api_ver" not in properties: return test.FAIL("No 'api_ver' TXT record found in Node API advertisement.") min_version_lt_v1_3 = False for api_version in properties["api_ver"].split(","): if self.is04_utils.compare_api_version(api_version, "v1.3") < 0: min_version_lt_v1_3 = True if not min_version_lt_v1_3: return test.WARNING("Nodes which support v1.3+ only should not advertise via mDNS when in " "registered mode.") return test.PASS() def test_13(self, test): """PUTing to a Receiver target resource with a Sender resource payload is accepted and connects the Receiver to a stream""" valid, receivers = self.do_request("GET", self.node_url + "receivers") if not valid or receivers.status_code != 200: return test.FAIL("Unexpected response from the Node API: {}".format(receivers)) try: formats_tested = [] for receiver in receivers.json(): if not receiver["transport"].startswith("urn:x-nmos:transport:rtp"): continue try: stream_type = receiver["format"].split(":")[-1] except TypeError: return test.FAIL("Unexpected Receiver format: {}".format(receiver)) # Test each available receiver format once if stream_type in formats_tested: continue if stream_type not in ["video", "audio", "data", "mux"]: return test.FAIL("Unexpected Receiver format: {}".format(receiver["format"])) request_data = self.node.get_sender(stream_type) self.do_receiver_put(test, receiver["id"], request_data) time.sleep(CONFIG.API_PROCESSING_TIMEOUT) valid, response = self.do_request("GET", self.node_url + "receivers/" + receiver["id"]) if not valid or response.status_code != 200: return test.FAIL("Unexpected response from the Node API: {}".format(receiver)) receiver = response.json() if receiver["subscription"]["sender_id"] != request_data["id"]: return test.FAIL("Node API Receiver {} subscription does not reflect the subscribed " "Sender ID".format(receiver["id"])) api = self.apis[NODE_API_KEY] if self.is04_utils.compare_api_version(api["version"], "v1.2") >= 0: if not receiver["subscription"]["active"]: return test.FAIL("Node API Receiver {} subscription does not indicate an active " "subscription".format(receiver["id"])) formats_tested.append(stream_type) if len(formats_tested) > 0: return test.PASS() except json.JSONDecodeError: return test.FAIL("Non-JSON response returned from Node API") return test.UNCLEAR("Node API does not expose any RTP Receivers") def test_14(self, test): """PUTing to a Receiver target resource with an empty JSON object payload is accepted and disconnects the Receiver from a stream""" valid, receivers = self.do_request("GET", self.node_url + "receivers") if not valid or receivers.status_code != 200: return test.FAIL("Unexpected response from the Node API: {}".format(receivers)) try: test_receiver = None for receiver in receivers.json(): if not receiver["transport"].startswith("urn:x-nmos:transport:rtp"): continue test_receiver = receiver break if test_receiver is not None: self.do_receiver_put(test, test_receiver["id"], {}) time.sleep(CONFIG.API_PROCESSING_TIMEOUT) valid, response = self.do_request("GET", self.node_url + "receivers/" + test_receiver["id"]) if not valid or response.status_code != 200: return test.FAIL("Unexpected response from the Node API: {}".format(test_receiver)) receiver = response.json() if receiver["subscription"]["sender_id"] is not None: return test.FAIL("Node API Receiver {} subscription does not reflect the subscribed " "Sender ID".format(receiver["id"])) api = self.apis[NODE_API_KEY] if self.is04_utils.compare_api_version(api["version"], "v1.2") >= 0: if receiver["subscription"]["active"]: return test.FAIL("Node API Receiver {} subscription does not indicate an inactive " "subscription".format(receiver["id"])) return test.PASS() except json.JSONDecodeError: return test.FAIL("Non-JSON response returned from Node API") return test.UNCLEAR("Node API does not expose any RTP Receivers") def test_15(self, test): """Node correctly selects a Registration API based on advertised priorities""" if not CONFIG.ENABLE_DNS_SD: return test.DISABLED("This test cannot be performed when ENABLE_DNS_SD is False") self.do_registry_basics_prereqs() last_hb = None last_registry = None # All but the first and last registry can be used for priority tests. The last one is reserved for timeout tests for index, registry_data in enumerate(self.registry_basics_data[1:-1]): if len(registry_data.heartbeats) < 1: return test.FAIL("Node never made contact with registry {} advertised on port {}" .format(index + 1, registry_data.port)) first_hb_to_registry = registry_data.heartbeats[0] if last_hb: if first_hb_to_registry < last_hb: return test.FAIL("Node sent a heartbeat to the registry on port {} before the registry on port {}, " "despite their priorities requiring the opposite behaviour" .format(registry_data.port, last_registry.port)) last_hb = first_hb_to_registry last_registry = registry_data return test.PASS() def test_16(self, test): """Node correctly fails over between advertised Registration APIs when one fails""" if not CONFIG.ENABLE_DNS_SD: return test.DISABLED("This test cannot be performed when ENABLE_DNS_SD is False") self.do_registry_basics_prereqs() # All but the first and last registry can be used for failover tests. The last one is reserved for timeout tests for index, registry_data in enumerate(self.registry_basics_data[1:-1]): if len(registry_data.heartbeats) < 1: return test.FAIL("Node never made contact with registry {} advertised on port {}" .format(index + 1, registry_data.port)) if index > 0: for resource in registry_data.posts: if resource[1]["payload"]["type"] == "node": return test.FAIL("Node re-registered its resources when it failed over to a new registry, when " "it should only have issued a heartbeat") return test.PASS() def test_16_01(self, test): """Node correctly handles Registration APIs whose connections time out""" if not CONFIG.ENABLE_DNS_SD: return test.DISABLED("This test cannot be performed when ENABLE_DNS_SD is False") self.do_registry_basics_prereqs() # The second to last registry will intentionally cause a timeout. Check here that the Node successfully times # out its attempted connection within a heartbeat period and then registers with the next available one. registry_data = self.registry_basics_data[-1] if len(registry_data.heartbeats) < 1: return test.WARNING("Node never made contact with registry {} advertised on port {}" .format(len(self.registry_basics_data), registry_data.port)) for resource in registry_data.posts: if resource[1]["payload"]["type"] == "node": return test.WARNING("Node re-registered its resources when it failed over to a new registry, when it " "should only have issued a heartbeat") return test.PASS() def test_17(self, test): """All Node resources use different UUIDs""" uuids = set() valid, response = self.do_request("GET", self.node_url + "self") if not valid or response.status_code != 200: return test.FAIL("Unexpected response from the Node API: {}".format(response)) try: uuids.add(response.json()["id"]) except json.JSONDecodeError: return test.FAIL("Non-JSON response returned from Node API") for resource_type in ["devices", "sources", "flows", "senders", "receivers"]: valid, response = self.do_request("GET", self.node_url + resource_type) if not valid or response.status_code != 200: return test.FAIL("Unexpected response from the Node API: {}".format(response)) try: for resource in response.json(): if resource["id"] in uuids: return test.FAIL("Duplicate ID '{}' found in Node API '{}' resource".format(resource["id"], resource_type)) uuids.add(resource["id"]) except json.JSONDecodeError: return test.FAIL("Non-JSON response returned from Node API") return test.PASS() def test_17_01(self, test): """All Devices refer to their attached Senders and Receivers""" # store references from Devices to Senders and Receivers from_devices = {} # store references to Devices from Senders and Receivers to_devices = {} # get all the Node's Devices valid, response = self.do_request("GET", self.node_url + "devices") if not valid or response.status_code != 200: return test.FAIL("Unexpected response from the Node API: {}".format(response)) try: for resource in response.json(): from_devices[resource["id"]] = { "senders": set(resource["senders"]), "receivers": set(resource["receivers"]) } except json.JSONDecodeError: return test.FAIL("Non-JSON response returned from Node API") if len(from_devices) == 0: return test.UNCLEAR("Node API does not expose any Devices") # get all the Node's Senders and Receivers empty_refs = {"senders": set(), "receivers": set()} for resource_type in ["senders", "receivers"]: valid, response = self.do_request("GET", self.node_url + resource_type) if not valid or response.status_code != 200: return test.FAIL("Unexpected response from the Node API: {}".format(response)) try: for resource in response.json(): id = resource["device_id"] if id not in to_devices: to_devices[id] = deepcopy(empty_refs) to_devices[id][resource_type].add(resource["id"]) except json.JSONDecodeError: return test.FAIL("Non-JSON response returned from Node API") found_empty_refs = False for id, from_device in from_devices.items(): if id not in to_devices: if from_device == empty_refs: # no Senders or Receivers are attached to this Device continue else: return test.FAIL("Device '{}' references one or more unknown Senders or Receivers." .format(id)) to_device = to_devices[id] if from_device == empty_refs: # Device appears not to be populating the deprecated attributes found_empty_refs = True else: for refs in ["senders", "receivers"]: if len(from_device[refs] - to_device[refs]) > 0: return test.FAIL("Device '{}' references one or more unknown {}." .format(id, refs.title())) elif len(to_device[refs] - from_device[refs]) > 0: return test.FAIL("Device '{}' does not have a reference to one or more of its {}." .format(id, refs.title())) # else: references from Device to its Senders and Receivers # match references from Senders and Receivers to that Device if found_empty_refs: return test.WARNING("One or more Devices do not have references to any of their Senders or Receivers. " "(The 'senders' and 'receivers' attributes are deprecated since IS-04 v1.2.)") return test.PASS() def test_18(self, test): """All Node clocks are unique, and relate to any visible Sources' clocks""" api = self.apis[NODE_API_KEY] if self.is04_utils.compare_api_version(api["version"], "v1.1") < 0: return test.NA("Clocks are not available until IS-04 v1.1") clocks = set() valid, response = self.do_request("GET", self.node_url + "self") if not valid or response.status_code != 200: return test.FAIL("Unexpected response from the Node API: {}".format(response)) try: for clock in response.json()["clocks"]: clock_name = clock["name"] if clock_name in clocks: return test.FAIL("Duplicate clock name '{}' found in Node API self resource".format(clock_name)) clocks.add(clock_name) except json.JSONDecodeError: return test.FAIL("Non-JSON response returned from Node API") valid, response = self.do_request("GET", self.node_url + "sources") if not valid or response.status_code != 200: return test.FAIL("Unexpected response from the Node API: {}".format(response)) try: for source in response.json(): clock_name = source["clock_name"] if clock_name not in clocks and clock_name is not None: return test.FAIL("Source '{}' uses a non-existent clock name '{}'".format(source["id"], clock_name)) except json.JSONDecodeError: return test.FAIL("Non-JSON response returned from Node API") return test.PASS() def test_19(self, test): """All Node interfaces are unique, and relate to any visible Senders and Receivers' interface_bindings""" api = self.apis[NODE_API_KEY] if self.is04_utils.compare_api_version(api["version"], "v1.2") < 0: return test.NA("Interfaces are not available until IS-04 v1.2") interfaces = set() valid, response = self.do_request("GET", self.node_url + "self") if not valid or response.status_code != 200: return test.FAIL("Unexpected response from the Node API: {}".format(response)) try: for interface in response.json()["interfaces"]: interface_name = interface["name"] if interface_name in interfaces: return test.FAIL("Duplicate interface name '{}' found in Node API self resource" .format(interface_name)) interfaces.add(interface_name) except json.JSONDecodeError: return test.FAIL("Non-JSON response returned from Node API") valid, response = self.do_request("GET", self.node_url + "senders") if not valid or response.status_code != 200: return test.FAIL("Unexpected response from the Node API: {}".format(response)) try: for sender in response.json(): interface_bindings = sender["interface_bindings"] for interface_name in interface_bindings: if interface_name not in interfaces: return test.FAIL("Sender '{}' uses a non-existent interface name '{}'" .format(sender["id"], interface_name)) except json.JSONDecodeError: return test.FAIL("Non-JSON response returned from Node API") valid, response = self.do_request("GET", self.node_url + "receivers") if not valid or response.status_code != 200: return test.FAIL("Unexpected response from the Node API: {}".format(response)) try: for receiver in response.json(): interface_bindings = receiver["interface_bindings"] for interface_name in interface_bindings: if interface_name not in interfaces: return test.FAIL("Receiver '{}' uses a non-existent interface name '{}'" .format(receiver["id"], interface_name)) except json.JSONDecodeError: return test.FAIL("Non-JSON response returned from Node API") return test.PASS() def test_20(self, test): """Node's resources correctly signal the current protocol and IP/hostname""" found_api_endpoint = False found_href = False href_hostname_warn = False api_endpoint_host_warn = False service_href_scheme_warn = False service_href_hostname_warn = False control_href_scheme_warn = False control_href_hostname_warn = False manifest_href_scheme_warn = False manifest_href_hostname_warn = False api = self.apis[NODE_API_KEY] valid, response = self.do_request("GET", self.node_url + "self") if not valid or response.status_code != 200: return test.FAIL("Unexpected response from the Node API: {}".format(response)) try: node_self = response.json() if not node_self["href"].startswith(self.protocol + "://"): return test.FAIL("Node 'href' does not match the current protocol") if node_self["href"].startswith("https://") and urlparse(node_self["href"]).hostname[-1].isdigit(): href_hostname_warn = True if self.is04_utils.compare_api_version(api["version"], "v1.1") >= 0: for endpoint in node_self["api"]["endpoints"]: if endpoint["protocol"] != self.protocol: return test.FAIL("One or more Node 'api.endpoints' do not match the current protocol") if endpoint["host"] == api["hostname"] and endpoint["port"] == api["port"]: found_api_endpoint = True if self.is04_utils.compare_urls(node_self["href"], "{}://{}:{}" .format(endpoint["protocol"], endpoint["host"], endpoint["port"])): found_href = True if endpoint["protocol"] == "https" and endpoint["host"][-1].isdigit(): api_endpoint_host_warn = True for service in node_self["services"]: href = service["href"] if href.startswith("http") and not href.startswith(self.protocol + "://"): # Only warn about these at the end so that more major failures are flagged first # Protocols other than HTTP may be used, so don't incorrectly flag those too service_href_scheme_warn = True if href.startswith("https://") and urlparse(href).hostname[-1].isdigit(): service_href_hostname_warn = True except json.JSONDecodeError: return test.FAIL("Non-JSON response returned from Node API") if self.is04_utils.compare_api_version(api["version"], "v1.1") >= 0: if not found_api_endpoint: return test.FAIL("None of the Node 'api.endpoints' match the current protocol, IP/hostname and port") if not found_href: return test.FAIL("None of the Node 'api.endpoints' match the Node 'href'") valid, response = self.do_request("GET", self.node_url + "devices") if not valid or response.status_code != 200: return test.FAIL("Unexpected response from the Node API: {}".format(response)) try: node_devices = response.json() for device in node_devices: for control in device["controls"]: href = control["href"] if href.startswith("http") and not href.startswith(self.protocol + "://"): # Only warn about these at the end so that more major failures are flagged first # Protocols other than HTTP may be used, so don't incorrectly flag those too control_href_scheme_warn = True if href.startswith("https://") and urlparse(href).hostname[-1].isdigit(): control_href_hostname_warn = True except json.JSONDecodeError: return test.FAIL("Non-JSON response returned from Node API") valid, response = self.do_request("GET", self.node_url + "senders") if not valid or response.status_code != 200: return test.FAIL("Unexpected response from the Node API: {}".format(response)) try: node_senders = response.json() for sender in node_senders: href = sender["manifest_href"] if href is not None and href.startswith("http") and not href.startswith(self.protocol + "://"): manifest_href_scheme_warn = True if href is not None and href.startswith("https://") and urlparse(href).hostname[-1].isdigit(): manifest_href_hostname_warn = True except json.JSONDecodeError: return test.FAIL("Non-JSON response returned from Node API") if href_hostname_warn: return test.WARNING("Node 'href' value has an IP address not a hostname") elif api_endpoint_host_warn: return test.WARNING("One or more Node 'api.endpoints.host' values are an IP address not a hostname") elif service_href_hostname_warn: return test.WARNING("One or more Node service 'href' values have an IP address not a hostname") elif control_href_hostname_warn: return test.WARNING("One or more Device control 'href' values have an IP address not a hostname") elif manifest_href_hostname_warn: return test.WARNING("One or more Sender 'manifest_href' values have an IP address not a hostname") elif service_href_scheme_warn: return test.WARNING("One or more Node service 'href' values do not match the current protocol") elif control_href_scheme_warn: return test.WARNING("One or more Device control 'href' values do not match the current protocol") elif manifest_href_scheme_warn: return test.WARNING("One or more Sender 'manifest_href' values do not match the current protocol") return test.PASS() def test_21(self, test): """Node correctly interprets a 200 code from a registry upon initial registration""" if not CONFIG.ENABLE_DNS_SD: return test.DISABLED("This test cannot be performed when ENABLE_DNS_SD is False") registry_info = self._registry_mdns_info(self.primary_registry.get_data().port, 0) # Reset the registry to clear previous heartbeats, and enable in 200 test mode self.primary_registry.reset() self.primary_registry.enable(first_reg=True) if CONFIG.DNS_SD_MODE == "multicast": # Advertise a registry at pri 0 and allow the Node to do a basic registration self.zc.register_service(registry_info) # Wait for n seconds after advertising the service for the first POST and then DELETE from a Node self.primary_registry.wait_for_registration(CONFIG.DNS_SD_ADVERT_TIMEOUT) self.primary_registry.wait_for_delete(CONFIG.HEARTBEAT_INTERVAL + 1) # Wait for the Node to finish its interactions while (time.time() - self.primary_registry.last_time) < CONFIG.HEARTBEAT_INTERVAL + 1: time.sleep(0.2) # By this point we should have had at least one Node POST and a corresponding DELETE if CONFIG.DNS_SD_MODE == "multicast": self.zc.unregister_service(registry_info) self.primary_registry.disable() # Get the relevant Node ID url = "{}self".format(self.node_url) valid, r = self.do_request("GET", url) if valid and r.status_code == 200: try: # Check that a POST and DELETE match the Node's ID node_id = r.json()["id"] found_post = False for resource in self.primary_registry.get_data().posts: if resource[1]["payload"]["type"] == "node" and resource[1]["payload"]["data"]["id"] == node_id: found_post = True if not found_post: return test.FAIL("Node did not attempt to make contact with the registry") found_delete = False found_extra_deletes = False for resource in self.primary_registry.get_data().deletes: if resource[1]["type"] == "node" and resource[1]["id"] == node_id: found_delete = True elif resource[1]["type"] != "node": found_extra_deletes = True if not found_delete: return test.FAIL("Node did not attempt to DELETE itself having encountered a 200 code on initial " "registration") elif found_extra_deletes: return test.WARNING("Node DELETEd more than just its 'node' resource. This is unnecessary when " "encountering a 200 code on initial registration") except json.JSONDecodeError: return test.FAIL("Non-JSON response returned from Node API") else: return test.FAIL("Unexpected responses from Node API self resource") return test.PASS() def test_22(self, test): """Node resource IDs persist over a reboot""" return test.MANUAL("This check must be performed manually, or via use of the following tool", "https://github.com/AMWA-TV/nmos-testing/blob/master/utilities/uuid-checker/README.md") def test_23(self, test): """Senders and Receivers correctly use BCP-002-01 grouping syntax""" found_groups = False found_senders_receivers = False groups = {"node": {}, "device": {}} for resource_name in ["senders", "receivers"]: valid, response = self.do_request("GET", self.node_url + resource_name) if valid and response.status_code == 200: try: for resource in response.json(): found_senders_receivers = True if resource["device_id"] not in groups["device"]: groups["device"][resource["device_id"]] = {} for tag_name, tag_value in resource["tags"].items(): if tag_name != "urn:x-nmos:tag:grouphint/v1.0": continue if not isinstance(tag_value, list) or len(tag_value) == 0: return test.FAIL("Group tag for {} {} is not an array or has too few items" .format(resource_name.capitalize().rstrip("s"), resource["id"])) found_groups = True for group_def in tag_value: group_params = group_def.split(":") group_scope = "device" # Perform basic validation on the group syntax if len(group_params) < 2: return test.FAIL("Group syntax for {} {} has too few parameters" .format(resource_name.capitalize().rstrip("s"), resource["id"])) elif len(group_params) > 3: return test.FAIL("Group syntax for {} {} has too many parameters" .format(resource_name.capitalize().rstrip("s"), resource["id"])) elif len(group_params) == 3: if group_params[2] not in ["device", "node"]: return test.FAIL("Group syntax for {} {} uses an invalid group scope: {}" .format(resource_name.capitalize().rstrip("s"), resource["id"], group_params[2])) group_scope = group_params[2] # Ensure we have a reference to the group name stored if group_scope == "node": if group_params[0] not in groups["node"]: groups["node"][group_params[0]] = {} group_ref = groups["node"][group_params[0]] elif group_scope == "device": if group_params[0] not in groups["device"][resource["device_id"]]: groups["device"][resource["device_id"]][group_params[0]] = {} group_ref = groups["device"][resource["device_id"]][group_params[0]] # Check for duplicate roles within groups if group_params[1] in group_ref: return test.FAIL("Duplicate role found in group {} for resources {} and {}" .format(group_params[0], resource["id"], group_ref[group_params[1]])) else: group_ref[group_params[1]] = resource["id"] except json.JSONDecodeError: return test.FAIL("Non-JSON response returned from Node API") if not found_senders_receivers: return test.UNCLEAR("No Sender or Receiver resources were found on the Node") elif found_groups: return test.PASS() else: return test.OPTIONAL("No BCP-002-01 groups were identified in Sender or Receiver tags", "https://amwa-tv.github.io/nmos-grouping/best-practice-natural-grouping.html") def test_24(self, test): """Periodic Sources specify a 'grain_rate'""" valid, response = self.do_request("GET", self.node_url + "sources") if valid and response.status_code == 200: try: for resource in response.json(): # Currently testing where it would be particularly unusual to find a non-periodic Source if resource["format"] in ["urn:x-nmos:format:video", "urn:x-nmos:format:audio", "urn:x-nmos:format:mux"]: if "grain_rate" not in resource: return test.WARNING("Sources MUST specify a 'grain_rate' if they are periodic") if len(response.json()) > 0: return test.PASS() except json.JSONDecodeError: return test.FAIL("Non-JSON response returned from Node API") return test.UNCLEAR("No Source resources were found on the Node") def test_24_01(self, test): """Periodic Flows' 'grain_rate' is divisible by their parent Source 'grain_rate'""" source_valid, source_response = self.do_request("GET", self.node_url + "sources") flow_valid, flow_response = self.do_request("GET", self.node_url + "flows") if source_valid and flow_valid and source_response.status_code == 200 and flow_response.status_code == 200: try: sources = {source["id"]: source for source in source_response.json()} flows = flow_response.json() for flow in flows: if "grain_rate" in flow: source = sources[flow["source_id"]] if "grain_rate" not in source: return test.FAIL("Sources MUST specify a 'grain_rate' when their child Flows specify a " "'grain_rate'") flow_rate = flow["grain_rate"] if "denominator" not in flow_rate: flow_rate["denominator"] = 1 source_rate = source["grain_rate"] if "denominator" not in source_rate: source_rate["denominator"] = 1 if ((source_rate["numerator"] * flow_rate["denominator"]) % (flow_rate["numerator"] * source_rate["denominator"])): return test.FAIL("Flow 'grain_rate' MUST be integer divisible by the Source 'grain_rate'") elif flow["format"] in ["urn:x-nmos:format:video", "urn:x-nmos:format:audio", "urn:x-nmos:format:mux"]: return test.WARNING("Flows SHOULD specify a 'grain_rate' if they are periodic") if len(flow_response.json()) > 0: return test.PASS() except json.JSONDecodeError: return test.FAIL("Non-JSON response returned from Node API") except KeyError: return test.FAIL("No Source found for one or more advertised Flows") return test.UNCLEAR("No Source or Flow resources were found on the Node") def test_25(self, test): """Receivers expose expected 'caps' for their API version""" api = self.apis[NODE_API_KEY] if self.is04_utils.compare_api_version(api["version"], "v1.1") < 0: return test.NA("Capabilities are not used before API v1.1") receivers_valid, receivers_response = self.do_request("GET", self.node_url + "receivers") no_receivers = True if receivers_valid and receivers_response.status_code == 200: try: for receiver in receivers_response.json(): no_receivers = False if "media_types" not in receiver["caps"]: return test.WARNING("Receiver 'caps' should include a list of accepted 'media_types', unless " "this Receiver can handle any 'media_type'", "https://amwa-tv.github.io/nmos-discovery-registration/branches/{}/docs/" "4.3._Behaviour_-_Nodes.html#all-resources".format(api["spec_branch"])) if self.is04_utils.compare_api_version(api["version"], "v1.3") >= 0: if receiver["format"] == "urn:x-nmos:format:data" and \ receiver["transport"] in ["urn:x-nmos:transport:websocket", "urn:x-nmos:transport:mqtt"]: # Technically this is a bit IS-07 specific, but it may still be best placed here for now if "event_types" not in receiver["caps"]: return test.WARNING("Receiver 'caps' should include a list of accepted 'event_types' " "if the Receiver accepts IS-07 events, unless this Receiver can " "handle any 'event_type'", "https://amwa-tv.github.io/nmos-discovery-registration/branches/{}/" "docs/4.3._Behaviour_-_Nodes.html#all-resources" .format(api["spec_branch"])) except json.JSONDecodeError: return test.FAIL("Non-JSON response returned from Node API") except KeyError as e: return test.FAIL("Unable to find expected key in the Receiver: {}".format(e)) if no_receivers: return test.UNCLEAR("No Receivers were found on the Node") else: return test.PASS() def do_receiver_put(self, test, receiver_id, data): """Perform a PUT to the Receiver 'target' resource with the specified data""" valid, put_response = self.do_request("PUT", self.node_url + "receivers/" + receiver_id + "/target", json=data) if not valid: raise NMOSTestException(test.FAIL("Unexpected response from the Node API: {}".format(put_response))) if put_response.status_code == 501: api = self.apis[NODE_API_KEY] if self.is04_utils.compare_api_version(api["version"], "v1.3") >= 0: raise NMOSTestException(test.OPTIONAL("Node indicated that basic connection management is not " "supported", NMOS_WIKI_URL + "/IS-04#nodes-basic-connection-management")) else: raise NMOSTestException(test.WARNING("501 'Not Implemented' status code is not supported below API " "version v1.3", NMOS_WIKI_URL + "/IS-04#nodes-basic-connection-management")) elif put_response.status_code != 202: raise NMOSTestException(test.FAIL("Receiver target PUT did not produce a 202 response code: " "{}".format(put_response.status_code))) schema = self.get_schema(NODE_API_KEY, "PUT", "/receivers/{receiverId}/target", put_response.status_code) valid, message = self.check_response(schema, "PUT", put_response) if valid: # if message: # return WARNING somehow... pass else: raise NMOSTestException(test.FAIL(message)) def collect_mdns_announcements(self): """Helper function to collect Node mDNS announcements in the presence of a Registration API""" registry_info = self._registry_mdns_info(self.primary_registry.get_data().port, 0) # Reset the registry to clear previous data, although we won't be checking it self.primary_registry.reset() self.primary_registry.enable() if CONFIG.DNS_SD_MODE == "multicast": # Advertise a registry at pri 0 and allow the Node to do a basic registration self.zc.register_service(registry_info) # Wait for n seconds after advertising the service for the first POST from a Node self.primary_registry.wait_for_registration(CONFIG.DNS_SD_ADVERT_TIMEOUT) ServiceBrowser(self.zc, "_nmos-node._tcp.local.", self.zc_listener) time.sleep(CONFIG.DNS_SD_BROWSE_TIMEOUT) node_list = self.zc_listener.get_service_list() # Withdraw the registry advertisement now we've performed a browse for Node advertisements if CONFIG.DNS_SD_MODE == "multicast": self.zc.unregister_service(registry_info) self.primary_registry.disable() return node_list
50.211602
121
0.571504
04e8335e7c4ecd6f61510a1f43c23bb7884dee16
1,296
py
Python
fuzzybee/resume/migrations/0001_initial.py
youtaya/knight
6899e18ca6b1ef01daaae7d7fd14b50a26aa0aee
[ "MIT" ]
null
null
null
fuzzybee/resume/migrations/0001_initial.py
youtaya/knight
6899e18ca6b1ef01daaae7d7fd14b50a26aa0aee
[ "MIT" ]
null
null
null
fuzzybee/resume/migrations/0001_initial.py
youtaya/knight
6899e18ca6b1ef01daaae7d7fd14b50a26aa0aee
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('joboard', '0001_initial'), ] operations = [ migrations.CreateModel( name='Resume', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('identity_image', models.ImageField(upload_to=b'identity')), ('name', models.CharField(max_length=24, blank=True)), ('gender', models.CharField(max_length=4)), ('birthday', models.CharField(max_length=24)), ('experience', models.CharField(max_length=24)), ('education', models.CharField(max_length=24)), ('phone', models.CharField(max_length=24)), ('apply_job', models.CharField(max_length=24)), ('expect_salary', models.CharField(max_length=24)), ('self_description', models.CharField(max_length=100)), ('apply_factory', models.ForeignKey(related_name='factory', to='joboard.Factory')), ], options={ }, bases=(models.Model,), ), ]
37.028571
114
0.566358
9f6ce6a4b7bd25e45daed898600f34939f3e44c9
3,045
py
Python
samples/python/54.teams-task-module/app.py
kenguil/BF4
5954f40f30c71a38c5f1550db50d19b2a9c2427d
[ "MIT" ]
1
2020-10-30T16:44:04.000Z
2020-10-30T16:44:04.000Z
samples/python/54.teams-task-module/app.py
kenguil/BF4
5954f40f30c71a38c5f1550db50d19b2a9c2427d
[ "MIT" ]
null
null
null
samples/python/54.teams-task-module/app.py
kenguil/BF4
5954f40f30c71a38c5f1550db50d19b2a9c2427d
[ "MIT" ]
1
2020-07-30T11:34:14.000Z
2020-07-30T11:34:14.000Z
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import sys import traceback from datetime import datetime from http import HTTPStatus from aiohttp import web from aiohttp.web import Request, Response, json_response from botbuilder.core import ( BotFrameworkAdapterSettings, TurnContext, BotFrameworkAdapter, ) from botbuilder.core.integration import aiohttp_error_middleware from botbuilder.schema import Activity, ActivityTypes from bots import TeamsTaskModuleBot from config import DefaultConfig CONFIG = DefaultConfig() # Create adapter. # See https://aka.ms/about-bot-adapter to learn more about how bots work. SETTINGS = BotFrameworkAdapterSettings(CONFIG.APP_ID, CONFIG.APP_PASSWORD) ADAPTER = BotFrameworkAdapter(SETTINGS) # Catch-all for errors. async def on_error(context: TurnContext, error: Exception): # This check writes out errors to console log .vs. app insights. # NOTE: In production environment, you should consider logging this to Azure # application insights. print(f"\n [on_turn_error] unhandled error: {error}", file=sys.stderr) traceback.print_exc() # Send a message to the user await context.send_activity("The bot encountered an error or bug.") await context.send_activity( "To continue to run this bot, please fix the bot source code." ) # Send a trace activity if we're talking to the Bot Framework Emulator if context.activity.channel_id == "emulator": # Create a trace activity that contains the error object trace_activity = Activity( label="TurnError", name="on_turn_error Trace", timestamp=datetime.utcnow(), type=ActivityTypes.trace, value=f"{error}", value_type="https://www.botframework.com/schemas/error", ) # Send a trace activity, which will be displayed in Bot Framework Emulator await context.send_activity(trace_activity) ADAPTER.on_turn_error = on_error # Create the Bot BOT = TeamsTaskModuleBot() # Listen for incoming requests on /api/messages async def messages(req: Request) -> Response: # Main bot message handler. if "application/json" in req.headers["Content-Type"]: body = await req.json() else: return Response(status=HTTPStatus.UNSUPPORTED_MEDIA_TYPE) activity = Activity().deserialize(body) auth_header = req.headers["Authorization"] if "Authorization" in req.headers else "" invoke_response = await ADAPTER.process_activity( activity, auth_header, BOT.on_turn ) if invoke_response: return json_response( data=invoke_response.body, status=invoke_response.status ) return Response(status=HTTPStatus.OK) APP = web.Application(middlewares=[aiohttp_error_middleware]) APP.router.add_post("/api/messages", messages) if __name__ == "__main__": try: web.run_app(APP, host="localhost", port=CONFIG.PORT) except Exception as error: raise error
33.097826
88
0.718883
f5816f4dd90979298aa30fa2d4f097cf2bd2096e
797
py
Python
xlsxwriter/test/comparison/test_image24.py
dthadi3/XlsxWriter
f1801e82240aa9c746ce14948ef95990b83162cf
[ "BSD-2-Clause-FreeBSD" ]
1
2020-07-01T07:24:37.000Z
2020-07-01T07:24:37.000Z
xlsxwriter/test/comparison/test_image24.py
dthadi3/XlsxWriter
f1801e82240aa9c746ce14948ef95990b83162cf
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
xlsxwriter/test/comparison/test_image24.py
dthadi3/XlsxWriter
f1801e82240aa9c746ce14948ef95990b83162cf
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2020, John McNamara, jmcnamara@cpan.org # from ..excel_comparison_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename('image24.xlsx') def test_create_file(self): """Test the creation of a simple XlsxWriter file with image(s).""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() worksheet.insert_image('B2', self.image_dir + 'black_300.png') workbook.close() self.assertExcelEqual()
23.441176
79
0.614806
21cf4897a8ca0a543b8347f25ac1ca64eb8d88fc
1,884
py
Python
code/town_acc.py
akonstodata/CT_crash_analysis
66a8ecce5279f4dfc9f1cc3766a00573229812ca
[ "MIT" ]
1
2020-10-04T20:54:25.000Z
2020-10-04T20:54:25.000Z
code/town_acc.py
akonstodata/CT_crash_analysis
66a8ecce5279f4dfc9f1cc3766a00573229812ca
[ "MIT" ]
null
null
null
code/town_acc.py
akonstodata/CT_crash_analysis
66a8ecce5279f4dfc9f1cc3766a00573229812ca
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ This set of functions is used to create a town class CT Crash data analysis @author: Anna Konstorum (konstorum.anna@gmail.com) """ import plot_results class town_acc(): """Analyzing I-84 CT crash data by town""" #import numpy as np def __init__(self,town,full_data,exit_mile,town_mile): """Initialize town and full data repository""" self.town = town self.full_data = full_data self.exit_mile = exit_mile self.town_mile = town_mile def get_town_data(self): """Subset full data by town if requested""" full_data_crash = self.full_data if self.town == 'All': town_data_subset = full_data_crash else: town_data_subset = full_data_crash[full_data_crash["Town_Name"]==self.town] return(town_data_subset) def get_weekdays(self,town_data_subset): """Subset for just weekdays""" town_data_weekday = town_data_subset[(town_data_subset["Day_of_the_Week_Text_Format"]!="Saturday") & (town_data_subset["Day_of_the_Week_Text_Format"]!="Sunday")] town_data_weekday = town_data_weekday.reset_index() return town_data_weekday def get_rush_hour(self,town_data_subset,morn_eve): if morn_eve == "morning": start_time="06:00:00" end_time="09:00:00" else: start_time = "16:00:00" end_time = "19:00:00" town_data_rush_hour = town_data_subset[town_data_subset.final_time.dt.strftime("%H:%M:%S").between(start_time,end_time)] return town_data_rush_hour def plot_town_data(self,town_data_subset, y_max, y_min,title_out): plot_results.plot_accidents_bytown(self.exit_mile, self.town_mile,self.town,town_data_subset, y_max, y_min, title_out)
36.941176
129
0.656582
4d4efa71cbcf08423c785686d0bca830d89b7738
631
py
Python
examples/infinity_feedliker.py
pierfani/instabot
2eb724e2f7e7e14df67098c71a871f036574e33c
[ "Apache-2.0" ]
4
2019-08-17T01:27:20.000Z
2020-01-08T12:01:34.000Z
examples/infinity_feedliker.py
pierfani/instabot
2eb724e2f7e7e14df67098c71a871f036574e33c
[ "Apache-2.0" ]
4
2019-02-25T08:48:07.000Z
2019-03-07T17:06:15.000Z
examples/infinity_feedliker.py
pierfani/instabot
2eb724e2f7e7e14df67098c71a871f036574e33c
[ "Apache-2.0" ]
5
2019-04-10T04:53:14.000Z
2020-05-17T09:10:06.000Z
""" instabot example Workflow: Like rescent medias from your timeline feed. """ import argparse import os import sys import time sys.path.append(os.path.join(sys.path[0], '../')) from instabot import Bot parser = argparse.ArgumentParser(add_help=True) parser.add_argument('-u', type=str, help="username") parser.add_argument('-p', type=str, help="password") parser.add_argument('-proxy', type=str, help="proxy") args = parser.parse_args() bot = Bot() bot.login(username=args.u, password=args.p, proxy=args.proxy) wait = 5 * 60 # in seconds while True: bot.like_timeline() time.sleep(wait)
20.354839
53
0.690967
2249b1559381e099d154e526407cdd5dc76d60b3
1,818
py
Python
data/p2DJ/New/program/cirq/startCirq168.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p2DJ/New/program/cirq/startCirq168.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p2DJ/New/program/cirq/startCirq168.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=2 # total number=10 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode from cirq.contrib.svg import SVGCircuit # Symbols for the rotation angles in the QAOA circuit. def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.Y.on(input_qubit[1])) # number=2 c.append(cirq.Y.on(input_qubit[1])) # number=4 c.append(cirq.Y.on(input_qubit[1])) # number=3 c.append(cirq.rx(2.0860175219836226).on(input_qubit[1])) # number=7 c.append(cirq.X.on(input_qubit[0])) # number=5 c.append(cirq.X.on(input_qubit[0])) # number=6 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=8 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=9 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq168.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
28.40625
77
0.694169
5984f249444dd00fb8b3ee4bf26f283c9a91a344
7,930
py
Python
termrec/__init__.py
donno2048/termrec
114b99e5e0c486c0ea3334b138c35a5bfc992440
[ "MIT" ]
4
2021-12-09T17:30:42.000Z
2021-12-30T09:35:52.000Z
termrec/__init__.py
donno2048/termrec
114b99e5e0c486c0ea3334b138c35a5bfc992440
[ "MIT" ]
null
null
null
termrec/__init__.py
donno2048/termrec
114b99e5e0c486c0ea3334b138c35a5bfc992440
[ "MIT" ]
null
null
null
from json import loads, dumps from codecs import getincrementaldecoder from time import time from select import select from os import read, environ, get_terminal_size, isatty, write, execvpe, pipe, O_NONBLOCK, waitpid, close from array import array from fcntl import ioctl, fcntl, F_GETFL, F_SETFL from signal import signal, SIGCHLD, SIGHUP, SIGTERM, SIGQUIT, set_wakeup_fd, SIGWINCH from termios import error, TCSAFLUSH, tcgetattr, tcsetattr, TIOCGWINSZ, TIOCSWINSZ from multiprocessing import Process, Queue WIDTH, HEIGHT = get_terminal_size() ENV = {'SHELL': environ.get('SHELL'), 'TERM': environ.get('TERM')} class writer(): def __init__(self, path, header): self.path, self.decstdin, self.decstdout, self.header = path, getincrementaldecoder('UTF-8')('replace'), getincrementaldecoder('UTF-8')('replace'), header def __enter__(self): self.file = open(self.path, mode='w', buffering=1) self.write_line(self.header) return self def __exit__(self, exc_type, exc_value, exc_traceback): self.file.close() def write_event(self, ts): ts, etype, data = ts ts = round(ts, 6) if etype == 'o': if type(data) == str: data = data.encode(encoding='utf-8', errors='strict') self.write_line([ts, etype, self.decstdout.decode(data)]) elif etype == 'i': if type(data) == str: data = data.encode(encoding='utf-8', errors='strict') self.write_line([ts, etype, self.decstdin.decode(data)]) else: self.write_line([ts, etype, data]) def write_stdout(self, ts, data): self.write_event(ts, 'o', data) def write_stdin(self, ts, data): self.write_event(ts, 'i', data) def write_line(self, obj): self.file.write(dumps(obj, ensure_ascii=False, indent=None, separators=(', ', ': ')) + '\n') def write_json(path, header, queue): with writer(path, header) as w: for event in iter(queue.get, None): w.write_event(event) class async_writer(): def __init__(self, path, metadata): self.path, self.metadata, self.queue = path, metadata, Queue() def __enter__(self): self.process = Process(target=write_json, args=(self.path, self.metadata, self.queue)) self.process.start() self.start_time = time() return self def __exit__(self, exc_type, exc_value, exc_traceback): self.queue.put(None) self.process.join() def write_stdin(self, data): self.queue.put([time() - self.start_time, 'i', data]) def write_stdout(self, data): self.queue.put([time() - self.start_time, 'o', data]) class raw(): def __init__(self, fd): self.fd, self.restore = fd, False def __enter__(self): try: self.mode = tcgetattr(self.fd) __import__("tty").setraw(self.fd) self.restore = True except error: pass def __exit__(self, type, value, traceback): if self.restore: tcsetattr(self.fd, TCSAFLUSH, self.mode) def record(command, writer): master_fd = None def _set_pty_size(): if isatty(1): buf = array('h', [0, 0, 0, 0]) ioctl(1, TIOCGWINSZ, buf, True) else: buf = array('h', [24, 80, 0, 0]) ioctl(master_fd, TIOCSWINSZ, buf) def _write_stdout(data): write(1, data) def _handle_master_read(data): writer.write_stdout(data) _write_stdout(data) def _write_master(data): while data: data = data[write(master_fd, data):] def _handle_stdin_read(data): _write_master(data) #;writer.write_stdin(data) def _signals(signal_list): return [(sig, signal(sig, handler)) for sig, handler in signal_list] def _copy(signal_fd): fds = [master_fd, 0, signal_fd] while True: try: rfds, wfds, xfds = select(fds, [], []) except OSError as e: if e.errno == 4: continue if master_fd in rfds: data = read(master_fd, 1024) if not data: fds.remove(master_fd) else: _handle_master_read(data) if 0 in rfds: data = read(0, 1024) if not data: fds.remove(0) else: _handle_stdin_read(data) if signal_fd in rfds: data = read(signal_fd, 1024) if data: signals = __import__("struct").unpack('%uB' % len(data), data) for sig in signals: if sig in [SIGCHLD, SIGHUP, SIGTERM, SIGQUIT]: close(master_fd) return elif sig == SIGWINCH: _set_pty_size() pid, master_fd = __import__("pty").fork() if not pid: execvpe(command[0], command, environ) pipe_r, pipe_w = pipe() flags = fcntl(pipe_w, F_SETFL, fcntl(pipe_w, F_GETFL, 0) | O_NONBLOCK) set_wakeup_fd(pipe_w) old_handlers = _signals(map(lambda s: (s, lambda signal, frame: None), [SIGWINCH, SIGCHLD, SIGHUP, SIGTERM, SIGQUIT])) _set_pty_size() with raw(0): try: _copy(pipe_r) except (IOError, OSError): pass _signals(old_handlers) waitpid(pid, 0) class Cast: def __init__(self, f, header): self.version, self.__file, self.v2_header, self.idle_time_limit = 2, f, header, header.get('idle_time_limit') def events(self): for line in self.__file: yield loads(line) def stdout_events(self): for time, type, data in self.events(): if type == 'o': yield [time, type, data] def file2cast(header, f): return Cast(f, header) class open_file(): def __init__(self, first_line, file): self.first_line, self.file = first_line, file def __enter__(self): return file2cast(loads(self.first_line), self.file) def __exit__(self, exc_type, exc_value, exc_traceback): self.file.close() class file(): def __init__(self, path): self.path = path def __enter__(self): self.file = open(self.path, mode='rt', encoding='utf-8') self.context = open_file(self.file.readline(), self.file) return self.context.__enter__() def __exit__(self, exc_type, exc_value, exc_traceback): self.context.__exit__(exc_type, exc_value, exc_traceback) def play(cast): try: std = open('/dev/tty') with raw(std.fileno()): stdin = std except Exception: stdin = None base_time, keyboard_interrupt, paused, pause_time, not_broke = time(), False, False, None, True for t, _type, text in cast.stdout_events(): delay = t - (time() - base_time) while stdin and not keyboard_interrupt and delay > 0: if paused: while not_broke: fi, not_broke = stdin.fileno(), False terminal = read(fi, 1024) if fi in select([fi], [], [], 1000)[0] else b'' if 3 in terminal: keyboard_interrupt = True elif 32 in terminal: paused, base_time = False, base_time + (time() - pause_time) elif 46 in terminal: delay, pause_time = 0, time() base_time = pause_time - t else: not_broke = True else: fi = stdin.fileno() terminal = read(fi, 1024) if fi in select([fi], [], [], delay)[0] else b'' if not terminal: break elif 3 in terminal: keyboard_interrupt = True break elif 32 in terminal: paused, pause_time = True, time() delay += pause_time - t - base_time if keyboard_interrupt: break __import__("sys").stdout.write(text) __import__("sys").stdout.flush() def main_rec(path, command = None): with async_writer(path, {'width': WIDTH, 'height': HEIGHT, 'timestamp': int(time()), 'env': ENV}) as w: record(['sh', '-c', command or environ.get('SHELL') or 'sh'], w) def main_play(path): with file(path) as a: play(a)
48.353659
192
0.607692
abc031ccd2eafa2cf991135736365b9631602198
2,083
py
Python
krake/krake/controller/scheduler/__main__.py
rak-n-rok/Krake
2f0d4a382b99639e2c1149ee8593a9bb589d2d3f
[ "Apache-2.0" ]
1
2020-05-29T08:43:32.000Z
2020-05-29T08:43:32.000Z
krake/krake/controller/scheduler/__main__.py
rak-n-rok/Krake
2f0d4a382b99639e2c1149ee8593a9bb589d2d3f
[ "Apache-2.0" ]
null
null
null
krake/krake/controller/scheduler/__main__.py
rak-n-rok/Krake
2f0d4a382b99639e2c1149ee8593a9bb589d2d3f
[ "Apache-2.0" ]
1
2019-11-19T13:39:02.000Z
2019-11-19T13:39:02.000Z
"""Module for Krake controller responsible for binding Krake applications to specific backends and entry point of Krake scheduler. .. code:: bash python -m krake.controller.scheduler --help Configuration is loaded from the ``controllers.scheduler`` section: .. code:: yaml api_endpoint: http://localhost:8080 worker_count: 5 debounce: 1 reschedule_after: 60 stickiness: 0.1 tls: enabled: false client_ca: tmp/pki/ca.pem client_cert: tmp/pki/system:gc.pem client_key: tmp/pki/system:gc-key.pem log: ... """ import logging import pprint from argparse import ArgumentParser from krake import ( setup_logging, search_config, ConfigurationOptionMapper, load_yaml_config, ) from krake.data.config import SchedulerConfiguration from krake.utils import KrakeArgumentFormatter from ...controller import create_ssl_context, run from .scheduler import Scheduler logger = logging.getLogger("krake.controller.scheduler") parser = ArgumentParser( description="Krake scheduler", formatter_class=KrakeArgumentFormatter ) parser.add_argument("-c", "--config", type=str, help="Path to configuration YAML file") mapper = ConfigurationOptionMapper(SchedulerConfiguration) mapper.add_arguments(parser) def main(config): setup_logging(config.log) logger.debug("Krake Scheduler configuration settings:\n %s", pprint.pformat(config)) tls_config = config.tls ssl_context = create_ssl_context(tls_config) logger.debug("TLS is %s", "enabled" if ssl_context else "disabled") scheduler = Scheduler( api_endpoint=config.api_endpoint, worker_count=config.worker_count, ssl_context=ssl_context, debounce=config.debounce, reschedule_after=config.reschedule_after, stickiness=config.stickiness, ) run(scheduler) if __name__ == "__main__": args = vars(parser.parse_args()) config = load_yaml_config(args["config"] or search_config("scheduler.yaml")) scheduler_config = mapper.merge(config, args) main(scheduler_config)
25.716049
88
0.731637
b45e8402c4e18141dc25b2110203e7593a2d182c
6,021
py
Python
azure-mgmt-storage/azure/mgmt/storage/storage_management_client.py
Berryliao84/Python-Azure
a96ed6e8bbf4290372980a2919b31110da90b164
[ "MIT" ]
1
2017-10-29T15:14:35.000Z
2017-10-29T15:14:35.000Z
azure-mgmt-storage/azure/mgmt/storage/storage_management_client.py
Berryliao84/Python-Azure
a96ed6e8bbf4290372980a2919b31110da90b164
[ "MIT" ]
null
null
null
azure-mgmt-storage/azure/mgmt/storage/storage_management_client.py
Berryliao84/Python-Azure
a96ed6e8bbf4290372980a2919b31110da90b164
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.service_client import ServiceClient from msrest import Serializer, Deserializer from msrestazure import AzureConfiguration from .version import VERSION from .operations.storage_accounts_operations import StorageAccountsOperations from .operations.usage_operations import UsageOperations from . import models class StorageManagementClientConfiguration(AzureConfiguration): """Configuration for StorageManagementClient Note that all parameters used to create this instance are saved as instance attributes. :param credentials: Credentials needed for the client to connect to Azure. :type credentials: :mod:`A msrestazure Credentials object<msrestazure.azure_active_directory>` :param subscription_id: Gets subscription credentials which uniquely identify the Microsoft Azure subscription. The subscription ID forms part of the URI for every service call. :type subscription_id: str :param api_version: Client Api Version. :type api_version: str :param accept_language: Gets or sets the preferred language for the response. :type accept_language: str :param long_running_operation_retry_timeout: Gets or sets the retry timeout in seconds for Long Running Operations. Default value is 30. :type long_running_operation_retry_timeout: int :param generate_client_request_id: When set to true a unique x-ms-client-request-id value is generated and included in each request. Default is true. :type generate_client_request_id: bool :param str base_url: Service URL :param str filepath: Existing config """ def __init__( self, credentials, subscription_id, api_version='2016-01-01', accept_language='en-US', long_running_operation_retry_timeout=30, generate_client_request_id=True, base_url=None, filepath=None): if credentials is None: raise ValueError("Parameter 'credentials' must not be None.") if subscription_id is None: raise ValueError("Parameter 'subscription_id' must not be None.") if not isinstance(subscription_id, str): raise TypeError("Parameter 'subscription_id' must be str.") if api_version is not None and not isinstance(api_version, str): raise TypeError("Optional parameter 'api_version' must be str.") if accept_language is not None and not isinstance(accept_language, str): raise TypeError("Optional parameter 'accept_language' must be str.") if not base_url: base_url = 'https://management.azure.com' super(StorageManagementClientConfiguration, self).__init__(base_url, filepath) self.add_user_agent('storagemanagementclient/{}'.format(VERSION)) self.add_user_agent('Azure-SDK-For-Python') self.credentials = credentials self.subscription_id = subscription_id self.api_version = api_version self.accept_language = accept_language self.long_running_operation_retry_timeout = long_running_operation_retry_timeout self.generate_client_request_id = generate_client_request_id class StorageManagementClient(object): """The Storage Management Client. :ivar config: Configuration for client. :vartype config: StorageManagementClientConfiguration :ivar storage_accounts: StorageAccounts operations :vartype storage_accounts: .operations.StorageAccountsOperations :ivar usage: Usage operations :vartype usage: .operations.UsageOperations :param credentials: Credentials needed for the client to connect to Azure. :type credentials: :mod:`A msrestazure Credentials object<msrestazure.azure_active_directory>` :param subscription_id: Gets subscription credentials which uniquely identify the Microsoft Azure subscription. The subscription ID forms part of the URI for every service call. :type subscription_id: str :param api_version: Client Api Version. :type api_version: str :param accept_language: Gets or sets the preferred language for the response. :type accept_language: str :param long_running_operation_retry_timeout: Gets or sets the retry timeout in seconds for Long Running Operations. Default value is 30. :type long_running_operation_retry_timeout: int :param generate_client_request_id: When set to true a unique x-ms-client-request-id value is generated and included in each request. Default is true. :type generate_client_request_id: bool :param str base_url: Service URL :param str filepath: Existing config """ def __init__( self, credentials, subscription_id, api_version='2016-01-01', accept_language='en-US', long_running_operation_retry_timeout=30, generate_client_request_id=True, base_url=None, filepath=None): self.config = StorageManagementClientConfiguration(credentials, subscription_id, api_version, accept_language, long_running_operation_retry_timeout, generate_client_request_id, base_url, filepath) self._client = ServiceClient(self.config.credentials, self.config) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._deserialize = Deserializer(client_models) self.storage_accounts = StorageAccountsOperations( self._client, self.config, self._serialize, self._deserialize) self.usage = UsageOperations( self._client, self.config, self._serialize, self._deserialize)
47.785714
204
0.733599
5942c34071dcb91ebe968c06a082520f09fab9f9
4,823
py
Python
dask_jobqueue/slurm.py
jennirinker/dask-jobqueue
975425e2968873310bec030a761c1db99e6c7ec6
[ "BSD-3-Clause" ]
null
null
null
dask_jobqueue/slurm.py
jennirinker/dask-jobqueue
975425e2968873310bec030a761c1db99e6c7ec6
[ "BSD-3-Clause" ]
null
null
null
dask_jobqueue/slurm.py
jennirinker/dask-jobqueue
975425e2968873310bec030a761c1db99e6c7ec6
[ "BSD-3-Clause" ]
null
null
null
import logging import math import dask from .core import JobQueueCluster, docstrings logger = logging.getLogger(__name__) class SLURMCluster(JobQueueCluster): __doc__ = docstrings.with_indents( """ Launch Dask on a SLURM cluster Parameters ---------- queue : str Destination queue for each worker job. Passed to `#SBATCH -p` option. project : str Accounting string associated with each worker job. Passed to `#SBATCH -A` option. walltime : str Walltime for each worker job. job_cpu : int Number of cpu to book in SLURM, if None, defaults to worker `threads * processes` job_mem : str Amount of memory to request in SLURM. If None, defaults to worker processes * memory job_extra : list List of other Slurm options, for example -j oe. Each option will be prepended with the #SBATCH prefix. %(JobQueueCluster.parameters)s Examples -------- >>> from dask_jobqueue import SLURMCluster >>> cluster = SLURMCluster(processes=6, cores=24, memory="120GB", env_extra=['export LANG="en_US.utf8"', 'export LANGUAGE="en_US.utf8"', 'export LC_ALL="en_US.utf8"']) >>> cluster.scale(10) # this may take a few seconds to launch >>> from dask.distributed import Client >>> client = Client(cluster) This also works with adaptive clusters. This automatically launches and kill workers based on load. >>> cluster.adapt() """, 4, ) # Override class variables submit_command = "sbatch" cancel_command = "scancel" def __init__( self, queue=None, project=None, walltime=None, job_cpu=None, job_mem=None, job_extra=None, config_name="slurm", **kwargs ): if queue is None: queue = dask.config.get("jobqueue.%s.queue" % config_name) if project is None: project = dask.config.get("jobqueue.%s.project" % config_name) if walltime is None: walltime = dask.config.get("jobqueue.%s.walltime" % config_name) if job_cpu is None: job_cpu = dask.config.get("jobqueue.%s.job-cpu" % config_name) if job_mem is None: job_mem = dask.config.get("jobqueue.%s.job-mem" % config_name) if job_extra is None: job_extra = dask.config.get("jobqueue.%s.job-extra" % config_name) super().__init__(config_name=config_name, **kwargs) # Always ask for only one task header_lines = [] # SLURM header build if self.name is not None: header_lines.append("#SBATCH -J %s" % self.name) if self.log_directory is not None: header_lines.append( "#SBATCH -e %s/%s-%%J.err" % (self.log_directory, self.name or "worker") ) header_lines.append( "#SBATCH -o %s/%s-%%J.out" % (self.log_directory, self.name or "worker") ) if queue is not None: header_lines.append("#SBATCH -p %s" % queue) if project is not None: header_lines.append("#SBATCH -A %s" % project) # Init resources, always 1 task, # and then number of cpu is processes * threads if not set header_lines.append("#SBATCH -n 1") header_lines.append( "#SBATCH --cpus-per-task=%d" % (job_cpu or self.worker_cores) ) # Memory memory = job_mem if job_mem is None: memory = slurm_format_bytes_ceil(self.worker_memory) if memory is not None: header_lines.append("#SBATCH --mem=%s" % memory) if walltime is not None: header_lines.append("#SBATCH -t %s" % walltime) header_lines.extend(["#SBATCH %s" % arg for arg in job_extra]) header_lines.append("JOB_ID=${SLURM_JOB_ID%;*}") # Declare class attribute that shall be overridden self.job_header = "\n".join(header_lines) logger.debug("Job script: \n %s" % self.job_script()) def slurm_format_bytes_ceil(n): """ Format bytes as text. SLURM expects KiB, MiB or Gib, but names it KB, MB, GB. SLURM does not handle Bytes, only starts at KB. >>> slurm_format_bytes_ceil(1) '1K' >>> slurm_format_bytes_ceil(1234) '2K' >>> slurm_format_bytes_ceil(12345678) '13M' >>> slurm_format_bytes_ceil(1234567890) '2G' >>> slurm_format_bytes_ceil(15000000000) '14G' """ if n >= (1024 ** 3): return "%dG" % math.ceil(n / (1024 ** 3)) if n >= (1024 ** 2): return "%dM" % math.ceil(n / (1024 ** 2)) if n >= 1024: return "%dK" % math.ceil(n / 1024) return "1K" % n
33.034247
110
0.587394
b3833ae014e13b485aa7a5013a7d09ed4d273567
303
py
Python
data/multilingual/Latn.QVA/Mono_12/pdf_to_json_test_Latn.QVA_Mono_12.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
1
2021-09-19T19:47:35.000Z
2021-09-19T19:47:35.000Z
data/multilingual/Latn.QVA/Mono_12/pdf_to_json_test_Latn.QVA_Mono_12.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
null
null
null
data/multilingual/Latn.QVA/Mono_12/pdf_to_json_test_Latn.QVA_Mono_12.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
null
null
null
import pdf_to_json as p2j import json url = "file:data/multilingual/Latn.QVA/Mono_12/udhr_Latn.QVA_Mono_12.pdf" lConverter = p2j.pdf_to_json.pdf_to_json_converter() lConverter.mImageHashOnly = True lDict = lConverter.convert(url) print(json.dumps(lDict, indent=4, ensure_ascii=False, sort_keys=True))
30.3
73
0.811881
a8be862da4960f10719473d21eb7fdd4528174eb
1,667
py
Python
xschem/fractional_n_divider/tests/mash_mod/test_mash_mod_coverage.py
yrrapt/caravel_amsat_txrx_ic
53bef4537447a623f93772092daeac67c4cb3d45
[ "Apache-2.0" ]
15
2020-12-13T12:33:15.000Z
2022-02-17T18:09:25.000Z
xschem/fractional_n_divider/tests/mash_mod/test_mash_mod_coverage.py
yrrapt/caravel_amsat_txrx_ic
53bef4537447a623f93772092daeac67c4cb3d45
[ "Apache-2.0" ]
null
null
null
xschem/fractional_n_divider/tests/mash_mod/test_mash_mod_coverage.py
yrrapt/caravel_amsat_txrx_ic
53bef4537447a623f93772092daeac67c4cb3d45
[ "Apache-2.0" ]
6
2021-01-02T05:52:21.000Z
2022-03-28T06:55:07.000Z
import cocotb from cocotb.triggers import RisingEdge, ReadOnly from cocotb_coverage.coverage import * # auxiliary relation function to define bins matching within a range range_relation = lambda val_, bin_ : bin_[0] <= val_ <= bin_[1] class MASHModStatus(): """ Object representing modulator status """ def __init__(self, dut): self.dut = dut # @cocotb.coroutine def update(self): self.data_in = int(self.dut.data_in.value) self.data_out = int(self.dut.data_out) #functional coverage - check if all FIFO states have been reached #and check if read or write operation performed in every FIFO state MASHModCoverage = coverage_section ( CoverPoint( name = "top.data_in", xf = lambda dut, status, input_data : status.data_in, rel = range_relation, bins = [(0,int(2**16*1/3)-1), (int(2**16*1/3),int(2**16*2/3)-1), (int(2**16*2/3),int(2**16-1))], bins_labels = ["low", "med", "high"] ), CoverPoint( name = "top.data_out", xf = lambda dut, status, input_data : status.data_out, rel = range_relation, bins = [(0,int(2**3*1/3)-1), (int(2**3*1/3),int(2**3*2/3)-1), (int(2**3*2/3),int(2**3-1))], bins_labels = ["low", "med", "high"] ) ) # procedure of processing data # coverage sampled here - at each function call @MASHModCoverage async def process_data(dut, status, input_data): # provide new data and read old dut.data_in <= input_data await RisingEdge(dut.clk) output_data = int(dut.data_out) # convert to signed if output_data > 2**2: output_data -= 2**3 return output_data
30.309091
104
0.632274
784e349e12c5770fb9d646442a576e5e8958cbbe
2,272
py
Python
mltb/metrics.py
ddxgz/mltb
a265bf4b72cd3c51b34c2a0603bd9d0def6f86db
[ "MIT" ]
2
2020-08-07T13:56:48.000Z
2020-09-20T11:24:06.000Z
mltb/metrics.py
ddxgz/mltoolbox
a265bf4b72cd3c51b34c2a0603bd9d0def6f86db
[ "MIT" ]
null
null
null
mltb/metrics.py
ddxgz/mltoolbox
a265bf4b72cd3c51b34c2a0603bd9d0def6f86db
[ "MIT" ]
1
2020-11-07T14:04:06.000Z
2020-11-07T14:04:06.000Z
import numpy as np import pandas as pd from sklearn import metrics from typing import List def rmse_cal(y_true, y_pred, log: bool=False, negate=False): if log: # to add 1 in case the predicted values are not positive y_true = np.log1p(y_true) y_pred = np.log1p(y_pred) # return -np.sqrt(mean_squared_error(y_true, y_pred)) if negate: return -np.sqrt(np.sum(np.square(y_pred - y_true)) / len(y_pred)) return np.sqrt(np.sum(np.square(y_pred - y_true)) / len(y_pred)) # if the custom score function is a loss (greater_is_better=False), the output # of the python function is negated by the scorer object, conforming to the # cross validation convention that scorers return higher values for better # models. # rmsle_cal = partial(rmse_cal, True) RMSE = metrics.make_scorer(rmse_cal, log=False, greater_is_better=False) RMSLE = metrics.make_scorer(rmse_cal, log=True, greater_is_better=False) def classification_report_avg(y_true, y_pred, cols_avg: List[str] = None): if isinstance(y_true, list): y_true = np.array(y_true) if isinstance(y_pred, list): y_pred = np.array(y_pred) report = metrics.classification_report( y_true, y_pred, output_dict=True, zero_division=0) df_report = pd.DataFrame(report).transpose() if cols_avg is not None: cols = cols_avg else: cols = ['micro avg', 'macro avg', 'weighted avg', 'samples avg'] return df_report.loc[cols, ] def best_fbeta_score(true_labels, predictions, beta=1, average='micro', **kwargs): fbeta = 0 thr_bst = 0 for thr in range(0, 6): Y_predicted = (predictions > (thr * 0.1)) f = metrics.fbeta_score( true_labels, Y_predicted, beta=beta, average=average, **kwargs) if f > fbeta: fbeta = f thr_bst = thr * 0.1 return fbeta, thr def best_prec_score(true_labels, predictions, average='micro', **kwargs): fbeta = 0 thr_bst = 0 for thr in range(0, 6): Y_predicted = (predictions > (thr * 0.1)) f = metrics.average_precision_score( true_labels, Y_predicted, average='micro', **kwargs) if f > fbeta: fbeta = f thr_bst = thr * 0.1 return fbeta, thr
31.123288
82
0.65669
2296dbfd547eb76ecf38f6189c1549fc112e87d1
11,989
py
Python
contrib/tools/python3/src/Lib/dbm/dumb.py
HeyLey/catboost
f472aed90604ebe727537d9d4a37147985e10ec2
[ "Apache-2.0" ]
36
2019-06-07T20:44:06.000Z
2022-03-23T06:19:43.000Z
contrib/tools/python3/src/Lib/dbm/dumb.py
HeyLey/catboost
f472aed90604ebe727537d9d4a37147985e10ec2
[ "Apache-2.0" ]
42
2018-05-25T15:57:08.000Z
2021-01-17T18:39:59.000Z
contrib/tools/python3/src/Lib/dbm/dumb.py
HeyLey/catboost
f472aed90604ebe727537d9d4a37147985e10ec2
[ "Apache-2.0" ]
28
2019-06-27T04:11:27.000Z
2022-03-11T06:27:44.000Z
"""A dumb and slow but simple dbm clone. For database spam, spam.dir contains the index (a text file), spam.bak *may* contain a backup of the index (also a text file), while spam.dat contains the data (a binary file). XXX TO DO: - seems to contain a bug when updating... - reclaim free space (currently, space once occupied by deleted or expanded items is never reused) - support concurrent access (currently, if two processes take turns making updates, they can mess up the index) - support efficient access to large databases (currently, the whole index is read when the database is opened, and some updates rewrite the whole index) - support opening for read-only (flag = 'm') """ import ast as _ast import io as _io import os as _os import collections __all__ = ["error", "open"] _BLOCKSIZE = 512 error = OSError class _Database(collections.MutableMapping): # The on-disk directory and data files can remain in mutually # inconsistent states for an arbitrarily long time (see comments # at the end of __setitem__). This is only repaired when _commit() # gets called. One place _commit() gets called is from __del__(), # and if that occurs at program shutdown time, module globals may # already have gotten rebound to None. Since it's crucial that # _commit() finish successfully, we can't ignore shutdown races # here, and _commit() must not reference any globals. _os = _os # for _commit() _io = _io # for _commit() def __init__(self, filebasename, mode, flag='c'): self._mode = mode self._readonly = (flag == 'r') # The directory file is a text file. Each line looks like # "%r, (%d, %d)\n" % (key, pos, siz) # where key is the string key, pos is the offset into the dat # file of the associated value's first byte, and siz is the number # of bytes in the associated value. self._dirfile = filebasename + '.dir' # The data file is a binary file pointed into by the directory # file, and holds the values associated with keys. Each value # begins at a _BLOCKSIZE-aligned byte offset, and is a raw # binary 8-bit string value. self._datfile = filebasename + '.dat' self._bakfile = filebasename + '.bak' # The index is an in-memory dict, mirroring the directory file. self._index = None # maps keys to (pos, siz) pairs # Handle the creation self._create(flag) self._update() def _create(self, flag): if flag == 'n': for filename in (self._datfile, self._bakfile, self._dirfile): try: _os.remove(filename) except OSError: pass # Mod by Jack: create data file if needed try: f = _io.open(self._datfile, 'r', encoding="Latin-1") except OSError: if flag not in ('c', 'n'): import warnings warnings.warn("The database file is missing, the " "semantics of the 'c' flag will be used.", DeprecationWarning, stacklevel=4) with _io.open(self._datfile, 'w', encoding="Latin-1") as f: self._chmod(self._datfile) else: f.close() # Read directory file into the in-memory index dict. def _update(self): self._index = {} try: f = _io.open(self._dirfile, 'r', encoding="Latin-1") except OSError: self._modified = not self._readonly else: self._modified = False with f: for line in f: line = line.rstrip() key, pos_and_siz_pair = _ast.literal_eval(line) key = key.encode('Latin-1') self._index[key] = pos_and_siz_pair # Write the index dict to the directory file. The original directory # file (if any) is renamed with a .bak extension first. If a .bak # file currently exists, it's deleted. def _commit(self): # CAUTION: It's vital that _commit() succeed, and _commit() can # be called from __del__(). Therefore we must never reference a # global in this routine. if self._index is None or not self._modified: return # nothing to do try: self._os.unlink(self._bakfile) except OSError: pass try: self._os.rename(self._dirfile, self._bakfile) except OSError: pass with self._io.open(self._dirfile, 'w', encoding="Latin-1") as f: self._chmod(self._dirfile) for key, pos_and_siz_pair in self._index.items(): # Use Latin-1 since it has no qualms with any value in any # position; UTF-8, though, does care sometimes. entry = "%r, %r\n" % (key.decode('Latin-1'), pos_and_siz_pair) f.write(entry) sync = _commit def _verify_open(self): if self._index is None: raise error('DBM object has already been closed') def __getitem__(self, key): if isinstance(key, str): key = key.encode('utf-8') self._verify_open() pos, siz = self._index[key] # may raise KeyError with _io.open(self._datfile, 'rb') as f: f.seek(pos) dat = f.read(siz) return dat # Append val to the data file, starting at a _BLOCKSIZE-aligned # offset. The data file is first padded with NUL bytes (if needed) # to get to an aligned offset. Return pair # (starting offset of val, len(val)) def _addval(self, val): with _io.open(self._datfile, 'rb+') as f: f.seek(0, 2) pos = int(f.tell()) npos = ((pos + _BLOCKSIZE - 1) // _BLOCKSIZE) * _BLOCKSIZE f.write(b'\0'*(npos-pos)) pos = npos f.write(val) return (pos, len(val)) # Write val to the data file, starting at offset pos. The caller # is responsible for ensuring that there's enough room starting at # pos to hold val, without overwriting some other value. Return # pair (pos, len(val)). def _setval(self, pos, val): with _io.open(self._datfile, 'rb+') as f: f.seek(pos) f.write(val) return (pos, len(val)) # key is a new key whose associated value starts in the data file # at offset pos and with length siz. Add an index record to # the in-memory index dict, and append one to the directory file. def _addkey(self, key, pos_and_siz_pair): self._index[key] = pos_and_siz_pair with _io.open(self._dirfile, 'a', encoding="Latin-1") as f: self._chmod(self._dirfile) f.write("%r, %r\n" % (key.decode("Latin-1"), pos_and_siz_pair)) def __setitem__(self, key, val): if self._readonly: import warnings warnings.warn('The database is opened for reading only', DeprecationWarning, stacklevel=2) if isinstance(key, str): key = key.encode('utf-8') elif not isinstance(key, (bytes, bytearray)): raise TypeError("keys must be bytes or strings") if isinstance(val, str): val = val.encode('utf-8') elif not isinstance(val, (bytes, bytearray)): raise TypeError("values must be bytes or strings") self._verify_open() self._modified = True if key not in self._index: self._addkey(key, self._addval(val)) else: # See whether the new value is small enough to fit in the # (padded) space currently occupied by the old value. pos, siz = self._index[key] oldblocks = (siz + _BLOCKSIZE - 1) // _BLOCKSIZE newblocks = (len(val) + _BLOCKSIZE - 1) // _BLOCKSIZE if newblocks <= oldblocks: self._index[key] = self._setval(pos, val) else: # The new value doesn't fit in the (padded) space used # by the old value. The blocks used by the old value are # forever lost. self._index[key] = self._addval(val) # Note that _index may be out of synch with the directory # file now: _setval() and _addval() don't update the directory # file. This also means that the on-disk directory and data # files are in a mutually inconsistent state, and they'll # remain that way until _commit() is called. Note that this # is a disaster (for the database) if the program crashes # (so that _commit() never gets called). def __delitem__(self, key): if self._readonly: import warnings warnings.warn('The database is opened for reading only', DeprecationWarning, stacklevel=2) if isinstance(key, str): key = key.encode('utf-8') self._verify_open() self._modified = True # The blocks used by the associated value are lost. del self._index[key] # XXX It's unclear why we do a _commit() here (the code always # XXX has, so I'm not changing it). __setitem__ doesn't try to # XXX keep the directory file in synch. Why should we? Or # XXX why shouldn't __setitem__? self._commit() def keys(self): try: return list(self._index) except TypeError: raise error('DBM object has already been closed') from None def items(self): self._verify_open() return [(key, self[key]) for key in self._index.keys()] def __contains__(self, key): if isinstance(key, str): key = key.encode('utf-8') try: return key in self._index except TypeError: if self._index is None: raise error('DBM object has already been closed') from None else: raise def iterkeys(self): try: return iter(self._index) except TypeError: raise error('DBM object has already been closed') from None __iter__ = iterkeys def __len__(self): try: return len(self._index) except TypeError: raise error('DBM object has already been closed') from None def close(self): try: self._commit() finally: self._index = self._datfile = self._dirfile = self._bakfile = None __del__ = close def _chmod(self, file): if hasattr(self._os, 'chmod'): self._os.chmod(file, self._mode) def __enter__(self): return self def __exit__(self, *args): self.close() def open(file, flag='c', mode=0o666): """Open the database file, filename, and return corresponding object. The flag argument, used to control how the database is opened in the other DBM implementations, supports only the semantics of 'c' and 'n' values. Other values will default to the semantics of 'c' value: the database will always opened for update and will be created if it does not exist. The optional mode argument is the UNIX mode of the file, used only when the database has to be created. It defaults to octal code 0o666 (and will be modified by the prevailing umask). """ # Modify mode depending on the umask try: um = _os.umask(0) _os.umask(um) except AttributeError: pass else: # Turn off any bits that are set in the umask mode = mode & (~um) if flag not in ('r', 'w', 'c', 'n'): import warnings warnings.warn("Flag must be one of 'r', 'w', 'c', or 'n'", DeprecationWarning, stacklevel=2) return _Database(file, mode, flag=flag)
36.889231
78
0.589957
7c06c302d8cf33521cdc895c1fd959b7bccd8ce7
1,879
py
Python
gestifyApi/api.py
canardaaydin/Hand-Gesture-Control-for-Spotify
7a88eac7ad60745b750346474ff34a5b67c09191
[ "MIT" ]
null
null
null
gestifyApi/api.py
canardaaydin/Hand-Gesture-Control-for-Spotify
7a88eac7ad60745b750346474ff34a5b67c09191
[ "MIT" ]
null
null
null
gestifyApi/api.py
canardaaydin/Hand-Gesture-Control-for-Spotify
7a88eac7ad60745b750346474ff34a5b67c09191
[ "MIT" ]
1
2021-11-23T16:18:01.000Z
2021-11-23T16:18:01.000Z
from flask import Flask, render_template, make_response from flask_restful import Resource, Api, request import pprint import requests import base64 import spotipy import spotipy.util as util import json app = Flask(__name__) api = Api(app) client_id = "d81ae7685f0240df9fc3e88c7698bc53" secret_id = "439c9f6110554b16b95ae8add377da8a" redirect_uri = "http://barda.life" endpoint = "https://accounts.spotify.com/api/token" auth_code = "" def getPersonalInfo(token): headers = { "Accept": "application/json", "Content-Type" : "application/json", 'Authorization': 'Bearer {0}'.format(token) } r = requests.get("https://api.spotify.com/v1/me", headers=headers) response_data = json.loads(r.text) return response_data class get_auth_code(Resource): def get(self): auth_code = request.args.get('code') auth_str = bytes('{}:{}'.format(client_id, secret_id), 'utf-8') b64_auth_str = base64.b64encode(auth_str).decode('utf-8') headers = { 'Content-Type': 'application/x-www-form-urlencoded', 'Authorization': 'Basic {}'.format(b64_auth_str) } code_payload = { 'grant_type': 'authorization_code', 'code': str(auth_code), 'redirect_uri': redirect_uri, } post_request = requests.post('https://accounts.spotify.com/api/token', data=code_payload, headers=headers) response_data = json.loads(post_request.text) #print(response_data) access_token = response_data.get('access_token') refresh_token = response_data.get('refresh_token') personal_data = getPersonalInfo(access_token) user_full_name = personal_data.get('display_name') name = user_full_name.split()[0] #print(name) headers = {'Content-Type': 'text/html'} return make_response(render_template('index.html', name=name), 200,headers) api.add_resource(get_auth_code, '/') if __name__ == '__main__': app.run(port=5000, host='0.0.0.0')
23.197531
108
0.723789
898014b2091b7e026bfe9dfaf15324a72ffbbf12
437
py
Python
blogapp/migrations/0006_auto_20210314_1244.py
NitinPSingh/blogprojlive
769685f22218d31b8eb2195d65d9c3c351e02772
[ "MIT" ]
1
2021-04-06T15:10:09.000Z
2021-04-06T15:10:09.000Z
blogapp/migrations/0006_auto_20210314_1244.py
NitinPSingh/blogprojlive
769685f22218d31b8eb2195d65d9c3c351e02772
[ "MIT" ]
null
null
null
blogapp/migrations/0006_auto_20210314_1244.py
NitinPSingh/blogprojlive
769685f22218d31b8eb2195d65d9c3c351e02772
[ "MIT" ]
null
null
null
# Generated by Django 3.1.5 on 2021-03-14 07:14 import ckeditor.fields from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('blogapp', '0005_auto_20210313_1746'), ] operations = [ migrations.AlterField( model_name='post', name='body', field=ckeditor.fields.RichTextField(blank=True, null=True), ), ]
21.85
72
0.590389
a04d0be6882ed93317904bd864c617462ff3f5d8
5,852
py
Python
quicklogic/common/utils/create_ioplace.py
bl0x/symbiflow-arch-defs
5fa5e71526e443d589971f2649d8b189df982d72
[ "ISC" ]
183
2017-12-29T12:08:32.000Z
2022-02-15T03:29:07.000Z
quicklogic/common/utils/create_ioplace.py
bl0x/symbiflow-arch-defs
5fa5e71526e443d589971f2649d8b189df982d72
[ "ISC" ]
1,832
2017-12-29T14:47:27.000Z
2022-02-18T06:30:43.000Z
quicklogic/common/utils/create_ioplace.py
bl0x/symbiflow-arch-defs
5fa5e71526e443d589971f2649d8b189df982d72
[ "ISC" ]
96
2017-12-30T12:00:45.000Z
2022-02-17T09:03:46.000Z
#!/usr/bin/env python3 """ Convert a PCF file into a VPR io.place file. """ import argparse import csv import sys import re from collections import defaultdict import vpr_io_place from pinmap_parse import read_pinmapfile_data from pinmap_parse import vec_to_scalar from lib.parse_pcf import parse_simple_pcf # ============================================================================= BLOCK_INSTANCE_RE = re.compile(r"^(?P<name>\S+)\[(?P<index>[0-9]+)\]$") # ============================================================================= def gen_io_def(args): ''' Generate io.place file from pcf file ''' io_place = vpr_io_place.IoPlace() io_place.read_io_list_from_eblif(args.blif) io_place.load_block_names_from_net_file(args.net) # Load all the necessary data from the pinmap_xml io_cells, port_map = read_pinmapfile_data(args.pinmap_xml) # Map of pad names to VPR locations. pad_map = defaultdict(lambda: dict()) with open(args.csv_file, mode='r') as csv_fp: reader = csv.DictReader(csv_fp) for line in reader: port_name_list = vec_to_scalar(line['port_name']) pin_name = vec_to_scalar(line['mapped_pin']) gpio_type = line['GPIO_type'] if len(port_name_list) != len(pin_name): print( 'CSV port name "{}" length does not match with mapped pin name "{}" length' .format(line['port_name'], line['mapped_pin']), file=sys.stderr ) sys.exit(1) for port, pin in zip(port_name_list, pin_name): if port in port_map: curr_map = port_map[port] if gpio_type is None or gpio_type == '': pad_map[pin] = ( int(curr_map.x), int(curr_map.y), int(curr_map.z) ) else: gpio_pin = pin + ":" + gpio_type.strip() pad_map[gpio_pin] = ( int(curr_map.x), int(curr_map.y), int(curr_map.z) ) else: print( 'Port name "{}" specified in csv file "{}" is invalid. {} "{}"' .format( line['port_name'], args.csv_file, "Specify from port names in xml file", args.pinmap_xml ), file=sys.stderr ) sys.exit(1) for pcf_constraint in parse_simple_pcf(args.pcf): if (type(pcf_constraint).__name__ == 'PcfIoConstraint'): pad_name = pcf_constraint.pad if not io_place.is_net(pcf_constraint.net): print( 'PCF constraint "{}" from line {} constraints net {} {}:\n{}' .format( pcf_constraint.line_str, pcf_constraint.line_num, pcf_constraint.net, '\n'.join(io_place.get_nets()), "which is not in available netlist" ), file=sys.stderr ) sys.exit(1) if pad_name not in pad_map: print( 'PCF constraint "{}" from line {} constraints pad {} {}:\n{}' .format( pcf_constraint.line_str, pcf_constraint.line_num, pad_name, '\n'.join(sorted(pad_map.keys())), "which is not in available pad map" ), file=sys.stderr ) sys.exit(1) # Get the top-level block instance, strip its index inst = io_place.get_top_level_block_instance_for_net( pcf_constraint.net ) if inst is None: continue match = BLOCK_INSTANCE_RE.match(inst) assert match is not None, inst inst = match.group("name") # Constraint the net (block) locs = pad_map[pad_name] io_place.constrain_net( net_name=pcf_constraint.net, loc=locs, comment=pcf_constraint.line_str ) if io_place.constraints: io_place.output_io_place(args.output) # ============================================================================= def main(): ''' Convert a PCF file into a VPR io.place file ''' parser = argparse.ArgumentParser( description='Convert a PCF file into a VPR io.place file.' ) parser.add_argument( "--pcf", "-p", "-P", type=argparse.FileType('r'), required=True, help='PCF input file' ) parser.add_argument( "--blif", "-b", type=argparse.FileType('r'), required=True, help='BLIF / eBLIF file' ) parser.add_argument( "--output", "-o", "-O", type=argparse.FileType('w'), default=sys.stdout, help='The output io.place file' ) parser.add_argument( "--net", "-n", type=argparse.FileType('r'), required=True, help='top.net file' ) parser.add_argument( "--pinmap_xml", type=str, required=True, help="Input pin-mapping xml file" ) parser.add_argument( "--csv_file", type=str, required=True, help="Input user-defined pinmap CSV file" ) args = parser.parse_args() gen_io_def(args) # ============================================================================= if __name__ == '__main__': main()
30.8
95
0.476247
f9f7407df96d1761893906b874aa470ae813ff10
12,220
py
Python
FishyFish/FishyFish_GRAPH.py
CCThompson82/Kaggle_FF3
a8d68a8e33b213470d2b26d2115c6a5ac989af8d
[ "MIT" ]
null
null
null
FishyFish/FishyFish_GRAPH.py
CCThompson82/Kaggle_FF3
a8d68a8e33b213470d2b26d2115c6a5ac989af8d
[ "MIT" ]
null
null
null
FishyFish/FishyFish_GRAPH.py
CCThompson82/Kaggle_FF3
a8d68a8e33b213470d2b26d2115c6a5ac989af8d
[ "MIT" ]
null
null
null
"""This script is the FishFinder graph for the Kaggle Nature Conservancy Fishery Competition. It utilizes VGG-19 model as pre-trained weights during the convolution steps""" fishyfish = tf.Graph() with fishyfish.as_default() : # Variables with tf.variable_scope('Variables') : with tf.variable_scope('Convolutions') : with tf.name_scope('Convolution_1') : W_conv1 = tf.Variable(np.load(pretrained_path+'W_conv_1.npy'), trainable = False) b_conv1 = tf.Variable(np.load(pretrained_path+'b_conv_1.npy'), trainable = False) tf.summary.histogram('W_conv1', W_conv1) tf.summary.histogram('b_conv1', b_conv1) with tf.name_scope('Convolution_2') : W_conv2 = tf.Variable(np.load(pretrained_path+'W_conv_2.npy'), trainable = False) b_conv2 = tf.Variable(np.load(pretrained_path+'b_conv_2.npy'), trainable = False) tf.summary.histogram('W_conv2', W_conv2) tf.summary.histogram('b_conv2', b_conv2) with tf.name_scope('Convolution_3') : W_conv3 = tf.Variable(np.load(pretrained_path+'W_conv_3.npy'), trainable = False) b_conv3 = tf.Variable(np.load(pretrained_path+'b_conv_3.npy'), trainable = False) tf.summary.histogram('W_conv3', W_conv3) tf.summary.histogram('b_conv3', b_conv3) with tf.name_scope('Convolution_4') : W_conv4 = tf.Variable(np.load(pretrained_path+'W_conv_4.npy'), trainable = False) b_conv4 = tf.Variable(np.load(pretrained_path+'b_conv_4.npy'), trainable = False) tf.summary.histogram('W_conv4', W_conv4) tf.summary.histogram('b_conv4', b_conv4) with tf.name_scope('Convolution_5') : W_conv5 = tf.Variable(np.load(pretrained_path+'W_conv_5.npy'), trainable = False) b_conv5 = tf.Variable(np.load(pretrained_path+'b_conv_5.npy'), trainable = False) tf.summary.histogram('W_conv5', W_conv5) tf.summary.histogram('b_conv5', b_conv5) with tf.name_scope('Convolution_6') : W_conv6 = tf.Variable(np.load(pretrained_path+'W_conv_6.npy'), trainable = False) b_conv6 = tf.Variable(np.load(pretrained_path+'b_conv_6.npy'), trainable = False) tf.summary.histogram('W_conv6', W_conv6) tf.summary.histogram('b_conv6', b_conv6) with tf.variable_scope('Dense_layers') : with tf.name_scope('dense_1') : W_fc1 = tf.Variable(tf.truncated_normal([nodes_after_conv, fc_depth[0]], stddev = stddev )) b_fc1 = tf.Variable(tf.zeros([fc_depth[0]])) tf.summary.histogram('W_fc1', W_fc1) tf.summary.histogram('b_fc1', b_fc1) with tf.name_scope('dense_2') : W_fc2 = tf.Variable(tf.truncated_normal([fc_depth[0], fc_depth[1]], stddev = stddev )) b_fc2 = tf.Variable(tf.zeros([fc_depth[1]])) tf.summary.histogram('W_fc2', W_fc2) tf.summary.histogram('b_fc2', b_fc2) with tf.name_scope('dense_3') : W_fc3 = tf.Variable(tf.truncated_normal([fc_depth[1], fc_depth[2]], stddev = stddev )) b_fc3 = tf.Variable(tf.zeros([fc_depth[2]])) tf.summary.histogram('W_fc3', W_fc3) tf.summary.histogram('b_fc3', b_fc3) with tf.name_scope('dense_4') : W_fc4 = tf.Variable(tf.truncated_normal([(fc_depth[2]+32+1), fc_depth[3]], stddev = stddev )) b_fc4 = tf.Variable(tf.zeros([fc_depth[3]])) tf.summary.histogram('W_fc4', W_fc4) tf.summary.histogram('b_fc4', b_fc4) with tf.variable_scope('Classifiers') : with tf.name_scope('FishNoF') : W_clf = tf.Variable(tf.truncated_normal([fc_depth[3],num_labels], stddev = stddev)) b_clf = tf.Variable(tf.zeros([num_labels])) tf.summary.histogram('W_clf', W_clf) tf.summary.histogram('b_clf', b_clf) def convolutions(data) : """ Emulates VGG-19 architecture. """ with tf.name_scope('Convolution') : conv_layer = tf.nn.relu( tf.nn.conv2d(data, filter = W_conv1, strides = [1, 2, 2, 1], padding = 'SAME') + b_conv1) conv_layer = tf.nn.max_pool( tf.nn.relu( tf.nn.conv2d(conv_layer, filter = W_conv2, strides = [1, conv_stride, conv_stride, 1], padding = 'SAME') + b_conv2), ksize = [1, pool_kernel, pool_kernel,1], strides = [1, pool_stride, pool_stride, 1], padding ='VALID') conv_layer = tf.nn.relu( tf.nn.conv2d(conv_layer, filter = W_conv3, strides = [1, conv_stride, conv_stride, 1], padding = 'SAME') + b_conv3) conv_layer = tf.nn.max_pool( tf.nn.relu( tf.nn.conv2d(conv_layer, filter = W_conv4, strides = [1, conv_stride, conv_stride, 1], padding = 'SAME') + b_conv4), ksize = [1, pool_kernel, pool_kernel,1], strides = [1, pool_stride, pool_stride, 1], padding ='VALID') conv_layer = tf.nn.relu( tf.nn.conv2d(conv_layer, filter = W_conv5, strides = [1, conv_stride, conv_stride, 1], padding = 'SAME') + b_conv5) conv_layer = tf.nn.max_pool(tf.nn.relu( tf.nn.conv2d(conv_layer, filter = W_conv6, strides = [1, conv_stride, conv_stride, 1], padding = 'SAME') + b_conv6), ksize = [1, pool_kernel, pool_kernel,1], strides = [1, pool_stride, pool_stride, 1], padding ='VALID') return conv_layer def dense_layers(data, embedding, FiNoF, keep_prob) : """ Executes a series of dense layers. """ def fc(data, W, b, keep_prob = keep_prob) : """Convenience function for dense layer with dropout""" fc = tf.nn.dropout( tf.nn.tanh( tf.matmul(data, W) + b, ), keep_prob) return fc fc_layer = fc(data, W_fc1, b_fc1, keep_prob[0]) fc_layer = fc(fc_layer, W_fc2, b_fc2, keep_prob[1]) fc_layer = fc(fc_layer, W_fc3, b_fc3, keep_prob[2]) fc_layer = tf.concat(1, [fc_layer, embedding, FiNoF]) print(fc_layer) fc_layer = fc(fc_layer, W_fc4, b_fc4, keep_prob[3]) return fc_layer with tf.name_scope('Training') : with tf.name_scope('Input') : fovea = tf.placeholder(tf.float32, shape = [batch_size, 64, 64, num_channels]) embedding = tf.placeholder(tf.float32, shape = [batch_size, 32]) fish_prob = tf.placeholder(tf.float32, shape = [batch_size, 1]) labels = tf.placeholder(tf.float32, shape = [batch_size,num_labels]) fovea_weights = tf.placeholder(tf.float32, shape = [batch_size, 1]) label_weights = tf.placeholder(tf.float32, shape = [batch_size, 1]) gamma_fovea = tf.placeholder(tf.float32, shape = ()) gamma_label = tf.placeholder(tf.float32, shape = ()) learning_rate = tf.placeholder(tf.float32, shape = () ) beta_regularizer = tf.placeholder(tf.float32, shape = ()) with tf.name_scope('Network') : conv_output = convolutions(fovea) dense_input = tf.contrib.layers.flatten(conv_output) dense_output = dense_layers(dense_input, embedding, fish_prob, keep_prob = keep_prob) with tf.name_scope('Classifiers') : logits = tf.matmul(dense_output, W_clf) + b_clf with tf.name_scope('Backpropigation') : xent = tf.nn.softmax_cross_entropy_with_logits( logits = logits, labels = labels) fovea_cost = gamma_fovea*tf.reduce_mean(tf.multiply(xent, fovea_weights)) label_cost = gamma_label*tf.reduce_mean(tf.multiply(xent, label_weights)) regularization_term = (tf.nn.l2_loss(W_fc4) + tf.nn.l2_loss(W_fc3) + tf.nn.l2_loss(W_fc2) + tf.nn.l2_loss(W_fc1) ) * beta_regularizer cost = tf.reduce_mean(xent) + fovea_cost + label_cost + regularization_term train_op = tf.train.AdagradOptimizer(learning_rate).minimize(cost) with tf.name_scope('Validation') : with tf.name_scope('Input') : val_fovea = tf.placeholder(tf.float32, shape = [valid_size, 64, 64, num_channels]) val_embedding = tf.placeholder(tf.float32, shape = [valid_size, 32]) val_fish_prob = tf.placeholder(tf.float32, shape = [valid_size, 1]) val_labels = tf.placeholder(tf.float32, shape = [valid_size, num_labels]) with tf.name_scope('Network') : v_conv_output = convolutions(val_fovea) v_dense_input = tf.contrib.layers.flatten(v_conv_output) v_dense_output = dense_layers(v_dense_input, val_embedding, val_fish_prob, keep_prob = [1.0, 1.0, 1.0, 1.0]) with tf.name_scope('Classifiers') : val_logits = tf.matmul(v_dense_output, W_clf) + b_clf with tf.name_scope('Metrics') : val_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits( logits = val_logits, labels = val_labels)) val_acc = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(val_logits, 1), tf.argmax(val_labels, 1)), dtype = tf.float32)) with tf.name_scope('Summaries') : with tf.name_scope('Valid_Set') : tf.summary.scalar('Accuracy_FiNoF', val_acc) tf.summary.scalar('CrossEntropy', val_loss) with tf.name_scope('Parameters') : tf.summary.scalar('LearningRate', learning_rate) tf.summary.scalar('Regularization_Coefficient', beta_regularizer) tf.summary.scalar('Fovea_Cost_Coefficient', gamma_fovea) tf.summary.scalar('Label_Cost_Coefficient', gamma_label) with tf.name_scope('Train_Set') : tf.summary.scalar('NaiveCrossEntropy', tf.reduce_mean(xent)) tf.summary.scalar('Regularization', regularization_term) tf.summary.scalar('Fovea_cost', fovea_cost) tf.summary.scalar('Label_cost', label_cost) tf.summary.scalar("Cost", cost) summaries = tf.summary.merge_all() with tf.name_scope('Prediction') : with tf.name_scope('Input') : test_fovea = tf.placeholder(tf.float32, shape = [None, 64, 64, num_channels]) test_embedding = tf.placeholder(tf.float32, shape = [None, 32]) test_fish_prob = tf.placeholder(tf.float32, shape = [None, 1]) with tf.name_scope('Network') : t_conv_output = convolutions(test_fovea) t_dense_input = tf.contrib.layers.flatten(t_conv_output) t_dense_output = dense_layers(t_dense_input, test_embedding, test_fish_prob, keep_prob = [1.0, 1.0, 1.0, 1.0]) with tf.name_scope('Classifiers') : test_logits = tf.matmul(t_dense_output, W_clf) + b_clf test_predictions = tf.nn.softmax(test_logits)
54.070796
127
0.556383
4cab16270ad0c783b99089bbeb7793fe05e39245
3,523
py
Python
pyfermod/stats/stats_isf.py
josborne-noaa/PyFerret
8496508e9902c0184898522e9f89f6caea6d4539
[ "Unlicense" ]
44
2016-03-18T22:05:31.000Z
2021-12-23T01:50:09.000Z
pyfermod/stats/stats_isf.py
josborne-noaa/PyFerret
8496508e9902c0184898522e9f89f6caea6d4539
[ "Unlicense" ]
88
2016-08-19T08:05:37.000Z
2022-03-28T23:29:21.000Z
pyfermod/stats/stats_isf.py
josborne-noaa/PyFerret
8496508e9902c0184898522e9f89f6caea6d4539
[ "Unlicense" ]
24
2016-02-07T18:12:06.000Z
2022-02-19T09:06:17.000Z
""" Returns the array of inverse survival function values for a probability distribution and set of quantile values. """ from __future__ import print_function import numpy import scipy.stats import pyferret import pyferret.stats def ferret_init(id): """ Initialization for the stats_isf python-backed ferret external function """ axes_values = [ pyferret.AXIS_IMPLIED_BY_ARGS ] * pyferret.MAX_FERRET_NDIM true_influences = [ True ] * pyferret.MAX_FERRET_NDIM false_influences = [ False ] * pyferret.MAX_FERRET_NDIM retdict = { "numargs": 3, "descript": "Returns inverse survival function values for a probability distribution", "axes": axes_values, "argnames": ("PROBS", "PDNAME", "PDPARAMS"), "argdescripts": ("Probabilities (0-1) at which to calculate the inverse survival function values", "Name of a probability distribution", "Parameters for this probability distribution"), "argtypes": (pyferret.FLOAT_ARRAY, pyferret.STRING_ONEVAL, pyferret.FLOAT_ARRAY), "influences": (true_influences, false_influences, false_influences), } return retdict def ferret_compute(id, result, resbdf, inputs, inpbdfs): """ Assigns result with the inverse survival function values for the probability distribution indicated by inputs[1] (a string) using the parameters given in inputs[2] at the quantile values given by inputs[0]. For undefined quantile values, the result value will be undefined. """ distribname = inputs[1] distribparams = inputs[2].reshape(-1) distrib = pyferret.stats.getdistrib(distribname, distribparams) badmask = ( numpy.fabs(inputs[0] - inpbdfs[0]) < 1.0E-5 ) badmask = numpy.logical_or(badmask, numpy.isnan(inputs[0])) goodmask = numpy.logical_not(badmask) result[badmask] = resbdf # array[goodmask] is a flattened array result[goodmask] = distrib.isf(inputs[0][goodmask]) # # The rest of this is just for testing this module at the command line # if __name__ == "__main__": # make sure ferret_init does not have problems info = ferret_init(0) # Normal distribution along the Y axis dimen = 25 mu = 5.0 sigma = 2.0 distf = scipy.stats.norm(mu, sigma) qvals = numpy.linspace(0.05, 0.95, dimen) isfvals = distf.isf(qvals) pfname = "norm" pfparams = numpy.array([mu, sigma], dtype=numpy.float64) inpbdfs = numpy.array([-1.0, 0.0, 0.0], dtype=numpy.float64) resbdf = numpy.array([-2.0], dtype=numpy.float64) quantile = numpy.empty((1, dimen, 1, 1, 1, 1), dtype=numpy.float64, order='F') expected = numpy.empty((1, dimen, 1, 1, 1, 1), dtype=numpy.float64, order='F') for j in range(dimen): if (j % 7) == 3: quantile[0, j, 0, 0, 0, 0] = inpbdfs[0] expected[0, j, 0, 0, 0, 0] = resbdf[0] else: quantile[0, j, 0, 0, 0, 0] = qvals[j] expected[0, j, 0, 0, 0, 0] = isfvals[j] result = -888.0 * numpy.ones((1, dimen, 1, 1, 1, 1), dtype=numpy.float64, order='F') ferret_compute(0, result, resbdf, (quantile, pfname, pfparams), inpbdfs) if not numpy.allclose(result, expected): print("Expected (flattened) = %s" % str(expected.reshape(-1))) print("Result (flattened) = %s" % str(result.reshape(-1))) raise ValueError("Unexpected result") # All successful print("Success")
39.144444
114
0.641783
f38a0d411433e6658439691eb6e6a2894b90f025
48,564
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_06_01/aio/operations/_vpn_gateways_operations.py
beltr0n/azure-sdk-for-python
2f7fb8bee881b0fc0386a0ad5385755ceedd0453
[ "MIT" ]
2
2021-03-24T06:26:11.000Z
2021-04-18T15:55:59.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_06_01/aio/operations/_vpn_gateways_operations.py
beltr0n/azure-sdk-for-python
2f7fb8bee881b0fc0386a0ad5385755ceedd0453
[ "MIT" ]
4
2019-04-17T17:57:49.000Z
2020-04-24T21:11:22.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_06_01/aio/operations/_vpn_gateways_operations.py
beltr0n/azure-sdk-for-python
2f7fb8bee881b0fc0386a0ad5385755ceedd0453
[ "MIT" ]
2
2021-05-23T16:46:31.000Z
2021-05-26T23:51:09.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class VpnGatewaysOperations: """VpnGatewaysOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_06_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def get( self, resource_group_name: str, gateway_name: str, **kwargs ) -> "_models.VpnGateway": """Retrieves the details of a virtual wan vpn gateway. :param resource_group_name: The resource group name of the VpnGateway. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: VpnGateway, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_06_01.models.VpnGateway :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.VpnGateway"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('VpnGateway', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, gateway_name: str, vpn_gateway_parameters: "_models.VpnGateway", **kwargs ) -> "_models.VpnGateway": cls = kwargs.pop('cls', None) # type: ClsType["_models.VpnGateway"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(vpn_gateway_parameters, 'VpnGateway') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('VpnGateway', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('VpnGateway', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, gateway_name: str, vpn_gateway_parameters: "_models.VpnGateway", **kwargs ) -> AsyncLROPoller["_models.VpnGateway"]: """Creates a virtual wan vpn gateway if it doesn't exist else updates the existing gateway. :param resource_group_name: The resource group name of the VpnGateway. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :param vpn_gateway_parameters: Parameters supplied to create or Update a virtual wan vpn gateway. :type vpn_gateway_parameters: ~azure.mgmt.network.v2020_06_01.models.VpnGateway :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either VpnGateway or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_06_01.models.VpnGateway] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.VpnGateway"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, gateway_name=gateway_name, vpn_gateway_parameters=vpn_gateway_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VpnGateway', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}'} # type: ignore async def _update_tags_initial( self, resource_group_name: str, gateway_name: str, vpn_gateway_parameters: "_models.TagsObject", **kwargs ) -> Optional["_models.VpnGateway"]: cls = kwargs.pop('cls', None) # type: ClsType[Optional["_models.VpnGateway"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_tags_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(vpn_gateway_parameters, 'TagsObject') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('VpnGateway', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_tags_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}'} # type: ignore async def begin_update_tags( self, resource_group_name: str, gateway_name: str, vpn_gateway_parameters: "_models.TagsObject", **kwargs ) -> AsyncLROPoller["_models.VpnGateway"]: """Updates virtual wan vpn gateway tags. :param resource_group_name: The resource group name of the VpnGateway. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :param vpn_gateway_parameters: Parameters supplied to update a virtual wan vpn gateway tags. :type vpn_gateway_parameters: ~azure.mgmt.network.v2020_06_01.models.TagsObject :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either VpnGateway or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_06_01.models.VpnGateway] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.VpnGateway"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._update_tags_initial( resource_group_name=resource_group_name, gateway_name=gateway_name, vpn_gateway_parameters=vpn_gateway_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VpnGateway', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}'} # type: ignore async def _delete_initial( self, resource_group_name: str, gateway_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}'} # type: ignore async def begin_delete( self, resource_group_name: str, gateway_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes a virtual wan vpn gateway. :param resource_group_name: The resource group name of the VpnGateway. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, gateway_name=gateway_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}'} # type: ignore async def _reset_initial( self, resource_group_name: str, gateway_name: str, **kwargs ) -> Optional["_models.VpnGateway"]: cls = kwargs.pop('cls', None) # type: ClsType[Optional["_models.VpnGateway"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" accept = "application/json" # Construct URL url = self._reset_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('VpnGateway', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _reset_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/reset'} # type: ignore async def begin_reset( self, resource_group_name: str, gateway_name: str, **kwargs ) -> AsyncLROPoller["_models.VpnGateway"]: """Resets the primary of the vpn gateway in the specified resource group. :param resource_group_name: The resource group name of the VpnGateway. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either VpnGateway or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_06_01.models.VpnGateway] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.VpnGateway"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._reset_initial( resource_group_name=resource_group_name, gateway_name=gateway_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VpnGateway', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_reset.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/reset'} # type: ignore async def _start_packet_capture_initial( self, resource_group_name: str, gateway_name: str, parameters: Optional["_models.VpnGatewayPacketCaptureStartParameters"] = None, **kwargs ) -> Optional[str]: cls = kwargs.pop('cls', None) # type: ClsType[Optional[str]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._start_packet_capture_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] if parameters is not None: body_content = self._serialize.body(parameters, 'VpnGatewayPacketCaptureStartParameters') else: body_content = None body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _start_packet_capture_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/startpacketcapture'} # type: ignore async def begin_start_packet_capture( self, resource_group_name: str, gateway_name: str, parameters: Optional["_models.VpnGatewayPacketCaptureStartParameters"] = None, **kwargs ) -> AsyncLROPoller[str]: """Starts packet capture on vpn gateway in the specified resource group. :param resource_group_name: The resource group name of the VpnGateway. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :param parameters: Vpn gateway packet capture parameters supplied to start packet capture on vpn gateway. :type parameters: ~azure.mgmt.network.v2020_06_01.models.VpnGatewayPacketCaptureStartParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either str or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[str] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[str] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._start_packet_capture_initial( resource_group_name=resource_group_name, gateway_name=gateway_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_start_packet_capture.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/startpacketcapture'} # type: ignore async def _stop_packet_capture_initial( self, resource_group_name: str, gateway_name: str, parameters: Optional["_models.VpnGatewayPacketCaptureStopParameters"] = None, **kwargs ) -> Optional[str]: cls = kwargs.pop('cls', None) # type: ClsType[Optional[str]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._stop_packet_capture_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] if parameters is not None: body_content = self._serialize.body(parameters, 'VpnGatewayPacketCaptureStopParameters') else: body_content = None body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _stop_packet_capture_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/stoppacketcapture'} # type: ignore async def begin_stop_packet_capture( self, resource_group_name: str, gateway_name: str, parameters: Optional["_models.VpnGatewayPacketCaptureStopParameters"] = None, **kwargs ) -> AsyncLROPoller[str]: """Stops packet capture on vpn gateway in the specified resource group. :param resource_group_name: The resource group name of the VpnGateway. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :param parameters: Vpn gateway packet capture parameters supplied to stop packet capture on vpn gateway. :type parameters: ~azure.mgmt.network.v2020_06_01.models.VpnGatewayPacketCaptureStopParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either str or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[str] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[str] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._stop_packet_capture_initial( resource_group_name=resource_group_name, gateway_name=gateway_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_stop_packet_capture.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/stoppacketcapture'} # type: ignore def list_by_resource_group( self, resource_group_name: str, **kwargs ) -> AsyncIterable["_models.ListVpnGatewaysResult"]: """Lists all the VpnGateways in a resource group. :param resource_group_name: The resource group name of the VpnGateway. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ListVpnGatewaysResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_06_01.models.ListVpnGatewaysResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ListVpnGatewaysResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_resource_group.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('ListVpnGatewaysResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_resource_group.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways'} # type: ignore def list( self, **kwargs ) -> AsyncIterable["_models.ListVpnGatewaysResult"]: """Lists all the VpnGateways in a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ListVpnGatewaysResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_06_01.models.ListVpnGatewaysResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ListVpnGatewaysResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('ListVpnGatewaysResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/vpnGateways'} # type: ignore
49.656442
211
0.667696
42f9888bcd5645c4807993e12f0adea6a1992b56
14,047
py
Python
mavsdk/failure.py
NicolasM0/MAVSDK-Python
41633177a040dd535ad4adf38764a81c10d50760
[ "BSD-3-Clause" ]
1
2020-07-11T10:02:28.000Z
2020-07-11T10:02:28.000Z
mavsdk/failure.py
NicolasM0/MAVSDK-Python
41633177a040dd535ad4adf38764a81c10d50760
[ "BSD-3-Clause" ]
null
null
null
mavsdk/failure.py
NicolasM0/MAVSDK-Python
41633177a040dd535ad4adf38764a81c10d50760
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # DO NOT EDIT! This file is auto-generated from # https://github.com/mavlink/MAVSDK-Python/tree/master/other/templates/py from ._base import AsyncBase from . import failure_pb2, failure_pb2_grpc from enum import Enum class FailureUnit(Enum): """ A failure unit. Values ------ SENSOR_GYRO Gyro SENSOR_ACCEL Accelerometer SENSOR_MAG Magnetometer SENSOR_BARO Barometer SENSOR_GPS GPS SENSOR_OPTICAL_FLOW Optical flow SENSOR_VIO Visual inertial odometry SENSOR_DISTANCE_SENSOR Distance sensor SENSOR_AIRSPEED Airspeed SYSTEM_BATTERY Battery SYSTEM_MOTOR Motor SYSTEM_SERVO Servo SYSTEM_AVOIDANCE Avoidance SYSTEM_RC_SIGNAL RC signal SYSTEM_MAVLINK_SIGNAL MAVLink signal """ SENSOR_GYRO = 0 SENSOR_ACCEL = 1 SENSOR_MAG = 2 SENSOR_BARO = 3 SENSOR_GPS = 4 SENSOR_OPTICAL_FLOW = 5 SENSOR_VIO = 6 SENSOR_DISTANCE_SENSOR = 7 SENSOR_AIRSPEED = 8 SYSTEM_BATTERY = 9 SYSTEM_MOTOR = 10 SYSTEM_SERVO = 11 SYSTEM_AVOIDANCE = 12 SYSTEM_RC_SIGNAL = 13 SYSTEM_MAVLINK_SIGNAL = 14 def translate_to_rpc(self): if self == FailureUnit.SENSOR_GYRO: return failure_pb2.FAILURE_UNIT_SENSOR_GYRO if self == FailureUnit.SENSOR_ACCEL: return failure_pb2.FAILURE_UNIT_SENSOR_ACCEL if self == FailureUnit.SENSOR_MAG: return failure_pb2.FAILURE_UNIT_SENSOR_MAG if self == FailureUnit.SENSOR_BARO: return failure_pb2.FAILURE_UNIT_SENSOR_BARO if self == FailureUnit.SENSOR_GPS: return failure_pb2.FAILURE_UNIT_SENSOR_GPS if self == FailureUnit.SENSOR_OPTICAL_FLOW: return failure_pb2.FAILURE_UNIT_SENSOR_OPTICAL_FLOW if self == FailureUnit.SENSOR_VIO: return failure_pb2.FAILURE_UNIT_SENSOR_VIO if self == FailureUnit.SENSOR_DISTANCE_SENSOR: return failure_pb2.FAILURE_UNIT_SENSOR_DISTANCE_SENSOR if self == FailureUnit.SENSOR_AIRSPEED: return failure_pb2.FAILURE_UNIT_SENSOR_AIRSPEED if self == FailureUnit.SYSTEM_BATTERY: return failure_pb2.FAILURE_UNIT_SYSTEM_BATTERY if self == FailureUnit.SYSTEM_MOTOR: return failure_pb2.FAILURE_UNIT_SYSTEM_MOTOR if self == FailureUnit.SYSTEM_SERVO: return failure_pb2.FAILURE_UNIT_SYSTEM_SERVO if self == FailureUnit.SYSTEM_AVOIDANCE: return failure_pb2.FAILURE_UNIT_SYSTEM_AVOIDANCE if self == FailureUnit.SYSTEM_RC_SIGNAL: return failure_pb2.FAILURE_UNIT_SYSTEM_RC_SIGNAL if self == FailureUnit.SYSTEM_MAVLINK_SIGNAL: return failure_pb2.FAILURE_UNIT_SYSTEM_MAVLINK_SIGNAL @staticmethod def translate_from_rpc(rpc_enum_value): """ Parses a gRPC response """ if rpc_enum_value == failure_pb2.FAILURE_UNIT_SENSOR_GYRO: return FailureUnit.SENSOR_GYRO if rpc_enum_value == failure_pb2.FAILURE_UNIT_SENSOR_ACCEL: return FailureUnit.SENSOR_ACCEL if rpc_enum_value == failure_pb2.FAILURE_UNIT_SENSOR_MAG: return FailureUnit.SENSOR_MAG if rpc_enum_value == failure_pb2.FAILURE_UNIT_SENSOR_BARO: return FailureUnit.SENSOR_BARO if rpc_enum_value == failure_pb2.FAILURE_UNIT_SENSOR_GPS: return FailureUnit.SENSOR_GPS if rpc_enum_value == failure_pb2.FAILURE_UNIT_SENSOR_OPTICAL_FLOW: return FailureUnit.SENSOR_OPTICAL_FLOW if rpc_enum_value == failure_pb2.FAILURE_UNIT_SENSOR_VIO: return FailureUnit.SENSOR_VIO if rpc_enum_value == failure_pb2.FAILURE_UNIT_SENSOR_DISTANCE_SENSOR: return FailureUnit.SENSOR_DISTANCE_SENSOR if rpc_enum_value == failure_pb2.FAILURE_UNIT_SENSOR_AIRSPEED: return FailureUnit.SENSOR_AIRSPEED if rpc_enum_value == failure_pb2.FAILURE_UNIT_SYSTEM_BATTERY: return FailureUnit.SYSTEM_BATTERY if rpc_enum_value == failure_pb2.FAILURE_UNIT_SYSTEM_MOTOR: return FailureUnit.SYSTEM_MOTOR if rpc_enum_value == failure_pb2.FAILURE_UNIT_SYSTEM_SERVO: return FailureUnit.SYSTEM_SERVO if rpc_enum_value == failure_pb2.FAILURE_UNIT_SYSTEM_AVOIDANCE: return FailureUnit.SYSTEM_AVOIDANCE if rpc_enum_value == failure_pb2.FAILURE_UNIT_SYSTEM_RC_SIGNAL: return FailureUnit.SYSTEM_RC_SIGNAL if rpc_enum_value == failure_pb2.FAILURE_UNIT_SYSTEM_MAVLINK_SIGNAL: return FailureUnit.SYSTEM_MAVLINK_SIGNAL def __str__(self): return self.name class FailureType(Enum): """ A failure type Values ------ OK No failure injected, used to reset a previous failure OFF Sets unit off, so completely non-responsive STUCK Unit is stuck e.g. keeps reporting the same value GARBAGE Unit is reporting complete garbage WRONG Unit is consistently wrong SLOW Unit is slow, so e.g. reporting at slower than expected rate DELAYED Data of unit is delayed in time INTERMITTENT Unit is sometimes working, sometimes not """ OK = 0 OFF = 1 STUCK = 2 GARBAGE = 3 WRONG = 4 SLOW = 5 DELAYED = 6 INTERMITTENT = 7 def translate_to_rpc(self): if self == FailureType.OK: return failure_pb2.FAILURE_TYPE_OK if self == FailureType.OFF: return failure_pb2.FAILURE_TYPE_OFF if self == FailureType.STUCK: return failure_pb2.FAILURE_TYPE_STUCK if self == FailureType.GARBAGE: return failure_pb2.FAILURE_TYPE_GARBAGE if self == FailureType.WRONG: return failure_pb2.FAILURE_TYPE_WRONG if self == FailureType.SLOW: return failure_pb2.FAILURE_TYPE_SLOW if self == FailureType.DELAYED: return failure_pb2.FAILURE_TYPE_DELAYED if self == FailureType.INTERMITTENT: return failure_pb2.FAILURE_TYPE_INTERMITTENT @staticmethod def translate_from_rpc(rpc_enum_value): """ Parses a gRPC response """ if rpc_enum_value == failure_pb2.FAILURE_TYPE_OK: return FailureType.OK if rpc_enum_value == failure_pb2.FAILURE_TYPE_OFF: return FailureType.OFF if rpc_enum_value == failure_pb2.FAILURE_TYPE_STUCK: return FailureType.STUCK if rpc_enum_value == failure_pb2.FAILURE_TYPE_GARBAGE: return FailureType.GARBAGE if rpc_enum_value == failure_pb2.FAILURE_TYPE_WRONG: return FailureType.WRONG if rpc_enum_value == failure_pb2.FAILURE_TYPE_SLOW: return FailureType.SLOW if rpc_enum_value == failure_pb2.FAILURE_TYPE_DELAYED: return FailureType.DELAYED if rpc_enum_value == failure_pb2.FAILURE_TYPE_INTERMITTENT: return FailureType.INTERMITTENT def __str__(self): return self.name class FailureResult: """ Parameters ---------- result : Result Result enum value result_str : std::string Human-readable English string describing the result """ class Result(Enum): """ Possible results returned for failure requests. Values ------ UNKNOWN Unknown result SUCCESS Request succeeded NO_SYSTEM No system is connected CONNECTION_ERROR Connection error UNSUPPORTED Failure not supported DENIED Failure injection denied DISABLED Failure injection is disabled TIMEOUT Request timed out """ UNKNOWN = 0 SUCCESS = 1 NO_SYSTEM = 2 CONNECTION_ERROR = 3 UNSUPPORTED = 4 DENIED = 5 DISABLED = 6 TIMEOUT = 7 def translate_to_rpc(self): if self == FailureResult.Result.UNKNOWN: return failure_pb2.FailureResult.RESULT_UNKNOWN if self == FailureResult.Result.SUCCESS: return failure_pb2.FailureResult.RESULT_SUCCESS if self == FailureResult.Result.NO_SYSTEM: return failure_pb2.FailureResult.RESULT_NO_SYSTEM if self == FailureResult.Result.CONNECTION_ERROR: return failure_pb2.FailureResult.RESULT_CONNECTION_ERROR if self == FailureResult.Result.UNSUPPORTED: return failure_pb2.FailureResult.RESULT_UNSUPPORTED if self == FailureResult.Result.DENIED: return failure_pb2.FailureResult.RESULT_DENIED if self == FailureResult.Result.DISABLED: return failure_pb2.FailureResult.RESULT_DISABLED if self == FailureResult.Result.TIMEOUT: return failure_pb2.FailureResult.RESULT_TIMEOUT @staticmethod def translate_from_rpc(rpc_enum_value): """ Parses a gRPC response """ if rpc_enum_value == failure_pb2.FailureResult.RESULT_UNKNOWN: return FailureResult.Result.UNKNOWN if rpc_enum_value == failure_pb2.FailureResult.RESULT_SUCCESS: return FailureResult.Result.SUCCESS if rpc_enum_value == failure_pb2.FailureResult.RESULT_NO_SYSTEM: return FailureResult.Result.NO_SYSTEM if rpc_enum_value == failure_pb2.FailureResult.RESULT_CONNECTION_ERROR: return FailureResult.Result.CONNECTION_ERROR if rpc_enum_value == failure_pb2.FailureResult.RESULT_UNSUPPORTED: return FailureResult.Result.UNSUPPORTED if rpc_enum_value == failure_pb2.FailureResult.RESULT_DENIED: return FailureResult.Result.DENIED if rpc_enum_value == failure_pb2.FailureResult.RESULT_DISABLED: return FailureResult.Result.DISABLED if rpc_enum_value == failure_pb2.FailureResult.RESULT_TIMEOUT: return FailureResult.Result.TIMEOUT def __str__(self): return self.name def __init__( self, result, result_str): """ Initializes the FailureResult object """ self.result = result self.result_str = result_str def __equals__(self, to_compare): """ Checks if two FailureResult are the same """ try: # Try to compare - this likely fails when it is compared to a non # FailureResult object return \ (self.result == to_compare.result) and \ (self.result_str == to_compare.result_str) except AttributeError: return False def __str__(self): """ FailureResult in string representation """ struct_repr = ", ".join([ "result: " + str(self.result), "result_str: " + str(self.result_str) ]) return f"FailureResult: [{struct_repr}]" @staticmethod def translate_from_rpc(rpcFailureResult): """ Translates a gRPC struct to the SDK equivalent """ return FailureResult( FailureResult.Result.translate_from_rpc(rpcFailureResult.result), rpcFailureResult.result_str ) def translate_to_rpc(self, rpcFailureResult): """ Translates this SDK object into its gRPC equivalent """ rpcFailureResult.result = self.result.translate_to_rpc() rpcFailureResult.result_str = self.result_str class FailureError(Exception): """ Raised when a FailureResult is a fail code """ def __init__(self, result, origin, *params): self._result = result self._origin = origin self._params = params def __str__(self): return f"{self._result.result}: '{self._result.result_str}'; origin: {self._origin}; params: {self._params}" class Failure(AsyncBase): """ Inject failures into system to test failsafes. Generated by dcsdkgen - MAVSDK Failure API """ # Plugin name name = "Failure" def _setup_stub(self, channel): """ Setups the api stub """ self._stub = failure_pb2_grpc.FailureServiceStub(channel) def _extract_result(self, response): """ Returns the response status and description """ return FailureResult.translate_from_rpc(response.failure_result) async def inject(self, failure_unit, failure_type, instance): """ Injects a failure. Parameters ---------- failure_unit : FailureUnit The failure unit to send failure_type : FailureType The failure type to send instance : int32_t Instance to affect (0 for all) Raises ------ FailureError If the request fails. The error contains the reason for the failure. """ request = failure_pb2.InjectRequest() request.failure_unit = failure_unit.translate_to_rpc() request.failure_type = failure_type.translate_to_rpc() request.instance = instance response = await self._stub.Inject(request) result = self._extract_result(response) if result.result is not FailureResult.Result.SUCCESS: raise FailureError(result, "inject()", failure_unit, failure_type, instance)
30.404762
116
0.628319
823e899aecf5881c99e791fd7099ceb1404c2f55
418
py
Python
tests/test_api.py
pinntech/pinn-python
d7d3f2d2a4cdc3eb01ae85a117c0e3d8bc1732bd
[ "MIT" ]
2
2019-03-29T17:36:44.000Z
2021-11-20T00:05:04.000Z
tests/test_api.py
pinntech/pinn-python
d7d3f2d2a4cdc3eb01ae85a117c0e3d8bc1732bd
[ "MIT" ]
4
2020-03-24T16:52:29.000Z
2021-06-01T23:36:18.000Z
tests/test_api.py
pinntech/pinn-python
d7d3f2d2a4cdc3eb01ae85a117c0e3d8bc1732bd
[ "MIT" ]
1
2021-11-20T00:05:07.000Z
2021-11-20T00:05:07.000Z
""" :copyright: (c) 2019 Pinn Technologies, Inc. :license: MIT """ def test_import(): import pinn def test_configuration_error(): import pinn try: pinn.User.create() except pinn.errors.ConfigurationError: pass def test_authentication_error(): import pinn pinn.secret_key = 'foo' try: pinn.User.create() except pinn.errors.AuthenticationError: pass
16.076923
44
0.645933
1c942a1e6c80c09cc6afff40460be5ab93c827ed
3,472
py
Python
xarray/tests/test_dtypes.py
ianthomas23/xarray
aa1d1d19b822897399c8ed2cf346afbac71f45b3
[ "Apache-2.0" ]
null
null
null
xarray/tests/test_dtypes.py
ianthomas23/xarray
aa1d1d19b822897399c8ed2cf346afbac71f45b3
[ "Apache-2.0" ]
null
null
null
xarray/tests/test_dtypes.py
ianthomas23/xarray
aa1d1d19b822897399c8ed2cf346afbac71f45b3
[ "Apache-2.0" ]
null
null
null
from __future__ import annotations import numpy as np import pytest from xarray.core import dtypes @pytest.mark.parametrize( "args, expected", [ ([bool], bool), ([bool, np.string_], np.object_), ([np.float32, np.float64], np.float64), ([np.float32, np.string_], np.object_), ([np.unicode_, np.int64], np.object_), ([np.unicode_, np.unicode_], np.unicode_), ([np.bytes_, np.unicode_], np.object_), ], ) def test_result_type(args, expected): actual = dtypes.result_type(*args) assert actual == expected def test_result_type_scalar(): actual = dtypes.result_type(np.arange(3, dtype=np.float32), np.nan) assert actual == np.float32 def test_result_type_dask_array(): # verify it works without evaluating dask arrays da = pytest.importorskip("dask.array") dask = pytest.importorskip("dask") def error(): raise RuntimeError array = da.from_delayed(dask.delayed(error)(), (), np.float64) with pytest.raises(RuntimeError): array.compute() actual = dtypes.result_type(array) assert actual == np.float64 # note that this differs from the behavior for scalar numpy arrays, which # would get promoted to float32 actual = dtypes.result_type(array, np.array([0.5, 1.0], dtype=np.float32)) assert actual == np.float64 @pytest.mark.parametrize("obj", [1.0, np.inf, "ab", 1.0 + 1.0j, True]) def test_inf(obj): assert dtypes.INF > obj assert dtypes.NINF < obj @pytest.mark.parametrize( "kind, expected", [ ("a", (np.dtype("O"), "nan")), # dtype('S') ("b", (np.float32, "nan")), # dtype('int8') ("B", (np.float32, "nan")), # dtype('uint8') ("c", (np.dtype("O"), "nan")), # dtype('S1') ("D", (np.complex128, "(nan+nanj)")), # dtype('complex128') ("d", (np.float64, "nan")), # dtype('float64') ("e", (np.float16, "nan")), # dtype('float16') ("F", (np.complex64, "(nan+nanj)")), # dtype('complex64') ("f", (np.float32, "nan")), # dtype('float32') ("h", (np.float32, "nan")), # dtype('int16') ("H", (np.float32, "nan")), # dtype('uint16') ("i", (np.float64, "nan")), # dtype('int32') ("I", (np.float64, "nan")), # dtype('uint32') ("l", (np.float64, "nan")), # dtype('int64') ("L", (np.float64, "nan")), # dtype('uint64') ("m", (np.timedelta64, "NaT")), # dtype('<m8') ("M", (np.datetime64, "NaT")), # dtype('<M8') ("O", (np.dtype("O"), "nan")), # dtype('O') ("p", (np.float64, "nan")), # dtype('int64') ("P", (np.float64, "nan")), # dtype('uint64') ("q", (np.float64, "nan")), # dtype('int64') ("Q", (np.float64, "nan")), # dtype('uint64') ("S", (np.dtype("O"), "nan")), # dtype('S') ("U", (np.dtype("O"), "nan")), # dtype('<U') ("V", (np.dtype("O"), "nan")), # dtype('V') ], ) def test_maybe_promote(kind, expected): # 'g': np.float128 is not tested : not available on all platforms # 'G': np.complex256 is not tested : not available on all platforms actual = dtypes.maybe_promote(np.dtype(kind)) assert actual[0] == expected[0] assert str(actual[1]) == expected[1] def test_nat_types_membership(): assert np.datetime64("NaT").dtype in dtypes.NAT_TYPES assert np.timedelta64("NaT").dtype in dtypes.NAT_TYPES assert np.float64 not in dtypes.NAT_TYPES
34.376238
78
0.567396
7ee154247bb0b83037ecae140405579c83f06457
298
py
Python
backend/app/literature/hashing.py
alliance-genome/agr_literature_service_demo
48cd3a3797f96ef94e6d40d2c94e379bfc48914f
[ "MIT" ]
1
2021-12-18T15:06:41.000Z
2021-12-18T15:06:41.000Z
res-page/hashing.py
beyondchan28/API-Server-1---Learning-Reource-Godot
bb1f00830cf0884bd8b369960e7bad54e90beee2
[ "MIT" ]
null
null
null
res-page/hashing.py
beyondchan28/API-Server-1---Learning-Reource-Godot
bb1f00830cf0884bd8b369960e7bad54e90beee2
[ "MIT" ]
null
null
null
from passlib.context import CryptContext pwd_cxt = CryptContext(schemes=["bcrypt"], deprecated="auto") class Hash(): def bcrypt(password: str): return pwd_cxt.hash(password) def verify(hashed_password,plain_password): return pwd_cxt.verify(plain_password,hashed_password)
29.8
61
0.744966
5682c336cb33e1eee8dcb6f2e4ee73a6bb8d8456
17,610
py
Python
tf_agents/policies/policy_saver_test.py
kvzhao/agents
3bbf635a4f8f1f9255e0d7315b1163f84d96a4f7
[ "Apache-2.0" ]
3
2019-10-02T13:55:14.000Z
2021-05-06T23:08:45.000Z
tf_agents/policies/policy_saver_test.py
nealwu/agents
27b9498689ea5b8f69fc77ada752e05e38192852
[ "Apache-2.0" ]
null
null
null
tf_agents/policies/policy_saver_test.py
nealwu/agents
27b9498689ea5b8f69fc77ada752e05e38192852
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2018 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for PolicySaver.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl.testing import parameterized import tensorflow as tf from tf_agents.networks import q_network from tf_agents.networks import q_rnn_network from tf_agents.policies import policy_saver from tf_agents.policies import q_policy from tf_agents.specs import tensor_spec from tf_agents.trajectories import time_step as ts from tf_agents.utils import common from tf_agents.utils import test_utils class PolicySaverTest(test_utils.TestCase, parameterized.TestCase): def setUp(self): super(PolicySaverTest, self).setUp() self._time_step_spec = ts.TimeStep( step_type=tensor_spec.BoundedTensorSpec( dtype=tf.int32, shape=(), name='st', minimum=0, maximum=2), reward=tensor_spec.BoundedTensorSpec( dtype=tf.float32, shape=(), name='reward', minimum=0.0, maximum=5.0), discount=tensor_spec.BoundedTensorSpec( dtype=tf.float32, shape=(), name='discount', minimum=0.0, maximum=1.0), observation=tensor_spec.BoundedTensorSpec( dtype=tf.float32, shape=(4,), name='obs', minimum=-10.0, maximum=10.0)) self._action_spec = tensor_spec.BoundedTensorSpec( dtype=tf.int32, shape=(), minimum=0, maximum=10, name='act_0') self._global_seed = 12345 tf.compat.v1.set_random_seed(self._global_seed) def testUniqueSignatures(self): network = q_network.QNetwork( input_tensor_spec=self._time_step_spec.observation, action_spec=self._action_spec) policy = q_policy.QPolicy( time_step_spec=self._time_step_spec, action_spec=self._action_spec, q_network=network) saver = policy_saver.PolicySaver(policy, batch_size=None) action_signature_names = [ s.name for s in saver._signatures['action'].input_signature ] self.assertAllEqual( ['0/step_type', '0/reward', '0/discount', '0/observation'], action_signature_names) initial_state_signature_names = [ s.name for s in saver._signatures['get_initial_state'].input_signature ] self.assertAllEqual(['batch_size'], initial_state_signature_names) def testRenamedSignatures(self): time_step_spec = self._time_step_spec._replace( observation=tensor_spec.BoundedTensorSpec( dtype=tf.float32, shape=(4,), minimum=-10.0, maximum=10.0)) network = q_network.QNetwork( input_tensor_spec=time_step_spec.observation, action_spec=self._action_spec) policy = q_policy.QPolicy( time_step_spec=time_step_spec, action_spec=self._action_spec, q_network=network) saver = policy_saver.PolicySaver(policy, batch_size=None) action_signature_names = [ s.name for s in saver._signatures['action'].input_signature ] self.assertAllEqual( ['0/step_type', '0/reward', '0/discount', '0/observation'], action_signature_names) initial_state_signature_names = [ s.name for s in saver._signatures['get_initial_state'].input_signature ] self.assertAllEqual(['batch_size'], initial_state_signature_names) @parameterized.named_parameters(('NotSeededNoState', False, False), ('NotSeededWithState', False, True), ('SeededNoState', True, False), ('SeededWithState', True, True)) def testSaveAction(self, seeded, has_state): with tf.compat.v1.Graph().as_default(): tf.compat.v1.set_random_seed(self._global_seed) with tf.compat.v1.Session().as_default(): if has_state: network = q_rnn_network.QRnnNetwork( input_tensor_spec=self._time_step_spec.observation, action_spec=self._action_spec) else: network = q_network.QNetwork( input_tensor_spec=self._time_step_spec.observation, action_spec=self._action_spec) policy = q_policy.QPolicy( time_step_spec=self._time_step_spec, action_spec=self._action_spec, q_network=network) action_seed = 98723 batch_size = 3 action_inputs = tensor_spec.sample_spec_nest( (self._time_step_spec, policy.policy_state_spec), outer_dims=(batch_size,), seed=4) action_input_values = self.evaluate(action_inputs) action_input_tensors = tf.nest.map_structure( tf.convert_to_tensor, action_input_values) action_output = policy.action(*action_input_tensors, seed=action_seed) self.evaluate(tf.compat.v1.global_variables_initializer()) action_output_dict = dict(( (spec.name, value) for (spec, value) in zip(tf.nest.flatten(policy.policy_step_spec), tf.nest.flatten(action_output)))) # Check output of the flattened signature call. (action_output_value, action_output_dict) = self.evaluate( (action_output, action_output_dict)) saver = policy_saver.PolicySaver( policy, batch_size=None, use_nest_path_signatures=False, seed=action_seed) path = os.path.join(self.get_temp_dir(), 'save_model_action') saver.save(path) with tf.compat.v1.Graph().as_default(): tf.compat.v1.set_random_seed(self._global_seed) with tf.compat.v1.Session().as_default(): reloaded = tf.compat.v2.saved_model.load(path) self.assertIn('action', reloaded.signatures) reloaded_action = reloaded.signatures['action'] self._compare_input_output_specs( reloaded_action, expected_input_specs=(self._time_step_spec, policy.policy_state_spec), expected_output_spec=policy.policy_step_spec, batch_input=True) # Reload action_input_values as tensors in the new graph. action_input_tensors = tf.nest.map_structure( tf.convert_to_tensor, action_input_values) action_input_spec = (self._time_step_spec, policy.policy_state_spec) function_action_input_dict = dict( (spec.name, value) for (spec, value) in zip(tf.nest.flatten(action_input_spec), tf.nest.flatten(action_input_tensors))) # NOTE(ebrevdo): The graph-level seeds for the policy and the reloaded # model are equal, which in addition to seeding the call to action() and # PolicySaver helps ensure equality of the output of action() in both # cases. self.assertEqual(reloaded_action.graph.seed, self._global_seed) # The seed= argument for the SavedModel action call was given at # creation of the PolicySaver. # This is the flat-signature function. reloaded_action_output_dict = reloaded_action( **function_action_input_dict) def match_dtype_shape(x, y, msg=None): self.assertEqual(x.shape, y.shape, msg=msg) self.assertEqual(x.dtype, y.dtype, msg=msg) # This is the non-flat function. if has_state: reloaded_action_output = reloaded.action(*action_input_tensors) else: # Try both cases: one with an empty policy_state and one with no # policy_state. Compare them. # NOTE(ebrevdo): The first call to .action() must be stored in # reloaded_action_output because this is the version being compared # later against the true action_output and the values will change # after the first call due to randomness. reloaded_action_output = reloaded.action(*action_input_tensors) reloaded_action_output_no_input_state = reloaded.action( action_input_tensors[0]) # Even with a seed, multiple calls to action will get different # values, so here we just check the signature matches. tf.nest.map_structure(match_dtype_shape, reloaded_action_output_no_input_state, reloaded_action_output) self.evaluate(tf.compat.v1.global_variables_initializer()) (reloaded_action_output_dict, reloaded_action_output_value) = self.evaluate( (reloaded_action_output_dict, reloaded_action_output)) self.assertAllEqual( action_output_dict.keys(), reloaded_action_output_dict.keys()) for k in action_output_dict: if seeded: self.assertAllClose( action_output_dict[k], reloaded_action_output_dict[k], msg='\nMismatched dict key: %s.' % k) else: match_dtype_shape(action_output_dict[k], reloaded_action_output_dict[k], msg='\nMismatch dict key: %s.' % k) # With non-signature functions, we can check that passing a seed does # the right thing the second time. if seeded: tf.nest.map_structure( self.assertAllClose, action_output_value, reloaded_action_output_value) else: tf.nest.map_structure( match_dtype_shape, action_output_value, reloaded_action_output_value) def testSaveGetInitialState(self): network = q_rnn_network.QRnnNetwork( input_tensor_spec=self._time_step_spec.observation, action_spec=self._action_spec) policy = q_policy.QPolicy( time_step_spec=self._time_step_spec, action_spec=self._action_spec, q_network=network) saver_nobatch = policy_saver.PolicySaver( policy, batch_size=None, use_nest_path_signatures=False) path = os.path.join(self.get_temp_dir(), 'save_model_initial_state_nobatch') saver_nobatch.save(path) reloaded_nobatch = tf.compat.v2.saved_model.load(path) self.assertIn('get_initial_state', reloaded_nobatch.signatures) reloaded_get_initial_state = ( reloaded_nobatch.signatures['get_initial_state']) self._compare_input_output_specs( reloaded_get_initial_state, expected_input_specs=( tf.TensorSpec(dtype=tf.int32, shape=(), name='batch_size'),), expected_output_spec=policy.policy_state_spec, batch_input=False, batch_size=None) initial_state = policy.get_initial_state(batch_size=3) initial_state = self.evaluate(initial_state) reloaded_nobatch_initial_state = reloaded_nobatch.get_initial_state( batch_size=3) reloaded_nobatch_initial_state = self.evaluate( reloaded_nobatch_initial_state) tf.nest.map_structure( self.assertAllClose, initial_state, reloaded_nobatch_initial_state) saver_batch = policy_saver.PolicySaver(policy, batch_size=3, use_nest_path_signatures=False) path = os.path.join(self.get_temp_dir(), 'save_model_initial_state_batch') saver_batch.save(path) reloaded_batch = tf.compat.v2.saved_model.load(path) self.assertIn('get_initial_state', reloaded_batch.signatures) reloaded_get_initial_state = reloaded_batch.signatures['get_initial_state'] self._compare_input_output_specs( reloaded_get_initial_state, expected_input_specs=(), expected_output_spec=policy.policy_state_spec, batch_input=False, batch_size=3) reloaded_batch_initial_state = reloaded_batch.get_initial_state() reloaded_batch_initial_state = self.evaluate(reloaded_batch_initial_state) tf.nest.map_structure( self.assertAllClose, initial_state, reloaded_batch_initial_state) def testNoSpecMissingOrColliding(self): spec_names = set() flat_spec = tf.nest.flatten(self._time_step_spec) missing_or_colliding = [ policy_saver._true_if_missing_or_collision(s, spec_names) for s in flat_spec ] self.assertFalse(any(missing_or_colliding)) def testTrueIfMissing(self): time_step_spec = self._time_step_spec._replace( observation=tensor_spec.BoundedTensorSpec( dtype=tf.float32, shape=(4,), minimum=-10.0, maximum=10.0)) spec_names = set() flat_spec = tf.nest.flatten(time_step_spec) missing_or_colliding = [ policy_saver._true_if_missing_or_collision(s, spec_names) for s in flat_spec ] self.assertTrue(any(missing_or_colliding)) def testTrueIfCollision(self): time_step_spec = self._time_step_spec._replace( observation=tensor_spec.BoundedTensorSpec( dtype=tf.float32, shape=(4,), name='st', minimum=-10.0, maximum=10.0)) spec_names = set() flat_spec = tf.nest.flatten(time_step_spec) missing_or_colliding = [ policy_saver._true_if_missing_or_collision(s, spec_names) for s in flat_spec ] self.assertTrue(any(missing_or_colliding)) def testRenameSpecWithNestPaths(self): time_step_spec = self._time_step_spec._replace(observation=[ tensor_spec.TensorSpec( dtype=tf.float32, shape=(4,), name='obs1', ), tensor_spec.TensorSpec( dtype=tf.float32, shape=(4,), name='obs1', ) ]) renamed_spec = policy_saver._rename_spec_with_nest_paths(time_step_spec) new_names = [s.name for s in tf.nest.flatten(renamed_spec)] self.assertAllEqual( ['step_type', 'reward', 'discount', 'observation/0', 'observation/1'], new_names) def testTrainStepSaved(self): # We need to use one default session so that self.evaluate and the # SavedModel loader share the same session. with tf.compat.v1.Session().as_default(): network = q_network.QNetwork( input_tensor_spec=self._time_step_spec.observation, action_spec=self._action_spec) policy = q_policy.QPolicy( time_step_spec=self._time_step_spec, action_spec=self._action_spec, q_network=network) self.evaluate(tf.compat.v1.initializers.variables(policy.variables())) train_step = common.create_variable('train_step', initial_value=7) self.evaluate(tf.compat.v1.initializers.variables([train_step])) saver = policy_saver.PolicySaver( policy, batch_size=None, train_step=train_step) path = os.path.join(self.get_temp_dir(), 'save_model') saver.save(path) reloaded = tf.compat.v2.saved_model.load(path) self.assertIn('get_train_step', reloaded.signatures) self.evaluate(tf.compat.v1.global_variables_initializer()) train_step_value = self.evaluate(reloaded.train_step()) self.assertEqual(7, train_step_value) train_step = train_step.assign_add(3) self.evaluate(train_step) saver.save(path) reloaded = tf.compat.v2.saved_model.load(path) self.evaluate(tf.compat.v1.global_variables_initializer()) train_step_value = self.evaluate(reloaded.train_step()) self.assertEqual(10, train_step_value) def testTrainStepNotSaved(self): network = q_network.QNetwork( input_tensor_spec=self._time_step_spec.observation, action_spec=self._action_spec) policy = q_policy.QPolicy( time_step_spec=self._time_step_spec, action_spec=self._action_spec, q_network=network) saver = policy_saver.PolicySaver(policy, batch_size=None) path = os.path.join(self.get_temp_dir(), 'save_model') saver.save(path) reloaded = tf.compat.v2.saved_model.load(path) self.assertIn('get_train_step', reloaded.signatures) train_step_value = self.evaluate(reloaded.train_step()) self.assertEqual(-1, train_step_value) def _compare_input_output_specs(self, function, expected_input_specs, expected_output_spec, batch_input, batch_size=None): args, kwargs = function.structured_input_signature self.assertFalse(args) def expected_spec(spec, include_batch_dimension): if include_batch_dimension: return tf.TensorSpec( dtype=spec.dtype, shape=tf.TensorShape([batch_size]).concatenate(spec.shape), name=spec.name) else: return spec expected_input_spec_dict = dict( (spec.name, expected_spec(spec, include_batch_dimension=batch_input)) for spec in tf.nest.flatten(expected_input_specs)) expected_output_spec_dict = dict( (spec.name, expected_spec(spec, include_batch_dimension=True)) for spec in tf.nest.flatten(expected_output_spec)) self.assertEqual(kwargs, expected_input_spec_dict) self.assertEqual(function.structured_outputs, expected_output_spec_dict) if __name__ == '__main__': tf.test.main()
38.874172
80
0.676263