Datasets:

Modalities:
Text
Formats:
csv
Libraries:
Datasets
pandas
File size: 2,266 Bytes
510191c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
{
    "default": {
        "description": "The Text REtrieval Conference (TREC) Question Classification dataset contains 5500 labeled questions in training set and another 500 for test set. This dataset uses only the 6 coarse class labels. The original train dataset split has been divided into a new train split and a validation split, taking 10% for the latter.",
        "citation": "@inproceedings{li-roth-2002-learning,title = \"Learning Question Classifiers\",author = \"Li, Xin and Roth, Dan\",booktitle = \"{COLING} 2002: The 19th International Conference on Computational Linguistics\", year = \"2002\", url = \"https://www.aclweb.org/anthology/C02-1150\",} @inproceedings{hovy-etal-2001-toward, title = \"Toward Semantics-Based Answer Pinpointing\", author = \"Hovy, Eduard and Gerber, Laurie and Hermjakob, Ulf and Lin, Chin-Yew and Ravichandran, Deepak\", booktitle = \"Proceedings of the First International Conference on Human Language Technology Research\", year = \"2001\", url = \"https://www.aclweb.org/anthology/H01-1069\",}",
        "homepage": "https://cogcomp.seas.upenn.edu/Data/QA/QC/",
        "license": "",
        "features": {
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "label": {
                "num_classes": 6,
                "names": [
                    "ABBR",
                    "ENTY",
                    "DESC",
                    "HUM",
                    "LOC",
                    "NUM"
                ],
                "names_file": null,
                "id": null,
                "_type": "ClassLabel"
            }
        },
        "task_templates": [
            {
                "task": "text-classification",
                "text_column": "text",
                "label_column": "label",
                "labels": [
                    "ABBR",
                    "ENTY",
                    "DESC",
                    "HUM",
                    "LOC",
                    "NUM"
                ]
            }
        ],
        "version": {
            "version_str": "1.0.0",
            "description": null,
            "major": 1,
            "minor": 0,
            "patch": 0
        }
    }
}